research papers

Acta Crystallographica Section C Structural Chemistry ISSN 2053-2296

Phase transitions and twinned lowtemperature structures of tetraethylammonium tetrachloridoferrate(III)

Martin Lutz,^a* Yuxing Huang,^b Marc-Etienne Moret^b and Robertus J. M. Klein Gebbink^b

^aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ^bDebye Institute for Nanomaterials Science, Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

Correspondence e-mail: m.lutz@uu.nl

Received 18 March 2014 Accepted 9 April 2014

The title compound, $[(C_2H_5)_4N]$ [FeCl₄], has at room temperature a disordered structure in the high-hexagonal space group $P6_3mc$. At 230 K, the structure is merohedrally twinned in the low-hexagonal space group $P6_3$. The volume has increased by a factor of 9 with respect to the room-temperature structure. At 170 and 110 K, the structure is identical in the orthorhombic space group $Pca2_1$ and twinned by reticular pseudomerohedry. The volume has doubled with respect to the roomtemperature structure. All three space groups, viz. $P6_3mc$, $P6_3$ and $Pca2_1$, are polar and the direction of the polar axis is not affected by the twinning. In the $P6_3$ and $Pca2_1$ structures, all cations and anions are well ordered.

Keywords: crystal structure; phase transitions; twinned structures; tetraethylammonium tetrachloridoferrate(III); lowtemperature structures; group-subgroup relationship.

1. Introduction

The crystal structure of tetraethylammonium tetrachloridoferrate(III), (I), is known from the literature (Evans *et al.*, 1990; Warnke *et al.*, 2010). The structure is isotypic with $[NEt_4][FeBrCl_3]$ (Evans *et al.*, 1990), $[NEt_4][InCl_4]$ (Trotter *et al.*, 1969) and $[NEt_4][TlCl_4]$ (Lenck *et al.*, 1991). After we had detected a new low-temperature phase of (I) by serendipity, we decided to investigate the temperature-dependent behaviour in more detail. The results of this study are presented here.

2. Experimental

2.1. Synthesis and crystallization

All reactions were performed at room temperature. A solution of NEt_4Cl (0.8454 g, 5 mmol) in ethanol (10 ml) was

added to a solution of FeCl₃ (0.8361 g, 5 mmol) in ethanol (25 ml) and the resulting suspension was stirred for 1 h. The precipitated $[Et_4N][FeCl_4]$ was isolated by filtration, dried in air overnight and redissolved in tetrahydrofuran. Slow evaporation in air afforded crystals suitable for X-ray diffraction (yield 170 mg, 10%).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal structure of (I) at 290 K, (Ia), was refined with a disorder model for the tetraethylammonium cation. Symmetry contraints were applied to atom N1, which is on the special position 3m1. In order to model the disorder, the C atoms were introduced on general positions with an occupancy of $\frac{1}{6}$. The instruction 'PART -1' was used in the SHELXL2013 (Sheldrick, 2008) refinement to suppress the generation of special position constraints for the C atoms. This model is overfitting the situation and also leads to a poor data-to-parameter ratio. Therefore 1,2- and 1,3-distance restraints (DFIX) for the ethyl groups were introduced together with ISOR instructions to approximate isotropic behaviour. For reflections 004 and $00\overline{4}$, the observed F^2 is significantly lower than the calculated F^2 . A correction for secondary extinction (EXTI instruction) was used to take this situation into account.

The crystal structure of (I) at 230 K, (Ib), was solved with *SHELXT* (Sheldrick, 2014) in the space group *P3*. The higher *P6*₃ symmetry was found with the ADDSYM routine of *PLATON* (Spek, 2009). The twin operation was found by coset decomposition of point group 6mm with respect to 6. Additional inversion twinning was included in early steps of the refinement but did not provide significant contributions [twin contributions of 0.00 (3) for both inverted components]. The inversion twinning was therefore omitted in the final refinement cycles. The twin fraction of the mirror plane refined to BASF = 0.483 (3).

The crystal structure of (I) at 110 K, (Id), was solved with *SHELXD* (Sheldrick, 2008) in the twin cell, with $V = 2901 \text{ Å}^3$. The selected space group was $P2_1$, with the 12.8 Å axis as the *b* axis and with $\beta = 120^\circ$. The *R* values remained high. Therefore, threefold twinning along *b* was included in *SHELXL2013*. This allowed successful refinement and completion of the structure solution. Using the ADDSYM routine of *PLATON*, the orthorhombic *Pca2*₁ subcell was located. Taking account of this information and the coset decomposition of point group 6*mm* with respect to *mm2* (Table 2), the diffraction images were re-integrated with three orientation matrices. This integration results in a HKLF-5 type reflection file (Herbst-Irmer & Sheldrick, 1998) which contains the individual non-over-

research papers

Table 1

Experimental details.

	(I <i>a</i>)	(I <i>b</i>)	(Ic)	$(\mathrm{I}d)$
Crystal data				
Chemical formula	$(C_8H_{20}N)$ [FeCl ₄]	$(C_8H_{20}N)[FeCl_4]$	$(C_8H_{20}N)[FeCl_4]$	$(C_8H_{20}N)[FeCl_4]$
$M_{ m r}$	327.90	327.90	327.90	327.90
Crystal system, space group	Hexagonal, P63mc	Hexagonal, P63	Orthorhombic, Pca2 ₁	Orthorhombic, Pca21
Temperature (K)	290	230	170	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.2154 (4), 8.2154 (4), 13.1972 (8)	24.5130 (6), 24.5130 (6), 13.0356 (5)	14.0182 (8), 8.1493 (5), 12.8767 (8)	13.9816 (6), 8.1243 (3), 12.8097 (6)
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 90, 90	90, 90, 90
$V(Å^3)$	771.38 (10)	6783.5 (5)	1471.01 (15)	1455.06 (11)
Ζ	2	18	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu ({\rm mm}^{-1})$	1.64	1.68	1.72	1.74
Crystal size (mm)	$0.43 \times 0.34 \times 0.10$	$0.43 \times 0.34 \times 0.10$	$0.43 \times 0.34 \times 0.10$	$0.43 \times 0.34 \times 0.10$
Data collection				
Diffractometer	Bruker Kappa APEXII diffractometer	Bruker Kappa APEXII diffractometer	Bruker Kappa APEXII diffractometer	Bruker Kappa APEXII diffractometer
Absorption correction	Multi-scan (SADABS; Sheldrick, 2012)	Multi-scan (SADABS; Sheldrick, 2012)	Multi-scan (TWINABS; Sheldrick, 2012)	Multi-scan (TWINABS; Sheldrick, 2012)
T_{\min}, T_{\max}	0.655, 0.746	0.660, 0.746	0.639, 0.746	0.655, 0.746
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	7971, 723, 630	75629, 10366, 8945	32765, 7746, 7535	49619, 7924, 7776
R _{int}	0.018	0.026	0.028	0.028
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.650	0.649	0.653	0.652
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.065, 1.09	0.032, 0.083, 1.03	0.014, 0.034, 1.03	0.012, 0.030, 1.04
No. of reflections	723	10366	7746	7924
No. of parameters	89	392	133	133
No. of restraints	67	1	1	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.17, -0.12	0.37, -0.28	0.12, -0.27	0.12, -0.32
Absolute structure	Flack x determined using 279 quotients (Parsons et al., 2013)	See text	See text	See text
Absolute structure para- meter	0.037 (8)	-	-	-

Computer programs: APEX2 (Bruker, 2007), Peakref (Schreurs, 2013), Eval15 (Schreurs et al., 2010), SADABS (Sheldrick, 2012), TWINABS (Sheldrick, 2012), SHELXT (Sheldrick, 2014), SHELXD (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007).

lapping reflections of all three twin components and the overlapping reflections with three contributors. Using all three twin components leads to an artificially high data-to-parameter ratio but allows the determination of the absolute structure for all twin components. *SHELXL2013* automatically corrects the standard uncertainties of the refined parameters for the high data-to-parameter ratio. The absolute structure was determined for the three twin components by a *SHELXL2013* refinement against subsets of the reflection file which contain only the non-overlapping reflections. The Flack

Table 2

Coset decomposition of point group G = 6mm with respect to $H_1 = mm2$, $G = H_1 + g_2H_1 + g_3H_1$.

Matrices are given for a hexagonal base. They were retrieved from the Bilbao Crystallographic Server (Aroyo *et al.*, 2006). For the creation of the orientation matrices for the integration, only rotational operations can be selected to avoid left-handed coordinate systems.

H_1	g_2H_1	g_3H_1
$\begin{array}{l}1\ (100/010/001)\\2_{0,0,z}\ (\overline{1}00/0\overline{1}0/001)\\m_{x,2x,z}\ (\overline{1}10/0\overline{1}0/001)\\m_{x,0,z}\ (1\overline{1}0/0\overline{1}0/001)\end{array}$	$\begin{array}{l} 3^{+}_{0,0,z} \; (0\overline{1}0/1\overline{1}0/001) \\ 6^{-}_{0,0,z} \; (010/\overline{1}10/001) \\ m_{x,-x,z} \; (0\overline{1}0/\overline{1}00/001) \\ m_{x,x,z} \; (010/100/001) \end{array}$	$\begin{array}{c} m_{2x,x,z} \ (100/1\overline{1}0/001) \\ m_{0,y,z} \ (\overline{1}00/\overline{1}10/001) \\ 3^{0,0,z} \ (\overline{1}10/\overline{1}00/001) \\ 6^+_{0,0,z} \ (1\overline{1}0/100/001) \end{array}$

Figure 1

Displacement ellipsoid plot of (Ia) at 290 K (50% probability level). H atoms and all symmetry-generated C atoms of the disordered ethyl groups have been omitted for clarity. [Symmetry codes: (i) -y, x - y, z; (ii) y - x, -x, z.]

Figure 2

Displacement ellipsoid plot of (*Ib*) at 230 K (50% probability level). H atoms have been omitted for clarity. [Symmetry codes: (i) -y + 1, x - y, z; (ii) -x + y + 1, -x + 1, z; (iii) -y, x - y, z; (iv) y - x, -x, z.]

x values (Parsons *et al.*, 2013) were 0.021 (8), 0.026 (9) and 0.043 (9) for the three twin components. The refined twin fractions BASF for the pseudo-hexagonal twinning in the complete data set are 0.3244 (5) and 0.2933 (4) in (Id). Structure (Ic) was refined in the same way as (Id) using structure (Id) as the starting model. The Flack parameters based on the non-overlapping subsets of reflections result in x = 0.034 (9), 0.040 (10) and 0.039 (10). The pseudo-hexagonal twinning contributions refined to 0.3240 (5) and 0.2932 (5) in the full data set of (Ic).

The temperature-dependent unit-cell determinations were performed on a fresh crystal by cooling from 290 to 110 K with a cooling rate of 120 K h⁻¹. The temperature was controlled by a 700 Series cryostream manufactured by Oxford Cryosystems.

3. Results and discussion

At 290 K [structure (I*a*)], we could confirm the structure from the literature (Fig. 1). The indentity of the unit-cell parameters was checked by simulated precession photos and by extensive peak searches. The space group is $P6_3mc$ and the [FeCl₄]⁻ anion (see Table 3 for geometry) is located on a site with 3m1symmetry ($C_{3\nu}$, Wyckoff position *a*). The NEt₄⁺ cation is severly disordered on a second 3m1 site (Wyckoff position *b*). The modelling of this disorder involves the fitting of the S_4 - symmetric NEt₄⁺ cation on the $C_{3\nu}$ site (see *Experimental*) and results in a featureless residual electron density. As already described by Trotter *et al.* (1969), the structure consists of alternating hexagonal layers of cations and anions, stacked in the *c* direction, and resembles a close-packed structure of the anti-NiAs structure type. The [FeCl₄]⁻ anion is octahedrally surrounded by six NEt₄⁺ cations, with Fe···N distances of 5.723 (3) and 5.833 (3) Å. The NEt₄⁺ cation is in a trigonal prismatic environment of six [FeCl₄]⁻ anions. Using the 'CALC SOLV' algorithm of *PLATON* (Spek, 2009), we estimate a volume of 286 Å³ for the [FeCl₄]⁻ anion and a volume of 519 Å³ for the NEt₄⁺ cation.

