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Dynamic phase diagram of dc-pumped magnon condensates
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We study the effects of nonlinear dynamics and damping by phonons on a system of interacting electronically
pumped magnons in a ferromagnet. The nonlinear effects are crucial for constructing the dynamic phase diagram,
which describes how “swasing” and Bose-Einstein condensation emerge out of the quasiequilibrated thermal
cloud of magnons. We analyze the system in the presence of magnon damping and interactions, demonstrating
the continuous onset of stable condensates as well as hysteretic transitions.
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I. INTRODUCTION

Elementary excitations of uniform ferromagnets (magnons)
are bosonic in nature, thus exhibiting properties similar in
character to those of cold atoms, photons, and excitons. Each
of these systems can undergo a bosonic condensation wherein
the lowest-energy mode displays a macroscopic occupation.
The condensate, thereafter, manifests a macroscopic phase,
spontaneously breaking U(1) gauge symmetry. Magnons have
been expected [1] and observed [2] to undergo condensation
under microwave pumping. Their condensate phase has a
transparent physical interpretation as the precessional angle
of collective magnetic dynamics.

In Ref. [3], magnon condensates are proposed to be realized
through dc electronic pumping. To this end, a ferromagnetic
insulator, e.g., yttrium iron garnet (YIG), is directly attached to
a conducting normal metal. Spin pumping by the precessing
magnet (or spin waves), governed by a sizable spin-mixing
conductance across the interface, results in a loss of magnons
and the corresponding creation of particle-hole excitations in
the normal metal. This magnetic bleeding may be overcome ei-
ther by increasing the current in the normal metal, which trans-
ports angular momentum into the ferromagnet by the spin Hall
effect [4] or by utilizing a temperature gradient across the inter-
face, thus actuating the spin Seebeck effect [5]. Under a critical
spin Hall and/or Seebeck biases, an excess of incoherently
pumped magnons can precipitate a spontaneous condensation.

In this paper, we build upon the proposal in Ref. [3]
by making two important advancements. First, we include
nonlinear effects associated with magnon-magnon interactions
in the presence of finite-angle collective precession. Nonlinear
effects can play an important role in stabilizing coherent
dynamics under large spin Hall/Seebeck biases, as well as
accounting for the interaction of the condensate with the
thermal magnon cloud. Second, we include Gilbert damping
due to magnon-lattice coupling and allow for an additional
energy-sink channel by attaching a poor spin-sink normal
metal on the other side of the ferromagnet. See Fig. 1 for a
schematic of our setup. The role of this second normal metal in
our model is to (i) anchor the adjacent lattice temperature and
(ii) provide a reservoir that dissipates excess energy injected
along with magnons from the first normal metal, which helps
in fomenting condensation.

The paper is organized as follows. In Sec. II, we start
by constructing the nonlinear dynamics of the condensate
(A) and incoherent dynamics of the cloud (B), including its
interaction with the condensate. In Sec. III, we derive rate
equations for spin and energy transfer into the normal metal N
and the phonon bath. In Sec. IV, the dynamic phase diagram
of the pumped magnetic system is constructed, focusing on
two special limits: (A) the fixed magnon temperature regime,
which is controlled by spin flows between different subsystems
(of magnons, electrons, and phonons), and (B) the floating
magnon temperature regime, in which the steady state is
determined by self-consistent flows of both spin and energy.
In both cases, we find regions of stable condensate with
second-order as well as first-order hysteretic transitions out
of the normal phase. Finally, Sec. V summarizes our findings
and offers an outlook.

II. MAGNETIC DYNAMICS

A. Condensate dynamics

We start by considering dynamics at absolute zero tem-
perature, assuming only the lowest mode is excited. For
simplicity, we neglect magnetostatic effects, such that the
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FIG. 1. (Color online) Schematic of the proposed heterostruc-
ture. On the top, the normal metal N, with electron temperature
T ′, provides spin torque through spin accumulation μ′ = μ′z at the
interface with the ferromagnet (F). The F is assumed to be sufficiently
thin such that its magnon temperature T is uniform throughout.
Collective spin density s in the F precesses with frequency ω, which
is controlled by the applied field H, both pointing in the z direction.
Electron-magnon interaction at the N|F interface is parametrized by
the spin-mixing conductance g↑↓. The normal metal Ñ is a poor
spin sink, which can, nevertheless, drain energy from magnons and
phonons in the ferromagnet.
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lowest-frequency excitation is given by homogeneous (mon-
odomain) magnetic precession. Supposing, furthermore, cylin-
drical symmetry about the z axis, the effective monodomain
Hamiltonian can be phenomenologically expanded as

H = HSz + KS2
z

2S
, (1)

where S is the total (macro)spin of the ferromagnet (in units
of �), Sz is its z-axis projection, H is the applied field in the
z direction (upon absorbing the gyromagnetic ratio), and K is
the axial anisotropy (with K > 0 corresponding to an easy xy

plane). We suppose that H > K , such that spin is oriented in
the −z direction in the ground state.

