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Transport properties of fully screened Kondo models
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We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to
a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance
for models with arbitrary spin, i.e., its leading behavior for small bias voltages or temperatures. Second, we
determine the low-temperature behavior of the static susceptibility from the exactly known Bethe ansatz results
for the magnetization. Third, we study the crossover from strong to weak coupling in the spin-1/2 and the spin-1
models coupled to one or two screening channels, respectively. Using a real-time renormalization group method
we calculate the static and dynamical spin-spin correlation functions for the spin-1/2 model as well as the linear
and differential conductance and the static susceptibility for the spin-1 model. We define various Kondo scales
and discuss their relations. We assess the validity of the renormalization-group treatment by comparing with
known results for the temperature dependence of the linear conductance and static susceptibility as well as the

Fermi-liquid behavior at low energies.
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I. INTRODUCTION

The Kondo effect [1] can be regarded as a paradigm
for correlated many-body phenomena in quantum impurities.
In the basic setup a localized spin is screened collectively
by the spins of itinerant electrons in the surrounding bulk
material. The thus-formed nontrivial many-body state requires
the application of sophisticated many-body methods for its
theoretical description. By the mid-1980s the developments of
such methods, including perturbative [2] and numerical [3,4]
renormalization-group (RG) techniques, Fermi-liquid (FL)
theory [5-8], and the Bethe ansatz [9—11], had uncovered the
essential physics behind the formation of the Kondo singlet, in
particular the dynamical generation of a new, nonperturbative
energy scale termed the Kondo temperature Tk . Yet the Kondo
problem experienced a revival after it was realized [12—14] that
it can also be applied to describe transport experiments through
quantum dots in the presence of strong Coulomb repulsions,
a regime which became experimentally accessible [15-21]
around the turn of the millennium.

This in turn triggered much interest in the theoretical
investigation of the transport properties of quantum dots in the
Kondo regime. There are essentially two different parameter
regimes. In the first, at high energies compared to the Kondo
temperature, e.g., when the applied bias voltage V and/or tem-
perature 7 is much larger than Tk, the Kondo singlet has not yet
formed. The nonequilibrium transport properties can be stud-
ied perturbatively in the coupling between the dot and the leads
for example using perturbative [22-28] and functional [29-32]
RG methods or flow-equation techniques [33,34]. In the
second regime, when all external energies are much lower than
the Kondo temperature, 7,V, ... < Tk, the Kondo singlet is
fully developed. The spin degree of freedom is frozen out and
the dot influences the transport properties merely as a potential
scatterer. This allows the application of FL theory, which in
particular yields an expansion of the conductance through the
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dot for small temperatures and voltages encoded in the FL
coefficients ¢y and cy, respectively [35—41].

The study of the crossover regime is naturally much more
difficult. If the system is driven from the strong-coupling to the
weak-coupling regime by increasing the temperature, one can
resort to standard nonperturbative techniques in equilibrium,
in particular the Bethe ansatz and the numerical RG method.
Both methods are well developed and exact up to numerical ap-
proximations, while the latter can also be applied very flexibly
to different physical setups governed by Kondo correlations.
In contrast, if the driving is done by increasing the applied bias
voltage, the situation is much less understood. To overcome
this, Pletyukhov and Schoeller [42] developed a real-time RG
(RTRG) scheme, called E flow, since the Laplace variable
E is used as flow parameter, which takes into account the
generation of the spin relaxation rate and its feedback into the
RG flow of the exchange coupling. This allowed the calculation
of the differential conductance in the full crossover regime,
which was found to be in excellent agreement with perturbative
results at weak coupling, the exactly known FL relations, the
temperature-driven crossover behavior obtained via the numer-
ical RG method as well as recent experimental data [43,44].

Another approach based on a slave-boson representation
of the Keldysh field integral was recently put forward [45]
by Smirnov and Grifoni. They obtained good agreement with
both the numerical RG and RTRG results for the temperature
and voltage dependence of the differential conductance,
respectively. In contrast to the E-flow scheme of the RTRG
method, it has already been possible to extend the analysis
to finite magnetic fields [46]. Both approaches have been
applied so far to the spin-1/2 Kondo dot or the corresponding
single-impurity Anderson model.

In this article we go beyond this and investigate the transport
properties of Kondo quantum dots with higher spin S. We
consider fully screened models where the dot spin is coupled
to N =28 screening channels. We first apply FL theory to
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FIG. 1. (Color online) Schematic picture of fully (exactly)
screened Kondo models. (a) Spin-1/2 dot coupled to one screening
channel (N = 2§ = 1) which is divided in two leads held at chemical
potentials ;g = £V/2. (b) Spin-1 dot coupled to two screening
channels (N = 2). The left (right) leads of these channels are
both held at pu;, = V/2 (ug = —V/2). We note that the exchange
interaction does not mix the screening channels.

derive the differential conductance at small temperatures and
bias voltages and in particular the FL coefficient cy. Second,
we determine the low-temperature behavior of the static
susceptibility from the exactly known Bethe ansatz results for
the magnetization [47,48]. We then treat the out-of-equilibrium
properties of the spin-1/2 and spin-1 models using the E-flow
scheme of the RTRG approach. We first generalize it to the
calculation of the static and dynamical correlation functions
of the spin localized on the dot. We extend the previous
analysis [42] of the differential conductance to the spin-1
model. The knowledge of the static spin susceptibility in
particular allows us to probe the FL behavior in the RTRG
framework quantitatively, i.e., we extract absolute values for
the coefficients ¢y and cy which we compare with our FL.
results.

This article is organized as follows: In Sec. II we define
the model and correlation functions. Following this we derive
the FL coefficient cy for general fully screened Kondo
dots in Sec. IIl. Similarly, in Sec. IV we determine the
low-temperature behavior of the static susceptibility from the
exactly known Bethe ansatz results for the magnetization. In
Sec. V we review the E-flow scheme of the RTRG method and
generalize it to the calculation of the dynamical correlation
functions. Readers who are mainly interested in the results
can skip Sec. V and directly proceed to Sec. VI, where we
discuss the static susceptibility and dynamical correlation
functions. We define the Kondo scale T, which is used in
Sec. VII to extract the FL coefficients and check them against
the results of Sec. III. We conclude and discuss our results
in Sec. VIII. Some technical details are presented in the
Appendices.

II. FULLY SCREENED KONDO DOTS

In this paper we investigate the transport properties of fully
screened Kondo quantum dots. Hereby the dot consists of
a spin S which is coupled via exchange interactions to 4§
electronic leads (see Fig. 1 for a sketch for § =1/2 and
S = 1 respectively). Each pair of leads provides one screening
channel, i.e., there are N = 25 screening channels in total.
Thus the considered models are fully (or exactly) screened at
sufficiently low energies. Specifically we consider the unified
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Hamiltonian
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Here S denotes the spin operator on the dot which is in the
spin-S representation of SU(2). cjaka and ¢4, create and
annihilate electrons with momentum k and spin o = 1,
in cannel i =1,...,N of lead « = L,R, where N =28,
and ¢ denotes the vector of Pauli matrices. For the leads
we assume flat bands of bandwidth 2D with the density of
states N(w) = voD?/(D? + w?). We note that the exchange
interaction preserves the channel index i and that the exchange
coupling Jj is dimensionless in our convention. The system
is subject to a finite bias voltage V with left leads held at
ur, = V/2 and right leads at ug = —V/2. Alternatively, the
leads may be at finite temperature 7. We use units such that
e = h = kg = 1 but reinstate them when appropriate.

In Sec. IIT we will consider the low-energy behavior of
the model (1) and in particular its conductance for arbitrary
spin, while in Secs. V-VII we will analyze the full crossover
from low to high energies for the spin-1/2 and spin-1 models
sketched in Fig. 1.

The observables we consider in this work are the current
and the static and dynamical spin-spin correlation functions.
The current operator is defined as change in the number of
particles in the left leads

I, =——N; @)

with N L= Zika c;[LkgciLka. Alternatively, one can use the
right leads with I = dNg/dt.

Furthermore, the longitudinal spin-spin correlation function
and susceptibility are given by

S(1) = 35S On — (595650 = (sl t)se, (3)

x @) =10 O)n, S (O)u]-)a- “

Here the spin operators act on the impurity only. The time
evolution of S%(t)y is given in the Heisenberg picture,
Si(t)y = e'f'S%e " and the average (-)y refers to the
stationary state at finite bias or temperature. We investigate
the correlation functions in frequency-space and thus apply
the Fourier transformation

S() = /00 dt exp(i2t)S(t), 4)

o0

where Q = Q i (+ 2 0). A similar definition holds for the
susceptibility x (2) = x'(R2) + i x”(2). The static susceptibil-
ity of the impurity spin can be obtained via

=1 (2
X = Jmx (€2), (6)
which can be used to define the Kondo scale Ty via [1,4]

S(S+1)
37,

Its relation to the Kondo temperature Tx mentioned above and
formally defined in Eq. (55) will be discussed in detail below.

X(T =0V =0)=y = (7)
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In the following section we will first derive the FL
coefficients of the conductance in the low-energy regime.
Following this we determine the low-temperature behavior of
the susceptibility in Sec. IV. In Sec. V we then present details
of our calculations using the RTRG technique in the E-flow
scheme. The results of the latter are discussed in Secs. VI
and VIIL.

III. FERMI-LIQUID APPROACH
A. Effective Hamiltonian

Current algebras and the language of conformal field theory
give a convenient platform to discuss low-energy physics in
quantum impurity models. For the Kondo model, Affleck and
Ludwig [49-51] have shown that the impurity spin is absorbed
by the conduction electron spin current in the infrared, i.e.,
at strong coupling. This absorption causes a rearrangement of
the spin sector (conformal towers) and the quasiparticles that
emerge after mending the spin with the charge and possibly
flavor sectors are not necessarily fermionic objects. Since
then the conformal field theory approach was successfully
applied to describe non-Fermi liquid features in overscreened
versions of the Kondo model [49-51].

