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Abstract

Existing assessments of biomass supply and demand and their impacts face various types of limitations and
uncertainties, partly due to the type of tools and methods applied (e.g., partial representation of sectors, lack of
geographical details, and aggregated representation of technologies involved). Improved collaboration between
existing modeling approaches may provide new, more comprehensive insights, especially into issues that involve
multiple economic sectors, different temporal and spatial scales, or various impact categories. Model collaboration
consists of aligning and harmonizing input data and scenarios, model comparison and/or model linkage.
Improved collaboration between existing modeling approaches can help assess (i) the causes of differences and
similarities in model output, which is important for interpreting the results for policy-making and (ii) the linkages,
feedbacks, and trade-offs between different systems and impacts (e.g., economic and natural), which is key to a
more comprehensive understanding of the impacts of biomass supply and demand. But, full consistency or inte-
gration in assumptions, structure, solution algorithms, dynamics and feedbacks can be difficult to achieve. And, if
it is done, it frequently implies a trade-off in terms of resolution (spatial, temporal, and structural) and/or compu-
tation. Three key research areas are selected to illustrate how model collaboration can provide additional ways for
tackling some of the shortcomings and uncertainties in the assessment of biomass supply and demand and their
impacts. These research areas are livestock production, agricultural residues, and greenhouse gas emissions from
land-use change. Describing how model collaboration might look like in these examples, we show how improved
model collaboration can strengthen our ability to project biomass supply, demand, and impacts. This in turn can
aid in improving the information for policy-makers and in taking better-informed decisions.
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Introduction

Bioenergy is often mentioned as an important element of
a more sustainable future global energy supply (IPCC,
2011; GEA, 2012). Biomass for the production of biochem-
icals, bioplastics, and modern biomaterials has also
received increased attention given its potential for reduc-
ing the products’ carbon footprints and the dependence
on finite and increasingly costly fossil fuels (e.g., EC,
2012). The economic activities related to biomass produc-
tion and subsequent conversion into energy, chemicals,
materials, and other products are termed biobased econ-
omy (also called bioeconomy). It aims at reducing the
dependence on fossil fuels and differentiates itself from
the traditional uses of biomass by applying advanced bio-
logical knowledge and tools (OECD, 2009; Zilberman,
2013). However, the sustainability of a biobased economy
has been debated in recent years because of the impacts
on the economy, environment, and society such as the
competition with food production, and land-use change
(LUC)-related greenhouse gas (GHG) emissions (Mitch-
ell, 2008; Searchinger et al., 2008; Tilman et al., 2009; Frit-
sche et al., 2010; Hertel & Tyner, 2013). The large diversity
of opinions and positions on the sustainability of the bio-
based economy can partly be explained by different per-
ceptions and interests of actors involved, but also by a
lack of data and comprehensive understanding of under-
lying processes (and how these are translated into model-
ing terms), and by different approaches used to model the
supply of biomass and its impacts (Dornburg et al., 2010;
Haberl et al., 2010; Batidzirai ef al., 2012; Creutzig ef al.,
2012). Another factor is whether approaches used tend to
be mono- or multi-disciplinary where for example a nar-
row perspective can yield misleading information about
problems with broad systemic effects.

It is important to recognize that projecting the future
is inherently uncertain, and the purpose of a modeling
exercise is to gain insights into the processes of change
in response to actions that occur because of external fac-
tors such as a policy change. As we will argue in this
paper, reducing some of the uncertainties surrounding
the biobased economy could be achieved through model
collaboration. This may or may not lead to an ultimate
consensus, but can at least help improve the under-
standing of the processes of change and impacts, and as
a consequence make more informed decisions.

The already large body of literature provides impor-
tant insights into the potential size and sustainability of
a biobased economy. However, these studies faced vari-
ous types of limitations and uncertainties, partly due to
the type of tools and methods applied (e.g., partial rep-
resentation of sectors, lack of geographical details, and
aggregated representation of technologies involved).
Thus, recent scientific literature (Nassar ef al.,, 2011;

Creutzig ef al., 2012; Wicke et al., 2012) suggests further
developing and improving modeling toolboxes -
especially through better integration of detailed bottom-
up information and improved cooperation between the
different modeling approaches (hereafter referred to as
model collaboration). Model collaboration can take the
form of aligning and harmonizing input data, detailed
model comparison and/or model linkages. Model col-
laboration in its various forms can facilitate understand-
ing of discrepancies in results and underlying factors,
provide information about the robustness of results,
and strength and weaknesses of different approaches,
and improve validation and calibration of models. As a
result, it can provide new and more comprehensive
insights into biomass supply, demand and impacts, and
allows assessing the effects of policy and regulation. In
doing so, it can help in identifying necessary conditions
for the development of a sustainable biobased economy.

The main objective of this paper is to assess how
model collaboration can contribute to improved assess-
ment of biomass supply, demand, and their impacts. To
do so, a thorough understanding of existing approaches
is needed. Thus, we first characterize the applications,
strengths, and limitations of the main modeling
approaches, and then formulate key questions that
remain to be answered by any approach (Section 2). In
Section 3, we focus on model collaboration, the different
types, and opportunities and limitations it presents.
This is followed by three examples of key research areas
that can benefit from model collaboration and a descrip-
tion of what model collaboration might look like in
these cases (Section 4). The three examples relate to (i)
developments in the livestock production; (ii) availabil-
ity, use and impacts of agricultural residues; and (iii)
GHG emissions from land-use change. In Section 5, we
draw conclusions on model collaboration and other nec-
essary steps to enhance the assessment of biomass sup-
ply and demand and their impacts.

Strengths and limitations of existing approaches

Existing approaches for assessing biomass supply,
demand, and impacts can be broadly categorized into
the following categories: (i) computable general equilib-
rium (CGE) models, (ii) partial equilibrium (PE) models,
(iii) bottom-up models and analyses, and (iv) integrated
assessment models (IAM). As the following sections
also indicate, the categorization of models is to some
degree artificial because each model tends to have indi-
vidual characteristics and often includes elements of
more than one category [an overview of such integra-
tion activities related to energy-environment models is
given in the Energy Journal special issue ‘Hybrid
modeling of energy-environment policies: reconciling
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bottom-up and top-down’ (Hourcade et al., 2006)]. Still,
such a categorization is useful for defining strengths
and limitations of existing approaches. We discuss the
main applications and insights of these four approaches,
and their strengths and limitations for assessing bio-
mass supply, demand, and impacts (Section 2.1 to 2.4).
The key aspects of this discussion are presented in
Table 1. In addition to uncertainties and shortcomings
specific to the four approaches, there are also those that
are common to all approaches. These are presented in
Section 2.5.