The spin algebra, [Si,Sj ] = iεijkSk , can be conveniently
recast in terms of the Holstein-Primakoff bosons [6]:

S+ = a†
√

2S − a†a , Sz = a†a − S , (2)

where S+ ≡ Sx + iSy , S is the total spin, and a is a
time-dependent ground-state magnon operator satisfying the
commutation relation [a,a†] = 1. The Hamiltonian in Eq.
(1) is thus rewritten in terms of free-boson and interacting
contributions (dropping a constant offset):

H = (H − K)a†a + K(a†a)2

2S
. (3)

A classical precession for large spin S corresponds to a coher-
ent state for boson a: |α〉 = eαa†−α∗a|0〉, such that a|α〉 = α|α〉,
where |0〉 is the ground state with Sz = −S. The quantum-to-
classical correspondence is provided by α∗√2S − |α|2 ↔ S+,
where the phase of α = |α|e−iφ corresponds to the azimuthal
angle of spin S in the xy plane: φ = tan−1(Sx/Sy). For
small-angle precession, |α|2 	 S:

S+ ≈ α∗√2S =
√

2SNeiφ , (4)

where N = |α|2 = Sz + S.
In the Heisenberg picture,

i�∂ta = −[H,a] = ∂a†H

= (H − K)a + K{a†a,a}
2S

→ �ωa, (5)

where �ω = H − K + K(N − 1/2)/S, when acting on the
magnon number, N ≡ a†a, eigenstate |N〉, and {,} stands for
the anticommutator. (This �ω corresponds to the energy for
adding a magnon to the state |N − 1〉.) In the classical limit,
S 
 1, this gives the familiar Larmor precession frequency:

�ω ≡ �φ̇ = ∂NH = H + KSz

S
. (6)

Indeed, the variables �Sz and φ are canonically conju-
gate: �φ̇ = ∂Sz

H, �Ṡz = −∂φH. Viewing this as a special
(cylindrically symmetric) instance of the Landau-Lifshitz
equation [7], we can easily extend the Hamiltonian (1)
to include more general magnetic interactions. A common
phenomenology for dissipation, furthermore, is provided by
the Gilbert damping [7], which endows frequency (6) with an
imaginary component, ω → ω(1 − iα), where α is a material-
dependent constant. The corresponding magnon-number re-

laxation rate, τ−1 = 2αω, is proportional to the precession
frequency.

B. Thermal cloud

At a finite temperature T , the thermally excited magnons
also contribute to the total spin angular momentum. For large
bulk samples of volume V , it is now natural to switch from
the total spin S to the spin density s = δS/δV . Extending
Eq. (4) to this case, while assuming that T 	 Tc, the Curie
temperature, (such that we limit our attention to small-angle
magnetic dynamics), this spin density can be written [relative
to the saturated value −sz at T = 0, where s = S/V ]:

s ≈ (
√

2s�ψ,
√

2s�ψ,n). (7)

Here, n = nc + nx , in terms of the condensate magnon density
nc (i.e., density of magnons occupying the lowest mode)
and the thermal cloud density nx (which is composed of
the magnon states excited above the lowest-energy mode);
ψ ≡ √

nce
iφ plays the role of the condensate order parameter,

with φ being the xy-plane azimuthal angle of the coherent spin
precession. Note that only the magnon condensate component
contributes to the xy spin-density projections.

The intrinsic dynamics of magnons with wave number q,
by extension of Eq. (6), is given by

�ωq = H − K

(
1 − nc

s

)
+ Aq2 = �
 + K

nc

s
+ Aq2 ,

(8)
where A is the ferromagnetic exchange stiffness (in appro-
priate units) and 
 ≡ (H − K)/� > 0 is the (monodomain)
ferromagnetic-resonance frequency. Here, for simplicity, we
are retaining only the nonlinear term stemming from the
anisotropy term KS2

z /2S in the Hamiltonian [8], which would
arise from, e.g., the global shape anisotropy [9]. This is justified
so long as the key nonlinearity stems from the feedback of the
condensate nc on the frequency of the magnon modes [10].
Gilbert damping still gives τ−1

q = 2αωq for the q-dependent
relaxation rate.