The situation is, however, much simpler for fully screened
models, i.e., when the number of screening channels N is
twice the spin of the impurity S, N = 28S. In this case, which
we study in this article, the elementary quasiparticles at strong
coupling are fermions with a phase shift of 7 /2 with respect to
the original electrons. In our symmetric source-drain geometry
(i.e., Jo does not depend on the lead index o = L,R), the
unperturbed Hamiltonian at strong coupling reads [37]

Hy = Z Ek(b;rkgbika + aj]maika)~ (8)

iko

The operators b;, and aj, are, respectively, even and odd
combinations of the original electrons, ¢;i 1y & Cirro - Only the
even modes b;, carry the 7 /2 phase shift. The odd modes are
decoupled from the dot variables and they are not involved in
the Kondo screening.

The low-energy behavior is a FL. It is controlled by the
leading irrelevant operator, irrespective of the spin size on the
dot [52],

Hio=—A:J(0)-JO):, )

involving only the spin current at the impurity site, x = 0,

- 1 .
JO) =3 b, 0)50.0big(0) (10)

ioo’

with bis(x) =), biro €. The notation : ... : corresponds
to normal ordering where all divergencies stemming from
bringing the two spin currents close to each other are
subtracted. A is a coupling constant of order ~1/ Tk . Following
a standard point-splitting procedure [52-54] we obtain the
Hamiltonian corrections Hyjo = H. + Hin to the fixed point
Eq. (8), with

37 (en +en) bl obine © (1)
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and
Hy = 21 Dbl bikebly bite -
int — 3 1)2 Z * YikioVjkeo jkso ikso -
Li<jiki).o
+ & > bl ibitat bl bisy,
Tv2 * YikitYikot Viky  Yikal -
Ui (k)
i > (21 bkt Binay
3702 * Vi Vikat jiy Yikad -
Uizt tki}
ot - .
+ 'bik,Tbikmb;mbjm 0)s (12)

where o] = ¢ = 31/2)m v12 and v; = 1/(2w hvg) is the den-
sity of states for one-dimensional chiral fermions. The four
terms in Hj, describe two-electron scattering processes caused
by the impurity. In the first term, the interacting electrons
belong to the same spin species but to different channels while,
in the second term, opposite spin electrons interact within the
same channel. In the third and fourth terms, both spins and
channels differ, and they are exchanged after scattering in the
former but not in the latter.

The effect of the leading irrelevant operator Hjjp on
observables can be separated into three types of corrections:
(i) the elastic scattering due to H.j; (ii) the Hartree con-
tributions deduced from Hj,, which can be seen [54] as
elastic processes since the energy of the incoming electron
is conserved; and (iii) apart from Hartree diagrams, all other
diagrams derived from H;, describe inelastic processes in
which the incoming electron changes its energy by exciting
an electron-hole pair. The types (i) and (ii) can be gathered in
the total phase shift

iz (e,6nj4) = 80 + 16 — Pp10n; 5 + % Z(Snj,a —njs),
£
(13)

accumulated by a lead electron that is elastically scattered by
the impurity. ¢ is the energy of the electron measured with
respect to some reference energy &9 = 0. én;, is the total
density of spin o electrons in channel i with respect to the
zero temperature Fermi sea with Fermi energy ¢y. The identity
a) = ¢ is sufficient to ensure the invariance of the phase shift
Eq. (13) under a shift of ¢y. The form of the Hamiltonian
Egs. (11) and (12) and the phase shift Eq. (13) were first
anticipated by Nozieres and Blandin [55] on the basis of a
phenomenological FL approach.

Below, in Secs. III B and I1I C, we compute the mean current
by adapting the formalism developed in Refs. [37,56]; see also
Ref. [57].

B. Current calculation, elastic part

Instead of using the definition Eq. (2), we start from an al-
ternative expression for the current, discussed in Appendix A,

I =

> la, @)bio (x) — al, (—x)Sbiq (—x) + Hee.l,

i,o

21)1/’!
(14)

where we use the symmetrized current I =, +1 r)/2 and
h = 2mh = 2x. The choice of x < Qis arbitrary due to current
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conservation. In the simplest approach, the S matrix contains
solely the phase shift 77 /2. It is, however, possible to simplify
the problem by including the types (i) and (ii) contributions
directly in S = ¢*° with § given by Eq. (13).

In the absence of type (iii) contributions, the fields b;i,
and a;;, are free (noninteracting) with occupations controlled
by the left and right lead chemical potentials pz g = £V /2;
see Appendix A. The calculation of the mean current is
straightforward and takes a Landauer-Biittiker form [58],

2N +o00
=2 / de TELfu(e) — fr@)].  (15)

with the transmission T'(¢) = sin’[8(¢)]. f /r(€) are the Fermi
functions for the left and right leads. In this configuration, the
phase shift is obtained from Eq. (13),

T
8(s) = 3 + aye, (16)

since 6nj, = 0 when gy = 0 is chosen in the middle of the
lead chemical potentials. Expanding the elastic current Eq. (15)
up to second order in «;, we obtain reinstating the electrical
charge e,

4Se*V (T  (eV)?
I, = 1 —o? , 17
S S (0D )
and the linear conductance,

2 2 2
Ge,=43: [1—0&((”? +(6Z) >] (18)

C. Current calculation, inelastic part

We use the Keldysh framework [59] in order to compute
the type (iii) contributions to the current. Quite generally, the
mean current reads

I = (T, (t)e™ Jed )y (19)

where the Keldysh contour C runs along the forward time direc-
tion on the branch p = 4 followed by a backward evolution on
the branch p = —, and T, is the corresponding time ordering
operator. Evolution and mean values are determined by the
free Hamiltonian Hy, Eq. (8), in which all elastic processes
have been incorporated. The calculation proceeds as follows:
we expand the current Eq. (19) up to second order in Hiy
and compute the resulting mean values in Keldysh space. The
zeroth order reproduces the elastic current derived in Eq. (17).
The first order vanishes and the second-order diagrams are
shown in Fig. 2, corresponding to the four terms in Eq. (12).
The calculation is the same for all diagrams, with a result
proportional to

2w T)? N 5(eV)?
3 12 7

but with different weight factors depending on spin and
channel summations. The diagrams in Fig. 2 describe the sum
of uncorrelated processes [60] in which one or two electrons
are incoherently transmitted from one lead to the other [61].

Summing all terms, we obtain the current I = I + 8 lipel
with

(20)

2Ne2V
h

2T 5(eV)?

Sl = —
el 3 12

o1 WN[ ] 1)
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FIG. 2. Second-order diagrams describing the inelastic processes,
or type (iii), in the mean current calculation. The open circles
represent a current vertex while filled black dots correspond to
interaction vertices. The four diagrams correspond to the four terms
in Eq. (12) with interaction vertices proportional to ¢, /3, ¢1, 2¢,/3,
and ¢, /3.

and the numerical factor

(3 so ()4 ()]

1+2N
, 22
3 (22)

where N = 2S denotes the number of screening channels.
With ¢ = oy, the final result for the linear conductance takes
the form

(TN, eV
G(T,V):GO[I—CT<FO> _CV<TO> } (23)

with the unitary conductance

202N 4€3S

=
i.e., each of the N channels contributes one conductance
quantum 2¢2 / h, and the coefficients

G(0,0) = Gy = (24)

! 5+38S ¢ 4+ 108
§T2:7t2 i ) gvzz i : 25
aiT; 9 i T; 6

The Kondo scale 7y used in Eq. (23) was defined via the static
susceptibility in Eq. (7). In the ratio of the FL coefficients the
scale Ty, which is hard to determine experimentally, drops out
and we find
/

c_/V:i24+105’ 26)

¢y 2m* 5488
which reproduces the known result [35-41] ¢, /¢ = 3/(2n?)
for § =1/2.

The relation between the FL parameter «; and the Kondo
temperature 7y can be made quantitative by computing the
static susceptibility within the FL approach. We consider
the zero-temperature situation with a weak magnetic field
B splitting the chemical potential for the two spin species,
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Uy = 0 B/2. The relative densities are then calculated to be
dn; , = o B/2 and the phase shifts, from Eq. (13),

1 N-1
Sis (&) = —+(X18+¢1UB<§+T), 27

determine the spin populations on the dot through the
Friedel sum rule. The dot magnetization is thus given by
M =1/Q2m)),, 08i,(cB/2) and we obtain for the static
susceptibility

40[1
X = L5+ 1). (28)
3

Comparing this expression with Eq. (7), we find the relation
a) = 1 /(4Tp) and, from Eq. (25), the FL parameters

o

=T (5488 29
¢ = 7 (5+85) (29)

and

/ sz
¢l = e (4+105). (30)

in agreement with Refs. [62,63] for the value of ¢’.. The ratio
Eq. (26) and thus ¢}, was, to the best of our knowledge, not ob-
tained previously. We would like to add that recently [64] Hanl
et al. applied FL theory to derive the coefficients characterizing
the magnetic-field dependence of the conductance and the
curvature of the equilibrium Kondo resonance, respectively,
for fully screened models and compared them to numerical
RG calculations. This work thus complements our derivation
of the voltage dependence ¢, .

IV. LOW-TEMPERATURE BEHAVIOR OF THE
STATIC SUSCEPTIBILITY

The aim of this section is the derivation of the coefficient
a’ in the FL expansion,

T\2
X = Xo[l _a}(?o) } 3D

We note that this coefficient cannot be calculated by use
of the FL approach of Sec. III since the next-to-leading
order perturbation [65,66] around the fixed-point Hamiltonian
would be required. However, we can use the low-temperature
behavior of the dot magnetization in an external magnetic field
B as our starting point, which has been derived using the Bethe
ansatz [47,48]. For small fields the magnetization is given by

L (=D T(k+3)
ﬁzkv(zkﬂ)r( N(k+ 1))

k=0

N k‘i‘% )N(k+%)< B )2k+l (32)

e TH

where, as usual, N = 2S. The relation between the energy
scale Ty and the Kondo temperature T, defined via Eq. (7) is
easily obtained using x = M /3 B|p—o to be

T, IS
=3 ( )S(S+1) (33)
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To determine the second derivative of the susceptibility with
respect to the temperature we start with the thermodynamic
relation

a2 19’C

L= (34)

aT?> T 9B?
where the specific heat is linear at low temperatures C = y T
with [67] ¥ = n25/(3T,). Thus the Wilson ratio is given
by [1,55,62,63]

4m? 2(N +2

R = X g’ (35)
3y 3

where we have set gupg/kp = 1. As can be shown in the FL
approach the Wilson ratio is independent of the magnetic field
(see Appendix B), hence we obtain

8%y _ 2% 3%y

—_ = — 36
9B> N +20B? (36)
In total we thus have
o T? 3% _ Iy 27 M 37
T 2% 0T? |,y 2x0N+20B% |,
Straightforward evaluation then gives
ZS2(S + 1) T(S)y

18 I'3s)

which for § = 1/2 simplifies to a; = V31%/8 [68,69]. The
result Eq. (38) for § = 1 is found to be consistent with recent
numerical RG data [70]. Unfortunately, since the Bethe ansatz
is not applicable in the presence of a finite bias voltage, it is
not possible to derive the similarly defined coefficient a;, for
the dependence of the susceptibility on small voltages.

