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ABSTRACT

Music as a form of art is intentionally composed to be emo-
tionally expressive. The emotional features of music are in-
valuable for music indexing and recommendation. In this
paper we present a cross-comparison of automatic emotional
analysis of music. We created a public dataset of Creative
Commons licensed songs. Using valence and arousal model,
the songs were annotated both in terms of the emotions that
were expressed by the whole excerpt and dynamically with 1
Hz temporal resolution. Each song received 10 annotations
on Amazon Mechanical Turk and the annotations were av-
eraged to form a ground truth. Four different systems from
three teams and the organizers were employed to tackle this
problem in an open challenge. We compare their perfor-
mances and discuss the best practices. While the effect of a
larger feature set was not very apparent in the static emo-
tion estimation, the combination of a comprehensive feature
set and a recurrent neural network that models temporal
dependencies has largely outperformed the other proposed
methods for dynamic music emotion estimation.

Categories and Subject Descriptors

H5.5 [Information storage and retrieval]: Content Anal-
ysis and Indexing
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1. INTRODUCTION
Music as an art is inherently emotionally expressive. The

emotional characteristics of music are invaluable for music
indexing and recommendation. There are however a num-
ber of challenges in identifying the emotion expressed by
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music. As such, a considerable amount of work has been
dedicated to the development of automatic music emotion
recognition (MER) systems [2, 10]. This paper presents a
cross-comparison of the four different systems proposed to
perform this task. The valence-arousal (V-A) model of emo-
tion is used in this work. This is a dimensional model of
emotion, in which valence ranges from unpleasant to pleas-
ant emotions, and arousal indicates emotional intensity from
passive to activated.

The Emotion in Music task was presented in the open
challenge1 MediaEval 2013 benchmarking initiative for mul-
timedia evaluation. The only other evaluation task for MER
is the audio mood classification (AMC) task of the annual
music information retrieval evaluation exchange (MIREX),2

which offers the possibility of analyzing the annotated au-
dio files (totaling 600 excerpts) on their own restricted access
server. However, AMC describes emotions using five discrete
emotion clusters instead of affect dimensions, which do not
have origins in psychological research, and some have noted
semantic or acoustic overlap between clusters [4]. Further-
more, the dataset only applies a singular static rating per
audio excerpt, which belies the time-varying nature of music.

Our new benchmarking corpus employs music licensed un-
der Creative Commons (CC),3 enabling us to redistribute
the content, from the Free Music Archive (FMA),4 an on-
line library of high-quality music. A 45 seconds excerpt was
extracted from a random point of each song to reduce the
annotation load and make a uniform dataset. To collect
annotations, we have turned to crowdsourcing using Ama-
zon Mechanical Turk (MTurk),5 which was successfully used
by others to label large libraries [7]. We have developed a
two-stage procedure for filtering out poor quality workers,
where workers must first pass a test demonstrating a thor-
ough understanding of the task, and an ability to produce
good quality work. Each excerpt is annotated by a minimum
of 10 workers, which is substantially larger than any existing
music dataset with dynamic annotations of emotion.

2. DATASET AND TASK DESCRIPTION
The task, presented at MediaEval 2013, was composed of

two subtasks. In the first task, the dynamic emotion char-
acterization task, arousal and valence were estimated for
the given song dynamically in time, with temporal resolu-

1http://www.multimediaeval.org
2http://www.music-ir.org/mirex/wiki
3http://www.creativecommons.org
4http://www.freemusicarchive.org
5http://www.mturk.com
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tion being one second. The second task, the static emotion
characterization task, required participants to deploy mul-
timodal features to automatically detect the overall valence
and arousal for each song. We initially developed a dataset
of 1,000 songs. However, a set of duplicates were later dis-
covered and removed, which reduced the size of the dataset
to 744 songs. The dataset was split between the develop-
ment set (619 songs) and the evaluation set (125 songs).
The dynamic annotations were collected using a web-interface