III. TRANSPORT RATE EQUATIONS

The rate equation for the magnon-number density, ṅ =
ṅc + ṅx , is governed by the Landau-Lifshitz-Gilbert (LLG)
dynamics of the condensed and thermal magnons, including
their interactions, damping of spin and energy to the lattice,
and spin and energy transport between the ferromagnet
and the normal-metal reservoirs that are governed by the
electron-magnon scattering. The zero-temperature condensate
dynamics is described by the classical LLG equation of motion
(extended to include spin-transfer torques) for the unit-vector
collective spin direction n:

(1 + αn×)�ṅ + n × Heff = (�α′ + �α′n×)(μ′ × n − �ṅ),

(9)

where Heff ≡ ∂SH = (H + Kn · z)z is the effective field,
μ′ = μ′z is the vectorial spin accumulation in N,

α′ = �α′ + i�α′ ≡ g↑↓

4πsd
, (10)

094409-2



DYNAMIC PHASE DIAGRAM OF DC-PUMPED MAGNON . . . PHYSICAL REVIEW B 90, 094409 (2014)

in terms of the complex-valued spin-mixing conductance g↑↓
(in units of e2/h, and per unit area) of the F|N interface and the
F layer thickness d. The left-hand side of Eq. (9) is the standard
LLG equation [7], while the right-hand side consists of the
static spin-transfer torques [11,12] ∝μ′ and spin-pumping
torques [13,14] ∝ṅ (which are Onsager reciprocal [15]). We
are assuming the spin transport is blocked across the F|Ñ
interface.

Rewriting Eq. (9) in spherical coordinates, in terms of the
condensate density nc,

n = (n⊥ cos φ,n⊥ sin φ,nc/s − 1) , (11)

where n⊥ =
√

2nc/s − (nc/s)2, we have

(1 + �α′)�ṅc = −[(α + �α′)�φ̇ − �α′μ′]
(
2nc − n2

c/s
)
,

(1 + �α′)�φ̇ = �ω + �α′μ′ + (α + �α′)
�ṅc

2nc − n2
c/s

.

(12)
Here, ω ≡ ω0 is given by Eq. (8), with q = 0. These
equations generalize the Hamilton’s equations of motion for
the canonically conjugate pair of variables (nc,φ) to in-
clude dissipation (magnon-lattice coupling) and spin-transfer
torques/spin-pumping (magnon-electron coupling). Assuming
that α,|α′| 	 1, which is nearly always the case in practice,
equations (12) give for the condensate rate equation,

�ṅc = ic + i ′c , (13)

where

ic + i ′c = −2[(α + �α′)�ω − �α′μ′]nc(1 − nc/2s) (14)

captures the effects of Gilbert damping and spin-transfer
torque. [Here, we combined the expressions for ṅc and φ̇ in
Eq. (12) and dropped the terms that are quadratic in α and
α′.] Since �α′ is eliminated by this substitution, hereafter, α′
stands for �α′ only.

According to Eq. (14), the condensate rate of change (13)
is scaled by the geometrical factor 1 − nc/2s, which can
be divided out and, if nc 	 s, disregarded. When in the
following we complement the magnon rate equation with
thermal contributions, this factor could be absorbed by an
appropriate rescaling of the thermal terms, which would lead
to small cross terms between the quantities associated with the
condensate and the thermal cloud. The Gilbert-damping and
spin-transfer contributions to the zero-temperature condensate
rate equation are then respectively given by

ic = −2α�ωnc , (15)

i ′c = −2�α′(�ω − μ′)nc. (16)

Equation (16) was derived in Ref. [3] in a perturbative treat-
ment of the electron-magnon scattering, which is consistent
with neglecting terms that are quadratic in α’s.

At finite temperatures,

�ṅc = (ic + i ′c) + ixc , (17)

where ixc is the rate of spin transfer from the thermal
cloud to condensate. The thermally-excited magnons also
obey generalized LLG/spin-torque relations, which we derive

below. In order to simplify the following discussion, we will
limit our attention to the situations when spin-preserving
magnon-magnon exchange interactions are fast enough that
magnons form a Bose-Einstein distribution with an effective
temperature T = (kBβ)−1 and chemical potential μ [16]. The
total thermal-cloud density is then given by

nx =
∫ ∞

0
dεD(ε)nBE[β(ε − μ∗)] , (18)

where μ∗ ≡ μ − �ω � 0 is the magnon chemical potential
relative to the band edge (set at ε = 0), which, on the
absolute scale, is shifted by the condensate frequency �ω,
D(ε) = √

ε/4π2A3/2 is the magnon density of states, and
nBE(x) ≡ (ex − 1)−1. Writing the thermal-cloud rate equation,
�ṅx = ix + i ′x , in terms of the Gilbert damping ix and spin
torque i ′x contributions, we assert for the former:

ix = �

∫ ∞

0
dεD(ε)

nBE[β ′′(ε + �ω)] − nBE[β(ε − μ∗)]

τ (ε)
,

(19)
where β ′′ ≡ (kBT ′′)−1 is the inverse (effective) temperature of
phonons (which are assumed to be responsible for the Gilbert
damping) and �/τ (ε) = 2α(�ω + ε). The spin-torque rate is
given by [3]

i ′x = 4α′
∫ ∞

0
dεD(ε)(ε + �ω − μ′)

×{nBE[β ′(ε + �ω − μ′)] − nBE[β(ε − μ∗)]}, (20)

where β ′ is the inverse normal-metal N electron temperature
[17]. The rate equation for the thermal-cloud is given by

�ṅx = (ix + i ′x) + icx , (21)

where icx is the rate of spin transfer from the condensate to
cloud.