After the investigation of the systems properties at small
temperatures or voltages we now turn to the treatment of the
crossover regime using the RTRG technique.

V. RENORMALIZATION-GROUP TREATMENT

In this section we will present details of the calculation of
the nonequilibrium transport properties of the fully screened
Kondo model (1). We will begin by reviewing the E-flow
scheme [42] of the RTRG technique [25], which was developed
to study the differential conductance of the spin-1/2 model in
the full crossover regime from weak to strong coupling and
has been successfully applied to describe transport measure-
ments [43,44] in quantum dots. We then extend this to the
calculation of the dynamical spin-spin correlation functions as
well as the static susceptibility. The resulting RG equations,
presented in Sec. VE, are solved numerically to obtain the
results of Secs. VI and VII.

We stress that the RTRG treatment presented here is
restricted to fully screened models with S =1/2 or § =1
sketched in Fig. 1. While we always consider N =25 we
will keep the notations N and S simultaneously to clarify the
origin of the different terms. Furthermore, we stress that the
derivations below are based on a weak-coupling expansion
in the renormalized exchange coupling between the spin on
the dot and the electron spins in the leads. Thus weak-
coupling results are intrinsically incorporated. An advantage
of this expansion is that higher orders can be included in a
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systematic way, thus offering an internal consistency check
when comparing observables in different orders of truncation.
We focus on the scaling limit of vanishing initial exchange
interaction (Jy — 0) and diverging bandwidth (D — o0) such
that the Kondo scale Tk defined below is kept constant, since
in this limit universal behavior is expected.

A. General formalism

For completeness we recall here the main steps in the
E-flow scheme of the RTRG technique; for a more detailed
presentation we refer to the original reference [42]. The central
object of our study is the reduced density matrix of the dot
denoted by p, which is obtained from the full density matrix
of the system by tracing out the electronic degrees of freedom
in the leads. After a Laplace transformation,

oo

p(B) = [ dr P o), (39)
4]

its evolution is governed by the effective Liouvillian L(E)

via [71]

p(E) = (40)

i
E — L(E) L0,
where py denotes the initial density matrix of the dot at time #
and the leads are assumed to be initially in grandcanonical
distributions incorporating the chemical potentials iy /r =
£+V/2 or the temperature 7. The stationary state is reached
for E = i0", which is equivalent to zy — —o0. The stationary
reduced density matrix is therefore given by
o = lim Lpg. 41
E—iot E — L(E)

In the following we will consider the stationary state only. Due
to the absence of a magnetic field its nonvanishing elements are
simply given by py44 = p,; = 1/2 for the spin-1/2 model and
P11 = poo = p—1—1 = 1/3 for the spin-1 model, respectively.

By expanding in the exchange interaction and performing
the trace over the reservoir (i.e., lead) degrees of freedom one
can derive [25] a series expansion for the effective Liouvillian,
which consists of two-point interaction vertices G j2(E,®1,®)
and propagators

1

E+®—L(E+®)
The multi-index notation 1 = niwo incorporates the channel
and lead index i and «, and the spin o and n = =+ refers to
the creation and annihilation operators of lead electrons. The
frequency variable w describes the energy of the electrons
in the reservoir contractions. For convenience we define
1= —niao, where the minus acts on 7 only, as well as
@ = nw. Both vertex and propagator are E dependent due
to the resummation of diagrams into effective quantities. Up
to third order in the renormalized exchange coupling we can
use the approximations

(E + &) =

(42)

Gp(E) = Gp(E, 01 = 0,00 =0) (43)
and
_ Z;(E)
I(E ~ E I Pp.(E). 44
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Here j runs over all eigenvalues A;(E) of the effective
Liouvillian and P;(E) are the corresponding projectors,
L(E) = Zj Aj(E)P;(E). Furthermore, we have introduced
Zi(E) = 1/[1 = £:2,(E)] and x;(E) = Z;(E)E — A;(E)].
Physically the eigenvalues A ;(E) of the Liouvillian correspond
to the relaxation rates of the spin on the dot [26,72], i.e.,
Aj(E) =i I'j(E). In the absence of an external magnetic field
there is only one relaxation rate in the spin-1/2 model and
two in the spin-1 model. Since in the latter only the triplet rate
contributes in the following, we will consider only one rate I"
for both models in the following.

In analogy to the effective dot Liouvillian one can intro-
duce [25] a current kernel ¥, (E) from which the current (2)
follows as

I = () = =i Te[Z.3(0M)p%]. (45)

Here the trace is taken over the Liouville space of the Hilbert
space of the dot. In analogy to the interaction vertex G, the
treatment of the current requires a current vertex which we
denote by ;5.

The main goal of this paper is the computation of the local
spin-spin correlation functions S(€2) and x (€2). In order to treat
both on equal footing we introduce [73] the auxiliary functions

C2,(Q) = f

—0Q

0
dt e ([AQO) g, B(t)rl<)si, (46)

where A and B are in principle two arbitrary operators with
the corresponding superoperators in Liouville space given by

[ .
AZ E[Aa']+7 Bi ZZ[B"]i' (47)
For the case at hand we have A = B = §* and

S(Q) =ReCys(R), x(Q)=iCse(Q).  (48)
Again by expanding in the interaction part of the Liouvillian
and resumming the resulting diagrams into irreducible kernels
>4 and E; we obtain

Cig(Q)=—iTr [zA(sz) Ef(iO*,Q)p“] (49)

Q—L(R)
Due to the simple structure of the spin operators on the dot
the first kernel is given by its initial value, X 4(2) = A, while
the second one will acquire a dependence on E during the RG
flow. In Sec. VD we will present a detailed derivation of the
RG equations for T3 (E, Q) [74].

We note that while the investigation of more general corre-
lation functions like the finite-frequency current noise [27,75—
78] is, in principle, possible within the RTRG formalism [79],
the analysis of the strong-coupling regime using the E-flow
scheme will be considerably more complicated than the one
of the spin-spin correlations worked out below [80].

B. Parametrization in Liouville space

Before deriving the RG equations we parametrize the
various quantities introduced above using a suitable basis in
Liouville space as discussed in Appendix C. Specifically, the
Liouvillian is recast using a function I'(E), the interaction
vertex is represented by the functions Jj»(E) and K,(E), the
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current kernel by I'; (E), the current vertex by le(E ), and the
correlation kernels E;(E,Q) by I+(E,Q).

With these quantities the observables of interest can be
expressed as

1 =i712—e2 lim ll"L(E), (50)
h E—iot E
for the stationary current and
G = i lim EiI(E)zyriI‘L(iOJr) (62}
2e2 E—iot i 9V v

for the differential conductance. Similarly, the auxiliary
correlation functions read

b 20 S(S+1)
_ 17301,

from which the spin-spin correlation function S(€2) and
dynamical susceptibility x(€2) can be easily obtained via
Eq. (48). We note that I'T(;0",€2) does not appear in Eq. (53).

C. E-flow scheme

As is well known, the perturbative treatment of the Kondo
model leads to logarithmic divergencies which makes a more
careful RG approach necessary. In the E-flow scheme [42]
the RG procedure is set up such that all integrals, which
originate from performing the reservoir contractions using
Wick’s theorem, are UV convergent in the limit D — oo.
This is accomplished by taking the derivative of the full
diagrammatic series with respect to the Laplace variable E,
which serves as the natural flow parameter (hence the name).
For the Liouvillian this requires taking the second derivative
while for the vertex one derivative is sufficient to ensure UV
convergence. This yields self-consistent RG equations which
are truncated systematically in orders of the interaction vertex
up the third order, i.e., including O(G?). At T =V =0 the
Laplace variable can be written as E = i A. The RG flow starts
athigh energy E = i Ao, with A of the order of the bandwidth
D, where the RG procedure agrees with perturbation theory.
The initial values of all flowing quantities are fixed by the uni-
tary conductance at low energies as we elaborate onin Sec. V F.

For example, at T =V = Q =0 the RG equation for
the interaction vertex G, leads to (see Appendix C for the
parametrization)

aj
dN~  A+T
where J = ZJ, J = J(E) is the effective coupling constant,

and Z =1/(1 + ‘di—i) is the Z factor. The RG equation (54)
possesses the scaling invariant

NJ \"? 1
TK=(A+F)<1_Nj) exp <_ﬁ> (55)

which defines a dynamically generated energy scale—the
Kondo temperature. This definition of the Kondo temperature
is natural when studying the model using scaling equations
like Eq. (54); of course, it is only defined up to a multiplicative
prefactor. The standard poor-man’s scaling form of the Kondo
temperature Tk is obtained by neglecting the relaxation rate I'

271 = NJ), (54)
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FIG. 3. (Color online) RG flow of the renormalized exchange
coupling J governed by the scaling equation (54). The maximum
given by Eq. (79) is reached at A = 0. In contrast to the poor-man’s
scaling result the coupling does not diverge. Inset: RG flow of the
effective relaxation rate I'. We note that I" remains finite for A — 0.

in Eq. (55). However, we note that there exist other definitions
frequently used in the literature which are more natural from
an experimental point of view or when using other theoretical
approaches, e.g., via the static susceptibility in Eq. (7). In
Sec. VII we will discuss these other definitions as well as the
relations between them and collect the results in Table III.