on a scale from −1 to 1, where the Mechanical Turk workers
could dynamically annotate the songs on valence and arousal
dimensions separately while the song was being played. The
static annotations were made on nine-point scale on valence
and arousal for the whole 45 seconds excerpts after the dy-
namic annotations. We also collected data on other factors
that may affect annotations. To estimate annotator’s cur-
rent mood, we use an implicit mood assessment method [5],
asking a worker to choose to which extent an artificial no-
word, e.g., “smon”, “twus”, or “bimp”, expresses a mood.
The mood words were “energetic,” “aggressive,” “helpless,”
“nervous,”“passive,”“pleased” and “relaxed,” with the four
possible answers ranging from “not at all” to “to a great
extent.” In addition, we automatically collected the time of
day in order to study its effect on emotional annotation. For
a detailed description of the crowdsourcing techniques em-
ployed and dataset statistics we refer the reader to [6]. The
database is freely available on the internet6.

2.1 Data analysis
In order to measure the inter-annotation agreement, we

calculated Krippendorff’s alpha on an ordinal scale for the
static annotations. The Krippendorff’s alpha for the static
annotations on the whole excerpts were 0.54 for valence and
0.55 for arousal, which are in the range of moderate agree-
ment. For the dynamic annotations, we used Kendall’s co-
efficient of concordance (Kendall’s W ) with corrected tied
ranks to measure inter-annotation agreement. Kendall’s W
is a non-parametric rank based measure and is a good in-
dicator of the agreement between the shapes of the time
series generated by dynamic annotations, which is more im-
portant than the worker related constant bias. Kendall’s
W was calculated for each song separately after discarding
the annotations of the first 5 seconds. The average W is
0.17± 0.18 for arousal and 0.21± 0.22 for valence. The ob-
served agreement was statistically significant (p-value<0.05)
for arousal in 70.4% of songs and for valence in 75.5% of
songs. Kendall’s W showed that agreement among arousal
annotations compared to the valence annotations is almost
equal for the static annotations and lower for the dynamic
annotations. This shows that the workers were more consis-
tent in following the valence trends dynamically.
We have discarded the first 5 samples of dynamic anno-

tations, taking into account the reaction time of the raters.
However, this number was chosen arbitrarily, based on our
own experience. In order to investigate how long it takes
for the raters to get a stable understanding of songs’ emo-
tional expressions, we calculated the Krippendorff’s alpha
on interval scale for all the songs and for all the time sam-
ples for both valence and arousal. The results are shown in
Figure 1, which shows that valence inter-annotator agree-
ment stabilizes around 10 seconds whereas the arousal dy-
namic annotations take longer to stabilize. This might be

6http://cvml.unige.ch/databases/emoMusic/
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Figure 1: Krippendorff’s alpha of dynamic annota-
tions averaged over all dynamic samples.

one of the reasons for higher inter-annotator agreement for
dynamic valence annotations. We hence conclude that we
should have discarded the first 10 to 20 seconds to have more
reliable dynamic labels.

A mixed linear model was utilized to study the effect
of different independent variables on the annotations, once
for the static arousal scores and once for the static valence
scores. In this model, the independent variables were con-
sidered as fixed effect. The independent variables were time
of the day, as a nominal variable in hours, and mood scores,
as an ordinal variable on four-point scale, assigned to non-
words, e.g., aggressive and energetic. The effect of songs and
workers were considered as random effects in the model. We
only considered the intercepts to change by the random ef-
fects and not the slopes. An analysis of variance (ANOVA)
test on the coefficients found some of them to be significantly
different from zero and therefore have significant effect on
arousal, namely, time of day (F (23) = 2.35, p < 3 × 10−4),
and energetic (F (3) = 3.31, p < 0.02) mood score. Mood
and time of day did not have any effect on valence.

The averaged dynamic annotations were strongly corre-
lated with the static scores (ρarousal = 0.95 and ρvalence =
0.94). Given that the dynamic annotations were done before
the static ones this shows that the overall impression of the
annotators stayed stable throughout the annotation session.

