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Occupational Exposure to Vapors, Gases,
Dusts, and Fumes Is Associated with Small
Airways Obstruction

To the Editor:

Various studies have shown that occupational exposures to vapors,
gases, dusts, and fumes or their composite measure (VGDF)
negatively affect FEV1 and the FEV1/FVC ratio, indicating
obstruction of predominantly the large airways (1–3). Recently we
have shown that occupational exposure to pesticides is associated
with substantial losses of large airway function in the general
population (3). The negative effects of occupational exposures on
the level of lung function were generally more pronounced in ever-
than in never-smokers, suggesting that cigarette smoke–induced
damage increases the susceptibility of the airways to other
exposures (3). In addition to interest in large airways obstruction,
there is considerable renewed interest in obstruction of the small
airways, since small airways obstruction is one of the three main
phenotypes of chronic obstructive pulmonary disease (COPD)
(4, 5).

Thus far, only one general population–based study in 1,735
individuals has shown associations of occupational exposure to
biological dust with forced expiratory flow between 25% and 75%
of FVC (FEF25–75), an indicator of small airways obstruction (1).
In addition, some small-scale studies in specific populations have
shown negative effects of specific occupational exposures on the
small airways, like nonasbestos mineral dusts (6), welding fumes
(7, 8), and pesticide exposure (9, 10). However, these studies
included individuals with large airways obstruction, or individuals
with reduced FVC that may affect levels of FEF25–75 values,
and were thus not specifically investigating small airway
obstruction.

We used data from 11,851 participants, 9,876 without large
airways obstruction, of the LifeLines population for which we have
estimated job-specific exposure to the composite measure VGDF
(and separately to subcategories biological dust, mineral dust, gases,
and fumes) and exposure to pesticides in general (and separately to
subcategories herbicides and insecticides) as no, low, and high (0/1/
2) exposure using the ALOHA1 job exposure matrix (JEM) (3).
We assessed associations between occupational exposures and
FEF25–75 (ml/s) levels using linear regression with adjustment for
sex, age, height, weight, current smoking, former smoking, and
(log) pack-years. Because of substantial co-exposure between the
specific occupational agents, we additionally adjusted the analyses
on the composite measure VGDF, biological dust, mineral dust,
gases, and fumes for co-exposure to pesticides, and conversely the
analyses on pesticides, herbicides, and insecticides were adjusted
for co-exposure to the composite measure VGDF (3).

Of the total of 11,851 subjects, 42% were male, median age
being 47 years (range, 18–89 yr), 57% being ever-smokers (median
number of pack-years, 10; range, 0–100). Mean FEV1 % predicted
was 102%, FEV1/FVC 76%, and FEF25–75 2.9 L/s (78% predicted).
Subjects without large airways obstruction (FEV1/FVC > 70%,
FEV1 > 80%; n = 9,876; 83%) had a median age of 46 years (range,
18–89 yr), 40% being male and 54% being ever-smokers (median
number of pack-years, 9; range, 0–84). In both groups, about 11
percent of the subjects were highly exposed to the composite
measure VGDF, whereas high exposure to pesticides in general was
less common (1%; Table 1).

Exposure to the composite measure VGDF, and to the
subcategories biological dust and gases and fumes, was associated
with lower FEF25–75 levels (Table 1). These associations remained
present when we restricted our analysis to subjects without
large airways obstruction (Table 1). Moreover, findings were
similar in ever- and in never-smokers (Figure 1) and when
adjusted for FVC. Occupational exposure to pesticides in
general and to the subcategories herbicides and insecticides
tended to be associated with lower FEF25–75 in the whole
group, yet these associations largely disappeared when the
analysis was restricted to subjects without large airways
obstruction (Table 1).