At 230 K [structure (Ib)], the lengths of the *a* and *b* axes increase by a factor of 3, respectively, and consequently the unit-cell volume increases by a factor of 9. The symmetry changes from $P6_3mc$ (point group 6mm) to $P6_3$ (point group 6). Crystal structure (Ib) is twinned and the twin operation can be obtained by a coset decomposition (Flack, 1987) of the high-hexagonal 6mm with respect to the low-hexagonal point

Table 3						
Selected	geometric	parameters	(Å, ') for	(Ia)).

-	-		
Fe1-Cl1	2.1853 (18)	Fe1-Cl2	2.1874 (12)
Cl1-Fe1-Cl2	109.06 (5)	Cl2 ⁱ -Fe1-Cl2	109.88 (5)
Symmetry code: (i) -	-y, x-y, z.		

Figure 3

Threefold twin relationship between orthorhombic unit cells in (Ic) and (Id) in the reciprocal (*hk*0) plane. The selected twin operations are a 60° rotation and a 120° rotation about the *c* axis. The hexagonal twin cell is drawn with thick lines.

group 6. The subgroup index is 2 and all symmetry operations of the second coset are equally suitable. Arbitrarily, the matrix $(0\overline{10}/\overline{100}/001)$ was selected which corresponds to the mirror plane $m_{x,-x,c}$. Because this symmetry operation belongs to the hexagonal holoedry, the twinning is merohedral and reflections are not split. The twin operation has a determinant of -1, but nevertheless does not invert the polarity of the *c* axis.

Figure 4

X-ray intensities in the (hk0) plane of structure (Id). Simulated precession image prepared with the *LAYER* software (Barbour, 1999). The drawn a^* and b^* axes are based on the hexagonal twin cell.

Table	4
-------	---

Selected geometric parameters (Å, °) for (Ib).

Fe1-Cl11	2.1886 (17)	Fe2-Cl12	2.1968 (19)
Fe1-Cl41	2.196 (2)	Fe3-Cl13	2.188 (4)
Fe1-Cl31	2.198 (2)	Fe3-Cl23	2.198 (2)
Fe1-Cl21	2.2026 (18)	Fe4-Cl24	2.1999 (19)
Fe2-Cl32	2.189 (2)	Fe4-Cl14	2.202 (4)
Fe2-Cl22	2.1933 (18)	Fe5-Cl15	2.191 (4)
Fe2-Cl42	2.1940 (19)	Fe5-Cl25	2.196 (2)
Cl11-Fe1-Cl41	109.70 (9)	Cl32-Fe2-Cl12	108.32 (8)
Cl11-Fe1-Cl31	109.15 (8)	Cl22-Fe2-Cl12	108.24 (8)
Cl41-Fe1-Cl31	109.56 (8)	Cl42-Fe2-Cl12	109.76 (8)
Cl11-Fe1-Cl21	109.33 (8)	Cl13-Fe3-Cl23	109.07 (7)
Cl41-Fe1-Cl21	108.82 (8)	Cl23-Fe3-Cl23 ⁱ	109.87 (7)
Cl31-Fe1-Cl21	110.26 (7)	Cl24-Fe4-Cl24 ⁱⁱ	109.91 (6)
Cl32-Fe2-Cl22	110.84 (8)	Cl24-Fe4-Cl14	109.03 (6)
Cl32-Fe2-Cl42	109.88 (7)	Cl15-Fe5-Cl25	109.04 (8)
Cl22-Fe2-Cl42	109.76 (8)	Cl25 ⁱ -Fe5-Cl25	109.90 (7)

Symmetry codes: (i) -y + 1, x - y, z; (ii) -y, x - y, z.

Table 5

Selected geometric parameters (Å, °) for (Ic).

Fe1-Cl4	2.1966 (7)	Fe1-Cl3	2.1985 (6)
Fe1-Cl1	2.1977 (7)	Fe1-Cl2	2.2030 (7)
Cl4-Fe1-Cl1	110.41 (3)	Cl4-Fe1-Cl2	110.58 (3)
Cl4-Fe1-Cl3	108.67 (3)	Cl1-Fe1-Cl2	107.85 (3)
Cl1-Fe1-Cl3	109.08 (3)	Cl3-Fe1-Cl2	110.24 (3)

Table 6

Twinned reflection data at 110 (2) K.

Analysis of systematic absences with *PLATON* (Spek, 2009). The corresponding unit cell is in the hexagonal setting (twin lattice), with a = b = 16.1794 (10), c = 12.7974 (5) Å, $\alpha = \beta = 90$, $\gamma = 120^{\circ}$ and V = 2901.2 (4) Å³.

Condition	$< I/\sigma >$ true	$< I/\sigma >$ false
0kl, k = 2n	26.27	0.21
h0l, h = 2n	26.30	0.23
h00, h = 2n	27.29	0.31
0k0, k = 2n	27.80	0.26
00l, l = 2n	31.90	0.79
$h\overline{h}l, h = 2n$	26.57	0.21

This is in contrast to twofold twinning axes perpendicular to *c*, which would change the polarity. The latter are suggested by the twinning programs TwinRotMat in *PLATON* (Spek, 2009) and *ROTAX* (Cooper *et al.*, 2002).

The asymmetric unit of (Ib) contains three NEt₄⁺ cations on general positions, two [FeCl₄]⁻ anions on general positions and $3 \times \frac{1}{3}$ [FeCl₄]⁻ anions on threefold axes. The tetrahedra of the [FeCl₄]⁻ anions in (Ib) (see Table 4 for geometry) fulfill nearly perfectly the symmetry of the $P6_3mc$ subcell in (Ia) and a transformation of the FeCl₄ substructure would be possible with the matrix ($\frac{1}{3}$ 00/0 $\frac{1}{3}$ 0/001), and by raising the symmetry to $P6_3mc$. The major difference with (Ia) is thus the ordering of the NEt₄⁺ cations: in (Ia), the cation is heavily disordered, while the three independent cations in (Ib) are well ordered (Fig. 2). All three NEt₄⁺ cations have approximate $\overline{4}$ (S_4) symmetry. The anti-NiAs structure type is maintained in (Ib), but as consequence of the lower symmetry there are now 18 independent Fe···N distances with a large variation between 5.581 (5) and 5.996 (6) Å. If the transformation matrix of the

Figure 5

Displacement ellipsoid plot of (Ic) at 170 K (50% probability level). H atoms have been omitted for clarity.

 $FeCl_4$ substructure is applied to the NEt_4^+ cations, this will lead to severe NEt_4^+ disorder.

The structures at 170 [structure (Ic)] and 110 K [structure (Id)] are identical (see Table 5 for geometry). They are described as a threefold twin ('Drilling') with an orthorhombic unit cell (Fig. 3). As a consequence of the twinning, a hexagonal twin cell with doubled volume is generated (Fig. 4). The hexagonal twin cell shows systematic absences which do not correspond to any of the hexagonal/trigonal space groups (Table 6). The orthorhombic space group $Pca2_1$ belongs to point group mm2. A coset decomposition of point group 6mm [structure (Ia)] with respect to mm2 [structures (Ic) and (Id)] has a subgroup index of 3 and the twin operations can be taken from the second and third coset (Table 6). We selected a 60°

Figure 6

Displacement ellipsoid plot of (Id) at 110 K (50% probability level). H atoms have been omitted for clarity.

Table 7

Unit-cell parameters during the cooling of a single crystal of (I).

In the temperature range 220–110 K, the unit cell of the twin lattice is presented. The last column gives the number of reflections used for the cell refinement with the *Peakref* software (Schreurs, 2013). The detector position was kept fixed during the experiment. At each temperature, 3 ω scans of 6° were measured, respectively (0.5° scan angle).

T (K)	<i>a</i> , <i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	Number of reflections
290	8.230 (6)	13.217 (14)	775.3 (14)	126
280	8.223 (6)	13.202 (15)	773.1 (16)	126
270	8.220 (6)	13.190 (12)	771.7 (15)	124
260	8.213 (6)	13.176 (14)	769.6 (16)	127
250	8.206 (5)	13.164 (14)	767.8 (16)	127
240	8.200 (6)	13.149 (11)	765.7 (15)	127
230	24.566 (12)	13.065 (6)	6829 (9)	581
220	16.328 (11)	12.972 (8)	2995 (5)	404
210	16.311 (8)	12.957 (7)	2985 (3)	416
200	16.299 (11)	12.944 (7)	2978 (5)	419
190	16.289 (8)	12.931 (7)	2971 (3)	426
180	16.278 (10)	12.916 (7)	2964 (4)	427
170	16.269 (9)	12.900 (7)	2957 (4)	440
160	16.259 (7)	12.890 (7)	2951 (3)	447
150	16.249 (10)	12.881 (7)	2945 (4)	448
140	16.241 (10)	12.863 (7)	2938 (4)	441
130	16.229 (10)	12.849 (7)	2931 (4)	449
120	16.218 (9)	12.838 (7)	2924 (4)	435
110	16.213 (8)	12.826 (7)	2920 (3)	438

rotation and a 120° rotation about the *c* axis as twin operations. According to the classification of Donnay & Donnay (1974), the twinning can be described as twinning by reticular pseudomerohedry or reticular TLQS. Nevertheless, no splitting of the overlapping reflections was observed in the diffraction images.

In the orthorhombic setting of (Ic) and (Id), the length of the *ab* diagonal is approximately 2*b*. Therefore, the orthorhombic unit cell can be transformed into the hexagonal twin cell using the matrix (110/020/001) with a determinant of +2. The resulting γ angles are 120.171 (2)° for (Ic) and 120.1596 (14)° for (Id). For the other two twin components, the corresponding matrices are (020/110/001) and (110/110/ 001). The geometrical situation is thus similar to the famous pseudo-hexagonal twinning of aragonite (Cahn, 1954), where

Pseudo-hexagonal packing in the crystal structure of (Id).

Length of the *c* axis as a function of temperature.

the ab diagonal of the orthorhombic cell has approximately the length of 2a.

The FeCl₄ substructure in (I*c*) and (I*d*) does not fulfill the translational symmetry of the (I*a*) subcell. In (I*d*), the maximum difference in the distances between nearest Fe centres is 0.4787 (8) Å. For the distances between Cl centres, the maximal difference is 0.9896 (13) Å. The angle with the greatest deviation is Cl···Cl···Cl of 113.83 (1)° (ideal value = 120°). If only the lattices of (I*a*) and (I*d*) are considered, the degree of lattice disortion is S = 0.0124 (Capillas *et al.*, 2007).

In the $Pca2_1$ structures of (Ic) and (Id), all atoms are located on general positions. Plots of the asymmetric units of the two structures are shown in Figs. 5 and 6. The packing geometry of an octahedral surrounding of the [FeCl₄]⁻ anion by six NEt₄⁺ cations is retained, as well as the trigonal prismatic surrounding of NEt₄⁺ by [FeCl₄]⁻, but due to the lower symmetry there are now six independent Fe····N distances in the range 5.5315 (19)–5.8010 (19) Å. The pseudo-hexagonal packing of the cations and anions in orthorhombic structure (Id) is shown in Fig. 7.