Computable general equilibrium models

Computable general equilibrium models have been used
to analyze macro-economic consequences of different

types of policies over the last 25 years. Models were ini-
tially used to analyze policies related to taxation and trade
(Shoven & Whalley, 1984), but progressively expanded to
analyses of diverse topics such as spread of human dis-
eases (Kambou et al., 1992), international labor migration
(Borjas, 2004), climate change adaptation (Block et al.,
2006), and land-use change (van Meijl ef al., 2006). In
recent years, CGE models have also been used to analyze
the implications of biomass and bioenergy policies. For
example, Taheipour & Tyner (2012) have studied the
implications of the United States” (US) Energy Indepen-
dence and Security Act of 2007, Banse et al. (2008) and
Laborde & Valin (2012) have analyzed land-use changes
and greenhouse gas emissions resulting from European
biofuels policies, and van Meijl et al. (2012) have analyzed
the macro-economic impacts of a biobased economy in

Table 1 Overview of the four modeling approaches for assessing biomass supply, demand and impacts: Their applications, typical
timeframes, key strengths, and limitations

Bottom-up analysis

IAM

CGE model PE model

Application Economy-wide impacts of Sectoral impacts of
biomass and bioenergy policies, bioenergy policies on
including subsequent effects agriculture, forestry,
on land-use change and GHG land-use change,
emissions induced by these energy system and
policies. GHG emissions
Indirect substitution, land use
and rebound effects due to
multiple sectors and production
factors

Typical Short to medium term Short to long term

timeframe

Strengths Comprehensive coverage of Detailed coverage of sectors
economic sectors and regions of interest with full market
to account for interlinkages. representation.
Explicit modeling of limited Explicit representation of
economic resources. biophysical flows and
Measuring the total economy absolute prices.
wide and global effects of Usually more details on
bioenergy policies (including regional aspects, policy
indirect and rebound effects) measures and environmental

indicators
Limitations Level of aggregation that may Optimization of agent

mask the variation in the

underlying constituent elements.

Scope of CGE

models necessitates simplified,
representation of agent
choices, in particular favoring
smooth mathematical forms
and reduced number of
parameters required to
calibrate the models.

Often no or little explicit
representation of quantities
for biophysical flows

welfare, but only the
sectors represented

in the model.

No consideration of macro-
economic balances and
impacts on not—represented
sectors.

Need large number of
assumptions for long-term
projections

Wide variety of specific
(technical) aspects of
biomass production,
conversion and use.
Validation of other
studies with a broader
scope, such as PE and
CGE models, and IAMs

Short to long term

Detailed insights into
techno-economic,
environmental and
social characteristics
and impacts of
biobased systems

No inclusion of

indirect and induced
effects outside the
boundaries of the study,
i.e. often deliberately
ignore interactions

with other sectors

Bioenergy resource
potentials under different
assumptions (incl.
sustainability criteria).
Possible contribution of
bioenergy to long-term
climate policy.

Impacts of bioenergy
policies on global land
use, water and biodiversity
Long term

Integrating different
relevant systems in one
modeling framework.
Possibility to analyze
feedbacks between human
and nature systems, and
trade-offs and synergies of
policy strategies.

Built around long-term
dynamics

High level of aggregation
or too complex systems.
Unsuitable for short-term
assessments.

Large number of
assumptions (and the
communication of these

to the public)
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Malaysia. CGE models have often been used for analyz-
ing the agricultural market adjustments and land-use
change at global scale, thanks to the Global Trade Analy-
sis Project (GTAP) research consortium that provides a
general global CGE framework and database (Narayanan
& Walmsley, 2008). Hertel ef al. (2011) have provided
multiple examples of how the land-use representation of
the GTAP database was expanded with the agro-ecologi-
cal zones (AEZ) framework and applied in various CGE
assessments.

A key insight from CGE studies into biofuels is the
strong impact of the use of first-generation biofuels on
national and international food markets, and the associ-
ated total net impacts on land use and greenhouse gas
emissions. Biofuels increase the link between energy
and agricultural market prices that may affect welfare
and trade patterns (Bouet ef al., 2010; Hertel & Beck-
man, 2010; Hertel ef al., 2010). For example, domestic
production of biofuels can decrease foreign oil imports,
while the use of crops for biofuels may lead to lower
exports of agricultural products. Results from CGE
models also show that the effects on land use will
depend on trade policy scenarios. For instance, Laborde
(2011) calculated for the EU biofuels mandate that with
liberalization of trade barriers, more cropland is needed
than without liberalization. This is primarily due to a
shift in production to regions with lower crop yields
and also reduced intensification resulting from lower
prices.

The principle strength of CGE-based studies is their
comprehensiveness in terms of key economic relation-
ships, including market price adjustments and associ-
ated changes in terms of trade, market balances, and
factor markets. The CGE models are ‘deep’ structural
models in that they explicitly solve the maximization
problem of consumers and producers, assuming utility
maximization and profit maximization with produc-
tion/cost functions that include factor inputs [see
Robinson et al. (2014)]. CGE models are capable of
informing policy-makers of the overall economic effects
of existing and potential policies. For example, Tahei-
pour & Tyner (2012) investigated the economic impacts
of biofuel use in the United States. The results show the
importance of considering interaction between biofuel
policies and other economic sectors via impacts on pet-
rol tax, income tax, and agricultural subsidies. Further-
more, there is an obvious strong relationship between
first-generation biofuels and food crops, and thereby
food security and land-use changes. However, there are
less obvious links between the prices of biofuels, fossil
fuels, and governmental support policies. They are
nevertheless critical for policy impacts. For instance,
Laborde (2011) shows that the leakage effect of the EU
biofuel policy is significant: for 1 MJ of fossil fuel saved

in the EU, thanks to the biofuel consumption, only
0.7 MJ is saved at a global level. CGE models can
account for such interlinkages by their comprehensive
coverage of sectors, production factors, and regions. In
addition, measuring the overall welfare effects of
bioenergy support programs in specific countries can
only be understood when viewed in conjunction with
the entire set of support programs of these countries.
CGE models make this possible because they encom-
pass the entire range of economic activity rather than
particular markets, and they explicitly model the fact
that economic resources (such as labor, land, and capi-
tal) are limited (Banse ef al., 2008; Taheipour & Tyner,
2012). The comprehensive coverage of sectors, produc-
tion factors, and agents then allows assessing (i) pro-
duction factor and market price adjustments and
associated changes in trade and market balance, (ii)
economy-wide accounts and consumer welfare indica-
tors that are used to derive the full cost/benefit of a bio-
energy policy, (iii) consequences on income, growth,
and job markets, and (iv) the distribution of benefits
and burdens of policies on consumers and producers
both within and among countries. CGE models are par-
ticularly useful for studying the impacts of significant
bioenergy deployment in the short/medium term, espe-
cially when they are used and designed with a high
level of disaggregation, and when sectoral and regional
interlinkages are relevant.

