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This article describes a technique to analyze randomized response data using avail-
able structural equation modeling (SEM) software. The randomized response tech-
nique was developed to obtain estimates that are more valid when studying sensitive
topics. The basic feature of all randomized response methods is that the data are de-
liberately contaminated with error. This makes it difficult to relate randomized re-
sponses to explanatory variables. In this tutorial, we present an approach to this prob-
lem, in which the analysis of randomized response data is viewed as a latent class
problem, with different latent classes for the random and the truthful responses. To il-
lustrate this technique, an example is presented using the program Mplus.

When a survey studies socially sensitive topics, this can cause substantial non-
response, including item nonresponse for the sensitive questions, or result in so-
cially desirable answers (Lee, 1993). One way to deal with these problems is to use
Warner’s (1965) randomized response technique. In Warner’s original format the
respondent had to answer one of two statements, for example, statement A “I took
hard drugs last year” with known probability p, or statement B, the complementary
statement, “I did not take hard drugs last year,” with known probability 1 – p. A
randomizing device (most often dice) is used to decide whether statement A or B
has to be answered. Because the researcher does not know the number that the re-
spondent has thrown, the respondent’s privacy is fully protected, but on the aggre-
gate level the probability of hard drug use can be estimated.

After Warner, other randomized response designs have been developed. One of
the more statistically and psychologically efficient designs is the forced response
technique developed by Boruch (1971). In this technique, respondents are con-
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fronted with only one sensitive question and asked to reply dependent on the out-
come of two dice. When the dice produce 2, 3, or 4, the respondent is forced to an-
swer yes, regardless of his or her own true answer. The probability of giving a
forced yes answer is given by θ (= 1/6). When the dice produce 5 to 10 the respon-
dent is required to answer the question truthfully with probability ptrue (= 3/4).
When the dice produce 11 or 12, the respondent is forced to answer no, again re-
gardless of his or her own true answer, with probability 1 – ptrue – θ (= 1/12). The
psychological advantage of using two dice is that respondents tend to underesti-
mate the probability of throwing 5 to 10 and, therefore, feel more protected than
they objectively are (Fox & Tracy, 1986).

Although for individual respondents the true state is unknown, the prevalence
of the sensitive behavior in a population (�π) can be estimated as

where �λ is the observed proportion of yes answers in the sample, with sampling
variance

RELATING RANDOMIZED RESPONSE DATA
TO EXPLANATORY VARIABLES

A drawback of the randomized response technique (RRT) is that it is difficult to re-
late the population estimates of the sensitive behavior to explanatory variables.
Special logistic regression techniques have been used for this purpose (Maddala,
1983; Scheers & Dayton, 1988; Van der Heijden, van Gils, Bouts, & Hox, 2000).
However, these techniques are not generally accessible, for instance because they
use proprietary software.

In this tutorial, we present a way to analyze the relations between randomized
response estimates and explanatory variables using standard structural equation
modeling (SEM) software. This becomes possible when the analysis of random-
ized response data is viewed as a latent class problem. Latent class analysis as-
sumes that each individual in the sample belongs to class g of G classes with proba-
bility pg, with Σpg = 1. Van den Hout and van der Heiden (2004) described the RRT
as a latent class problem using the concept of misclassification, because mis-
classification and randomized response data have in common that they all deal
with a finite mixture of distributions. They showed that a transition matrix with
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conditional misclassification can describe the perturbation due to the RRT and that
with the use of an Expectation = Maximization (EM) algorithm loglinear models
can be estimated.

Our approach is a little different; we employ latent class SEM. Latent class
SEM assumes that a different structural equation model characterizes each latent
class g. A latent categorical variable is used to indicate the latent classes. If latent
class analysis is used to model randomized response data, it is in fact known that
the sample contains two classes of respondents, with unknown membership. Those
respondents that were required to provide a yes or no answer based on the dice roll
form one latent class, with random responses coded 1 and 0. Those respondents
who were required to provide an honest answer to the real question form the sec-
ond latent class, with responses that reflect their true state of affairs and are, there-
fore, potentially related to explanatory variables.

Although randomized response questions can use continuous answer categories
(usually asking about the frequency of specific deviant behavior), they are almost
always using a dichotomous yes or no question format.

Latent class problems can be analyzed using Mplus (Muthén & Muthén, 1998).
In Mplus, categorical, ordered, or continuous outcome variables can be modeled
by specifying a dichotomous latent class variable as the outcome and by using the
observed dichotomous randomized response variable as a latent class indicator. In
the latent class for the random responses, the structural model is empty. In the la-
tent class for the truthful responses, the structural part is a regression model that re-
gresses the latent categorical variable on the explanatory variables.