We note the similarity of the RG equation (54) for J with the
scaling equation for the multichannel Kondo model [55,81,82].
In particular, Eq. (54) possesses a fixed point at J = 1/N =
1/(2S). However, as we discuss at the end of Sec. VF this
fixed point is not reached since, starting in the weak-coupling
regime J « 1, the relaxation rate I cuts off the flow at the
maximal value of J corresponding to the unitary conductance
(see Fig. 3).

The RG equation for the Liouvillian translates into an
equation governing the flow of the effective relaxation rate
['(E),

d2T AN
- axr (56)

We note that I' stays finite during the whole procedure;
see the inset of Fig. 3. Therefore the Liouvillian remains
analytic around the origin E = 0 which results in FL behavior
discussed below.

D. E-flow scheme for correlation functions

After this brief overview of the E-flow scheme we now
turn to the calculation of the correlation kernel. The starting
point is its perturbation series, which has the diagrammatic
representation [73]

TH(E.Q) = + % III:I + Illfl—ll

+ ::l:::_[;—:'_I:::,[:.-@-y:,l:::l:= +0(GY. &7
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TABLE I. (Color online) Summary of notations and objects used in the diagrammatic representation of the E-flow scheme. The chemical

potentials in the leads appear in the resolvents together with the Laplace variable in the combinations E; , = E + fi; + - -

and 2 are chosen appropriately to left and right connections.

-+ fi,. Indices 1

Symbol Name Rule

—lh— Bare two-point vertex G(O) Indices connected by contraction are fixed to 1 <> 1
—50— Effective two-point vertex G 2(E2,@1,@;) E, = E + ji; + i, from resolvent to its left
—“— Two—point vertex Glz(Elz) G12(E12,(Z)1 = 0,&)2 = 0)

Bare spin vertex 5. Add Q to all E leftto B+

- Resolvent l'[(E 12+ @) E/, and @;, determined by vertical cut through contractions
—F Derlvatlve = l'[(E 1+ @) Derivative with respect to Laplace variable E
- Contractlon vl (a)) Asymmetric Fermi function f“(®)

- Contraction V1 P’ (a)) Asymmetric Fermi function f“(®), integrate over @
—X— Derivative —ylz (a) ') Derivative of Fermi function f’(®)

—O0— [NE, ,+ &, +o)—TI(E, , +®1.,) @ is the frequency of the contraction

All symbols and elements occurring here and in the following
are summarized in Table I; furthermore, see Refs. [25,42] for a
more detailed discussion of the notation. To achieve convergent
integrals in Eq. (§57), we take the derivative with respect to E.
Afterwards, we replace the bare perturbative vertices by the
effective vertices given by

Gi(E,w1,w)) = r <[ —(1 PN 2)) + O(G?).

._. “

(58)

This yields the effective diagrams for the correlation kernel

d 1 1
LR oo vI R ivowsl!
1 1
Lt Ay o,

(39)

where we have introduced the connected spin vertex
B (E,wy,w) satisfying

B (E,w1,07) = = — (1 < 2)+ O(G?).

(60)
Furthermore, the bare spin vertex is not renormalized in second
order,

B(E) = + O(G?). (61)

We note that the integrals in Eq. (60) are UV convergent.
Therefore taking derivatives with respect to E is not necessary
and the vertex B, does not flow. The next step is to move the
derivatives from the resolvent line to the contractions which is

done via integration by parts

3 1 |-‘-| o~
ﬁﬁf(Eﬂ) = ..@“ — 300 @ So—&
1
B 00-00@0. +0(GY.  (62)

Next we integrate out the frequency dependence of the
effective vertex and thus obtain only vertices with zero
frequency (depicted in the diagram by filled double dots). This
integration introduces terms of the form II(E; , + &, +
@) — I(E;_, + ®1..,), which are denoted by bubbles on the
corresponding contraction. Thus we find

%zi(Esz)
1 1
= Jeb (e Teb (D eb—

1 4
- 5 +OGY). (63)

As shown in Appendix D the last four diagrams have the same
form as the second and third ones. Thus everything can be
rewritten as

= lagsl

— SHE.Q) =
-

+0O(GYH.  (64)

With the rules [25,42] for translating the diagrammatic rep-
resentation into ordinary expressions, which are summarized
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in Table I, we obtain

3
—XH(E,Q
ap os(ES) =

PHYSICAL REVIEW B 89, 165411 (2014)

1
—3 // dioy dén f'(@1) f(@2)G12(E + DI(E 12 + 2 + @12)BLTI(E 12 + @12)G31(E12)

- [[] 401 doz dn @0 @ s @iGaE +

X [M(Ep + Q4+ o) — (Enn + Q+ @2)]Gx(En + QI(E ;3 + Q2 + 013)BLTI(E 13 + ©13)G31(E13)

+G(E + I(En + Q + 012)BLTI(E12 + @12)Ga(E)II(Es + @13) — I(E13 + @3)]1G31(E13)},  (65)
where we have dropped terms of O(G*) and the Fermi function is given by f(w) = 1/(1 + ¢®/T) and its asymmetric part by

fiw) = f(w)—

1/2. As compared to the Liouvillian, the diagrams for the correlation kernel contain one additional resolvent

due to the presence of the spin vertex B.. This implies that the expressions are less UV divergent and that a single derivative is

sufficient to render them convergent.

E. RG equation

As next step we employ the parametrization given in Appendix C to derive explicit RG equations. With the introduced
notations we can summarize the RG equations for the correlation kernel I' ~(E,€2) and the variation of the current kernel §T" (E)

forboth S =1/2and S =1 as

d 4 » 2w
S5T (B = =255+ DNJ(E + QK (E)F{;(E.E + Q) + —s<s + DNJn(E + Q)
2

X A23(E)Ks(EYFS5(ELE + ) + Iy (Epy + QK51 (E)FS o (E + Q. )} + == S(S + DN (E + Q)

X {203(E2)) K 13(E)Fyy s (ELE + Q) + Jin(Eay + QK 3(E)Fapy (E + Q,E)) (66)
and

d
780 (E) = —12S(S + DNIL(E)[ Kor(E)Sp1z + i Z128T(E1) | Fy (E) — Jos(Er2) K31 (E)

oE

[Fl(z 13(E)dpin + F1(3 (E)piz] —

B(EKn(E)F (B + Fy n(EXun]),  (67)

where we write the number of channels N = 2§ explicitly and thus the index 1 = « contains the lead index only. Furthermore,

we use the short-hand notations Z1, = Z(E13), xi2 =
Epp =E+ 2, and (1 = g,
occurring integrals are given by

x(En), Z=Z(E), and 3 = x(E), where x(E) =
— [a,, While 6417 denotes the infinitesimal variation of the chemical potentials in the leads. The

Z(E)E +iT(E)],

s [ i BT
FOE) =z zf/d dw ’wiw;ffj(l)z (70)

FO (B =27, / / dwdw’f”(ffzj /iw))(i @) (71)
Fu(E,0) = Z / do” f”(w”)[w " w,l, e l XSJ, (72)

where we evaluate Eqgs. (68) and (69) in Appendix D. We note
that the RG equations (66) and (67) are valid for arbitrary
temperature 7', bias voltages V, and external frequencies 2.
In order to obtain a closed set of RG equations, Egs. (66)
and (67) have to be supplemented by equations governing the
flow of the remaining quantities Ji,(E), K12(E), I 5(E), I'(E),
and 6I"(E). For the spin-1/2 model these were derlved in detail
in Refs. [42,83]. The only difference in the spin-1 case is the

(

appearance of additional factors N if the trace over vertex
indices is taken [similar to the explicit prefactor N in Egs. (66)
and (67)].

The RG equations presented above were derived in a full
two-loop or third-order treatment, i.e., on the right-hand side
all terms containing up to three vertices G were kept. This
implies that, on integration, the effective Liouvillian and
kernels are obtained consistently, including all logarithmic
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terms cubic in the effective coupling ~J> In A, where A
contains combinations of the energy scales. Cubic terms
without logarithms are, however, not captured by the two-loop
treatment.

For later comparison we also derived the RG equations
in second order. They are obtained from the third-order
treatment by dropping all terms containing three vertices in
the derivation. For example, the RG equation for the effective
coupling and the corresponding Kondo temperature become

N
dA "~ A+T

1
. TS = (A + YN exp <—5)

(73)
while the Z factor is given by Z = 1/(1 + 2N J). Unless
explicitly stated otherwise, all results present below were

obtained in third order, in particular, all data shown in the
figures except for the inset of Fig. 8.

F. Initial conditions

Finally, we describe the procedure to solve the RG equa-
tions. For T = V = Q = 0 we substitute £ = i A in Egs. (66)
and (67) and obtain with Eq. (51) for the conductance

4 1
AL AmSSHDN e gy
dA A+T 3

d G ! 27%8(S + )N J, K (75)

- = — T .

dA A+T !

WithJ =ZJ,J; =2J;=J(1—=NJ),Z=(1-NJ) and
K = 2J?, and using Eq. (54), this yields

_ 87 = 2 .
r :?S(S+1)NJ 1—§NJ , (76)

G =SS+ 1)NJ>. (77)

Following Ref. [42] the initial conditions are fixed as follows:
We calculate the current kernel, conductance, etc., in pertur-
bation theory in Jy at the scale Ay (see Appendix E for the
initial conditions for I"' ™). Next we fix the numerical values of
Jo and A such that at the end of the flow A = 0 we recover
the unitary conductance (24),
2 2

G(T =V =0)|pe0 = 2ehN = 4ehS =G,  (18)
We recall that we consider fully screened models with S =
1/2 or S =1 only. With Jy and A fixed in this way the
scaling invariant Kondo temperature (55) or (73) as well as all
the remaining initial conditions, e.g., for the rate I', are fixed
by perturbation theory. The outlined procedure also fixes the
renormalized exchange coupling J at E = 0 via [G in Eq. (77)
is measured in units of the conductance quantum 2¢?/ ]

1
TJ/SSF 1)

We stress that we require only one condition, namely Eq. (78),
to fix the initial values of the RG flow. In particular, the initial
condition for I'™ is then fixed by Eq. (76), thus relating the
conductance and the susceptibility.