The total spin current i passing through the normal-metal
interface is found by adding Eqs. (17) and (21):

i = �ṅc + �ṅx = (ic + i ′c) + (ix + i ′x), (22)

where we set ixc + icx = 0, assuming magnon-number pre-
serving magnon-magnon interactions (which is rooted in spin
conservation for a cylindrically symmetric magnetic system).
The expression for the net spin current i, using rate equations
for the condensate, Eqs. (15) and (16), and thermal cloud,
Eqs. (19) and (20), forms one of our key results. In order to
find steady states, we will have to solve for i = 0. Subject
to external conditions of pumping, two unknowns thus need
to be established: the effective temperature T and chemical
potential μ of magnons.

In order to evaluate a common temperature and chemical
potential for the magnons, we also need to consider the energy
flow into the system. The total magnon energy density in our
model is given by e = ec + ex , where

ec = �
nc + Kn2
c

2s
(23)

is the condensate energy and

ex =
∫ ∞

0
dε(ε + �ω)D(ε)nBE[β(ε − μ∗)] (24)
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is the thermal-cloud energy. We recall, in particular, that ω ≡
ω0 = 
 + Knc/�s in the above equations is affected by the
presence of the condensate nc. The total energy-transfer rate
from N and the lattice into magnons is thus given by

j = ėc + ėx =
(

ω + K

�s
nx

)
(ic + i ′c) + (jx + j ′

x), (25)

where jx and j ′
x are given by expressions similar to Eqs. (19)

and (20) but with an additional factor of (ω + ε/�) in the
integrands [19].

IV. DYNAMIC PHASE DIAGRAMS

A. Fixed magnon temperature

The magnon temperature in a magnetic film sandwiched by
two metals, as sketched in Fig. 1, can be fixed by the electron
temperatures T ′ and T̃ ′ [for example, T → (T ′ + T̃ ′)/2 in
a mirror-symmetric structure], either through direct magnon-
electron scattering at the interfaces or via magnon-phonon
interaction. Having thus anchored the magnon temperature,
we may disregard the energy current j . In this limit, the spin
current i fully determines the state of the system. Under the
reigning assumption that the magnonic cloud and condensate
maintain internal thermodynamic equilibrium at all times,
the magnet is always either in the normal phase (NP) or
the condensate phase (CP). Then, only one variable is left
free to vary: μ∗ in NP or nc in CP, which is controlled by the
spin current i flowing into the magnetic subsystem.

In a normal phase, the condensate is absent (nc = 0), and
the magnon current goes entirely into the thermal cloud:

�ṅx = i, (26)

where i = ix + i ′x consists only of the normal component, see
Eqs. (19) and (20), which depend on μ∗. We will be treating
the dependence i(μ∗) inside NP numerically.

If the magnons are condensed (i.e., μ∗ = 0) while their
temperature T is fixed, the spin current, Eq. (22), must, via
magnon-magnon interactions, be entirely transformed into the
condensate density:

�ṅc = i. (27)

Even in this simple limit, however, we cannot obtain an
exact analytic solution for nc(t), since the flux i has an
implicit nonlinear dependence on nc [through the dependence
of (ix + i ′x) on ω(nc)]. When nc/s 	 1, which is the limit we
are focusing on throughout, we can expand i in its powers:

i = ıx − σ
nc

s
− ζ

(
nc

s

)2

+ O
(

nc

s

)3

. (28)

Here, ıx ≡ ix + i ′x , after setting μ∗ = 0 and nc = 0 in Eqs. (19)
and (20). According to Eqs. (15) and (16),

σ = 2s(α + α′)�
 − 2sα′μ′ + δσ (29)

and

ζ = 2s(α + α′)K + δζ, (30)

where δσ and δζ are thermal-magnon corrections. Using
Eqs. (19) and (20), the latter are evaluated at kBT 
 �
 to be

δσ

sK
∼ (α + 2α′)

(
T

Tc

)3/2

(31)

and

δζ

sK
∼ −(α + 2α′)

√
T

Tc

K

kBTc

, (32)

up to numerical factors of order unity. Here, kBTc ∼ s2/3A is
the Curie temperature. These corrections are clearly unimpor-
tant, so long as K 	 kBTc (recalling that T 	 Tc throughout),
and will be omitted in the following. We thus conclude, in
particular, that ζ > 0.