However, there are also many important uncertainties
and limitations to CGE modeling analyses (Hertel,
1999). The price for their comprehensiveness is in gen-
eral a high level of aggregation, which masks variation
in and economic interactions between the underlying
constituent elements, and limits the degree to which
bottom-up information and data can be effectively
integrated within the larger model (Hoefnagels et al.,
2013). The same is true for temporal aggregation: CGE
models provide a new equilibrium after a certain
‘shock’, and usually do not provide a temporal trend.
Also, the representation of technology and technological
change is usually limited; especially advanced options
of the biobased economy (e.g., modern biomaterials) or
alternative feedstocks and land resources (such as pro-
duction on degraded land or residues) have hardly been
assessed in CGE studies. However, recent advances
with regard to a broader representation of bioenergy
have been made in some GTAP model versions, intro-
ducing ethanol, biodiesel and their by-products (Banse
et al., 2011; Laborde, 2011), the agricultural residue corn
stover, and the energy crops switchgrass and miscan-
thus for second-generation ethanol production (Taheri-
pour & Tyner, 2013b) and palm oil residues (van Meijl
et al, 2012). There is a trend of disaggregating
agricultural, forestry and energy sectors within a CGE

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12176
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model to obtain the needed detail for policy questions
(Woltjer, 2013). The scope of CGE models also necessi-
tates simplified, behavioral assumptions to be able to rep-
resent aggregated behavior using smooth mathematical
functions and to be able to calibrate the models with lim-
ited datasets. Although, it is possible to add data and
behavioral detail to a CGE model in terms of new sectors
and more complex relationships, in practice, mathemati-
cal relationships in CGE models remain highly aggre-
gated and simplified. For example, Laborde (2011)
acknowledges limitations that affect the substitution of
proteins and carbohydrates and the inability to provide
an entirely correct substitution matrix across crops and
their yield consequences — a problem shared by most
CGE models. He therefore calls for the use of more flexi-
ble functional forms and sensitivity analyses. In addition,
the uncertainties related to CGE modeling increase in
case of major structural and technological changes, which
makes them more suitable for short- to medium-term
assessments than longer timeframes as described above.

Partial equilibrium models

Partial equilibrium models are economic models follow-
ing the same neo-classical framework as CGE models, but
in which not all economic sectors and factors are repre-
sented. PE models are often adopted to address questions
specific to some sectors (e.g., agriculture and energy) and
for which interrelation with others parts of the economy
are secondary. As for CGE models, the main characteristic
of PE models is the assumption that markets are at equi-
librium and return to equilibrium after an economic
shock, i.e. at any time, demand price adjusts to equal mar-
ginal producer cost. The simplest form of PE models is the
stylized single product demand-supply model generally
used to analyze welfare and other impacts of a policy or
technology change. PE models have largely been used to
analyze first-order effects of policy intervention on a feed-
stock market when developing bioenergy [see, for exam-
ple, De Gorter & Just (2009) for corn ethanol and Babcock
et al. (2011) for second generation]. More sophisticated
models however exist, such as the Common Agricultural
Policy Regionalised Impact (CAPRI) model (Shrestha
et al., 2013), encompassing a large number of sectors and
regions, and providing a high level of detail in the supply
and demand representation. In the context of bioenergy,
typically two sets of PE models are relevant: (i) food mar-
ket models and (2) energy system models. Examples of
the first set are the POLYSYS model (De La Torre Ugarte
& Ray, 2000) and the FASOMGHG model (Beach et al.,
2012), and an example of technology-rich PE models in
the energy arena is MARKAL-TIMES (originally from
IEA; Clarke ef al., 2009), but there are many others. Here,
we focus mostly on the food market category.

Although many PE models share some characteristics,
their structure can vary strongly depending on their
economic assumptions. The biggest difference comes
from the formulation of the welfare function to opti-
mize. Some models represent agents’ behavior around
the equilibrium under the form of reduced top-down
functions similar to CGE ones, without explicit repre-
sentation of the technology and production costs. In that
case, quantities are adjusted in response to variation of
relative prices with respect to certain price elasticities.
For instance, the IMPACT model (Rosegrant ef al., 2012)
has been used to assess the effect of first-generation bio-
fuel development on world food prices (Msangi ef al.,
2007). The multi-commodity market model FAPRI-
CARD uses an approach where supply functions are
precisely derived for each raw agricultural market, as
well as for the biofuel sectors (Elobeid & Tokgoz, 2008;
Fabiosa et al., 2010). The FAPRI-CARD model in partic-
ular has been used in the seminal raising awareness of
indirect land-use change through Searchinger et al.
(2008).

Some other PE models follow linear optimization
techniques to determine the level of production on
the basis of explicit production cost calculation using
bottom-up information and explicit prices with a
much more detailed geographic representation [for
the US, ASMGHG and BEPAM, see Schneider et al.
(2007) and Chen et al. (2012), respectively; or at the
world level GLOBIOM, see Havlik et al. (2011)]. In
this latter category of PE models, supply functions for
biomass distinguish a wide variety of feedstocks
sourced from agricultural crops or perennials and for-
est products, with different management approaches.
Depending on the production costs and policy incen-
tives, the models allocate the production across
regions and products along structurally bottom-up
supply curves that are very close to the ones pro-
duced by engineering models. This allows determin-
ing the optimal portfolio of GHG emission mitigation
measures for a certain carbon price (Schneider et al.,
2007) or comparing the projected GHG emission effect
of different feedstocks wunder different land-use
change policies (Havlik et al., 2011). The impact of the
US Energy Independence and Security Act has, for
example, been investigated with FAPRI-CARD and
FASOMGHG. Chen et al. (2012) investigated land-use
impacts in the United States at county level and Mos-
nier et al. (2013), the overall land-use GHG emissions
at international level. Both of these analyses in partic-
ular allowed comparing different shares of second-
generation biofuels in detail; pathways that have little
been studied by CGE models because they are not
present in the initial state of the economy (Taheripour
& Tyner, 2013b).

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12176
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The advantage of PE models comes from their high
level of flexibility in incorporating a large amount of
detail in process representation and input data. While
CGE models require a large quantity of information (in
particular for the input-output tables), this information
is only needed for sectors covered in the PE models,
which removes the need for lengthy and distortive full
rebalancing of the dataset [although procedures are
developed to automatize these processes in CGE models
(see, e.g., Woltjer, 2013)]. Additionally, in the case of
linear optimization models, the performance of solvers
allows incorporating a very large number of technolo-
gies at a detailed grid-cell level (e.g., up to 200 000 spa-
tial units in GLOBIOM). These models are particularly
well fitted for a fully, spatially explicit representation of
sector dynamics and particularly adapted to land use-
related questions. Depending on their design and
calibration elasticities, PE models can be well fit for
short- to medium-term analyses (for instance, market
outlook models such as FAPRI-CARD or AGLINK from
OECD) or long-term analyses (e.g., GLOBIOM applies a
time horizon up to 2050 or even 2100).