J(E=0)= (79)

PHYSICAL REVIEW B 89, 165411 (2014)

We solve the RG equations starting from £ = 0to E =i Ay
with7T =V = Q = O held fixed. At E =i Ay we switchon T
or V (the extension to simultaneously finite 7 and V' is worked
out in Ref. [83]) which is a negligible effect since Ao > T,V.
We further incorporate the external frequency by evolving
J(E), K(E), and I'(E) in Eq. (66) to finite 2 at E =i/,
parallel to the real axis, i.e., having E = Q + i A afterwards.
Now with the energy scales T, V, and Q at their physical
values, we can solve the full RG equations, e.g., Eq. (66) for the
correlation function, back to £ = 0 to obtain the observables
in the stationary state.

As an example, the RG flow of J(E =iA) is shown in
Fig. 3. At sufficient high energies A > Tk the system is
in the perturbative regime J < 1 where a well-controlled,
systematic and analytic solution is possible [26,28,72,73].
When lowering the energy scale A the renormalized coupling
J increases. However, around A ~ Tk this increase is cut
off by the finite relaxation rate I' (see inset of Fig. 3). In
contrast to the poor-man’s scaling situation the coupling does
not diverge but reaches a maximum as A — 0 which is fixed
by the requirement of unitary conductance (79). In fact, for
both models J < 1 but, since J ~ 0.3 in the crossover regime
A ~ Tk, it is a priori not clear whether the truncated RG
equations yield reliable results. Thus it is essential to have
benchmarks for the crossover and strong-coupling regime.
Furthermore, one can compare different orders of truncation to
gain insight into the reliability. We will come back to this when
discussing our results in Sec. VIII below. As a side remark we
note that the fixed point J=1 /(2S) of Eq. (54) is not reached.

VI. SPIN-SPIN CORRELATION FUNCTIONS

In this section we present our results on the spin-spin
correlation functions of both the spin-1/2 and the spin-1
model. We first discuss the static spin susceptibility, which we
use to define a second Kondo scale Ty, and then the dynamical
correlations. In the next section we discuss the conductance
with a particular focus on the FL coefficients.

A. Static spin susceptibility

The static spin susceptibility is, according to Egs. (6), (48),
and (53), given by

1 Re'~(i0%,0)
2 Rel(0F) °

The function I'"(;07,0) is obtained by solving the RG
equation (66) from the previous section numerically, while the
rate I'(i0™) follows from the RG equation for the Liouvillian
given in Ref. [42] [for T = V = Ot is given by Eq. (56)]. We
focus on the temperature dependence at zero bias voltage,
x(T)= x(T,V =0), and the voltage dependence at zero
temperature, x(V) = x(T =0,V). The static susceptibility
can be used to define the Kondo scale Ty via Eq. (7),
which is the definition usually adopted in numerical RG
calculations [1,4]. Its relation to the Kondo temperature Tk
defined in Eqs. (55) and (73) is given in Table III in the next
section.

Our result for the temperature dependence at V = 0 for the
spin-1/2 model is shown in Fig. 4, where we have rescaled

X = Slg})x () = (80)
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FIG. 4. (Color online) Static spin-susceptibility x(7)T for the
spin-1/2model and V = 0. We compare to the exact result from Bethe
ansatz [data are taken from Table 3 of Ref. [10]] and asymptotic results
Egs. (81) and (82), respectively. There is no fit parameter in the RTRG
result. The dashed line at x(7)T = 0.25 shows the susceptibility of
the asymptotically free impurity.

the temperature using the Kondo scale 7. We compare our
data to the exactly known result [10] obtained by use of the
Bethe ansatz as well as the asymptotic results at low and high
temperatures given by [1,68,69]

3 2 4
X(T) TﬁT”x(O)[l—ﬁ” (1> +0<T)] &)

8 \T Ty
and
) T%TOLI: B 1 _ LIn[In[T/(wTy)]]
KO Zar D T T ol T 2 AT (wT)]

1
O(mﬂ’ ®2)

respectively. Here w = 0.41071 ... denotes the Wilson num-
ber, which is defined by the requirement that the term
proportional to 1/1n*(T/wT,) in Eq. (82) vanishes [3,9,84].
The combination w7 is also frequently used as Kondo scale
in the literature.

We first observe that our result shows reasonable agreement
with the low-temperature behavior (81); below we analyze this
in more detail. In contrast, at high temperatures we observe
clear deviations. While the asymptotic value (7)) — 1/(4T)
is of course reproduced (as it is in the perturbative RTRG
analysis [26]), the logarithmic corrections o<1/ In[T /(wTp)] ~
1/1In(T/ Tk) are not correctly captured. The reason for this is
that the susceptibility is given by the ratio of the kernel X
and the Liouvillian L; see Eq. (80). Since both start in O(J?)
the derivation of the contribution o<1/ In(7/ Tx) to the suscep-
tibility would require a consistent calculation of I' " (E,2) and
I'(E), including all terms in O(J?). For this a full three-loop
calculation including all terms with up to four vertices is
necessary, which is, however, beyond the scope of this work.

In Fig. 5 we plot the static susceptibility for the spin-1/2
and spin-1 model. We observe that, when plotted against
the rescaled parameters 7/7Tsy and V/Ts o, where Tsg is
defined via Eq. (7), xs(V) > xs(T), i.e., thermal fluctuations

PHYSICAL REVIEW B 89, 165411 (2014)
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FIG. 5. (Color online) Static spin susceptibility xs of the S =
1/2 (blue) and S =1 (red) models. The solid lines show the
temperature dependence at V =0, xs(T'), while the dashed lines
show the voltage dependence at 7' =0, xs(V). All curves are
normalized to xs(0), and both temperature 7 and voltage V are
rescaled with T s defined in Eq. (7). Inset: Comparison of xs(T)/x§
for § = 1/2 and S = 1. The approach to the free spin susceptibility
x5 = S(S + 1)/(3T) is slower in the spin-1 model.

lead to a stronger suppression of the systems susceptibility
to an external magnetic field then a finite bias voltage.
Asymptotically, the susceptibility reaches the one of a free
spin, x¢ = S(S+1)/(3T), in particular, we find for the
relative factor xi2/x1 = 3/8 for T > Ty or V > Ty. This
factor also frequently appears in the RG equations discussed
in Sec. V.

Finally, let us analyze the behavior at low temperatures or
small bias voltages in more detail. Specifically, we consider
the coefficients af and a}, in the expansion [cf. Eq. (31)],

T\? V2
aioa(3) ()] o

We have extracted the coefficients from our RTRG calculation
in second and third order; the results are shown in Table II.
We observe that the value for a/. obtained from the RTRG
treatment shows a significant deviation from the exact result
and a rather strong dependence on the order of truncation of
the RG equations. In contrast, for the ratio a}, /a’. we do not
observe such a drastic dependence on the truncation. Thus we
would consider the result for aj, /a; to be more reliable (see

TABLEII. Values of the coefficients a; and a}, /a} extracted from
the numerically obtained RTRG results in second and third order. The
exact values for a; are given by Eq. (38); the relative errors are stated
in brackets.

Model Method ay ay jay

S=1/2 BA 6.71 -
RTRG 2nd 4.89 (27%) 0.12
RTRG 3rd 13.64 (103%) 0.10

S=1 BA 14.80 -
RTRG 2nd 7.38 (50%) 0.08
RTRG 3rd 28.70 (94%) 0.07
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FIG. 6. (Color online) The spin-spin correlation function S(€2)
and the imaginary part of the spin susceptibility x”(€2) for the spin-
1/2 model and V = 0. We observe the maximum of x"(2) at Q ~ T'
and S(2 =0) = 1/(2I"), where I'(T,V = 0) is shown in the inset.

the discussion for the FL coefficients of the conductance in
Sec. VII).

B. Dynamical correlation functions

From Egs. (48), (52), and (53) we obtain the dynamical
correlation function

S(Q) = 1  Rel(Q) 84)
T 224+ Rel(Q)?
as well as the imaginary part of the spin susceptibility,
1 QReI' (i0",Q
1@ = 5 el (05D (85)

2 Q24+ Rel(Q)?
We note that in deriving these expressions we have omitted
terms of the form ~I'(2)I"~(i0",€2), which contribute only to
higher-order corrections and cannot be treated consistently.
Furthermore, we have neglected the term ImI'(€2) in the
denominator since it is much smaller than €2, | Im I'(2)| <« 2.
We note that Eqs. (84) and (85) are rather similar to the
corresponding expressions [73] in the weak-coupling regime;
however, here we calculate I'(€2) and I' " (;0™,2) in the whole
Crossover regime.

The dynamical correlation function and the imaginary part
of the spin susceptibility for the spin-1/2 model are shown
in Figs. 6 and 7. The behavior agrees very well with the
results obtained by Fritsch and Kehrein using the flow-equation
method [85,86]. We find in the low-frequency limit

1

S(Q2—0) = T (86)
whichholds forboth S = 1/2and § = 1. Here I is the physical
spin relaxation rate obtained from solving Eq. (56) and taking
E — i0". We show I in the respective insets. For example,
in the perturbative regime 7,7y < V it is simply given
by [26,72,87] T' = nJ?V with the renormalized exchange
coupling J = 1/[21In(V/Tk)]. Physically the relaxation rate
governs the real-time dynamics of the spin on the dot and
the current through it [88]. The low-frequency behavior (86)
also agrees with results obtained by mapping the spin-spin
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FIG. 7. (Color online) The spin-spin correlation function S(£2)
and the imaginary part of the spin susceptibility x”(€2) for the
spin-1/2 model and 7 = 0. We observe that the maximum of
x"(S2) appears at lower frequencies as compared to the temperature-
dependent susceptibility shown in Fig. 6, which was also observed in
Ref. [85]. I'(T = 0,V) is shown in the inset.

correlation function of the spin-1/2 model to the one-particle
Green function in an effective description in terms of Majo-
rana fermions [89,90]. For large frequencies we recover the
perturbative result [73,85] S(€2) o< 1/[€2 1n2(Q/TK)].