1. Swasing

We start by considering the low-temperature limit of a
stiff ferromagnet, where the thermal-current contribution ıx
in Eq. (28) can be disregarded. The condensate dynamics,
�ṅc = i, is then governed by two transport coefficients: σ and
ζ .

The coefficient σ in Eq. (28) represents an effective
damping of the condensate and describes a competition
between, on the one hand, damping by phonons and electrons
(captured by the first term in σ , proportional to 
 > 0,
where α parameterizes Gilbert damping and α′ spin pumping
[13]) and, on the other, spin-transfer torque from the normal-
metal N (captured by the second term in σ , proportional
to spin accumulation μ′). When the former contribution is
larger, σ is positive, and the torque provided by the second
term, Eq. (28), relaxes the condensate spin density (with
the total spin decaying towards the −z axis). Conversely,
upon the application of a sufficiently large and positive spin
accumulation μ′, σ is negative, and the net torque from the
linear in nc term in Eq. (28) drives the condensate spin
towards the +z axis. The quadratic term proportional to ζ in
Eq. (28) describes a nonlinear enhancement of damping, which
ultimately curbs the exponential growth of the condensate
when σ < 0, leading to the fixed point

nc

s
→ |σ |

ζ
= |(1 + α/α′)�
 − μ′|

(1 + α/α′)K
. (33)

In the absence of intrinsic Gilbert damping, i.e., α = 0,
the effective damping σ is proportional to �
 − μ′. This was
first pointed out by Berger [12], who coined the term swaser
(spin-wave amplification by stimulated emission of radiation)
to describe the coherent emission of spin waves, signified
by negative damping, when the pumping μ′ overcomes the
intrinsic threshold associated with the gap �
. This swasing
instability may be understood thermodynamically: because the
condensate carries no entropy, the free-energy change due the
creation of δN magnons and the corresponding annihilation of
the up-electron/down-hole pairs is

δF = (�
 − μ′)δN. (34)

When μ′ < �
, the condensate is damped by the transfer of
angular momentum and energy out of the magnet into N; when
μ′ > �
, however, the absorption of energy by the condensate
becomes entropically beneficial, signaling an instability.
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A finite α in Eq. (29) raises the swasing instability threshold
to

μ′ =
(

1 + α

α′

)
�
, (35)

in analogy to the lasing threshold in a lossy optical cavity. In
particular, when Gilbert damping dominates over spin pump-
ing (which is the case in sufficiently thick magnetic films),
i.e., α 
 α′, we obtain μ′ ≈ (α/α′)�
, which reproduces the
classical Slonczewski’s spin-transfer torque instability [11].

2. Bose-Einstein condensation

We now focus on the finite-temperature steady-state behav-
ior (fixed points), determined by the condition i = 0. Namely,
for a given set of parameters (T , T ′, μ′, . . .), we look for
possible solutions for both NP (defined by the existence of a
real value of μ∗ < 0 for which ix + i ′x = 0) and CP (defined
by the existence of a real, positive value of nc for which i = 0).
While the NP solutions ix + i ′x = 0 are found numerically, the
analytic expansion in Eq. (28) allows for a general CP solution
to i = 0:

n±
c

s
= ±

√
σ 2 + 4ζ ıx − σ

2ζ
, (36)

which is depicted in Fig. 2.
The resultant phase diagram may be divided into four

regions, I–IV, according to the signs of the coefficients σ and
ıx : σ > 0 and ıx < 0 (region I), σ > 0 and ıx > 0 (region II),
σ < 0 and ıx > 0 (region III), and σ < 0 and ıx < 0 (region
IV). In parameter space, regions I and III each share phase
boundaries with regions II and IV. All four regions meet when
σ = 0 and ıx = 0, which appears as a single critical point P in
the phase diagram. We now discuss in some detail the physical
behavior in each of the four regions, with the help of Fig. 3 as
visual guidance.

In region I, neither solution n±
c is real and positive, dictating

that the magnons must settle in NP at some μ∗ < 0 for which
ix = 0, as we find numerically. In region II, n+

c represents
a real-valued, stable solution to the condensate equation of
motion. While the condensate is damped through the second
and third terms in Eq. (28), it is replenished by the thermal
cloud, ıx > 0, which can be driven by thermal gradient

ıx

n−
c n+

c

ṅc

nc

−σ

FIG. 2. (Color online) Graphical representation for obtaining so-
lutions (36) to the equation �ṅc = i with i given by Eq. (28). Here,
σ < 0 and ıx < 0 (corresponding to region IV1, as described in the
text), resulting in two fixed points: unstable at n−

c and stable at n+
x .