However, PE models also have some limitations. The
first one comes from the absent links with other sectors.
Bioenergy being at the nexus between agricultural/for-
estry and energy sectors, models only focusing on one
of the two groups of sectors miss feedbacks from the
other group. There are attempts to circumvent this issue
by incorporating two PE models and solving them
simultaneously (Msangi et al., submitted), by extending
their model to a simplified representation of fossil fuel
markets (Chen ef al.,, 2012), or by establishing links
between the various model approaches (see Section 2.4
on integrated assessment models and Section 3 on
model collaboration). Another issue is the absence of
macro-economic closure, which can introduce some bias
when sectors have a big role in an economy. For exam-
ple, in developing countries, the link between agricul-
tural income and the final consumer demand is
generally missing because the supply and the demand
side are not linked by the revenue cycling; a PE model
is therefore more limited to study food security benefits
for smallholders to develop bioenergy projects. Addi-
tionally, for oil-exporting countries, the effect of produc-
tion and trade on the exchange rates and the feedback
from government revenues on welfare and consumption
are often neglected, which prevents PE models from a
full welfare analysis of biofuel policy impacts.

Bottom-up analyses and models

Bottom-up analyses and models begin with detailed
descriptions and modeling of technologies, processes,
agents, or resources. They include a wide variety of

analyses that can entail detailed assessments of current
conditions as well as long-term projections. As opposed
to the CGE and PE models described in the previous sec-
tions, they do not model economic markets or calculate
market prices endogenously. Various subgroups of bot-
tom-up assessments have been developed for assessing
biomass supply potentials and impacts, for example:

® Process-based technical models (including life-cycle
analysis), such as the GREET model (Wang et al.,
2012) or the BioGrace model (BioGrace, 2011);

e Process-based biophysical models to assess crop
suitability and growth (Fischer et al., 2010; Trabucco
et al., 2010) or impacts [erosion risk evaluation tools
(Muth & Bryden, 2012)], water impact evaluation
analysis (Berndes, 2002), land use/management
emission analysis [e.g., with the MITERRA model,
see de Wit et al., 2014)], or a combination of these
(Marohn & Cadisch, 2011);

e Land-use allocation models that combine land
availability, land suitability and land-use change at
a spatially detailed level (Cai et al., 2010; van der
Hilst et al., 2012; Kurka et al., 2012);

e Bioenergy supply and demand mapping (Masera
et al., 2006);

e Statistical scenario analyses of biomass resource
availability (Smeets et al., 2007);

e Cost-benefit analysis (Wiskerke et al., 2010);
® Multi-criteria assessments (Scott et al., 2012);

e Prospective studies (e.g., learning curve studies [de
Wit et al., 2010; van den Wall Bake et al., 2009)].

Many more, both simple and complex bottom-up
models and tools are directly or indirectly relevant when
evaluating (sustainable) biomass supply, demand and
impacts.

A key characteristic of bottom-up models and tools is
the focus on specific aspects, processes, technologies, or
agents. As a result, these models typically have a well-
defined system boundary in terms of geographic scope,
sectorial coverage, and technology. They typically take
advantage of up-to-date data and detailed parameters,
which make them suitable to conduct prospective analy-
ses of latent technologies. Bottom-up models provide
detailed information involving specific technologies and
their performances (e.g., energy use, emissions, and
environmental impacts) within their system boundary.
Disadvantages of this type of models are that they
typically do not take into account indirect and
induced effects outside the boundaries of the system
under investigation, such as price responses, competi-
tion and replacement effects, as well as technological or
structural changes outside the system boundaries (e.g.,

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12176
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Britz & Delzeit, 2013). This makes bottom-up tools less
suitable for policy impact assessments.

The advantages and disadvantages of bottom-up
studies can be illustrated by the analysis of GHG emis-
sions of bioenergy systems. A large number of bottom-
up life-cycle analysis (LCA) studies have been carried
out, which include detailed assessments and compari-
son of different bioenergy systems and provide
thorough understanding of the factors that determine
life-cycle emissions, such as the fertilizer application
rate and nitrous oxide emissions, the assumed crop
yields, the transportation distance from field to factory,
etc. (Macedo et al., 2008; Kendall et al., 2009; Smeets
et al., 2009; Hoefnagels et al., 2010). These results pro-
vide important information on how to differentiate
good vs. bad performers, and to improve the GHG bal-
ance and sustainability performances of bioenergy
through policy regulations and sustainability certifica-
tion systems. However, the narrow system boundary of
bottom-up LCAs also means that indirect effects are
ignored, such as indirect land-use change and leakage
effects of biofuels. This means that bottom-up LCAs
need to be supplemented with economic models and
approaches when evaluating the total net impact of bio-
energy systems [see also Creutzig et al. (2012)].

Integrated assessment models

Integrated assessment models (IAMs) are designed to
describe the interactions between human activities and
(global) environmental change processes. They, there-
fore, include a description of the human system and
natural system and the interaction between the two. For
their application in assessments of a biomass supply,
demand and impacts, the results of IAMs not only cover
the energy system implications (e.g., which energy
sources are replaced?) but also point out the limitations
and implications with respect to natural systems such
as water use, land use (e.g., where is bioenergy pro-
duced and what could be the consequences?), and the
interactions with the global carbon cycle in the atmo-
sphere, oceans, and biosphere in a complete, integrated
manner. As such, they cover a broad range of disci-
plines, including energy analysis, economics, agriculture
analysis, and biophysical sciences. The approaches dis-
cussed in Section 2.1 to 2.3 often form a part of an IAM
(although often deliberately simplified compared to the
stand-alone forms to allow for integration). The agricul-
tural and/or energy economic components are normally
represented by a CGE or PE model. However, in [AMs
these are combined with a simultaneous representation
of the physical system, implying that IAMs not only
describe emissions of agricultural production but also
land use and the full chain of climate change (GHG

concentrations, temperature change). This also means
that, to some degree, IAMs are already representative of
the model collaboration that we are investigating in this
paper. But, given their special role in the literature and
their focus on simplification, it is still useful to take
stock of the current status of this model category. For
the model integration referred to in Section 3, we focus
on the cooperation between different stand-alone mod-
els allowing their representation in their original forms.