Similarly, the spin relaxation rate determines the maximum
of the susceptibility, which is located at 2 &~ I". In agreement
with Ref. [85], we find that this maximum is at lower values
of Q2 for the voltage-dependent susceptibility as compared to
the temperature-dependent one since the rate is larger in the
latter case.

Finally, we note that in equilibrium (V = 0) the correlation
function and the dynamical susceptibility are related to
each other via the fluctuation-dissipation theorem [91,92]
x"(2)/S(R2) = tanh[Q2/(2T)]. Our results obtained by
numerically solving the RG equations do not fully respect
this relation, which seems to be due to inconsistently treated
higher-order corrections in the derivations. For very large fre-
quencies, however, one recovers the weak-coupling result [73],
including the fluctuation-dissipation relation.

VII. DIFFERENTIAL CONDUCTANCE

In this section we discuss our results for the conductance of
the spin-1 model. We focus on the temperature dependence of
the linear conductance, G(T) = G(T,V = 0), and the voltage
dependence of the differential conductance at zero tempera-
ture, G(V) = G(T = 0,V). The corresponding analysis for
the spin-1/2 case was performed previously in Ref. [42].
In principle, it is also possible to extend the study to the
full temperature and voltage dependence which is, however,
considerably more involved (see Ref. [83] for the spin-1/2
case).

In Fig. 8 we show the linear and differential conductance
for the spin-1 model. The Kondo scale 7 used to rescale the
temperature and voltage, respectively, is defined by

Go

G(T:T*,V:O):T, &7
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FIG. 8. (Color online) Linear and differential conductance G(T')
and G(V) for S =1 scaled to the Kondo scale 7 defined in
Eq. (87). The dashed lines are a guide to the eye to extract the
relation G(V = T¢) ~ 0.605 G. Inset: Second-order (crosses) and
third-order (solid lines) RTRG results for G(T') as a function of T'/ T¢
and G(V) as a function of V/T¢*. The results are almost independent
of the truncation.

where Gy = G(0,0) denotes the unitary conductance intro-
duced in Eq. (78). Similarly, we can define another scale by
Go
>
In contrast to the scales Ty and Tk defined in Egs. (7), (55),
and (73), respectively, which are convenient for theoretical
purposes, the scales T and T¢* are easier accessible in
experiments. We stress that the notations used in the literature
are not unique (e.g., in Ref. [40] the scale T¢ is denoted by Tk
while Ref. [93] uses T;Xpt). In the inset of Fig. 8 we observe
that both G(T') and G(V) are almost independent of the order
of truncation when rescaled against the corresponding Kondo
temperatures T and TZ*, respectively.
In total we have thus four ways to define a Kondo scale
which we collect in Table III. The scales differ by numerical
prefactors which themselves depend on the order of truncation

G(T=0V=Tg= (88)

TABLE III. Definitions of the Kondo scales Tk, Ty, Tg, and
T¢* used in this article and the numerical relations between them
as extracted from the RTRG analysis in second and third order,
respectively. We note that the numerical values depend on the order
of truncation of the RG equations. We stress that the notations used
in the literature are not unique.

Scale  Order S=1/2 S=1 Definition

Tk Second - - Scaling invariant (73)
Third - - Scaling invariant (55)

Ty Second 9.17 Tk 56.07Tx  S(S+1)/3x(T =0)
Third 3.99 Tk 12.64 Tx Eq. (7)

Ty Second  10.58 Tx 98.98 Tk G(T =T¢)=Gy/2
Third 2.07 Tk 10.29 Tx Eq. (87)

T Second 10.89Tx 11544Tx G(V =T¢) = Goy/2
Third 357 T 17.45 Tk Eq. (88)
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of the RG equations (see discussion at the end of Sec. VE).
We note that while the scale Tx obviously depends on the
truncation, the ratios of the (in principle) observable scales
T¢/To and T¢/Tg* also depend on it, i.e., the truncated
RTRG equations are not able to yield reliable results for
these quantities. For example, for the spin-1/2 model we find
in second and third order T} /Ty = 1.15 and T¢ /Ty = 0.52,
respectively, while recent numerical RG calculations [93,94]
give TZ /Ty ~ 1.04 in the Kondo limit of the single-impurity
Anderson model.

In Fig. 8 we also observe that, when 7 and V are
rescaled against the same scale, one finds G(T) < G(V),
which was also obtained in the spin-1/2 case. This finding is
also supported by the fact that 7"/ T¢ > 1 and ¢, /c} < 1
(see below) independently of the used truncation of the
RG equations. Furthermore, we can extract the differential
conductance at V = T¢ and find in third order

G(V =Tg) ~ 0.605 Gy (89)

in the spin-1 model, while for S = 1/2 the result G(V =
T¢) ~2/3Go was observed [42,43,45]. We note, however,
that the numerical value in Eq. (89) strongly depends on the
considered order of truncation.

In Fig. 9 we compare our results for the linear conduc-
tance with the corresponding ones obtained using numerical
RG [95,96]. For both the spin-1/2 and spin-1 models we
observe satisfactory agreement; the deviations at large temper-
atures originate from the fact that we directly treat the Kondo
model (1) while Refs. [95,96] analyzed the corresponding
Anderson models, whose high-temperature physics deviates
from the universal behavior of the Kondo model.

Beside the relations between the various Kondo scales we
can also extract the FL coefficients from our RTRG calculation
and in particular compare them with the results from FL theory
derived in Sec. III. Using the scale T as our energy unit we
fit the RTRG results at low energies against (see Fig. 10 for
the spin-1 model)

T \> eV’
G(T,V) = G0|:1 — C;<F> —cy (F) :| 90)
K K

1 3 RTRG, S=1/2
e NRG, S=1/2
08 |- —  RTRG,S=1 -
P R N e
T 06 |-
e N
5
04 |-
02 |
0 | \\Hui Ll L
107 10™ 10° 10" 10

FIG. 9. (Color online) Comparison of the linear conductance
G(T) for the fully screened Kondo model with S =1/2 and S =1
between the RTRG (solid lines) and numerical RG [95] (dashed lines).
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L L I B P ‘
—— [Gy- G(D)/G/(T/Ty) . S=1
25 [Gy- G(V)I/Gy(eVITy) , S=1 , .

cyler=0.13

cy =276 7]

107 102 107! 10° 10" 10
T/Ty , VITg

FIG. 10. (Color online) Linear and differential conductance
G(T) and G(V) for the spin-1 model plotted in the form
%ﬁf’w/ (%)2 such that the FL coefficients ¢} and ¢}, can be
readily detern’;ined by a quadratic fit (dashed line). Similarly, for the
spin-1/2 model we obtain ¢} = 4.86 and ¢}, = 0.89 in agreement

with Ref. [42].

We stress again that the notations used in the literature are not
unique (e.g., in Ref. [40] uses cr,y instead of c;v). The FL
coefficients calculated in Sec. III are then obtained via

c c! Ty \?
c—f = C—V = (T—) . 1)
T 14 K
We present our results in Table IV together with the errors
compared to the exact values are given by Egs. (29) and (26),
respectively.

We observe that the value for ¢/ obtained by numerically
solving the second-order RG equations is in reasonable agree-
ment with the FL results, i.e., the deviation is less than 20%. In
contrast, when increasing the order of truncation the deviation
increases considerably. Thus higher-order corrections do not
improve the results for ¢/.. In contrast, for the ratio ¢, /c} we
do not observe such a drastic dependence on the truncation.
This is similar to the susceptibility discussed above, where
the ratio aj, /a; also depends only weakly on the order of
truncation.

The deviations can presumably be attributed to the fact
that the FL coefficients are obtained in the RTRG treatment
by expanding in J(0) which takes the values J(0) =~ 0.37

TABLE IV. Values of the FL coefficients ¢ and ¢}, /¢’ extracted
from the numerically obtained RTRG results in second and third
order. The exact values are given by Eqgs. (29) and (26); the relative
errors are stated in brackets.

Model Method cr cy/cr

S=1/2 FL theory 6.088 0.152
RTRG second 5.02 (18%) 0.28 (84%)
RTRG third 18.04 (196%) 0.18 (18%)

S=1 FL theory 8.794 0.164
RTRG second 7.40 (16%) 0.18 (10%)
RTRG third 31.77 (261%) 0.13 (21%)
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and J(0)~ 0.23 for S =1/2 and S = 1, respectively [see
Eq. (79)]. For the coefficient ¢ [or the entering Kondo scales,
see Eq. (91)] this expansion seems to be not reliable. Another
aspect may lie in the fact that the RTRG method considers the
RG flow of the effective quantities in the model (1), i.e., the
form, structure, and symmetries of the Hamiltonian at low and
high energies are the same. In contrast, as shown in Sec. III A
(see also Refs. [65,60]) the effective Hamiltonian describing
the FL fixed point has a completely different structure.

Furthermore, we note that the ratio ¢, /c; can also be
derived analytically within the RTRG formalism. For the spin-
1/2 model this was done in Ref. [42] with the result ¢}, /c} =
3/(27?) in prefect agreement with Eq. (26). Following the
same steps in the spin-1 case we obtain the same result, i.e., the
RTRG method does not capture the nontrivial spin dependence
of the FL coefficients.

Finally, we add that the weak-coupling solution J ~ J ~
1/ In(max{T,V}/Tx) together with Eq. (77) directly results in
the perturbative result [26,72] for the differential conductance,
G ~1/In*(T/Tg) and G ~ 1/In*(V/Tx) for T > Tx and
V > Tk, respectively.

VIII. CONCLUSION AND DISCUSSION

In this article we have studied the transport properties of
fully screened Kondo quantum dots where the number of
screening channels equals twice the spin on the dot. In the
first part we employed FL theory to calculate the conductance
at low temperatures and small bias voltages. In particular,
we derived the FL coefficient for the voltage dependence of
the conductance for models with arbitrary spin and found a
nontrivial spin dependence of the ratio ¢}, /c7, see Eq. (26).
We also determined the low-temperature behavior of the static
susceptibility from the Bethe ansatz solution for the dot
magnetization with the main result given by Eq. (38).