FIG. 3. (Color online) Phase diagram for the solutions of
Eqs. (27) and (28) for nc in the abstract (σ,ıx) space. O stands
for the unperturbed (i.e., thermal-equilibrium) point, while P is the
critical point for a driven system. The solid lines, ıx = 0 and ıx =
−σ 2/4ζ , trace out phase transitions between distinct dynamic states:
second-order transition between the NP and BEC (I/II boundary) and
hysteretic first-order transitions at the IV2/IV1 and IV1/III boundaries,
where the normalized condensate density, nc/s, jumps by −σ/2ζ and
−σ/ζ relative to 0, respectively. The condensate associated with these
first-order transitions is interpreted to be “swasing” [12].

T ′ − T . The magnet reaches a steady state, wherein angular
momentum is pumped into the thermal cloud and transferred
to the condensate by magnon-magnon interactions, which in
turn decay by the combination of Gilbert damping and spin
pumping. Numerically, we find no NP solution coexisting with
CP in region II. Note that here limζ→0 n+

c /s = ıx/σ is finite
even in the absence of the nonlinearity ζ .

The boundary between regions I and II is defined by the
condition ıx = 0, corresponding to nc = 0. It thus follows that
nc is continuous at the associated NP/CP phase transition,
given by nc ≡ 0 in region I and nc ∝ ıx in the incipient
region II. Conversely, μ∗ ≡ 0 in region II and decreases
continuously, μ∗ < 0, in region I. We identify this dynamic
second-order phase transition as a Bose-Einstein condensation,
whose order parameter is given by ψ = √

nce
iφ , where φ̇ ≈ ω.

In contrast to swasing, where σ < 0, the condensate decay is
compensated here by the thermal magnon injection, ıx > 0,
which replenishes it.

3. Full phase diagram

Similarly to region II, region III produces a positive,
stable solution n+

c to the condensate equation of motion. In
contrast to region II, however, n+

c /s → |σ |/ζ diverges as
ζ → 0, demonstrating the importance of the nonlinearity ζ

in stemming the condensate growth. In this region, swasing is
supplemented with thermal spin transfer ıx , which increases
n+

c . Because no solution to ix + ix ′ = 0 exists for μ∗ < 0 (in
our numerical calculation), we conclude that only CP is present
in region III.

Region IV may itself be divided further into two subregions:
IV1 and IV2 defined respectively by σ 2 ≷ −4ζ ıx . In subregion
IV1, both n+

c and n−
c are real, but only the former solution is

stable (see Fig. 2). Depending on whether nc ≷ n−
c at t = 0,

the magnetic system flows towards the CP fixed point at n+
c or

the NP, respectively, at t → ∞, indicating CP/NP hysteresis.
In contrast, both n+

c and n−
c are complex in subregion IV2,

094409-5



BENDER, DUINE, BRATAAS, AND TSERKOVNYAK PHYSICAL REVIEW B 90, 094409 (2014)

precluding CP. In all of region IV, therefore, an NP solution
μ∗ < 0 to ix + i ′x = 0 exists, which evolves continuously
within this region. The CP solution existing in subregion IV1,
on the other hand, evolves continuously into a CP swasing
phase in region III. Region IV is opposite to II both in the
reversal of the sign of σ (such that the condensate tends to
swase) and ıx (such that the thermal magnons are pumped out
of the magnet, thus suppressing the condensate). The balancing
act between negative σ and ıx , as depicted in Fig. 2, allows for
a stable condensate in subregion IV2.

We summarize the above discussion in Fig. 3. The boundary
between regions I and II describes a continuous phase
transition between an NP and the Bose-Einstein condensate
(BEC). The boundary between I and IV2 is a crossover
within the NP, while the boundary between II and III is
a crossover between swasing and BEC (both instances of
a CP). Boundaries delineating the hysteretic region IV1

define history-dependent first-order transitions: An NP in IV1

jumps to a finite condensate density nc/s = −σ/ζ > 0 when
entering III, and a CP phase in IV1 jumps from a finite
condensate density nc/s = −σ/2ζ to a normal state with a
finite μ∗ < 0 when entering IV2. All the phase-transition lines
and crossovers emanate from the critical point P .

When drawing the physical phase diagram in terms of
the experimentally controlled parameters (μ′,T ′) (which, in
turn, determine σ and ıx), the essential structure of Fig. 3
is preserved, albeit somewhat distorted, as shown in Fig. 4.

FIG. 4. (Color online) Physical phase diagram in the presence of
anisotropy K = �
 at kBT = kBT ′′ = 102

�
, s(A/�
)3/2 = 104,
and α/α′ = 1 (black curves), calculated using the linearized current
ıx in Eq. (28) [see discussion preceding Eq. (37)]. The white curves
show the idealized α/α′ = 0 case. The analytically evaluated diagram
shown here is essentially indistinguishable from the numerical
diagram (not shown) produced by the exact expression for i in
Eq. (28). The phase-transition lines and crossovers that delineate
different dynamic regimes can be inferred from Fig. 3.