It is known that occupational exposure to vapors, gases,
dusts, and fumes affects large airway function and increases the
risk for spirometry-defined COPD (1–3, 11, 12). With the present
letter we add to this knowledge by showing that the small airways
are affected by occupational exposure to the composite measure
VGDF, and also to the subcategories biological dust, gases,
and fumes. Importantly, we find these associations in subjects with
normal FEV1/FVC and FEV1 % predicted values as well, indicating
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that effects of exposure to vapors, gases, dusts, and fumes on the
small airways are a primary response and independent from
effects on the large airways. The observed associations were

found to be independent of smoking habits, which is in
contrast to our previous findings on large airways obstruction,
where we found significant differences between ever-smokers

Table 1: Associations between Occupational Exposures and Level of FEF25-75 (ml/s) for the Whole Sample and for Subjects without
Large Airways Obstruction (FEV1/FVC > 70%, FEV1 > 80%)

FEF25-75 (ml/s)

All (n = 11,851) Without large airways obstruction (n = 9,876)

Exposure* b (95% CI) P Value n (%) b (95% CI) P Value n (%)

VGDF
Nonexposed Ref. 6,534 (55) Ref. 5,513 (56)
Low 247 (283; 210) 0.012 3,985 (34) 239 (274; 24) 0.031 3,325 (34)
High 2157 (2220; 293) <0.001 1,332 (11) 2102 (2166; 239) 0.001 1,038 (11)

Biological dust
Nonexposed Ref. 8,127 (69) Ref. 6,787 (69)
Low 217 (256; 22) 0.389 3,256 (28) 218 (255; 19) 0.343 2,707 (27)
High 284 (2186; 17) 0.104 468 (4) 2143 (2244; 243) 0.005 382 (4)

Mineral dust
Nonexposed Ref. 9,389 (79) Ref. 7,907 (80)
Low 262 (2109; 215) 0.009 1,924 (16) 238 (283; 8) 0.104 1,551 (16)
High 269 (2162; 24) 0.148 538 (5) 12 (279; 104) 0.790 418 (4)

Gases/Fumes
Nonexposed Ref. 7,007 (59) Ref. 5,905 (60)
Low 251 (288; 214) 0.006 4,159 (35) 246 (218; 210) 0.011 3,446 (35)
High 2137 (2212; 262) <0.001 685 (6) 259 (2134; 15) 0.118 525 (5)

All pesticides
Nonexposed Ref. 11,369 (96) Ref. 9,494 (96)
Low 273 (2174; 29) 0.162 370 (3) 2115 (2214; 216) 0.023 303 (3)
High 293 (2270; 83) 0.300 112 (0.9) 0 (2184; 184) 0.999 79 (0.8)

Herbicides
Nonexposed Ref. 11,680 (99) Ref. 9,754 (99)
Low 296 (2258; 65) 0.243 132 (1) 2105 (2267; 57) 0.204 101 (1)
High 2193 (2485; 99) 0.195 39 (0.3) 218 (2131; 567) 0.220 21 (0.2)

Insecticides
Nonexposed Ref. 11,425 (96) Ref. 9,540 (97)
Low 271 (2181; 39) 0.206 315 (3) 2114 (2221; 27) 0.036 258 (3)
High 290 (2267; 87) 0.320 111 (0.9) 13 (2172; 198) 0.890 78 (0.8)

Definition of abbreviation: VGDF = the composite measure of vapors, gases, dusts, and fumes.
Statistically significant associations are depicted in bold (P values , 0.05).
*Occupational exposures (no/low/high) were estimated based on job title and function using the ALOHA1 job exposure matrix. Nonexposed subjects
were assigned as reference category (Ref).
The linear regression model was adjusted for sex, age, height, weight, current smoking, former smoking, and (log) pack-years. The analyses on biological
dust, mineral dust, gases and fumes, and the composite measure VGDF were additionally adjusted for pesticide exposure, whereas the analyses on
pesticides, herbicides, and insecticides were additionally adjusted for exposure to the composite measure VGDF.

Figure 1. Associations between occupational exposures and level of FEF25–75 (ml/s) for subjects without large airways obstruction (FEV1/FVC > 70%,
FEV1 > 80%), stratified by smoking status (never/ever). Associations are shown for no (reference: set on 0), low, and high exposure to the composite
measure vapors, gases, dusts, and fumes (VGDF), and the subcategories biological dust, mineral dust, gases and fumes, pesticides in general, and the
subcategories herbicides and insecticides.
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and never-smokers (3). The lack of effects of smoking on small
airways function in interaction with occupational exposure is in
line with a previous study investigating biological dust (1).