In the second part we generalized the recently devel-
oped [42] E-flow scheme of the RTRG technique to study
correlation functions and performed a two-loop analysis of
the fully screened spin-1/2 and spin-1 Kondo models. In
particular, this method allows us to study the crossover from
strong to weak coupling also in the nonequilibrium setup with
a finite bias voltage. The starting point of the method in terms
of an expansion in the renormalized exchange coupling offers
an internal consistency check when comparing observables
in different orders of truncation of this expansion. In the
following we will briefly recall our main results and then turn
to the comparison with other methods.

We calculated the static spin susceptibility for both models
and found that thermal fluctuations lead to a more pronounced
suppression of the susceptibility than a finite bias voltage,
ie., x(T) < x(V) (see Fig. 5). We studied the behavior
at low temperatures or small voltages and extracted the
corresponding coefficients af. and aj,, see Table II. For the
dynamical spin-spin correlation functions we found good
agreement with previous results obtained using the flow-
equation method [85,86].

In addition, we analyzed the temperature and voltage
dependence of the linear and differential conductance. We
observed that G(T) < G(V) provided T and V are rescaled
against the same energy scale (see Fig. 8). We used the
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susceptibility and conductance to define various Kondo scales
and discussed their relations; the results are summarized in
Table III. We also extracted the FL coefficients ¢} and c),
and compared them to the known results from FL theory (see
Table IV).

Now let us turn to a summary of comparisons with other
methods: (i) The E-flow scheme of the RTRG method by
construction correctly reproduces all perturbative results for
high temperatures or large bias voltages. The failure to obtain
the leading logarithmic corrections to the static susceptibility
originates in the third-order truncation used here and can be
cured by incorporating higher orders. The same is true for
the fluctuation-dissipation theorem. (ii) The RTRG method
reproduces the quadratic behavior of the susceptibility and
conductance for small temperatures or voltages. (iii) For the
spin-1/2 model one can analytically derive [42] the correct
ratio of the FL coefficients ¢}, /c = 3/(27?) in all orders
of the truncation. (iv) As shown in Fig. 9, the temperature
dependence of the linear conductance agrees well with
numerical RG calculations.

However, there are some points which our RG treatment
was not able to capture. (a) The ratios of the observable
Kondo scales like T / Ty cannot be determined reliably. In fact,
they strongly depend on the truncation of the RG procedure.
(b) Similarly, there is a strong dependence on the truncation
for the of FL coefficients a}. and c.. (c) The nontrivial spin
dependence of the ratio ¢}, /¢’ is not captured.

To put this into perspective we recall that the starting
point of the RG procedure is a perturbative expansion in the
renormalized exchange coupling. In the low-energy regime
this is, however, not particularly small, i.e., J (0) ~ 0.37 and
J(0)~ 0.23 for S = 1/2 and S = 1, respectively. In light of
this it is even somewhat surprising that the RTRG method
correctly reproduces nontrivial aspects of the FL behavior like
point (iii) above. With the perturbative starting point in mind
one may hope that going beyond the third-order truncation
will improve points (a) and (b). This would, however, require
much more involved calculations.

In this context we stress that the truncation of the RG
equations also offers an internal consistency check when
comparing the results of different orders of truncation. Using
this check we conclude that the absolute values of the FL
coefficients a;. and ¢/ in the low-temperature regime are not
reliable, as are the ratios of the Kondo scales like 7% /T¢*. On
the other hand there are several quantities that do not show a
strong dependence on the truncation order: (i) The linear and
differential conductance as shown in the inset of Fig. 8. (ii) The
qualitative results x(7) < x(V) and G(T) < G(V) provided
T and V are rescaled against the same energy scale. (iii) The
ratios ay, /a; and ci, /c7. We would thus expect these results
to be reliable. For example, for the voltage dependence of the
susceptibility at small voltages, x(V)/xo = 1 —ay (eV/ To)?,
we estimate the coefficients to be aj, ~ 0.7 for S = 1/2 and
ay, ~ 1.1 for § = 1, respectively.

An important aspect may also lie in the fact that the RTRG
method considers the RG flow of the effective quantities in
the model (1), i.e., the form, structure, and symmetries of the
Hamiltonian at low and high energies are the same. In contrast,
the effective Hamiltonian describing the FL fixed point has a
completely different structure, which cannot be represented by
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the Kondo model (1). Thus correctly connecting the high- and
low-energy regimes within the RTRG framework seems quite
intricate. One has to keep in mind, however, that currently there
is no method available that masters this task in the presence
of a bias voltage. From the equilibrium situation it is known
that ultimately nonperturbative methods like numerical RG or
Bethe ansatz are required. A generalization of these methods
to the full nonequilibrium setup is still an open challenge,
although there have been recent advances in the scattering
state numerical RG [97-100] and attempts to apply [101-104]
the Bethe ansatz method in the presence of a finite bias voltage.
To conclude, we have analyzed the nonequlibrium trans-
port properties of fully screened Kondo quantum dots. We
employed FL theory to treat the low-energy regime as
well as the E-flow scheme of the RTRG method to study
the crossover from strong to weak coupling. Given the pertur-
bative starting point of the latter approach the applicability
in the strong-coupling regime is not guaranteed a priori
and therefore should always be checked against alternative
methods. On the other hand, in the weak-coupling regime the
RTRG method allows a systematic analysis of a wide range of
observables in Kondo quantum dots like the nonequilibrium
transport properties [26,28,72,82], the dynamical correlation
functions [73,79], and the relaxation dynamics [88]. Further-
more, it is possible to treat other problems like the transport
properties, relaxation dynamics, and adiabatic response of
the interacting resonant level model [105-107] and the time
evolution in the ohmic spin-boson model [108—111].
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APPENDIX A: ALTERNATIVE EXPRESSION
FOR THE CURRENT

We discuss an expression for the current, alternative to
Eq. (2), that is more adapted to the FL approach. In addition,
we prefer to work in a symmetric-antisymmetric basis, instead
of the left/right basis, to take advantage of the symmetric setup.

The operators a;ry = (Cirko — CiRko)/ V2 are odd combi-
nations of the original left and right electrons for the channel i
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and spin o, and they are decoupled from the dot variables
from the outset. The operators b;;, derive from the even
combination b, = (Cizxo + Cirko)/~/2, With an additional
phase shift 6o = 7 /2, namely (omitting i and o indices for
clarity)

2i8
b(x) = Zeikxl;k = {e b(x) x>0 A
k

b(x) x<0’

where the Fourier expansion b(x) =), e**p, defines the
operators b;;,. The screening of the dot spin implies that the
field h(x) becomes discontinuous at x = 0 at low energies
while b(x) is a continuous field even at x = 0. Note that the
x axis is obtained by unfolding the outgoing part of wave
functions into the half-space of positive x, while negative x
correspond to incoming states.

We introduce a general expression for the current operator,

N 1
)= 52 D WL 03 ¥ie () = B9, Wie (). (A2)

where y is the position on a one-dimensional line where y < 0
is the left lead, y > O is the right lead and the dot is placed
at y = 0. Hence, for y < 0, I, = f(y) and [ = f(—y). The
field operator ;,(y) can be related to the operators c¢;r/rio»
for example, for y < O,

Yie(y) = Z(ei(kFJrk)y — e Ry
k

(A3)

ensuring that electrons are fully backscattered in the lead when
the coupling to the dot is absent. The y and x axes physically
differ, as the y one-dimensional line runs across the dot while
the x line is reflected at the dot. The expression Eq. (14) for the
current operator is obtained by expanding the field operator ¥
in Eq. (A2) onto the relevant fields @ and b and by taking the
symmetrized combination of the left current at y < 0 with the
right current at —y.

In contrast to the fields b;y,, the fields b;, are free at the
Kondo fixed point. Their populations are fixed by the left and
right chemical potentials, namely

4 8 ’
(biby) = %m(eu + fr(e0)], (Ada)

S 1
(ajay) = %m(ek) + fr(e0)], (A4b)

t f Sk
(apbr) = (bray) = T[fL(gk) — fr(er)], (Adc)

frr(e) = f(e — pmr/r), (A4d)

where f(¢) is the Fermi function.

APPENDIX B: WILSON RATIO AT FINITE
MAGNETIC FIELD

In this Appendix we show that the Wilson ratio (35) is
independent of the applied magnetic field H. We start with
the spin-1/2 case. The arguments that follow are based on
a simple observation: the ground state of the Kondo model
is a FL for all values of the magnetic field. In particular, a
FL description requires 7,V « Tg but in no way B < Tk.
A straightforward consequence is that the Korringa-Shiba
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formula, which indicates that energy dissipation is caused
by elementary FL particle-hole excitations, holds at arbitrary
magnetic field. This prediction has been confirmed by numer-
ical RG calculations [113].

Using a FL description, we can write the phase shift for
bulk electrons as (6 = 1/},6 = |/1)

8o(8.n5) = 80 + 1 (6 — £5) — P10 Y _[n5(6) —nos(eN)],

(B

where n¢ () = O(e; — ¢) are the zero-temperature Fermi
distributions for spin &. &, denotes the Fermi energy for the
spin species o, i.e., at finite magnetic field ¢, = er + o B/2.
The zero-energy phase shifts 80 are related to the spin-
dependent occupations on the dot through the Friedel sum rule,
80 = m(dld,).InEq. (B1), the phase shift of an incoming bulk
electron depends on its energy ¢ and on the energy distribution
ns (&) of the bulk electrons with opposite spin. The expansion
Eq. (B1) defines a priori four parameters, «; , and ¢ . These
parameters, and the reference phase shifts 82, change with the
Fermi energies ¢, or, more precisely (and this is the key to
the FL invariance), they depend only on the energy difference
&4+ — &, which in our case is the magnetic field B.

Therefore, the ground state of the model is unchanged upon
adding electrons in a narrow slice of energies between &, and
&s + ¢ (with infinitesimal é¢) for both spin species. This
invariance reads in Eq. (B1) as follows:

85 (85 + 8e,nk)
=060 =80 + a1.088 — p1o »_[nL(e) — nos(e)]. (B2)

&

where n é(a/) = O(e5 + §¢ — ¢). Performing the energy sum-
mation in Eq. (B2), one finds the identities «; , = ¢, for
o = 1/]. A third identity is obtained by noting that changing
the magnetic field B redistributes electrons from spin-down
to spin-up but does not change [114] the sum of phase
shifts taken at the Fermi energies &,, hence a4 + ¢4 =
ai,, + ¢1,,. From these three relations, we conclude that the
four coefficients are in fact equal,

ajp =¢1y =0ai,, =1, (B3)

and the low-energy model can be parametrized by a single
coupling constant o1 (B) which depends on the magnetic field.