Much of the development and application of global
IAMs has been in the context of global climate change
assessment, where for example the emissions scenarios
used by climate models were developed by IAMs (IPCC
SRES, 2000; van Vuuren et al., 2011). However, many glo-
bal IAMs have also been used to study global land use
and land-use change [see e.g., overview by Smith et al.
(2010)], bioenergy supply potentials (Hoogwijk et al.,
2005; van Vuuren et al., 2009; Acosta-Michlik et al., 2011;
GEA, 2012), and water and biodiversity consequences of
biomass production (e.g., Chaturvedi et al., 2013). Often,
IAMs have a global coverage and focus on long-term
processes in the order of decades to a century.

In general, IAMs deliberately aim to simplify the rep-
resentation of individual model components to prevent
the model as a whole becoming too complex. Most
IAMs used to support bioenergy policies, however, tend
to be among the more complex IAMs. This is because
they need to have a more detailed representation of the
human and earth system processes relevant to assess
global environmental change. As discussed earlier, this
means that IAMs often include CGE or PE models to
represent (parts of) the economy. For example, IIASA’s
integrated assessment modeling framework involves the
PE model GLOBIOM, connected to several activity
models for agriculture (EPIC, RUMINANT) and forestry
(G4M) and is further linked to the energy model MES-
SAGE for full integrated assessment (Reisinger et al.,
2013). The IMAGE model uses results of the CGE model
LEITAP (now called MAGNET) or the PE model
IMPACT, and integrates the PE energy model TIMER;
other model components include the climate model
MAGICC and carbon cycle and land-use representations
(PBL, 2014). Other examples of model clusters include
AIM (Kainuma ef al., 2003), REMIND-MAgPIE-LPJmL
(Popp et al., 2011) and GCAM (Wise et al., 2009).

The obvious strength of IAMs is that they integrate
information on the different relevant systems in a com-
prehensive modeling framework. In such a framework,
trade-offs and synergies of policy strategies can be
assessed, and feedbacks between different domains can
be studied. Such feedbacks, for instance, relate to the cli-
mate impacts on crop growth or the GHG emissions
associated with bioenergy production and use. How-
ever, there are also some limitations to this approach.

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12176
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The broad and interdisciplinary coverage can go at the
expense of detail (but this is only a problem where
details matter, while a high level of detail may also only
provide a false sense of precision). Too complex IAMs
(that include considerable detail) may in fact lose
transparency. Finally, most IAMs are built to capture
long-term dynamics, and are therefore less suitable for
short-term policy assessments. As in other models,
assumptions on technical change in the energy and agri-
cultural system form a key input and uncertainty in
IAMs. However, due to the long-time horizon, these
assumptions are even more important in JAMs than in
studies with short-time horizons, and much of the tech-
nical potential of future biomass supply depends on the
assumed technical change in agriculture and livestock
management (Dornburg et al., 2010).

In the context of bioenergy studies, IAMs have mostly
been used to assess the possible contribution of bioener-
gy to global climate strategies (see for instance Rose
et al. (2012)). In such studies, information on the techni-
cal potential (based on biophysical parameters) is com-
bined with data on technology development, the costs
of other energy sources, and the climate policy regime.
Due to its focus on a long-time horizon, IAM results
typically show low or no use of first-generation bioener-
gy crops, but instead project large use of agricultural
residues, dedicated woody or herbaceous energy crops,
and forest residues (Kraxner et al.,, 2013; Rose et al.,
2013). Other reasons for the low application of first-gen-
eration biofuels in IAM studies is the carbon tax-driven
application of biofuels, which does not stimulate biofu-
els that result in only a small greenhouse gas saving
compared to fossil fuel use.

A second application of IAMs is the estimation of bio-
mass potentials. In these studies, IAMs mostly try to
estimate sustainable supply potentials. Typically, it is
assumed that bioenergy crops can be grown when land
is not used for food or fiber production or is not
restricted by sustainability constraints like high-carbon
content of natural vegetation or high biodiversity (van
Vuuren et al.,, 2009; Beringer et al., 2011). The main
sources of land-based bioenergy resources in such stud-
ies are dedicated production of energy crops on surplus
agricultural land or abandoned land, and agricultural
residues with a total global potential of 50-1000 EJ yr~'
(Chum et al., 2011). According to several studies, the
high end of that range is inconsistent with sustainability
criteria and a value of 100-150 EJ in 2050 seems more
realistic (van Vuuren et al., Schubert et al., 2009; Haberl
et al., 2010). Some IAMs apply a ‘food/fiber first” princi-
ple, which represents the possible effects of sustainabil-
ity criteria on biomass resource availability and its
impacts. But this ignores interaction with the food mar-
kets and competition for land.

Key research areas across approaches

In addition to the limitations and uncertainties specific
to the different modeling approaches described in the
previous sections, there are key uncertainties that are
common to these different approaches and there are
important questions that remain to be answered by any
approach. These wuncertainties and questions are
described extensively in the literature (Schubert et al.,
2009; Dornburg et al., 2010; Edwards et al., 2010; Chum
et al., 2011; Batidzirai et al., 2012). Here, we only pro-
vide an overview of key questions to be answered to
better understand a biobased economy and its impacts:

e Can large-scale biomass production and supply be
organized over time, in a way that unsustainable
price impacts on food markets or undesired LUC
are avoided? And if so, how?

e What are the impacts of different degrees of ambi-
tiousness of sustainability targets on future biomass
availability and costs?

e How do the various applications of biomass for a
biobased economy compete with each other and
with (fossil) alternatives, now and in the future?

e What are the effects of different trajectories of
developments in agricultural crop and livestock pro-
duction (e.g., intensification vs. extensification, fertil-
izer application, irrigation) on biomass supply and
its impacts over time?

e What is the net potential contribution of biobased
products in mitigating GHG emissions when
including emissions related to changes in land use,
agricultural production, and the energy system?

e What is the energetic potential of agriculture and
forestry residues? What and how large are the com-
peting uses? What are possible changes in agricul-
tural and forestry technologies, and management
over time and how would these affect the potential?
What are the impacts (especially for soil conditions
but also current uses and users) of extracting resi-
dues for energy use?

e What are the GHG emissions of LUC induced by a
biobased economy? And how does it affect or is
affected by other drivers?

e How may climate change affect the potential for bio-
energy production?

Some of these questions relate to factors that include
some fundamental uncertainties (such as the rate of tech-
nological development or future governance structures).
But, as will be shown in the following sections, the better
use and collaboration of models (while being aware of
their limitations) allow exploring these questions in a
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meaningful way primarily because different approaches
can provide complimentary information.

Addressing open questions with model
collaboration

Improved  cooperation  between the  different
approaches described in Sections 2.1 to 2.4 offers possi-
bilities to reduce some of the shortcomings of the dif-
ferent modeling types, narrow the knowledge gaps
highlighted above (Section 2.5) and strengthen our
ability to project (both direct and indirect) the impacts
of given bioenergy policies. Thereby, model collabora-
tion can aid in improving the quality of information
for policy-makers and contribute to better-informed
decision-making.