Although exposure to pesticides was strongly and consistently
associated with level of FEV1 in our previous cross-sectional study
(3), the trend for an association with FEF25–75 did not reach
statistical significance and disappeared when analyses were
restricted to subjects without large airways obstruction. In line
with our findings, a study from Sri Lanka found no significant
reduction in FEF25–75 levels of farmers exposed to pesticides,
whereas there was a significant effect on FEV1 and FVC levels
(13). It may be that the aerodynamic diameter of the pesticide
aerosols results in deposition mainly in the larger airways. A
study assessing different types of pesticides and agricultural
application methods showed that aerosols had a median
aerodynamic diameter ranging from 4 to 16 mm (14), whereas for
example fibrous dust has an aerodynamic diameter less than 3 mm
and the majority of welding aerosols have an aerodynamic
diameter less than 1mm (15).

In conclusion, with the current study we show that occupational
exposure to vapors, gases, dusts, and fumes induces small airways
obstruction independently of large airways obstruction in both
ever- and never-smokers. Loss and narrowing of the small airways
is seen in patients with mild COPD even before the onset
of emphysematous destruction, and becomes increasingly evident
in severe COPD (4). Therefore, small airway obstruction should
be taken into account when monitoring respiratory health of
workers that are exposed to vapors, gases, dusts, and fumes. n
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Successful Management of a Chronic,
Refractory Bronchopleural Fistula with
Endobronchial Valves followed by Talc
Pleurodesis

To the Editor:

Lymphangioleiomyomatosis (LAM) is a rare, neoplastic lung disease
that affects women more often than men, and is associated with
cystic destruction of the lung (1, 2). Over 65% of patients with LAM
develop pneumothorax during the course of their illness, followed
by two or more recurrences, on average (3, 4). An attempt at
pleural symphysis with the first pneumothorax is therefore
recommended, despite pleurodesis failure rates that exceed those of

most other chronic lung diseases (3). The following case describes
the use of one-way endobronchial valves to treat a persistent
bronchopleural fistula that had failed to resolve after multiple
prior medical and surgical management approaches.

The patient was a 39-year-old nonsmoking female physician
who developed a spontaneous right pneumothorax. Computed
tomography (CT) scanning of the chest revealed a large collection of
air in the right anterior hemithorax, and numerous large round cysts
varying in size from 3 mm to 4.6 cm (Figure 1A). Because of
the unusual cyst dimensions, and an atypical basilar and peripheral
distribution, the patient was initially thought to have Birt-Hogg-
Dubé syndrome, but genetic testing for folliculin mutations was
negative. Her pulmonary function tests were normal, and the
pneumothorax was treated with simple chest tube drainage. She
developed a recurrent right-sided pneumothorax 6 months later,
treated initially for 2 days with small-bore chest tube drainage as an
inpatient and continuing for 5 days after discharge with Heimlich
valve–regulated drainage. She developed shortness of breath and
decreased exercise tolerance 3 days after the chest tube was
removed. She was found to have a right-sided pneumothorax and

Figure 1. (A) Large right-sided pneumothorax (arrow) and multiple cystic lesions (arrow) were later confirmed to be due to lymphangioleiomyomatosis.
Recurrent right-sided pneumothorax presented with dyspnea on exertion and reduction in forced vital capacity. Posteroanterior (B) and lateral (C)
chest radiograph showed a right pleural effusion (arrow), but pneuomothorax was not readily apparent. Coronal (D) and sagittal (E) images from
a computed tomography (CT) scan of the chest revealed a large anterior pleural air collection (D, arrow), and leftward mediastinal shift consistent with
tension pneumothorax (E, arrow). (F) CT scan showing complete resolution of right-sided pneuomothorax 3 months after second endobronchial
valve replacement and talc pleurodesis. A collection of talc within the fissure is visible (arrow).
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