While μ′ corresponds linearly to −σ , according to Eq. (29),
ıx is generally a nonlinear function of T ′ and μ′. Since, for a
fixed μ′, ıx increases with increasing temperature T ′, however,
we can think of −ıx as parametrizing 1/T ′ (keeping T fixed).
This explains why the structure of the physical phase diagram
in Fig. 4 is anticipated by Fig. 3.

Let us now parameterize in detail the phase-transition lines
depicted in Fig. 4. We denote by T ′

1 the phase boundary
corresponding to the ıx = 0 abscissa in Fig. 3 (i.e., the curve
delineating phases II and III) and by T ′

2 the boundary between
regions IV1 and IV2 [strictly above the swasing instability (35),
i.e., μ′/�
 > 1 + α/α′], which emanates out of the critical
point P . When kB(T − T ′), μ′, �
 	 kBT (i.e., the ambient
temperature sets the largest relevant energy scale), the current
ıx may be linearized in kB(T − T ′), μ′, and �
, allowing us
to analytically derive the expressions for T ′

1(μ′) and T ′
2(μ′). In

this regime, the former is linear in μ′ and given by

kB(T − T ′
1) = 2ζ3/2

5ζ5/2

[
μ′ −

(
1 + α

2α′

)
�


]
, (37)

where ζ is the Riemann zeta function. Below the swasing
threshold, condensate forms when T ′ exceeds T ′

1. In the
absence of a temperature bias, T ′ = T , Eq. (37) indicates the
formation of a condensate when μ′ exceeds (1 + α/2α′)�


(denoted in Fig. 4 by C) [17].

P

C

O

dec
rea

sin
g α

decreasing
K

1 2

2

0

−2

k
B

(T
−

T
)

[
Ω

]

μ [ Ω]

30

−1

1

FIG. 5. (Color online) Effects of intrinsic damping α/α′ (starting
at 1 and decreasing to 0 in increments of 0.2) and nonlinearity
K/�
 (going from 1 to 0 in increments of 0.2), while keeping
�
 fixed, on the phase-diagram structure, using Eqs. (37) and (38).
Decreasing Gilbert damping α [which lowers the swasing threshold
(35)] increases the size of the condensate regions, while decreasing
anisotropy K increases the size of the hysteretic region [as is evident
from Eq. (38)].
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The curve T ′
2, in turn, is defined by

kB(T ′
1 − T ′

2) = [μ′ − (1 + α/α′)�
]2

5�5/2ζ5/2(1 + α/α′)
π2sA3/2

K(kBT )3/2
, (38)

where � is the gamma function. The curves T ′
1 and T ′

2,
according to Eqs. (37) and (38) are shown in Fig. 4 as solid
black lines for α/α′ = 1 and solid white lines α/α′ = 0. The
dependence of the transition lines on a gradual change in the
strength of damping α and nonlinearity K is shown in Fig. 5.

B. Floating magnon temperature

In addition to angular momentum, the energy transfer
from the ferromagnet into the adjacent normal metals and
its crystal lattice, in general, also needs to be balanced.
In the previous section, we made a simplifying assumption
that the magnon temperature was pinned by phonons and/or
electrons, which provided a very efficient energy sink. Here
we relax that assumption, which necessitates keeping track
of the total magnon energy on par with the magnon number.
We still, however, suppose that magnon-magnon interactions
are sufficiently strong that the magnons remain internally
thermalized to a Bose-Einstein distribution with a well-defined
effective temperature T and chemical potential μ∗ (relative
to the magnon-band bottom) at all times. We also retain
the assumption that cloud and condensate always remain in
mutual equilibrium, namely, that nc vanishes for μ∗ < 0 (NP)
and nc > 0 requires that μ∗ = 0 (CP). In analogy with the
condensate and normal-phase spin currents discussed above,
we define the condensate and normal-phase energy currents
jc ≡ ω(ic + i ′c) and jx ≡ (jx + j ′

x)|μ∗=0,nc=0, respectively, ac-
cording to Eq. (25), which simplifies the stability analysis of
the CP. We will suppose the phonon temperature T ′′ is fixed
(and controlled by T ′ and T̃ ), while the F|Ñ interface blocks
both spin and energy transport for magnons.

At any time, there now exist two dynamical variables. In
NP, these are μ∗ and T , governed by the implicit, coupled rate
equations �ṅx = ix + i ′x and ėx = jx + j ′

x ; in CP, nc and T ,
governed by Eqs. (22) and (25). In contrast to the expansion of
the magnon current i in nc, Eq. (28), a simple general analytic
expansion of the currents in T in either phase is not possible,
and we must resort to a numerical treatment.