Model collaboration can come in a number of forms
(Fig. 1). Alignment and harmonization of models focus
mainly on input data, level of aggregation, and scenario
definitions. Model comparison focuses on the methods,
representation and parameterization of biomass supply
chains, assumptions and uncertainties in input data,
and/or on results and sensitivities to uncertainties in
underlying data and approaches. Model comparison
can guide and improve alignment and harmonization of
models. Conversely, under the condition of harmonized
input data and scenarios, model comparison allows a
better understanding of the results, its drivers and the

Alignment and harmonization of models

* Input data

* Level of aggregation (e.g. number of
economic sectors)

e Scenarios

—

differences across models (Lotze-Campen ef al., 2014). It
can also reveal information about the robustness of the
results when tested under different paradigms, about
model biases and artifacts, and about strengths and
weaknesses of different approaches. Thereby, model
comparison can be used to further improve and cali-
brate the individual models. Model comparison can also
help expose the causes of differences and similarities in
model output, which is important for interpreting the
results for policy-making.

Linking or integrating models takes collaboration a
step further and can help assess issues that involve mul-
tiple economic sectors, different temporal and spatial
scales and/or various impact categories and their link-
ages and trade-offs. It can thereby provide a more com-
prehensive picture of the impacts of a certain policy.
Model linkages can be of a number of forms, including
using the results from one model as input to another
model, iterating inputs from different models, partially
integrating models by using a simplified form of one
model in another model or fully integrating models and
solving them simultaneously (Fig. 1). [AMs (Section 2.4)
are examples of partially or fully integrating different
modeling approaches. However, the more generic
model collaboration discussed here can also refer to the
cooperation between two stand-alone models and does
not require the analysis to be conducted in one inte-
grated system.

Comparison of models

*  Methods

* Representation and parameterization of
biomass supply chain

* Assumptions and uncertainties

* Results

» Sensitivities to underlying uncertainties

N\

Integration of models

* Feeding results from one model as input into
another model (one way data exchange)

e [Iterations of inputs (two way data exchange)

» Partial integration (simplified form of one
model integrated into another model)

* Full integration

Fig. 1 Typology of model collaboration. Model collaboration can come in a number of forms, here three categories are distinguished:

alignment and harmonization of models, comparison of models, and integration of models. Bullets present examples of how models
can be aligned, harmonized, compared or linked. Each type of model collaboration can benefit from the others. For example, a basic
alignment and harmonization of scenarios is needed to allow comparison of models, while a comparison or integration of models can

identify the factors that require alignment.
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An alternative distinction in linking models is often
made between so-called soft links (models are connected
exogenously by transferring the outcomes of scenario
model runs from one component or model to another)
and hard links (in which models exchange information
and solve iteratively, so the solutions are internally
consistent between models). Each type of link has its own
advantages and disadvantages: hard links allow more
consistent representation of the systems but increase com-
plexity and reduce transparency, while soft links allow
linking more components but data flows must be very
carefully coordinated otherwise inconsistencies between
models can either or go unnoticed and not reported
(Leimbach et al.,2011).

Collaborations will not be ideal for every application.
It is sometimes difficult to achieve full consistency or
integration in assumptions, structure, solution algo-
rithms, dynamics, and feedbacks. Also, since models are
built around a certain paradigm (e.g., economic or engi-
neering), especially hard-linking them may be methodo-
logically inconsistent due to different use of definitions
and semantics, and ‘double-counting’ some subsystems
by representing them in both models in different ways.
Although internal consistency may be essential for some
applications, having internal consistency frequently
implies a trade-off in terms of resolution (spatial,
temporal, and structural), and/or computation. Further-
more, inconsistency may also arise when data
exchanged between models is dependent on a set of cri-
teria, which are not applied consistently across the mod-
els. Also, if one of the models produces poor results, the
projections of the other model might be worse instead
of better than stand-alone projections.

On the contrary, exchange of good data can improve
coupled models. If the first of the coupled models is cal-
ibrated with real data, its outcomes are improved and
might become more accurate than the input data that
the second model uses when running independently.
This is especially true when the first model, after it is
calibrated, is used to project outcomes for future scenar-
ios. This is because these are impossible to measure and
are harder to estimate than present-day variables. The
same applies for the exchange of information on uncer-
tainty. Running the first of the coupled models stochas-
tically, e.g., using Monte Carlo simulation (Verstegen
et al., 2012), provides the second model with confidence
intervals for its input data. This information can be used
for error propagation through the coupled models.

Key research areas that can benefit from model
collaboration

We selected three key research areas from the list of
open questions (Section 2.5) to illustrate how model

collaboration can provide additional ways for tackling
some of the shortcomings and uncertainties in existing
assessments of biomass supply, demand, and impacts:
(i) developments in livestock production and impacts
on land availability for bioenergy crop production, (ii)
availability, use, and impacts of agricultural residues
for energetic purposes, and (iii) GHG emissions from
land-use change induced by bioenergy crop production.
These areas are important for defining biomass resource
availability and performance. The importance of each
research area is explained in more detail in the follow-
ing sections.

Given that there are many different types of bottom-
up assessments and models (Section 2.3), in the follow-
ing sections, we refer to the subtypes of bottom-up
approaches (such as land-use allocation models or bio-
physical assessments) rather than using the more
generic, overarching term of bottom-up assessment.

Developments in livestock production

Several studies have emphasized the importance of
agricultural crop productivity (developments) for the
assessment of biomass for energy or material purposes
(Keeney & Hertel, 2009; Dornburg et al., 2010; Mosnier
et al., 2013). But also livestock productivity (and its
developments over time) is a key factor influencing the
biomass resource availability. This is because much lar-
ger areas of land are needed for feed than for food crop
production. Still, livestock has received much less atten-
tion than agricultural crops.

Several studies have shown that large areas of land
can be freed through livestock management system
transitions, particularly from a pasture- to a crop-based
feeding system (Bouwman et al., 2005; Smeets et al.,
2007; Lapola et al., 2010; Martha ef al., 2012; Havlik
et al., 2013). Such changes will impact production costs,
efficiency, animal welfare and the environment in dif-
ferent ways (also depending on the type of management
applied), and conditions necessary for such changes are
poorly studied. Also, where the intensification is likely
to take place and what the impacts would be is not well
understood. An improved analysis of developments in
livestock production and their consequences for bioe-
nergy would need to include two components. First, the
understanding of current livestock system and the
options for further intensification and its impacts need
to be improved. This entails improvement of current
assessments of pasture use and management (Robinson
et al., 2011). It also entails a spatially specific assessment
of where and to what degree pasture productivity and/
or livestock density can be increased, what the drivers
are and what the environmental and socio-economic
impacts of the intensification are (Neumann et al., 2011).
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Results from this analysis can be used, for example, to
provide better information on the drivers of change in
pasture productivity, and the relationship with prices.