In (I*a*), the [FeCl₄]⁻ anion has exact $C_{3\nu}$ symmetry. A search for noncrystallographic symmetry (Pilati & Forni, 1998) results in the approximate point group T_d , with an r.m.s. deviation of 0.0078 Å. This approximate T_d symmetry is retained in structures (I*b*), (I*c*) and (I*d*). In (I*b*), two [FeCl₄]⁻ ions are on general positions, and three anions have C_3 symmetry (Wyckoff positions *a* and *b*). In (I*c*) and (I*d*), the [FeCl₄]⁻ ion is on a general position. Over the whole temperature range, no significant changes were observed in the Fe–Cl distances. The range between 2.184 (3) and 2.2068 (6) Å is indicative of an Fe^{III} ion in high-spin state (Lauher & Ibers, 1975). One of the Fe–Cl bonds remains approximately collinear with the *c* axis over the whole temperature range.

The NEt₄⁺ cation is disordered in the room-temperature structure (I*a*) and ordered in the low-temperature phases (I*b*) and (I*c*)/(I*d*). In the low-temperature phases, the NEt₄⁺ cations are on general positions but have an approximate noncrystallographic $\overline{4}$ (S₄) symmetry. The principal axis of

point group $\overline{4}$ (S₄) is not aligned to the unit-cell axes of (Ib) and (Ic)/(Id).

In a temperature-dependent unit-cell determination with fixed detector distance, the changes in the unit-cell parameters were monitored. The results are presented in Table 7 and a graphical representation of the *c*-axis length is shown in Fig. 8. From the symmetry considerations described above and the reversibility of the phase transitions, we conclude that the transitions are enantiomorphic. The change of the c axis is noncontinuous so that the transitions should be considered first-order. It becomes clear that structure (Ib) is stable only in a narrow temperature window. This is consistent with calorimetric studies (Navarro et al., 1988), where transition temperatures of 234.7 (1) and 226.6 (1) K have been found. A third transition point at 217.5 (1) K was not detected in our unit-cell determinations. From the literature it is known that the phase transitions also affect the linewidth in electron paramagnetic resonance (EPR) spectra (Puertolas et al., 1983). Unusual magnetic behaviour at the liquid helium temperature may be ascribed to the phase transitions above the liquid nitrogen temperature (Puertolas et al., 1983a).

The thermal expansion tensor for the unit cells at 240 and 290 K shows the largest expansion along the c axis. The same situation is found in the low temperature phase for the unit cells at 110 and 220 K.

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO). YH is grateful to the CSC (China Scholarship Council) for a doctoral scholarship. MEM acknowledges funding from the European Union Seventh Framework Programme (grant No. FP7/2007–2013) under Grant Agreement PIIF-GA-2012-327306 (IIF-Marie Curie postdoctoral grant).

Supporting information for this paper is available from the IUCr electronic archives (Reference: GZ3264).

References

- Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.
- Barbour, L. J. (1999). J. Appl. Cryst. 32, 351-352.
- Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cahn, R. W. (1954). Adv. Phys. 3, 363-445.
- Capillas, C., Perez-Mato, J. M. & Aroyo, M. I. (2007). J. Phys. Condens. Matter, 19, 275203.
- Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.
- Donnay, G. & Donnay, J. D. H. (1974). Can. Mineral. 12, 422-425.
- Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46,
- 1818–1821. Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188– 192.
- Flack, H. D. (1987). Acta Cryst. A43, 564-568.
- Herbst-Irmer, R. & Sheldrick, G. M. (1998). Acta Cryst. B54, 443-449.
- Lauher, J. W. & Ibers, J. A. (1975). Inorg. Chem. 14, 348-352.
- Lenck, M., Dou, S.-q. & Weiss, A. (1991). Z. Naturforsch. Teil A Phys. Sci. 46, 777–784.
- Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373–384.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.

- Puertolas, J. A., Navarro, R., Palacio, F., Gonzalez, D., Carlin, R. L. & van Duyneveldt, A. J. (1983a). J. Magn. Magn. Mater. 31–34, 1067–1068.
- Puertolas, J. A., Orera, V. M., Palacio, F. & van Duyneveldt, A. J. (1983). Phys. Lett. A, 98, 374–376.
- Schreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands.
- Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2012). SADABS and TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2014). SHELXT. University of Göttingen, Germany.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603-604.
- Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Klak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289.

supplementary materials

Acta Cryst. (2014). C70, 470-476 [doi:10.1107/S2053229614007955]

Phase transitions and twinned low-temperature structures of tetraethylammonium tetrachloridoferrate(III)

Martin Lutz, Yuxing Huang, Marc-Etienne Moret and Robertus J. M. Klein Gebbink

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2007). Cell refinement: *Peakref* (Schreurs, 2013) for (Ia); Peakref (Schreurs, 2013) for (Ib), (Ic), (Id). Data reduction: *Eval15* (Schreurs *et al.*, 2010) and *SADABS* (Sheldrick, 2012) for (Ia); Eval15 (Schreurs *et al.*, 2010) and *SADABS* (Sheldrick, 2012) for (Ib); Eval15 (Schreurs *et al.*, 2010) and TWINABS (Sheldrick, 2012) for (Ic), (Id). Program(s) used to solve structure: coordinates from the literature (Evans *et al.*, 1990) for (Ia); SHELXT (Sheldrick, 2014) for (Ib); *SHELXD* (Sheldrick, 2008) for (Ic), (Id). For all compounds, program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008). Molecular graphics: *PLATON* (Spek, 2009) for (Ia), (Ib), (Ic); *PLATON* (Spek, 2009) and DRAWxtl (Finger *et al.*, 2007) for (Id). For all compounds, software used to prepare material for publication: manual editing of the *SHELXL* output.

(Ia) Tetraethylammonium tetrachloridoferrate(III)

Crystal data

 $(C_8H_{20}N)$ [FeCl₄] $M_r = 327.90$ Hexagonal, $P6_3mc$ a = 8.2154 (4) Å c = 13.1972 (8) Å V = 771.38 (10) Å³ Z = 2F(000) = 338

Data collection

Bruker Kappa APEXII diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2012) $T_{\min} = 0.655$, $T_{\max} = 0.746$ 7971 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.065$ S = 1.09723 reflections $D_{\rm x} = 1.412 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6539 reflections $\theta = 1.5-27.4^{\circ}$ $\mu = 1.64 \text{ mm}^{-1}$ T = 290 KBlock, yellow $0.43 \times 0.34 \times 0.10 \text{ mm}$

723 independent reflections 630 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -9 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -17 \rightarrow 17$

89 parameters67 restraintsPrimary atom site location: heavy-atom methodSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0438P)^2 + 0.020P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.12$ e Å⁻³

Special details

Extinction correction: *SHELXL2013* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.029 (5) Absolute structure: Flack x determined using 279 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.037 (8)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.6667	0.3333	0.2509 (4)	0.0514 (9)	
C1	0.506 (2)	0.1351 (13)	0.2329 (13)	0.070 (5)	0.1667
H1A	0.3914	0.1284	0.2564	0.084*	0.1667
H1B	0.4939	0.1132	0.1603	0.084*	0.1667
C2	0.521 (4)	-0.0216 (18)	0.2812 (14)	0.062 (7)	0.1667
H2A	0.4105	-0.1391	0.2655	0.093*	0.1667
H2B	0.5311	-0.0040	0.3533	0.093*	0.1667
H2C	0.6299	-0.0223	0.2559	0.093*	0.1667
C3	0.8493 (18)	0.319 (2)	0.2650 (13)	0.071 (5)	0.1667
H3A	0.8150	0.1975	0.2935	0.085*	0.1667
H3B	0.9055	0.3281	0.1991	0.085*	0.1667
C4	0.992 (3)	0.470 (3)	0.333 (3)	0.061 (10)	0.1667
H4A	1.0998	0.4551	0.3389	0.092*	0.1667
H4B	0.9377	0.4612	0.3983	0.092*	0.1667
H4C	1.0289	0.5913	0.3039	0.092*	0.1667
C5	0.643 (2)	0.422 (2)	0.3435 (8)	0.065 (5)	0.1667
H5A	0.7614	0.4816	0.3797	0.078*	0.1667
H5B	0.5514	0.3228	0.3866	0.078*	0.1667
C6	0.582 (6)	0.565 (5)	0.330 (3)	0.086 (12)	0.1667
H6A	0.5713	0.6109	0.3955	0.128*	0.1667
H6B	0.4626	0.5087	0.2966	0.128*	0.1667
H6C	0.6736	0.6682	0.2904	0.128*	0.1667
C7	0.6973 (19)	0.4544 (16)	0.1589 (7)	0.057 (4)	0.1667
H7A	0.5858	0.4649	0.1493	0.068*	0.1667
H7B	0.8007	0.5795	0.1733	0.068*	0.1667
C8	0.739 (2)	0.390 (5)	0.0602 (7)	0.077 (7)	0.1667
H8A	0.7578	0.4783	0.0078	0.115*	0.1667
H8B	0.6350	0.2687	0.0426	0.115*	0.1667

supplementary materials

H8C	0.8503	0.3805	0.0676	0.115*	0.1667
Fe1	0.0000	0.0000	0.50819 (8)	0.0649 (3)	
Cl1	0.0000	0.0000	0.34260 (12)	0.0928 (8)	
Cl2	-0.14530 (8)	0.14530 (8)	0.56231 (13)	0.1007 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0534 (12)	0.0534 (12)	0.047 (2)	0.0267 (6)	0.000	0.000
C1	0.062 (8)	0.059 (8)	0.079 (10)	0.022 (6)	-0.008 (7)	-0.003 (7)
C2	0.049 (15)	0.054 (8)	0.090 (12)	0.031 (7)	0.032 (10)	0.034 (7)
C3	0.059 (8)	0.073 (8)	0.089 (11)	0.040 (7)	0.010 (8)	0.015 (9)
C4	0.084 (14)	0.03 (2)	0.089 (15)	0.045 (10)	-0.033 (11)	-0.024 (10)
C5	0.069 (11)	0.058 (10)	0.055 (6)	0.022 (9)	0.007 (5)	-0.018 (6)
C6	0.07 (2)	0.10 (3)	0.089 (18)	0.05 (2)	0.009 (14)	-0.013 (15)
C7	0.050 (9)	0.062 (6)	0.062 (6)	0.032 (5)	0.002 (5)	0.018 (5)
C8	0.100 (11)	0.089 (15)	0.053 (4)	0.055 (9)	0.003 (6)	-0.003 (9)
Fe1	0.0668 (4)	0.0668 (4)	0.0613 (5)	0.03339 (18)	0.000	0.000
Cl1	0.1090 (13)	0.1090 (13)	0.0606 (13)	0.0545 (6)	0.000	0.000
Cl2	0.1134 (7)	0.1134 (7)	0.1018 (7)	0.0767 (7)	0.0080 (3)	-0.0080 (3)

N1—C5	1.486 (9)	C5—C6	1.500 (14)
N1—C7	1.509 (9)	C5—H5A	0.9700
N1C1	1.516 (10)	С5—Н5В	0.9700
N1—C3	1.572 (10)	С6—Н6А	0.9600
C1—C2	1.493 (13)	C6—H6B	0.9600
C1—H1A	0.9700	С6—Н6С	0.9600
C1—H1B	0.9700	C7—C8	1.509 (15)
C2—H2A	0.9600	С7—Н7А	0.9700
C2—H2B	0.9600	С7—Н7В	0.9700
C2—H2C	0.9600	C8—H8A	0.9600
C3—C4	1.502 (13)	C8—H8B	0.9600
С3—НЗА	0.9700	C8—H8C	0.9600
С3—Н3В	0.9700	Fe1—Cl1	2.1853 (18)
C4—H4A	0.9600	Fe1—Cl2 ⁱ	2.1874 (12)
C4—H4B	0.9600	Fe1—Cl2 ⁱⁱ	2.1874 (12)
C4—H4C	0.9600	Fe1—Cl2	2.1874 (12)
C5—N1—C7	111.0 (6)	N1—C5—C6	117.8 (13)
C5—N1—C1	113.6 (9)	N1—C5—H5A	107.9
C7—N1—C1	110.5 (8)	C6—C5—H5A	107.9
C5—N1—C3	107.7 (8)	N1—C5—H5B	107.9
C7—N1—C3	107.0 (8)	C6—C5—H5B	107.9
C1—N1—C3	106.7 (7)	H5A—C5—H5B	107.2
C2-C1-N1	117.3 (11)	С5—С6—Н6А	109.5
C2—C1—H1A	108.0	C5—C6—H6B	109.5
N1—C1—H1A	108.0	H6A—C6—H6B	109.5
C2—C1—H1B	108.0	С5—С6—Н6С	109.5