Equipped with our low-energy FL model, we compute the
impurity specific heat,

nT 2nT
Ci(B) = T[a”(B) +o (B)] = Ton(B), (B4)

and the spin susceptibility,
arp + @1y tay + o1y _ ao1(B)

(B _B_M(B)_
Xi )_83 =

4 b4
(B5)
Hence, using Eq. (B3), we have
! Ci(B) = 2i2Xi(B)v (B6)
T 3

and the Wilson ratio is found to be independent of the magnetic
field. The same arguments can be reproduced for arbitrary §
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with the same conclusion that the Wilson ratio is the same for
all magnetic field. One finds, in particular,

2N T 4a1(B)
Ci(B) = ai(B), xi(B)= S(§+ 1. (B7)
3 3
With 25 = N, one obtains the generalized expression
Lem=2N m=2"ym® @
T T ass M T vk

and, hence, the Wilson ratio (35).

APPENDIX C: PARAMETRIZATION IN
LIOUVILLE SPACE

1. Spin-1/2
In the spin-1/2 model a convenient basis in Liouville space
was given in Refs. [26,73]. It consists of two scalar superoper-
ators_.L“ and L? as well as three vector superoperators, LY, L2,
and L3. In the absence of a magnetic field, conservation laws

then yield a convenient parametrization for the Liouvillian,
current kernel, and vertices as

L(E)=—iT(E)L*, (ChH
Gia(E) = —Jn(E)L? & +iZKn(B)L* -5, (CD)
SLE) =i T (E)L, (C3)

1 =S
IL(E) = —leLz(E)Ll .o, (C4)
where the vertices are given for n; = —ny =+. The
vertices for ny = —n, = — are obtained via the rela-
tions Jio(E) = —Jn(—E*)*, Kip(E) = —Kn(—E**, and
IL(E) = —I5(—E*)*. Furthermore, we assume symmetric

couplings to the leads, i.e., for V = 0 we can drop the lead
indices from the vertices and parametrize Jj>(E) = J(E) and
so on. For the correlation kernels we use [73]

SH(E,Q) =By +TH(E,QL, (C5)
2, (E,Q) =B_+ T (E,Q)L*, (C6)
with By = i(L'* + L%*) and B_ = —2iL*. We note that a

term proportional to L% occurs in both kernels, but, due to the
trace to be taken in Eq. (49) together with o4y = py | = 1/2,it
does not contribute to the correlation functions. Furthermore,
we neglect [(E,Q) throughout this work since it is only
generated in higher orders.

2. Spin-1

For spin-1 a significantly larger algebra of superoperators
is required [72]. It consists of three scalar superoperators L*,

L', and LY and six vector superoperators K/, j = 1,...,6,
which are defined by

L =114+ 1@+ LY (C7)

L'=1- L% L™ - YL+ L% (C8)

LY= 11+ 1LY L- 4+ LI L), (C9)
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where s denotes singlet, ¢ denotes triplet, and g denotes
quintet. Here L*A = SA and L~A = —AS for an arbitrary
operator A and S is the spin operator on the dot. The six vector
superoperators are given by

K'=Lt+ L +ilt xL*, (C10)
KX=Lt4+ L —ilt xL*, (C11)
K¥=L+t+—L 420t — (Lt xLT)x L, (Cl12)
KY=Lt—L —2L* 4+ Lt x (Lt~ x L*7), (CI3)
KS=Lt—L +L" + %(Z’L_ x Lt7) x Lt
— L (LT x L), (Cl14)
O N T T
- %Z*’ x (LY~ x L), (C15)
where L+~ = iL* x L. The scalars and vectors fulfill the
symmetries
TrL) =0 for j=t,q, TrK/ =0 for j#4,
(C16)

where the trace is taken over the dot space.

Applying the algebra we find that the RG equations for
the differential conductance and the correlation functions
decouple into triplet and quintet sector. Up to the third order in
the interaction vertex both depend solely on the triplet sector
spanned by L', K2, and K3, while mixtures between the two
sectors are generated only in higher orders, which we do not
consider in this work. Therefore it is sufficient to consider

L(E)=—iT(E)L', (C17)

Gi(E) = %JIZ(E)I?Z G+ i%l(lz(E)I?3 G, (C18)
Y (E)=iTL(E)L*, (C19)

15(E) = —%IILZ(E)I?“ .G, (C20)

THE,Q) =By +THE,QK, (C21)
Y,(E,Q) =B+ %r*(E,sz)Kk, (C22)

where By = L(K¥ + K*)+ L(K*+ K%) and B_ =

=3

%(K 12 4 K?%). Similarly to L** above, here terms proportional
to K% do not contribute to the correlation functions. We note
that in order to keep the notation between the spin-1/2 and
spin-1 case as consistent as possible we have used the same

notations as in Egs. (C1)—(C6).

APPENDIX D: CORRELATION INTEGRAL

In this Appendix we further analyze the integrals (68)—(72).
The Fermi functionis given by f(w) = f“(w) + 1/2 where the
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asymmetric part reads

foy=-TY

neZ

1

—
w — iwy,

(D)

withw, = 27T (n 4 1/2) denoting the Matusbara frequencies.
Furthermore, we will use the polygamma function

[ee]

1
V@ == . (D2)

n=0

1. Rewriting integrals

We first show that

Iy SV ivTes)

+ @- . (D3)

With f%w)f'(@) = f'(w)f%w') we obtain for the first
diagram on the right-hand side by integrating by parts twice

// d / _7:34(E,a))fa(a))f/(a)/)
wdw -
(0 + o'+ xi2)(@+ o'+ X12)

d
= f/ da)da)’|:f’(a))}"34(E,a)) + f“(w)%f34(E,w):|
féa)
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Now the second diagram exactly cancels the last term in
Eq. (D4),
[ AL [ gy Tt
®+ "+ X34 (0 + " + x34)?
d
= ——Fu(E,w)
dw

such that Eq. (D3) and thus Eq. (64) follow.

2. Integrals in the static case

For E — E we recover the integrals obtained for the
Liouvillian

FY(E,E) = Z,FY, (D5)
Fl(g,)34(E’E) = ZlZF1(§?34' (D6)

3. Integrals at zero temperature

‘We obtain in the zero-temperature limit

Z0nZ
IR (D7)

Fi$(E,E) = =
X12 — X12 X12

Fiy5y(E,E) oc Fsa(E,0) = 0. (D8)

4. Integrals at finite temperature

Introducing the notations y = x;»/(2niT) and y =

X —. (D4) Xx34/(2miT) we obtain after a straightforward calculation,
(@ + o + x)w+ o' + X12)
J
@ o £ VAYYALS _ / -
Fi, (E,E) = W[W(Mz +D=-vu+D+yy izt D)=y’ (i + DI, (D9)
12— X1
_ Z12Z34Z12 1 o d _ 1

FY.(EE)=— [k 1) — ¥k 1 k 1 — -)|. @10
1234(E.E) S e — ; Wk P+ D =kt + )1[1&( +yau+1) w<y34+ 2)} (D10)

We note that the sum in Eq. (D10) is convergent. We evaluate the first ko terms explicitly and approximate the remaining sum by

an integral

o0

= dk

1
~ —|:1p<ko+3712+ 5) —¢<ko+3/12+ %)][1/f<ko+)/34+ %) - 1#()@4—1— %)]

The value of kg is determined such that the introduced error €
is sufficiently small. At V = 0 it can be roughly estimated to
be

’

1
k0+)/+§

1
%+7+—”

€ ~ —, a=min
2

a?

APPENDIX E: PERTURBATION THEORY FOR THE
CORRELATION KERNEL

In order to fix the initial conditions for the RG flow
at high energies we evaluate the perturbative series for the

d 1
S LWk P+ D) = ki + 1)1[w<k +yat ) - w(m + —)}

2

(D11)

(

correlation kernel at T =V = Q = 0. To leading order the
relevant diagram is given by

o =)+ ek voen @

The bare interaction vertex for the Kondo model is given by
App'(0) _ 17O7p >
Gl = 08pp 5y L’ - Ooor, (E2)

where p, p’ are the Keldysh indices. The reservoir contraction
can be split into symmetric y° and antisymmetric parts y“
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with respect to the Fermi function where y = py*® + y¢ with
y* (@) = 1N(w), y*(®) = —1 N(w)sgn(w), and the density of
states N (w). Inserting the contractions yields

23(E,0) — By

I o 0 vive
_ _G( ),B G?,Iz( ) 171
2T WEERTT (B @y +i0)2

— G9B.GO / f dode VY @) + v @)y (@)
e By + o+ o +i0)
2y (@)y (o)
By + o+ o +i0)?
(E3)

+60B.GO) / / dwda

A0 2,pp(0 (0 2 pp(0
where G\ = >, G and G = >, pG”© Only the
second part will contribute to I'"(E,0). Thus for large
bandwidth D the integral involving one symmetric and one

PHYSICAL REVIEW B 89, 165411 (2014)

antisymmetric contraction is given by (z = E + i0)

 p@)p(@)sgn(@) 1

For § = 1/2 the bare vertices are explicitly given by
A(0) O 72 ~(0) 1 70) 71 73
Gll’ = _Jaa’Laa/’ Gll’ = EJaa/ (Latr/ + Loa’)’

thus we obtain in leading order in the exchange coupling

r-OE,0 = Z 7050 (ES)

2 ao’Va'a”
Similarly, for S = 1, we obtain using
A0 170 p1 o2
Gll’ - ZJaa’(Kaa’ + Ko‘a’)’
~0) 170 (23 o4 1 7O (p5 o6
Gy = ¢y (Ko + K3 o) + 5000 (K)o + K2S,)

the result (N = 2)

4
=O(E.0) = SN IO UL, (E6)

oo’ Va'a”
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