Second, the representation of substitution between
pasture- and crop-based feeding systems in existing
model frameworks still needs to be improved because
the current approaches do not guarantee that the energy
and protein balances in animal feeding are satisfied
(Stehfest et al., 2013). This entails primarily more and
improved bottom-up data on feed requirements, feed
compositions and substitution possibilities between dif-
ferent types of feed. Some PE models have already
incorporated a high level of detail on livestock system
description (Havlik et al., 2014), but it might be useful
to apply their results to determine how changes in live-
stock production can be better modeled in the more
aggregated CGE models. Applying these improvements
also to CGE models or linking the PE to the CGE model,
it becomes possible to (i) assess how increased pressure
on land through bioenergy mandates affects the live-
stock sector and what the necessary conditions are
under which changes in the livestock sector can mini-
mize undesired LUC, and/or (ii) investigate the econ-
omy-wide impacts of bioenergy mandates under
different livestock (productivity) development scenar-
ios. Given variable impacts of the intensification of the
livestock sector, additional environmental indicators
based on bottom-up and biophysical models, such as
GHG emissions, would also be needed to assess the full
impact from pasture intensification and change in
feeding systems.

Awailability, use, and impacts of agricultural residues for
energy purposes

Many studies have indicated that residues from agricul-
ture and forestry activities form a significant part of the
total primary biomass resource base and may play a
crucial role in bioenergy supply (Smeets et al., 2007;
Dornburg et al., 2010; Haberl et al., 2010; Chum et al.,
2011). Residues are an attractive source of biomass since
they are a by-product of other activities and are often
considered underutilized. Thus, in principle, they do
not require additional land use or interfere with the
production of other commodities. Furthermore, IAMs
have indicated the large deployment of residues in sce-
narios with large GHG emission reductions due to their
assumed low costs and large supply (Rose et al., 2013).
The projected use of residues is based on a primary
potential whose availability and low cost is assumed as
a matter of fact. However, the potential sources, techni-
cal and economic aspects of supply, competition with
other uses or services, and environmental impacts of res-
idue removal (particularly of soil organic carbon levels

and soil erosion) are still not well understood (Schubert
et al., 2009; Dornburg et al.,, 2010; Chum et al., 2011;
Kenney et al., 2013). With different agricultural/forestry
techniques or economic conditions, the fraction of resi-
dues available for a biobased economy without nega-
tively affecting the environment and livelihood of
communities is likely to vary (Haberl ef al., 2010). This
leads to an inadequate and highly variable assessment
of the technical, economic and sustainable potential of
residues and, in turn, results in a large range of residue
use in different studies.

Model collaboration for better assessing residue avail-
ability could take the following forms. Bottom-up, pro-
cess-based technical assessments can identify and
parameterize the factors that define residue removal
rates under different climate conditions, crop or forest
management systems [e.g., the combination of cover
crops with residue removal (Pratt et al., 2013)] and sus-
tainability constraints. Biophysical models can use this
information to determine the residue potential under
different scenarios for these factors. Determining collec-
tion costs structures in bottom-up assessments [see e.g.,
Leal et al. (2013) for sugarcane residues in Brazil] and
linking this with removal potentials from biophysical
models allow calculating the economic residue potential
(including cost-supply curves specified e.g., per region
and per agro-ecological zone). Next, PE, CGE, and IAM
models could assess the commodification and usage of
residues from a systems perspective. This would
include assessment of the impacts on agricultural and
energy systems as well as the social/economic effects of
their diversion from current uses. More specifically, in
CGE or PE model application one could look into the
potential effects of diverting residues to energetic uses,
be it reduction in land requirement due to an apparent
land-free resource, or expansion of land use due to com-
modification of residues. This can also help with the
assessment of crop prices under a certain biofuel target,
and the role residues can play in this setting. Output
from this analysis (e.g., amount and types of residues
that can be used economically, region of origin, and
effects on fertilizer use and costs) can be fed into an
IAM, which can then determine the broader, long-term
implications for the sustainability of climate mitigation
strategies of residue use for energetic purposes, includ-
ing GHG emissions and nutrient and erosion dynamics.
Combining environmental and economic assessments of
large-scale residue use for energy, including different
scenarios on residue removal restrictions, could thus
give a more comprehensive picture of the effects of
energetic use of residues than is currently available. In
addition, the combination of different models as pro-
posed here also allows assessing effects at multiple
timeframes, with e.g.,, CGE models’ main strength at
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short- to medium-term and IAMs at long-term assess-
ments (Section 2).

GHG emissions from land-use change

Land-use change induced by bioenergy feedstock pro-
duction and associated GHG emissions have fueled a
heated debate about the sustainability of bioenergy
(Searchinger et al., 2008). Several methodologies and
models have been developed to explore LUC-related
GHG emissions. Approaches based on CGE models have
received much attention because they capture the inter-
sectoral and inter-regional market linkages within an
integrated economy (Section 2.1). This enables the assess-
ment of shifts in production of commodities toward other
regions as a result of the expansion of bioenergy produc-
tion. However, the results of these modeling efforts entail
large uncertainties related to the magnitude, type [refer-
ring to the conversion from one type of land use to
another (e.g., forest to agriculture; grasslands to agricul-
ture; or more detailed from one crop to another)], timing
and location and therefore also the impacts of LUC (Yeh
& Witcover, 2010; Wicke et al., 2012).

Computable general equilibrium model estimates of
LUC and related GHG emissions are heavily dependent
on the assumptions on yield levels (how much land is
required to meet the supply of commodities), land sup-
ply functions (how much land is available), conversion
elasticities (how easily one type of land use is converted
to another), and GHG emissions per conversion type.
CGE models generally apply regional aggregates for
land productivity, and are therefore not able to
differentiate the yield response to less or more suitable
biophysical conditions. Although for a given agro-
ecological zone (AEZ) and country, the representation
of average productivities of cropland and other land
uses in CGE models might provide a reasonable esti-
mate, more research is needed to assess how accurate
these aggregates are for assessing LUC induced by bio-
energy. The land availability in CGE models takes into
account the land that is not suitable for agricultural land
use and land that is excluded for conversion because of
policy reasons (e.g., conservation). However, several
categories of land that should be excluded may spatially
overlap (e.g., a conservation area on steep slopes) which
can be missed when assessing land availability in a sta-
tistical way. Despite recent refinements to differentiate
conversion elasticities for different regions and types of
LUC (Laborde & Valin, 2012; Taheripour & Tyner,
2013a), these models cannot account for the complex
interactions driving LUC between social, economic and
biophysical drivers (such as neighboring land use,
access to infrastructure, distance to markets, and land
suitability) operating at multiple temporal and spatial

scales and varying for different crops (Verburg et al.,
1999). Thus, the ability to project LUC from a sole eco-
nomic driver, as is currently done in CGE models, may
be limited (Plevin et al., 2010).