N1—C1—H1B	108.0	H6A—C6—H6C	109.5
H1A—C1—H1B	107.2	H6B—C6—H6C	109.5
C1—C2—H2A	109.5	C8—C7—N1	117.0 (13)
C1—C2—H2B	109.5	С8—С7—Н7А	108.0
H2A—C2—H2B	109.5	N1—C7—H7A	108.0
C1—C2—H2C	109.5	С8—С7—Н7В	108.0
H2A—C2—H2C	109.5	N1—C7—H7B	108.0
H2B—C2—H2C	109.5	H7A—C7—H7B	107.3
C4—C3—N1	112.8 (11)	С7—С8—Н8А	109.5
С4—С3—НЗА	109.0	C7—C8—H8B	109.5
N1—C3—H3A	109.0	H8A—C8—H8B	109.5
C4—C3—H3B	109.0	С7—С8—Н8С	109.5
N1—C3—H3B	109.0	H8A—C8—H8C	109.5
H3A—C3—H3B	107.8	H8B—C8—H8C	109.5
C3—C4—H4A	109.5	Cl1—Fe1—Cl2 ⁱ	109.06 (6)
C3—C4—H4B	109.5	Cl1—Fe1—Cl2 ⁱⁱ	109.06 (5)
H4A—C4—H4B	109.5	Cl2 ⁱ —Fe1—Cl2 ⁱⁱ	109.88 (5)
C3—C4—H4C	109.5	Cl1—Fe1—Cl2	109.06 (5)
H4A—C4—H4C	109.5	Cl2 ⁱ —Fe1—Cl2	109.88 (5)
H4B—C4—H4C	109.5	Cl2 ⁱⁱ —Fe1—Cl2	109.88 (5)
~			
C5-N1-C1-C2	-88.2 (16)	C7—N1—C5—C6	22 (2)
C7—N1—C1—C2	146.3 (15)	C1—N1—C5—C6	-103 (2)
C3—N1—C1—C2	30 (2)	C3—N1—C5—C6	139 (2)
C5—N1—C3—C4	-28 (2)	C5—N1—C7—C8	175.4 (11)
C7—N1—C3—C4	91 (2)	C1—N1—C7—C8	-57.7 (14)
C1—N1—C3—C4	-150.6 (19)	C3—N1—C7—C8	58.1 (13)

Symmetry codes: (i) -x+y, -x, z; (ii) -y, x-y, z.

(Ib) Tetraethylammonium tetrachloridoferrate(III)

Crystal data

$(C_8H_{20}N)[FeCl_4]$	$D_{\rm x} = 1.445 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 327.90$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hexagonal, <i>P</i> 6 ₃	Cell parameters from 54564 reflections
a = 24.5130 (6) Å	$\theta = 1.6 - 27.5^{\circ}$
c = 13.0356 (5) Å	$\mu = 1.68 \text{ mm}^{-1}$
$V = 6783.5 (5) Å^3$	T = 230 K
Z = 18	Block, yellow
F(000) = 3042	$0.43 \times 0.34 \times 0.10 \text{ mm}$
Data collection	
Bruker Kappa APEXII	10366 independent reflections
diffractometer	8945 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -27 \rightarrow 31$
(SADABS; Sheldrick, 2012)	$k = -30 \longrightarrow 30$
$T_{\min} = 0.660, \ T_{\max} = 0.746$	$l = -16 \rightarrow 16$
75629 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
S = 1.03	H-atom parameters constrained
10366 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 1.8713P]$
392 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.019$
Primary atom site location: heavy-atom method	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. loop__diffrn_orient_matrix_type_diffrn_orient_matrix_UB_11_diffrn_orient_matrix_UB_12_diffrn_orient_matrix_UB_13_diffrn_orient_matrix_UB_21_diffrn_orient_matrix_UB_22__diffrn_orient_matrix_UB_31_diffrn_orient_matrix_UB_32__diffrn_orient_matrix_UB_31_diffrn_orient_matrix_UB_32__diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0007468 0.0364094 -0.0331586 -0.0437700 -0.0289410 -0.0250654 -0.0173985 0.0074731 0.0644811

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.4403 (2)	0.2207 (2)	0.5833 (5)	0.0306 (13)
C11	0.3821 (3)	0.1560 (3)	0.5953 (5)	0.0551 (18)
H11A	0.3784	0.1309	0.5345	0.066*
H11B	0.3883	0.1352	0.6547	0.066*
C21	0.3212 (4)	0.1560 (3)	0.6091 (6)	0.065 (3)
H21A	0.3276	0.1893	0.6564	0.097*
H21B	0.2895	0.1157	0.6365	0.097*
H21C	0.3072	0.1631	0.5434	0.097*
C31	0.4484 (4)	0.2584 (3)	0.6780 (5)	0.0600 (17)
H31A	0.4526	0.2360	0.7369	0.072*
H31B	0.4102	0.2611	0.6883	0.072*
C41	0.5046 (3)	0.3245 (4)	0.6758 (7)	0.068 (2)
H41A	0.5431	0.3225	0.6788	0.102*
H41B	0.5027	0.3480	0.7343	0.102*
H41C	0.5039	0.3453	0.6129	0.102*
C51	0.4964 (3)	0.2122 (3)	0.5650 (5)	0.0502 (15)
H51A	0.5335	0.2536	0.5521	0.060*
H51B	0.4887	0.1867	0.5030	0.060*
C61	0.5117 (4)	0.1801 (4)	0.6554 (7)	0.079 (3)
H61A	0.5105	0.1994	0.7197	0.119*
H61B	0.5533	0.1855	0.6457	0.119*
H61C	0.4807	0.1356	0.6570	0.119*
C71	0.4329 (3)	0.2544 (3)	0.4953 (4)	0.0529 (17)
H71A	0.4717	0.2952	0.4875	0.063*

H71B	0.3986	0.2627	0.5100	0.063*
C81	0.4186 (5)	0.2170 (4)	0.3908 (6)	0.068 (2)
H81A	0.4553	0.2146	0.3698	0.101*
H81B	0.4084	0.2386	0.3384	0.101*
H81C	0.3832	0.1747	0.4001	0.101*
N2	0.2260 (2)	0.10845 (19)	0.0871 (4)	0.0263 (12)
C12	0.2195 (3)	0.1384 (3)	0.1860 (4)	0.0383 (13)
H12A	0.2171	0.1119	0.2439	0.046*
H12B	0.2577	0.1795	0.1948	0.046*
C22	0.1629 (3)	0.1479 (4)	0.1904 (5)	0.058 (2)
H22A	0.1684	0.1801	0.1416	0.088*
H22B	0.1590	0.1609	0.2590	0.088*
H22C	0.1251	0.1086	0.1735	0.088*
C32	0.2836 (2)	0.1016 (2)	0.0990 (4)	0.0308 (12)
H32A	0.2851	0.0772	0.0406	0.037*
H32B	0.2782	0.0767	0.1610	0.037*
C42	0.3474 (3)	0.1622 (3)	0.1062 (5)	0.0462 (17)
H42A	0.3521	0.1895	0.0491	0.069*
H42B	0.3808	0.1519	0.1040	0.069*
H42C	0.3498	0.1835	0.1702	0.069*
C52	0.1688 (3)	0.0441 (3)	0.0678 (5)	0.0374 (13)
H52A	0.1323	0.0496	0.0572	0.045*
H52B	0.1757	0.0272	0.0041	0.045*
C62	0.1532 (3)	-0.0035 (4)	0.1507 (4)	0.0465 (15)
H62A	0.1907	-0.0052	0.1690	0.070*
H62B	0.1209	-0.0445	0.1265	0.070*
H62C	0.1378	0.0083	0.2104	0.070*
C72	0.2332 (3)	0.1518 (2)	-0.0031 (4)	0.0332 (13)
H72A	0.1942	0.1536	-0.0088	0.040*
H72B	0.2672	0.1944	0.0132	0.040*
C82	0.2465 (3)	0.1341 (3)	-0.1035 (5)	0.0443 (16)
H82A	0.2849	0.1319	-0.0994	0.066*
H82B	0.2517	0.1653	-0.1542	0.066*
H82C	0.2118	0.0933	-0.1234	0.066*
N3	0.5579 (2)	0.1076 (2)	0.0842 (4)	0.0273 (12)
C13	0.5644 (3)	0.0495 (3)	0.0986 (5)	0.0533 (18)
H13A	0.5894	0.0548	0.1603	0.064*
H13B	0.5871	0.0455	0.0398	0.064*
C23	0.5005 (4)	-0.0111 (4)	0.1086 (5)	0.066 (3)
H23A	0.4752	-0.0051	0.1597	0.098*
H23B	0.5070	-0.0454	0.1294	0.098*
H23C	0.4789	-0.0210	0.0430	0.098*
C33	0.5298 (3)	0.1180 (3)	0.1804 (5)	0.0462 (15)
H33A	0.4894	0.0799	0.1942	0.055*
H33B	0.5579	0.1240	0.2382	0.055*
C43	0.5193 (3)	0.1730 (3)	0.1758 (7)	0.058 (2)
H43A	0.5592	0.2117	0.1853	0.086*
H43B	0.4903	0.1692	0.2295	0.086*
H43C	0.5018	0.1738	0.1095	0.086*