In general, the steady-state temperature T and the chemical
potential μ∗ (or condensate spin density nc) in each phase
are determined from the stable fixed points of the respective
pair of coupled rate equations. The resultant numerical
phase diagram is shown in Fig. 6. The energy accom-
panying angular-momentum transfer into the ferromagnet
creates additional heating (cooling) when T ′ ≷ T ′′ (phonon
temperature), which hinders (facilitates) condensation relative
to the fixed-temperature regime. In particular, condensation
via temperature gradient alone (i.e., μ′ = 0) no longer occurs.
Below the swasing instability (i.e., σ > 0), each steady-state
solution μ∗ = 0 in NP coincides with a solution nc = 0
in CP, indicating the second-order phase transition. Above
the threshold for swasing, on the other hand, hysteretic
regions appear, where, depending on the initial conditions, the
solutions flow toward stable fixed points in NP or CP. These
features are qualitatively similar to those discussed in the case
of a fixed magnon temperature, Sec. IV A.
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FIG. 6. (Color online) Phase diagram with a floating magnon
temperature T and density determined by the conditions i = 0 and
j = 0. Here, α/α′ = 1, K = �
, s(A/�
)3/2 = 104, and kBT ′′ =
102

�
, similarly to the other plots.

In the case of a low-temperature gradient (T ′ ≈ T ′′), the
incipient condensation may be understood by expanding ıx
and jx in kB(T ′′ − T ′), kB(T ′′ − T ), and μ′ (all of which are
assumed to be much smaller than the ambient temperature)
and solving the steady-state equations to obtain analytic
solutions for T and nc. When μ′ � (1 + α/2α′)�
 (denoted
by C in Fig. 6), no condensate solution exists; increasing μ′
beyond this critical point, the condensate density continuously
increases from zero. (Note that the same bias μ′ at C

describes the onset of condensation under zero temperature
bias both in the fixed- and floating-temperature regimes.) As
in the fixed-temperature case, furthermore, when μ′ � (1 +
α/α′)�
, unstable analytic solutions for nc appear, suggesting
the presence of hysteresis when the temperature gradient
is restored; correspondingly, (two) critical points P and P ′
manifest under a sufficient temperature bias at the swasing
instability (35).

The above linearized treatment for the currents ıx and jx ,
however, fails to capture the detailed phase behavior when
T ′ �= T ′′. There, the spin and energy fluxes that are quadratic
in thermal bias are essential for generating the full structure
of the phase boundaries depicted in Fig. 6. In particular, we
see that the condensate is suppressed under large temperature
biases of both signs: when T ′ 	 T ′′, the magnons injected by
the normal metal are relatively cold but there are ultimately
too few of them to precipitate a condensate; when T ′ 
 T ′′,
on the other hand, the magnon injection rate is high but they
are too hot to condense. Only at intermediate thermal biases
do we reach a compromise between the magnon injection rate
and the energy they carry, which allows for a stable condensate
to form.
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V. SUMMARY AND OUTLOOK

We studied the steady-state behavior of an insulating
magnet driven by the combination of a thermal gradient
and spin-transfer torque across its interface with an adjacent
normal metal. Agitated by the interfacial magnon-electron
and bulk magnon-lattice interactions, our theory describes
the emergent nonlinear coherent motion of the condensate
(in a quasiequilibrium with the thermal cloud of magnons),
demonstrating a surprisingly rich dynamic phase diagram.

The stability analysis of the driven coherent motion depends
crucially on the form of the magnetic anisotropy. Our detailed
analysis was specific to an easy-plane magnetic film subjected
to a large out-of-plane magnetic field (such that the magnetic
ground state is nondegenerate). In the case of other geometries
and magnetic anisotropies, the phase diagram can be altered.
Furthermore, in other configurations, where spin-rotational
symmetry is broken in all directions, three-magnon scattering
processes would violate magnon conservation, which is built
into our model. We nevertheless expect the essential nature
of the first- and second-order instabilities predicted in our
model to be generic, although the details would depend on the
specific experimental realization. We emphasize that one of
the key features predicted by our theory is a possibil-
ity of a continuous formation of the condensate in the
presence of a temperature gradient alone, which may be
less sensitive to the particular magnetic orientation than

the more familiar instabilities invoked by a spin-transfer
torque.

The presence of coherently-precessing magnetic phases
may manifest experimentally in a variety of ways. Collective
magnetic modes driven by dc currents may be detected either
by their microwave signatures or differential dc response
(both in the charge and thermal sectors) in the steady state,
similarly to the conventional spin-transfer torque instabilities
[20]. The thermal properties of the magnon condensates, in
particular, may differ dramatically from the normal phase,
if, for example, the lateral propagation of heat in the plane
of our heterostructure can be carried collectively by mag-
netic dynamics. In addition, unlike thermal magnons that
generally travel diffusively with a microscopic spin-diffusion
length, low-frequency condensates can carry spin signals over
macroscopic distances [21]. Such collective and nonlocal
transport signatures of condensation warrant further studies,
both theoretically and experimentally.
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