EXAMPLE WITH SIMULATED DATA

To gauge the performance of Mplus with randomized response data, we gener-
ated a data set with randomized response data. We generated 300 cases giving
random dichotomous responses Y with p(Y = 1) = 0.5 (θ = .15) and 700 cases
giving truthful dichotomous answers with p(Y = 1) = 0.2 (ptrue = .7). For all
cases, a standard normal explanatory variable Z was generated. In the random re-
sponse class, Z is uncorrelated with the outcome Y, but in the true response class
Z correlates 0.5 with the continuous latent variable underlying the observed di-
chotomous responses Y. Therefore, this data set represents a situation in which
the sensitive behavior has a prevalence of .2 and it is related to an explanatory
variable Z with r = .5.

For the mixture model logistic regression analysis, we specify two classes. In
the truthful response class, a logistic regression model is estimated. In the ran-
dom response class, the regression parameters are constrained to the true popula-
tion values of a zero intercept (the logit of the known yes proportion of 0.5), and
a zero slope for Z. The Appendix presents the Mplus commands used to analyze
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this model. Mplus estimates the class sizes as 756 in the truthful response class
and 243 in the random response class, which is reasonably close to the true
values of 700 and 300. The estimated parameters for each class are presented in
Table 1.

The predictor variable Z is standard normal. The threshold parameter can be in-
terpreted as the estimated proportion of zero in the population on the logit scale;
transformed to proportions, it equals 0.86. Using the standard error for the thresh-
old we can determine the 95% confidence interval (CI) on the logit scale; trans-
formed to proportions, we find a 95% CI that ranges from 0.69 to 0.91. The known
true value of negative answers is 0.80, which is in the middle of the 95% CI.

How is the estimate for the sensitive behavior Y related to the explanatory vari-
able Z? Z is standard normal distributed with a mean of zero and a standard devia-
tion of one. Respondents with a score on Z that is 1 SD above this mean have a
probability of .65 to be engaged in the sensitive behavior Y. Respondents that score
1 SD lower than the mean of Z have a probability that is close to zero (.01) to be en-
gaged in the sensitive behavior Y (Table 2).

DISCUSSION

Structural equation mixture modeling using Mplus is not the only available ap-
proach to analyzing randomized response data. However, SEM in Mplus makes it
possible to embed the logistic regression part in a larger structural model. Thus,
one can simultaneously analyze the responses to more than one randomized re-
sponse question or impose constraints across latent or manifest groups.
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TABLE 1
Mixture Model Logistic Regression Artificial Data

Class Predictor B SE Odds Ratio

1 Threshold 1.83 0.53
Z 1.56 0.46 4.76

2 Threshold 0 —
Z 0 —

TABLE 2
Interpretation of the Mplus Analysis

pY when Z < +1SD PY pY when Z > –1SD

.01 .20 .65



In randomized response research, a known randomizing process, such as the
dice mentioned previously, decides class membership. Therefore, the fraction of
the population in each class is known. Mplus currently does not allow imposing
constraints on the size of the latent classes, but the proportions of the sample esti-
mated for each latent class can be checked against the known class probabilities. In
addition, in the mixture model, class membership for individuals is not known but
can be inferred from the data. For each individual in the data set, the probability of
belonging to each of the latent classes can be computed. This could be useful for
diagnostic purposes. Other uses of this model feature should in our view be re-
stricted for ethical reasons; firm attempts to identify the individuals’ class mem-
bership conflicts with the privacy guarantee assured in the randomized response
method.
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APPENDIX

Mplus commands for the simulated data

TITLE:

DATA:
FILE IS “d:\simu1000.dat”;

VARIABLE:
NAMES ARE idnr pred response;
USEVARIABLES ARE pred response;
CATEGORICAL ARE response;
CLASSES = c(2);

ANALYSIS:
TYPE IS MIXTURE;
LOGHIGH = +15;
LOGLOW = –15;
UCELLSIZE = 0.01;
ESTIMATOR IS MLR;
LOGCRITERION = 0.0000001;
ITERATIONS = 100000;
CONVERGENCE = 0.000001;
MITERATIONS = 50000;
MCONVERGENCE = 0.000001;
MIXC = ITERATIONS;
MCITERATIONS = 2;
MIXU = ITERATIONS;
MUITERATIONS = 2;

OUTPUT: SAMPSTAT;

MODEL:
%OVERALL%
[response$1*1.5];
response on pred*1;
%c#2%
response on pred@0;
[response$1@0];

620 HOX AND LENSVELT-MULDERS