C53	0.6236 (2)	0.1631 (3)	0.0666 (5)	0.0461 (14)
H53A	0.6403	0.1553	0.0034	0.055*
H53B	0.6201	0.2007	0.0554	0.055*
C63	0.6709 (4)	0.1771 (4)	0.1517 (6)	0.067 (3)
H63A	0.6505	0.1716	0.2176	0.101*
H63B	0.7053	0.2201	0.1453	0.101*
H63C	0.6874	0.1485	0.1466	0.101*
C73	0.5187 (3)	0.1018 (3)	-0.0061 (4)	0.0452 (14)
H73A	0.5179	0.1412	-0.0139	0.054*
H73B	0.4754	0.0682	0.0071	0.054*
C83	0.5414 (4)	0.0874 (6)	-0.1086 (6)	0.065 (2)
H83A	0.5829	0.1220	-0.1254	0.098*
H83B	0.5121	0.0821	-0.1630	0.098*
H83C	0.5433	0.0490	-0.1013	0.098*
Fe1	0.33737 (4)	0.00273 (4)	0.33582 (7)	0.0309 (3)
Cl11	0.34314 (9)	-0.00199 (9)	0.16880 (12)	0.0561 (5)
Cl21	0.28054 (8)	0.04653 (8)	0.37520 (14)	0.0416 (4)
Cl31	0.29398 (9)	-0.09301 (9)	0.39937 (15)	0.0476 (4)
Cl41	0.43228 (9)	0.06036 (9)	0.39996 (15)	0.0495 (5)
Fe2	0.33198 (4)	0.00257 (4)	0.83363 (8)	0.0343 (3)
Cl12	0.31821 (9)	-0.00591 (9)	0.66663 (12)	0.0527 (4)
Cl22	0.23922 (8)	-0.03776 (9)	0.90686 (15)	0.0445 (4)
Cl32	0.37979 (9)	-0.04888 (9)	0.87898 (15)	0.0477 (5)
Cl42	0.38968 (9)	0.10216 (8)	0.87606 (16)	0.0490 (5)
Fe3	0.6667	0.3333	0.35736 (15)	0.0378 (5)
C113	0.6667	0.3333	0.1895 (3)	0.0494 (11)
Cl23	0.62767 (10)	0.23610 (10)	0.41246 (14)	0.0596 (6)
Fe4	0.0000	0.0000	0.86279 (12)	0.0346 (4)
Cl14	0.0000	0.0000	0.6938 (2)	0.0467 (8)
C124	0.06233 (8)	0.09662 (9)	0.91781 (13)	0.0459 (4)
Fe5	0.6667	0.3333	0.85790 (15)	0.0395 (5)
Cl15	0.6667	0.3333	0.6898 (3)	0.0532 (11)
Cl25	0.56964 (10)	0.27434 (10)	0.91285 (14)	0.0594 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
N1	0.036 (3)	0.024 (3)	0.031 (3)	0.014 (2)	0.007 (2)	0.006 (2)	
C11	0.048 (4)	0.042 (4)	0.053 (4)	0.006 (3)	0.000 (3)	0.000 (3)	
C21	0.041 (5)	0.055 (5)	0.073 (6)	0.005 (3)	0.013 (4)	0.007 (4)	
C31	0.076 (5)	0.067 (4)	0.045 (3)	0.042 (4)	-0.006 (4)	-0.023 (3)	
C41	0.050 (4)	0.046 (4)	0.098 (6)	0.017 (4)	0.000 (4)	-0.027 (5)	
C51	0.043 (4)	0.046 (4)	0.065 (4)	0.025 (3)	0.012 (3)	0.000 (3)	
C61	0.092 (7)	0.089 (7)	0.090 (6)	0.070 (6)	-0.026 (5)	0.007 (5)	
C71	0.064 (5)	0.042 (4)	0.043 (3)	0.020 (3)	-0.002 (3)	0.006 (3)	
C81	0.095 (8)	0.075 (6)	0.032 (4)	0.042 (6)	-0.003 (4)	-0.007 (4)	
N2	0.030(3)	0.023 (2)	0.025 (2)	0.013 (2)	-0.001 (2)	-0.006 (2)	
C12	0.036 (3)	0.039 (3)	0.035 (3)	0.016 (3)	-0.008 (3)	-0.008 (3)	
C22	0.068 (5)	0.062 (5)	0.050 (3)	0.036 (4)	0.007 (3)	-0.006 (3)	
C32	0.024 (3)	0.029 (3)	0.040 (3)	0.013 (2)	-0.012 (2)	-0.002 (2)	

C42	0.036 (4)	0.036 (3)	0.058 (4)	0.012 (3)	-0.008 (3)	-0.003 (3)	
C52	0.033 (3)	0.035 (3)	0.040 (3)	0.014 (3)	-0.001 (3)	0.000 (3)	
C62	0.033 (4)	0.040 (3)	0.063 (4)	0.016 (3)	-0.001 (3)	0.001 (4)	
C72	0.030 (3)	0.023 (3)	0.041 (3)	0.009(2)	-0.010 (3)	-0.006 (2)	
C82	0.058 (4)	0.034 (3)	0.041 (3)	0.023 (3)	-0.003 (3)	0.007 (3)	
N3	0.031 (3)	0.024 (3)	0.028 (3)	0.015 (2)	-0.002(2)	0.001 (2)	
C13	0.079 (5)	0.069 (5)	0.038 (3)	0.058 (4)	-0.010 (3)	-0.007 (3)	
C23	0.100 (7)	0.028 (4)	0.069 (6)	0.031 (4)	0.003 (4)	0.011 (4)	
C33	0.051 (4)	0.061 (4)	0.037 (3)	0.035 (3)	0.013 (3)	-0.006 (3)	
C43	0.043 (4)	0.044 (4)	0.089 (5)	0.025 (3)	0.005 (4)	-0.018 (4)	
C53	0.028 (3)	0.041 (3)	0.061 (4)	0.011 (3)	0.009 (3)	0.007 (3)	
C63	0.040 (4)	0.081 (6)	0.057 (4)	0.013 (4)	-0.018 (4)	-0.002 (4)	
C73	0.044 (4)	0.059 (4)	0.042 (3)	0.033 (3)	-0.011 (3)	0.000 (3)	
C83	0.067 (5)	0.109 (7)	0.032 (4)	0.053 (5)	-0.004 (3)	-0.013 (5)	
Fe1	0.0328 (5)	0.0332 (5)	0.0268 (4)	0.0165 (4)	-0.0002 (4)	0.0014 (4)	
Cl11	0.0794 (12)	0.0780 (13)	0.0277 (8)	0.0518 (12)	0.0004 (7)	-0.0016 (8)	
Cl21	0.0432 (10)	0.0404 (9)	0.0459 (9)	0.0243 (8)	0.0004 (7)	-0.0003 (7)	
Cl31	0.0504 (9)	0.0358 (9)	0.0573 (11)	0.0221 (8)	0.0105 (8)	0.0082 (7)	
Cl41	0.0374 (9)	0.0486 (10)	0.0571 (10)	0.0176 (8)	-0.0069 (8)	0.0024 (9)	
Fe2	0.0337 (6)	0.0336 (5)	0.0368 (5)	0.0177 (4)	0.0006 (3)	-0.0005 (4)	
Cl12	0.0534 (9)	0.0697 (12)	0.0363 (8)	0.0318 (8)	0.0007 (7)	0.0003 (8)	
Cl22	0.0379 (9)	0.0491 (10)	0.0438 (8)	0.0198 (8)	0.0093 (8)	0.0003 (8)	
Cl32	0.0459 (10)	0.0447 (9)	0.0596 (11)	0.0279 (8)	-0.0059 (8)	0.0020 (8)	
Cl42	0.0452 (10)	0.0340 (9)	0.0617 (11)	0.0151 (8)	-0.0001 (8)	-0.0057 (8)	
Fe3	0.0386 (8)	0.0386 (8)	0.0361 (13)	0.0193 (4)	0.000	0.000	
Cl13	0.0560 (16)	0.0560 (16)	0.036 (2)	0.0280 (8)	0.000	0.000	
Cl23	0.0746 (13)	0.0447 (10)	0.0542 (11)	0.0260 (10)	0.0034 (10)	0.0066 (9)	
Fe4	0.0342 (5)	0.0342 (5)	0.0354 (10)	0.0171 (3)	0.000	0.000	
Cl14	0.0519 (11)	0.0519 (11)	0.0364 (16)	0.0260 (6)	0.000	0.000	
Cl24	0.0437 (10)	0.0397 (9)	0.0483 (9)	0.0164 (8)	-0.0039 (9)	-0.0083 (8)	
Fe5	0.0412 (8)	0.0412 (8)	0.0360 (12)	0.0206 (4)	0.000	0.000	
Cl15	0.0615 (16)	0.0615 (16)	0.037 (2)	0.0308 (8)	0.000	0.000	
Cl25	0.0461 (9)	0.0654 (13)	0.0559 (11)	0.0197 (9)	0.0096 (9)	0.0039 (10)	

N1—C71	1.476 (8)	С72—Н72В	0.9800
N1—C31	1.494 (8)	C82—H82A	0.9700
N1-C51	1.511 (7)	C82—H82B	0.9700
N1-C11	1.521 (7)	C82—H82C	0.9700
C11—C21	1.505 (10)	N3—C73	1.481 (7)
C11—H11A	0.9800	N3—C33	1.512 (7)
C11—H11B	0.9800	N3—C53	1.518 (7)
C21—H21A	0.9700	N3—C13	1.523 (7)
C21—H21B	0.9700	C13—C23	1.532 (10)
C21—H21C	0.9700	C13—H13A	0.9800
C31—C41	1.514 (10)	C13—H13B	0.9800
C31—H31A	0.9800	C23—H23A	0.9700
C31—H31B	0.9800	C23—H23B	0.9700
C41—H41A	0.9700	C23—H23C	0.9700

C41—H41B	0.9700	C33—C43	1.495 (9)
C41—H41C	0.9700	С33—Н33А	0.9800
C51—C61	1.562 (10)	С33—Н33В	0.9800
C51—H51A	0.9800	C43—H43A	0.9700
C51—H51B	0.9800	C43—H43B	0.9700
C61—H61A	0.9700	C43—H43C	0.9700
С61—Н61В	0.9700	C53—C63	1.515 (9)
C61—H61C	0.9700	С53—Н53А	0.9800
C71—C81	1.581 (9)	С53—Н53В	0.9800
C71—H71A	0.9800	С63—Н63А	0.9700
С71—Н71В	0.9800	С63—Н63В	0.9700
C81—H81A	0.9700	С63—Н63С	0.9700
C81—H81B	0.9700	C73—C83	1.555 (9)
C81—H81C	0.9700	C73—H73A	0.9800
N2—C32	1.511 (6)	C73—H73B	0.9800
N2-C52	1 518 (6)	C83—H83A	0.9700
N2-C12	1.531(7)	C83—H83B	0.9700
N2	1.536(7)	C_{83} —H83C	0.9700
$C_{12} - C_{22}$	1,519 (9)	Fe1	2 1886 (17)
C12—H12A	0.9800	Fe1—Cl41	2.1000 (17)
C12—H12R	0.9800	Fe1_Cl31	2.198 (2)
C^{22} H ²² A	0.9300	Fe1 - Cl21	2.198 (2)
C22_H22B	0.9700	F_{e2} (132	2.2020(10) 2.189(2)
C_{22} H22C	0.9700	$F_{e2} = C_{122}$	2.102(2)
C_{22} C_{122} C_{12	1 528 (8)	$F_{e2} = C_{122}$	2.1935 (18)
$C_{32} = C_{42}$	0.9800	$F_{e2} = C_{1+2}$	2.1940 (19)
C32 H32R	0.9800	F_{e2} C112	2.1908(19) 2.188(4)
C32—H32B	0.9800	$F_{0}^{2} = C_{1}^{1} C_{1}^{2}$	2.100(4)
C42 - H42A	0.9700	$Fe3 = C123^{i}$	2.198(2)
C_{42} H_{42C}	0.9700	$F_{2} = C_{12}^{12}$	2.198(2)
C_{42} — $H_{42}C_{42}$	0.9700	Fe3 = C123	2.198(2)
$C_{52} = C_{52}$	1.495 (8)	Fe4 = C124	2.1999 (19)
C52—H52A	0.9800	Fe4 = C124	2.1999 (19)
С52—Н52В	0.9800	Fe4—C124"	2.1999 (19)
C62—H62A	0.9700		2.202 (4)
C62—H62B	0.9700		2.191 (4)
C62—H62C	0.9700	Fe5—C125 ¹	2.196 (2)
C72—C82	1.467 (8)	Fe5—C125"	2.196 (2)
С72—Н72А	0.9800	Fe5—Cl25	2.196 (2)
C71—N1—C31	108.2 (4)	C82—C72—N2	116.3 (4)
C71—N1—C51	109.3 (5)	С82—С72—Н72А	108.2
C31—N1—C51	111.6 (5)	N2—C72—H72A	108.2
C71—N1—C11	110.5 (5)	С82—С72—Н72В	108.2
C31—N1—C11	108.9 (5)	N2—C72—H72B	108.2
C51—N1—C11	108.4 (4)	H72A—C72—H72B	107.4
C21—C11—N1	115.2 (5)	С72—С82—Н82А	109.5
C21—C11—H11A	108.5	С72—С82—Н82В	109.5
N1-C11-H11A	108.5	H82A—C82—H82B	109.5
C21—C11—H11B	108.5	С72—С82—Н82С	109.5