Spatially disaggregated modeling of LUC (e.g., land-
use allocation models based on cellular automata) are
not only spatially but often also temporally more
detailed than CGE models. These types of models are
used to allocate the different land uses (including those
for energy crop production) over time, applying several
biophysical and socio-economic drivers. Given the spa-
tial variation in biomass and soil carbon stocks, spatial
and bottom-up models are in many ways better tools to
assess the impacts of LUC on carbon stocks. The use of
this type of model could result in drastically different
land-use conversion patterns and related GHG emis-
sions compared to models at spatially more aggregated
levels (van der Hilst et al., 2014; Yui & Yeh 2013). How-
ever, our understanding of the drivers of LUC and how
they vary across time and space is still limited (Lambin
et al., 2001; Verstegen et al., 2012). In addition, the finest
spatial resolution is not always the best, as this depends
on the scale of the modeled processes, and the proper-
ties and quality of the input data (Hengl, 2006; Kim,
2013). A potential solution is multi-scale modeling,
which links models with different scales to account for
feedbacks between different scales, for example the
effect of global developments on local level impacts
(e.g., Verburg & Veldkamp, 2004; Hellmann & Verburg,
2011).

Model collaboration of economic, land-use allocation
and biophysical models and better integration of bot-
tom-up information can help to reduce (some of) these
shortcomings and uncertainties and could therefore
improve the estimations of LUC-related GHG emis-
sions. For example, the CGE and land-use allocation
models could be compared in terms of land excluded
from LUC, average yield levels, and average GHG emis-
sions per type of land conversion. A next step could be
to align and harmonize these key features in the
models. Thereafter, a comparison could be made on the
aggregated results of the models on amount and type of
land-use change and the related GHG emissions. A
more advanced way of model collaboration is the inte-
gration and iteration between models by exchanging
data between CGE, land-use allocation, and process-
based biophysical models and bottom-up assessments
of economic performance. An illustration of how
models can collaborate to achieve a more accurate
estimation of biofuels-induced LUC and related emis-
sions is depicted in Fig. 2. Such a modeling framework
would also allow assessing how a limitation to carbon
stock changes (such as a carbon policy) can affect LUC
and its emissions.
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Fig. 2 Illustration of model integration for the assessment of GHG emissions from land-use change. Data exchange can occur in sev-
eral ways. A crop growth model (1) can provide information on the spatial variation in yield levels. This information can be used in a
land-use allocation model (2), as it is essential for calculating the amount of hectares required to meet the demand [which is derived
from the CGE model (3)]. Iteration (4) between the land-use allocation model and the CGE model can be applied to harmonize the
average yield level to account for crop productivity that changes for the specific land allocated for conversion. A bottom-up economic
assessment (5) addressing the spatial variation in production costs could be used as an input for the land-use allocation model and
for the CGE model to assess the competition between land uses in every location. Also, calculated prices from CGE models could be
used as inputs to the land-use allocation model. A bottom-up model to calculate the change in carbon stocks (6) could be linked to a
land-use allocation model. It could be used to exclude land with high-carbon stocks for land conversions, which determines the land
availability in the land-use allocation model and the land asymptote in the CGE model. It could also be linked to the land-use alloca-
tion model, calculating the GHG emissions resulting from land-use change over time as demonstrated by van der Hilst et al. (2014).
Process-based technical data and other bottom-up information (7), for example, on crop productivity, economic performance of land
uses (cost-supply), transportation costs and GHG emissions related to the change in soil and biomass carbon emissions and costs of
production and transportation, feed into various other models.

Conclusions

This article assesses model collaboration as one option
for improved assessments of biomass supplies and their
impacts. Existing modeling approaches adopt different
perspectives (e.g., short term, long term; local, global;
and economic, physical) and have unique applications
and strengths. However, limitations specific to the mod-
eling approaches exist, which are partly related to the
type of tools and methods applied (e.g., partial repre-
sentation of sectors, lack of geographical details, and
aggregated representation of technologies involved). At
the same time, key questions related to a biobased
economy also remain to be answered in more compre-
hensive ways than has so far been possible. Model col-
laboration is an important method for addressing these
limitations and open questions. For example, model
comparison can reveal new insights into the drivers and

differences in results across approaches. However,
model comparison may not always be sufficient in the
case of major structural and technological change con-
cerning the agricultural system, land use, and the econ-
omy. Model integration is taking collaboration between
models a step further and can help provide more
comprehensive insights into linkages, feedbacks and
trade-offs between different systems and impacts (e.g.,
economic and natural). But ensuring consistency of data
and methodology within models, and balancing the
complexity of model integration, collaboration and vali-
dation on the one hand and credibility of results on the
other hand are examples of key challenges for this type
of work.

Given the different types of model collaboration and
their opportunities and limitations outlined in this
paper, for the specific question being asked, it must be
evaluated if and in what form model collaboration is an
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appropriate and useful tool. In those cases that full inte-
gration is considered useful, a key research challenge
relates to developing these coupled models. Such cou-
pled model systems most likely need to include
functionality for disaggregation or aggregation of infor-
mation (as socio-economic information might be pre-
sented at a different spatial and/or temporal resolution
than, for instance, land use information). Tools to cou-
ple different models are under development, but using
them in an effective way is still a challenge. First, there
are quite some technical obstacles in coupling models
from different disciplines as described in this paper.
Second, modelers might want to reconsider how to best
communicate their results of increasingly complex tools
to policy-makers. This is especially important in the
multifaceted and political debate about bioenergy. Now
policy-makers are often confronted with seemingly con-
trasting results of different studies. At least partly, these
differences originate from key assumptions made in the
analysis regarding, for instance, society’s ability to
implement sustainability criteria. Only if modelers are
successful in communicating how their results and
assumptions fit into the larger picture, will they contrib-
ute to the debate and decision-making in a constructive
manner.

Three examples of research areas that can benefit from
model collaboration are presented in this paper (devel-
opments in the livestock production; availability, use
and impacts of agricultural residues; and GHG emis-
sions from land-use change) and show how this cooper-
ation between models can strengthen our ability to
project biomass supply, demand, and impacts. This in
turn can aid in improving the information for policy-
makers and in taking better-informed decisions. The
examples also indicate that improved assessments neces-
sitate (i) a better understanding of underlying processes
to ensure proper representation of these processes in the
models, (ii) increased calibration and validation of mod-
els to increase accuracy and reliability, and (iii) extended
uncertainty analysis (including uncertainty propagation
throughout the whole modeling chain) to identify and
quantify the key input uncertainties, interpret the model
results, and prioritize future research activities.
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