N1-C11-H11B	108.5	H82A—C82—H82C	109.5
H11A—C11—H11B	107.5	H82B—C82—H82C	109.5
C11—C21—H21A	109.5	C73—N3—C33	110.3 (4)
C11—C21—H21B	109.5	C73—N3—C53	108.2 (5)
H21A—C21—H21B	109.5	C33—N3—C53	110.1 (5)
C11—C21—H21C	109.5	C73—N3—C13	112.0 (5)
H21A—C21—H21C	109.5	C33—N3—C13	109.0 (5)
H21B—C21—H21C	109.5	C53—N3—C13	107.2 (4)
N1—C31—C41	114.5 (6)	N3—C13—C23	112.5 (5)
N1—C31—H31A	108.6	N3—C13—H13A	109.1
C41—C31—H31A	108.6	С23—С13—Н13А	109.1
N1—C31—H31B	108.6	N3—C13—H13B	109.1
C41—C31—H31B	108.6	С23—С13—Н13В	109.1
H31A—C31—H31B	107.6	H13A—C13—H13B	107.8
C31—C41—H41A	109.5	С13—С23—Н23А	109.5
C31—C41—H41B	109.5	С13—С23—Н23В	109.5
H41A—C41—H41B	109.5	H23A—C23—H23B	109.5
C31—C41—H41C	109.5	С13—С23—Н23С	109.5
H41A—C41—H41C	109.5	H23A—C23—H23C	109.5
H41B—C41—H41C	109.5	H23B—C23—H23C	109.5
N1—C51—C61	114.5 (6)	C43—C33—N3	114.6 (6)
N1—C51—H51A	108.6	С43—С33—Н33А	108.6
C61—C51—H51A	108.6	N3—C33—H33A	108.6
N1—C51—H51B	108.6	С43—С33—Н33В	108.6
C61—C51—H51B	108.6	N3—C33—H33B	108.6
H51A—C51—H51B	107.6	H33A—C33—H33B	107.6
C51—C61—H61A	109.5	С33—С43—Н43А	109.5
C51—C61—H61B	109.5	C33—C43—H43B	109.5
H61A—C61—H61B	109.5	H43A—C43—H43B	109.5
C51—C61—H61C	109.5	C33—C43—H43C	109.5
H61A—C61—H61C	109.5	H43A—C43—H43C	109.5
H61B—C61—H61C	109.5	H43B—C43—H43C	109.5
N1—C71—C81	113.5 (5)	C63—C53—N3	116.2 (5)
N1—C71—H71A	108.9	С63—С53—Н53А	108.2
C81—C71—H71A	108.9	N3—C53—H53A	108.2
N1—C71—H71B	108.9	C63—C53—H53B	108.2
C81—C71—H71B	108.9	N3—C53—H53B	108.2
H71A—C71—H71B	107.7	H53A—C53—H53B	107.4
C71—C81—H81A	109.5	С53—С63—Н63А	109.5
C71—C81—H81B	109.5	С53—С63—Н63В	109.5
H81A—C81—H81B	109.5	H63A—C63—H63B	109.5
C71—C81—H81C	109.5	С53—С63—Н63С	109.5
H81A—C81—H81C	109.5	H63A—C63—H63C	109.5
H81B—C81—H81C	109.5	H63B—C63—H63C	109.5
C32—N2—C52	109.3 (4)	N3—C73—C83	114.6 (5)
C32—N2—C12	107.1 (5)	N3—C73—H73A	108.6
C52—N2—C12	112.0 (5)	С83—С73—Н73А	108.6
C32—N2—C72	111.5 (4)	N3—C73—H73B	108.6
C52—N2—C72	108.6 (4)	С83—С73—Н73В	108.6

C12—N2—C72	108.4 (4)	H73A—C73—H73B	107.6
C22—C12—N2	115.3 (5)	С73—С83—Н83А	109.5
C22—C12—H12A	108.4	С73—С83—Н83В	109.5
N2—C12—H12A	108.4	H83A—C83—H83B	109.5
C22—C12—H12B	108.4	С73—С83—Н83С	109.5
N2—C12—H12B	108.4	H83A—C83—H83C	109.5
H12A—C12—H12B	107.5	H83B—C83—H83C	109.5
C12—C22—H22A	109.5	Cl111—Fe1—Cl41	109.70 (9)
C12—C22—H22B	109.5	Cl111—Fe1—Cl31	109.15 (8)
H22A—C22—H22B	109.5	Cl41—Fe1—Cl31	109.56 (8)
C12—C22—H22C	109.5	Cl111—Fe1—Cl21	109.33 (8)
H22A—C22—H22C	109.5	Cl41—Fe1—Cl21	108.82 (8)
H22B—C22—H22C	109.5	Cl31—Fe1—Cl21	110.26 (7)
N2—C32—C42	117.3 (5)	Cl32—Fe2—Cl22	110.84 (8)
N2—C32—H32A	108.0	C132—Fe2—C142	109.88 (7)
C42-C32-H32A	108.0	C122 - Fe2 - C142	109.76 (8)
N2-C32-H32B	108.0	C132 = Fe2 = C112	108 32 (8)
C42-C32-H32B	108.0	Cl22—Fe2—Cl12	108 24 (8)
H32A - C32 - H32B	107.2	Cl42—Fe2—Cl12	109.76 (8)
C_{32} C_{42} H_{42A}	109.5	C_{113} Fe3 C_{123}	109.70(0) 109.07(7)
C_{32} C_{42} H_{42B}	109.5	$C_{113} = Fe_{3} = C_{123}^{i}$	109.07(7) 109.07(7)
H42A - C42 - H42B	109.5	$C123 - Fe3 - C123^{i}$	109.07(7) 109.87(7)
C_{32} C_{42} $H_{42}C$	109.5	$C_{113} = Fe_{3} = C_{123}^{ii}$	109.07(7) 109.07(7)
H42A - C42 - H42C	109.5	$C123 - Fe3 - C123^{ii}$	109.07(7) 109.87(7)
H42B - C42 - H42C	109.5	$C123^{i}$ Fe3 $C123^{ii}$	109.87(7) 109.87(7)
C_{62} C_{52} N_{2}	115.8 (5)	$C124 - Fe4 - C124^{iii}$	109.91 (6)
C62 - C52 - H52 A	108.3	$C124$ Fe4 $C124^{iv}$	109.91 (6)
N_{2} C52 H52A	108.3	$C124^{iii}$ Fe4— $C124^{iv}$	109.91 (6)
C62 - C52 - H52R	108.3	C124 Fe4 C114	109.03 (6)
N2-C52-H52B	108.3	C124 $Fe4$ $C114$	109.03 (6)
H52A_C52_H52B	107.4	$C124^{iv}$ Fe4— $C114$	109.03 (6)
C_{52} C_{62} H_{62A}	109.5	$C_{115} = Fe5 = C_{125}^{i}$	109.03(0) 109.04(8)
$C_{52} = C_{62} = H_{62B}$	109.5	$C_{115} = Fe5 = C_{125}^{ii}$	109.04(8)
H62A C62 H62B	109.5	$C_{125^{i}} = C_{125^{i}} = C_{125^{i}}$	109.04(0) 109.04(7)
C_{52} C_{62} H_{62C}	109.5	$C_{125} = 105 = C_{125}$	109.90(7) 100.04(8)
$H_{62A} = C_{62} = H_{62C}$	109.5	C_{125}^{i} Ee5 C_{125}^{i}	109.04(8) 109.04(7)
H62R C62 H62C	109.5	$C_{125}^{ii} = F_{25}^{ii} = C_{125}^{ii}$	109.90(7) 100.00(7)
1102B—C02—1102C	109.5	C125 — 1°65 — C125	109.90 (7)
C71 N1 C11 C21	-57 5 (8)	C32 N2 $C52$ $C62$	60.7 (7)
$C_{11} = N_{11} = C_{11} = C_{21}$	57.5(8)	$C_{32} = N_2 = C_{52} = C_{62}$	-57.9(7)
C_{51} N1 C_{11} C_{21}	-1772(6)	C12 = 112 = C52 = C62	-1775(7)
C71 N1 $C31$ $C41$	-50.3(8)	$C_{12} = N_2 = C_{32} = C_{02}$	563(6)
$C_{1} = N_{1} = C_{31} = C_{41}$	60 9 (7)	$C_{52} = N_2 = C_{72} = C_{62}$	-64.2(6)
$C_{11} N_{1} C_{31} C_{41}$	-1794(6)	C_{12} C	174 0 (5)
$C_{11} = 0.01 = 0.041$ $C_{11} = 0.01 = 0.041$	176.0 (6)	C_{12} C_{12} C_{12} C_{02} C	-560(7)
$C_1 = N_1 = C_2 $	57 A (7)	C_{73} C_{13} C_{13} C_{23} C	50.7 (7) 65 5 (6)
$C_1 = N_1 = C_5 = C_{01}$	-626(8)	C_{3} C_{3	-175 A (5)
C_{31} N1 C_{71} C81	-175 A (7)	C_{3} C_{3} C_{3} C_{3} C_{43}	-552(7)
C_{51} N1 C_{71} C81	629(8)	C_{73} N_{3} C_{33} C_{43}	64.1(6)
-11 - 0/1 - 001	02.7 (0)	033 - 113 - 033 - 043	07.1 (0)

C11—N1—C71—C81	-56.3 (8)	C13—N3—C33—C43	-178.5 (6)	
C32—N2—C12—C22	-178.5 (5)	C73—N3—C53—C63	179.5 (6)	
C52—N2—C12—C22	-58.7 (7)	C33—N3—C53—C63	58.9 (7)	
C72—N2—C12—C22	61.1 (6)	C13—N3—C53—C63	-59.5 (7)	
C52—N2—C32—C42	172.9 (5)	C33—N3—C73—C83	-176.9 (7)	
C12—N2—C32—C42	-65.6 (6)	C53—N3—C73—C83	62.7 (8)	
C72—N2—C32—C42	52.8 (7)	C13—N3—C73—C83	-55.3 (8)	

 $D_{\rm x} = 1.481 {\rm Mg m^{-3}}$

 $\theta = 2.2 - 27.5^{\circ}$

 $\mu = 1.72 \text{ mm}^{-1}$

Block, yellow

 $0.43 \times 0.34 \times 0.10 \text{ mm}$

T = 170 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6968 reflections

Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y, x-y, z; (iv) -x+y, -x, z.

(Ic) Tetraethylammonium tetrachloridoferrate(III)

Crystal data (C₈H₂₀N)[FeCl₄] $M_r = 327.90$ Orthorhombic, $Pca2_1$ a = 14.0182 (8) Å b = 8.1493 (5) Å c = 12.8767 (8) Å

 $V = 1471.01 (15) \text{ Å}^3$

F(000) = 676

Z = 4

Data collection

Bruker Kappa APEXII	7746 independent reflections
diffractometer	7535 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(TWINABS; Sheldrick, 2012)	$k = -10 \rightarrow 10$
$T_{\min} = 0.639, T_{\max} = 0.746$	$l = -16 \rightarrow 16$
32765 measured reflections	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.014$	Hydrogen site location: inferred from
$wR(F^2) = 0.034$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
7746 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0132P)^2 + 0.0367P]$
133 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.12 \text{ e} \text{\AA}^{-3}$ $\Delta ho_{ m min} = -0.27 \text{ e} \text{\AA}^{-3}$

Special details

Experimental. loop__diffrn_orient_matrix_type_diffrn_orient_matrix_UB_11_diffrn_orient_matrix_UB_12 _diffrn_orient_matrix_UB_13_diffrn_orient_matrix_UB_21_diffrn_orient_matrix_UB_22 _diffrn_orient_matrix_UB_23_diffrn_orient_matrix_UB_31_diffrn_orient_matrix_UB_32 _diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0552117 0.0570192 0.0335576 0.0438346 0.0881353 0.0255620 -0.0112121 0.0637923 -0.0653109 'Nonius RMAT' 0.0010845 0.1107900 0.0335563 0.0662764 -0.0212420 0.0255569 0.0264909 0.0486090 -0.0653135 'Nonius RMAT' 0.0562913 0.0537792 0.0335726 0.0224478 -0.1093919 0.0255528 0.0377212 -0.0151557 -0.0653067 **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 3-component twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.41494 (16)	0.7816 (2)	0.48126 (18)	0.0184 (4)	
C1	0.46102 (16)	0.6995 (3)	0.38735 (17)	0.0225 (4)	
H1A	0.4200	0.7196	0.3261	0.027*	
H1B	0.5231	0.7536	0.3741	0.027*	
C2	0.47780 (17)	0.5180 (3)	0.39615 (19)	0.0293 (5)	
H2A	0.5203	0.4961	0.4550	0.044*	
H2B	0.5073	0.4776	0.3321	0.044*	
H2C	0.4168	0.4620	0.4071	0.044*	
C3	0.31528 (16)	0.7135 (3)	0.5002 (2)	0.0245 (5)	
H3A	0.3205	0.5939	0.5123	0.029*	
H3B	0.2897	0.7635	0.5645	0.029*	
C4	0.2441 (3)	0.7420 (3)	0.4132 (4)	0.0372 (10)	
H4A	0.2327	0.8600	0.4055	0.056*	
H4B	0.1840	0.6866	0.4299	0.056*	
H4C	0.2698	0.6978	0.3482	0.056*	
C5	0.40883 (13)	0.9645 (2)	0.46156 (18)	0.0224 (4)	
H5A	0.3753	0.9823	0.3948	0.027*	
H5B	0.3694	1.0145	0.5170	0.027*	
C6	0.50356 (15)	1.0537 (3)	0.45750 (19)	0.0290 (5)	
H6A	0.5377	1.0374	0.5231	0.044*	
H6B	0.4924	1.1712	0.4466	0.044*	
H6C	0.5419	1.0102	0.4001	0.044*	
C7	0.4758 (2)	0.7440 (2)	0.5762 (2)	0.0236 (6)	
H7A	0.4742	0.6241	0.5886	0.028*	
H7B	0.5427	0.7742	0.5604	0.028*	
C8	0.44635 (17)	0.8304 (3)	0.67549 (18)	0.0325 (5)	
H8A	0.4501	0.9494	0.6654	0.049*	
H8B	0.4892	0.7978	0.7320	0.049*	
H8C	0.3807	0.7998	0.6932	0.049*	
Fe1	0.24092 (2)	0.27786 (4)	0.22244 (3)	0.02156 (8)	
C11	0.23050 (5)	0.27656 (9)	0.39273 (5)	0.03161 (15)	
C12	0.30246 (4)	0.04137 (8)	0.17363 (5)	0.03122 (13)	
C13	0.09746 (4)	0.30823 (8)	0.15619 (5)	0.02864 (12)	
Cl4	0.33085 (4)	0.48244 (7)	0.16997 (5)	0.02879 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0172 (9)	0.0192 (7)	0.0187 (10)	0.0009 (9)	0.0009 (8)	0.0020 (9)
C1	0.0224 (11)	0.0245 (12)	0.0206 (11)	0.0022 (10)	0.0032 (9)	-0.0034 (11)
C2	0.0339 (12)	0.0241 (13)	0.0299 (12)	0.0044 (10)	0.0034 (10)	-0.0040 (9)

C3	0.0178 (11)	0.0259 (10)	0.0299 (13)	-0.0024 (10)	0.0054 (10)	0.0006 (11)
C4	0.0213 (16)	0.044 (2)	0.046 (3)	-0.0027 (10)	-0.0035 (12)	-0.0027 (11)
C5	0.0278 (10)	0.0173 (9)	0.0222 (10)	0.0027 (8)	-0.0001 (9)	0.0040 (9)
C6	0.0339 (12)	0.0219 (11)	0.0314 (12)	-0.0048 (9)	0.0023 (11)	0.0026 (11)
C7	0.0242 (17)	0.0263 (18)	0.0202 (14)	0.0035 (8)	-0.0030 (11)	0.0056 (7)
C8	0.0401 (12)	0.0347 (14)	0.0227 (12)	0.0053 (10)	-0.0017 (10)	0.0020 (11)
Fe1	0.02122 (17)	0.02333 (14)	0.02012 (15)	0.00090 (12)	-0.00028 (16)	-0.0004 (2)
Cl1	0.0327 (4)	0.0415 (4)	0.0206 (3)	0.0014 (2)	-0.0002 (3)	0.0020 (3)
Cl2	0.0304 (3)	0.0252 (3)	0.0380 (3)	0.0024 (2)	0.0019 (3)	-0.0045 (3)
C13	0.0249 (3)	0.0325 (3)	0.0285 (3)	0.0019 (2)	-0.0044 (2)	0.0007 (3)
Cl4	0.0292 (2)	0.0274 (3)	0.0297 (3)	-0.0028 (2)	0.0012 (3)	0.0010 (3)

N1—C5	1.515 (3)	C5—C6	1.515 (3)
N1—C7	1.522 (4)	С5—Н5А	0.9900
N1—C3	1.523 (3)	С5—Н5В	0.9900
N1—C1	1.525 (3)	C6—H6A	0.9800
C1—C2	1.502 (4)	C6—H6B	0.9800
C1—H1A	0.9900	С6—Н6С	0.9800
C1—H1B	0.9900	С7—С8	1.517 (4)
C2—H2A	0.9800	С7—Н7А	0.9900
C2—H2B	0.9800	С7—Н7В	0.9900
C2—H2C	0.9800	C8—H8A	0.9800
C3—C4	1.517 (5)	C8—H8B	0.9800
С3—НЗА	0.9900	C8—H8C	0.9800
С3—Н3В	0.9900	Fe1—Cl4	2.1966 (7)
C4—H4A	0.9800	Fe1—Cl1	2.1977 (7)
C4—H4B	0.9800	Fe1—Cl3	2.1985 (6)
C4—H4C	0.9800	Fe1—Cl2	2.2030 (7)
C5—N1—C7	111.36 (17)	C6—C5—N1	115.37 (17)
C5-N1-C3	109.48 (17)	C6—C5—H5A	108.4
C7—N1—C3	108.2 (2)	N1—C5—H5A	108.4
C5-N1-C1	108.83 (18)	C6—C5—H5B	108.4
C7—N1—C1	108.13 (19)	N1—C5—H5B	108.4
C3—N1—C1	110.82 (18)	H5A—C5—H5B	107.5
C2-C1-N1	116.00 (19)	С5—С6—Н6А	109.5
C2—C1—H1A	108.3	С5—С6—Н6В	109.5
N1—C1—H1A	108.3	H6A—C6—H6B	109.5
C2—C1—H1B	108.3	С5—С6—Н6С	109.5
N1—C1—H1B	108.3	H6A—C6—H6C	109.5
H1A—C1—H1B	107.4	H6B—C6—H6C	109.5
C1—C2—H2A	109.5	C8—C7—N1	115.5 (2)
C1—C2—H2B	109.5	C8—C7—H7A	108.4
H2A—C2—H2B	109.5	N1—C7—H7A	108.4
C1—C2—H2C	109.5	C8—C7—H7B	108.4
H2A—C2—H2C	109.5	N1—C7—H7B	108.4
H2B—C2—H2C	109.5	H7A—C7—H7B	107.5
C4—C3—N1	115.4 (2)	C7—C8—H8A	109.5

С4—С3—Н3А	108.4	С7—С8—Н8В	109.5
N1—C3—H3A	108.4	H8A—C8—H8B	109.5
C4—C3—H3B	108.4	С7—С8—Н8С	109.5
N1—C3—H3B	108.4	H8A—C8—H8C	109.5
НЗА—СЗ—НЗВ	107.5	H8B—C8—H8C	109.5
C3—C4—H4A	109.5	Cl4—Fe1—Cl1	110.41 (3)
C3—C4—H4B	109.5	Cl4—Fe1—Cl3	108.67 (3)
H4A—C4—H4B	109.5	Cl1—Fe1—Cl3	109.08 (3)
C3—C4—H4C	109.5	Cl4—Fe1—Cl2	110.58 (3)
H4A—C4—H4C	109.5	Cl1—Fe1—Cl2	107.85 (3)
H4B—C4—H4C	109.5	Cl3—Fe1—Cl2	110.24 (3)
C5—N1—C1—C2	176.68 (18)	C7—N1—C5—C6	51.5 (3)
C7—N1—C1—C2	55.6 (2)	C3—N1—C5—C6	171.2 (2)
C3—N1—C1—C2	-62.9 (3)	C1—N1—C5—C6	-67.6 (2)
C5—N1—C3—C4	57.7 (3)	C5—N1—C7—C8	54.5 (3)
C7—N1—C3—C4	179.3 (2)	C3—N1—C7—C8	-65.9 (2)
<u>C1—N1—C3—C4</u>	-62.3 (3)	C1—N1—C7—C8	174.0 (2)

(Id) Tetraethylammonium tetrachloridoferrate(III)

Crystal data

 $(C_8H_{20}N)[FeCl_4]$ $M_r = 327.90$ Orthorhombic, $Pca2_1$ a = 13.9816 (6) Å b = 8.1243 (3) Å c = 12.8097 (6) Å V = 1455.06 (11) Å³ Z = 4F(000) = 676

Data collection

Bruker Kappa APEXII
diffractometer
Radiation source: sealed tube
φ and ω scans
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
$T_{\min} = 0.655, \ T_{\max} = 0.746$
49619 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.012$ $wR(F^2) = 0.030$ S = 1.047924 reflections 133 parameters 1 restraint Primary atom site location: structure-invariant direct methods $D_x = 1.497 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10389 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 1.74 \text{ mm}^{-1}$ T = 110 KBlock, yellow $0.43 \times 0.34 \times 0.10 \text{ mm}$

7924 independent reflections 7776 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.6^\circ, \ \theta_{min} = 2.5^\circ$ $h = -18 \rightarrow 18$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0121P)^2 + 0.0465P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.12$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Experimental. loop__diffrn_orient_matrix_type_diffrn_orient_matrix_UB_11_diffrn_orient_matrix_UB_12_diffrn_orient_matrix_UB_13__diffrn_orient_matrix_UB_21__diffrn_orient_matrix_UB_22____diffrn_orient_matrix_UB_23___diffrn_orient_matrix_UB_31__diffrn_orient_matrix_UB_32____diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0550213 0.0579395 0.0339429 0.0444204 0.0879475 0.0254721 -0.0112145 0.0640910 -0.0656385 'Nonius RMAT' 0.0016187 0.1110194 0.0339428 0.0664469 -0.0222439 0.0254671

0.0266171 0.0487782 -0.0656404 'Nonius RMAT' 0.0566363 0.0530991 0.0339597 0.0220348 -0.1102092 0.0254684 0.0378561 -0.0152918 -0.0656312

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 3-component twin.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.41526 (14)	0.7829 (2)	0.48117 (16)	0.0114 (3)	
C1	0.46138 (14)	0.7009 (3)	0.38642 (15)	0.0145 (4)	
H1A	0.4201	0.7209	0.3249	0.017*	
H1B	0.5236	0.7552	0.3730	0.017*	
C2	0.47826 (15)	0.5183 (3)	0.39556 (16)	0.0188 (4)	
H2A	0.5217	0.4966	0.4540	0.028*	
H2B	0.5069	0.4772	0.3308	0.028*	
H2C	0.4172	0.4622	0.4079	0.028*	
C3	0.31523 (15)	0.7143 (3)	0.50026 (17)	0.0157 (4)	
H3A	0.3205	0.5943	0.5122	0.019*	
H3B	0.2897	0.7642	0.5650	0.019*	
C4	0.2438 (2)	0.7432 (2)	0.4133 (3)	0.0237 (7)	
H4A	0.2336	0.8617	0.4044	0.036*	
H4B	0.1830	0.6899	0.4310	0.036*	
H4C	0.2686	0.6965	0.3481	0.036*	
C5	0.40905 (12)	0.9664 (2)	0.46133 (16)	0.0143 (4)	
H5A	0.3692	1.0165	0.5168	0.017*	
H5B	0.3758	0.9841	0.3941	0.017*	
C6	0.50418 (13)	1.0561 (2)	0.45783 (16)	0.0184 (4)	
H6A	0.5378	1.0405	0.5242	0.028*	
H6B	0.4930	1.1738	0.4463	0.028*	
H6C	0.5431	1.0119	0.4008	0.028*	
C7	0.4765 (2)	0.7451 (2)	0.5765 (2)	0.0152 (5)	
H7A	0.4749	0.6249	0.5890	0.018*	
H7B	0.5435	0.7754	0.5605	0.018*	
C8	0.44684 (15)	0.8322 (3)	0.67645 (15)	0.0205 (4)	
H8A	0.4495	0.9515	0.6659	0.031*	
H8B	0.4904	0.8011	0.7330	0.031*	
H8C	0.3814	0.8000	0.6949	0.031*	
Fe1	0.24106 (2)	0.27936 (4)	0.22245 (3)	0.01356 (7)	
Cl1	0.23031 (4)	0.27868 (8)	0.39388 (4)	0.02016 (12)	
Cl2	0.30236 (3)	0.04105 (7)	0.17389 (4)	0.01970 (10)	
C13	0.09726 (3)	0.31002 (6)	0.15535 (4)	0.01782 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Cl4 0.33172 (3) 0.48432 (6) 0.16960 (4) 0.01817 (10) Atomic displacement parameters $(Å^2)$ U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} N1 0.0105 (8) 0.0126(7) 0.0112 (8) 0.0005 (8) 0.0000(7) 0.0015 (8) C1 0.0150 (9) 0.0162 (11) 0.0122 (9) 0.0009 (8) 0.0022 (7) -0.0026(9)0.0023 (8) C20.0220(10) 0.0165(11) 0.0179 (9) 0.0021 (8) -0.0022(8)C3 0.0118 (9) 0.0162 (8) 0.0190 (10) -0.0016(9)0.0037(8)0.0004(9)C4 -0.0005(8)0.0140(13) 0.0274(15)0.030(2)-0.0021(8)-0.0015(10)C5 0.0188 (9) 0.0103 (8) 0.0138 (9) 0.0017(7)0.0004(7)0.0026 (8) C6 0.0218 (10) 0.0146 (9) 0.0187 (10) -0.0032(8)0.0005 (8) 0.0010 (9) C7 0.0150 (14) 0.0182 (16) 0.0123 (11) 0.0017(7) -0.0025(9)0.0039 (6) C8 0.0252 (10) 0.0222 (11) 0.0141 (9) 0.0027 (8) -0.0011(8)0.0013 (9) Fe1 0.01334 (15) 0.01485 (12) 0.01249 (12) 0.00061 (11) -0.00019(13)-0.00033(18)Cl1 0.0209 (3) 0.0266 (3) 0.0129 (2) 0.0008 (2) -0.0001(2)0.0009 (2) 0.0161 (2) Cl2 0.0195 (2) 0.0235 (2) 0.00146 (19) 0.0012(2)-0.0027(2)C13 0.0161 (2) 0.0197 (3) 0.0177 (2) 0.00132 (19) -0.00278(18)0.0002(2)Cl4 0.0182 (2) 0.0177 (2) 0.0186 (2) -0.0018(2)0.0007 (2) 0.0004(2)

N1—C5	1.515 (2)	C5—C6	1.517 (2)	
N1—C7	1.523 (3)	C5—H5A	0.9900	
N1—C3	1.525 (3)	С5—Н5В	0.9900	
N1—C1	1.527 (3)	C6—H6A	0.9800	
C1—C2	1.507 (3)	C6—H6B	0.9800	
C1—H1A	0.9900	С6—Н6С	0.9800	
C1—H1B	0.9900	C7—C8	1.520 (3)	
C2—H2A	0.9800	C7—H7A	0.9900	
C2—H2B	0.9800	С7—Н7В	0.9900	
C2—H2C	0.9800	C8—H8A	0.9800	
C3—C4	1.514 (4)	C8—H8B	0.9800	
С3—НЗА	0.9900	C8—H8C	0.9800	
С3—Н3В	0.9900	Fe1—Cl4	2.1995 (6)	
C4—H4A	0.9800	Fe1—Cl3	2.2007 (5)	
C4—H4B	0.9800	Fe1—Cl1	2.2011 (6)	
C4—H4C	0.9800	Fe1—Cl2	2.2068 (6)	
C5—N1—C7	111.42 (15)	N1—C5—C6	115.30 (15)	
C5—N1—C3	109.48 (15)	N1—C5—H5A	108.4	
C7—N1—C3	108.28 (18)	C6—C5—H5A	108.4	
C5—N1—C1	108.66 (16)	N1—C5—H5B	108.4	
C7—N1—C1	108.18 (17)	C6—C5—H5B	108.4	
C3—N1—C1	110.83 (16)	H5A—C5—H5B	107.5	
C2-C1-N1	115.70 (17)	С5—С6—Н6А	109.5	
C2—C1—H1A	108.4	С5—С6—Н6В	109.5	
N1—C1—H1A	108.4	H6A—C6—H6B	109.5	
C2—C1—H1B	108.4	С5—С6—Н6С	109.5	
N1—C1—H1B	108.4	H6A—C6—H6C	109.5	

H1A—C1—H1B	107.4	H6B—C6—H6C	109.5
C1—C2—H2A	109.5	C8—C7—N1	115.35 (18)
C1—C2—H2B	109.5	С8—С7—Н7А	108.4
H2A—C2—H2B	109.5	N1—C7—H7A	108.4
C1—C2—H2C	109.5	С8—С7—Н7В	108.4
H2A—C2—H2C	109.5	N1—C7—H7B	108.4
H2B—C2—H2C	109.5	H7A—C7—H7B	107.5
C4—C3—N1	115.5 (2)	С7—С8—Н8А	109.5
С4—С3—Н3А	108.4	С7—С8—Н8В	109.5
N1—C3—H3A	108.4	H8A—C8—H8B	109.5
C4—C3—H3B	108.4	С7—С8—Н8С	109.5
N1—C3—H3B	108.4	H8A—C8—H8C	109.5
НЗА—СЗ—НЗВ	107.5	H8B—C8—H8C	109.5
C3—C4—H4A	109.5	Cl4—Fe1—Cl3	108.70 (2)
C3—C4—H4B	109.5	Cl4—Fe1—Cl1	110.38 (3)
H4A—C4—H4B	109.5	Cl3—Fe1—Cl1	109.12 (3)
C3—C4—H4C	109.5	Cl4—Fe1—Cl2	110.71 (3)
H4A—C4—H4C	109.5	Cl3—Fe1—Cl2	110.12 (2)
H4B—C4—H4C	109.5	Cl1—Fe1—Cl2	107.79 (3)
C5—N1—C1—C2	176.67 (16)	C7—N1—C5—C6	51.1 (2)
C7—N1—C1—C2	55.6 (2)	C3—N1—C5—C6	170.84 (17)
C3—N1—C1—C2	-63.0 (2)	C1—N1—C5—C6	-68.0 (2)
C5—N1—C3—C4	57.5 (2)	C5—N1—C7—C8	54.5 (2)
C7—N1—C3—C4	179.18 (18)	C3—N1—C7—C8	-66.0(2)
<u>C1—N1—C3—C4</u>	-62.3 (2)	C1—N1—C7—C8	173.87 (17)

Twinned reflection data at 110 (2) K. Analysis of systematic absences with PLATON (Spek, 2009). The corresponding unit cell is in the hexagonal setting (twin lattice) with a = b = 16.1794 (10), c = 12.7974 (5) Å, $\alpha = \beta = 90$, $\gamma = 120^{\circ}$, V = 2901.2 (4) Å³.

Condition	< <i>I/σ</i> > true	$< I/\sigma >$ false
0kl, k=2n	26.27	0.21
h0l, h==2n	26.30	0.23
h00, h=2n	27.29	0.31
0k0, k==2n	27.80	0.26
00 <i>l</i> , <i>l</i> =2 <i>n</i>	31.90	0.79
h- $hl, h=2n$	26.57	0.21

Coset decomposition of point group G = 6mm with respect to $H_1 = mm2$, $G = H_1 + g_2H_1 + g_3H_1$. Matrices are given for a hexagonal base. They were retrieved from the Bilbao Crystallographic Server (Aroyo et al., 2006). For the creation of the orientation matrices for the integration, only rotational operations can be selected to avoid left-handed coordinate systems.

$\overline{H_1}$	g_2H_1	g_3H_1	
1 (100/010/001)	$3+_{0,0,z}$ (0-10/1-10/001)	$m_{2x,x,z}$ (100/1-10/001)	
2 _{0,0,z} (-100/0-10/001)	6- _{0,0,z} (010/-110/001)	$m_{0,y,z}$ (-100/-110/001)	
$m_{x,2x,z}$ (-110/010/001)	$m_{x,-x,z}$ (0-10/-100/001)	3- _{0,0,z} (-110/-100/001)	
$m_{x,0,z}$ (1-10/0-10/001)	$m_{x,x,z}$ (010/100/001)	$6+_{0,0,z}$ (1-10/100/001)	

Unit-cell parameters during the cooling of a single crystal of (I). In the temperature range 220–110 K, the unit cell of the twin lattice is presented. The last column gives the number of reflections used for the cell refinement with the Peakref software (Schreurs, 2013). The detector position was kept fixed during the experiment. At each temperature, 3 ω scans of 6° were measured, respectively (0.5° scan angle).

<i>T</i> (K)	<i>a</i> , <i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	Number of reflections
290	8.230 (6)	13.217 (14)	775.3 (14)	126
280	8.223 (6)	13.202 (15)	773.1 (16)	126
270	8.220 (6)	13.190 (12)	771.7 (15)	124
260	8.213 (6)	13.176 (14)	769.6 (16)	127
250	8.206 (5)	13.164 (14)	767.8 (16)	127
240	8.200 (6)	13.149 (11)	765.7 (15)	127
230	24.566 (12)	13.065 (6)	6829 (9)	581
220	16.328 (11)	12.972 (8)	2995 (5)	404
210	16.311 (8)	12.957 (7)	2985 (3)	416
200	16.299 (11)	12.944 (7)	2978 (5)	419
190	16.289 (8)	12.931 (7)	2971 (3)	426
180	16.278 (10)	12.916 (7)	2964 (4)	427
170	16.269 (9)	12.900 (7)	2957 (4)	440
160	16.259 (7)	12.890 (7)	2951 (3)	447
150	16.249 (10)	12.881 (7)	2945 (4)	448
140	16.241 (10)	12.863 (7)	2938 (4)	441
130	16.229 (10)	12.849 (7)	2931 (4)	449
120	16.218 (9)	12.838 (7)	2924 (4)	435
110	16.213 (8)	12.826 (7)	2920 (3)	438