3. METHODS
The ground truth for the first dynamic task consists of 40

values corresponding to the last 40 seconds of the excerpts,
that were averaged across workers. For the static task, we
averaged ratings given by the workers to the whole excerpts
on both valence and arousal.

To evaluate the estimation models from content features
the R2 statistics and root-mean-square error (RMSE) are
reported for static estimation and averaged correlation (ρ̄)
and RMSE are reported for dynamic estimation. Averaged
correlation is a measure of the similarity of the trends and
waveforms, whereas the RMSE provides an estimate of how
far off the estimations were. The reported measures on dy-
namic annotated data are averaged for all the excerpts. Ran-
dom level results are calculated by setting the target to the
average score in the development set.

3.1 Baseline method
A simple baseline system was developed by the task orga-

nizers to provide a baseline to the participants to beat and
compare how well their models are performing. In the fol-
lowing, in conjunction with acoustic feature selection, mul-
tivariate linear regression (MLR) was used as the baseline
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algorithm because of its relatively low computational com-
plexity and its effectiveness. The MLR was trained on the
development set and evaluated on the evaluation set.
For the Baseline system we extracted the following fea-

tures from the audio signals: Mel-frequency cepstrum co-
efficients, chromagram, octave-based spectral contrast and
statistical spectrum descriptors, such as spectral centroid,
flux, rolloff and flatness. The Echonest7 API was used to
generate additional timbre, pitch and loudness features.

3.2 TUM system
Technische Universität München (TUM) team’s approach

is based on supra-segmental features calculated by apply-
ing statistical functionals to the contours of frame-wise low-
level descriptors (LLDs) over either one-second segments or
whole songs. It has been shown in [9] that this set of af-
fective features provides robust cross-domain assessment of
emotion (continuous valence and arousal) in speech, music
and acoustic events. Despite its rather ‘brute-force’ nature,
it outperformed a hand-crafted set of musically motivated
features for MER [9].
The set contains 6,373 features. LLDs include auditory

weighted frequency bands, their sum (corresponding to loud-
ness), spectral measures such as centroid, skewness and sharp-
ness. Furthermore, voicing related LLDs such as fundamen-
tal frequency (corresponding to ‘main melody’) and harmonics-
to-noise ratio (corresponding to ‘percussiveness’) are added.
Delta regression coefficients are added to capture time dy-
namics. Statistical functionals include for example mean,
moments, quartiles, as well as contour related measurements
such as rise and fall times, amplitudes of local maxima, and
linear and quadratic regression coefficients. An exhaustive
list and a detailed analysis of feature relevance for MER can
be found in [9].
TUM used support vector regression (SVR) for song-level

regression and bidirectional long short-term memory recur-
rent neural networks (BLSTM-RNNs) for dynamic regres-
sion. In addition, to improve modeling of the dynamic emo-
tion profile, TUM investigated adding delta regression co-
efficients of the valence and arousal targets as additional
regression tasks. The complexity constant for SVR training
was varied from 10−4 to 10−1. BLSTM-RNNs with two hid-
den layers (128 LSTM units per layer and direction) were
used. Therefore, the first layer performs information reduc-
tion to a 128-dimensional feature set. The segments of each
song were processed in order, forming sequences. Gradient
descent with 25 sequences per weight update was used for
training. An early stopping strategy was used, using a held
out validation set in each fold. To alleviate over-fitting to
the high dimensional input feature set, Gaussian noise with
zero mean and standard deviation 0.6 was added to the in-
put activations, and sequences were presented in random
order during training. Ten BLSTM-RNN were trained on
the ten training folds of the development set; segment level
predictions were averaged across networks.

3.3 UAizu system
University of Aizu team (UAizu) proposed the following

approach. Features were extracted from excerpts downsam-
pled to 22,050 kHz. UAizu tried various standard features
such as MFCC, line spectral pairs, chromagram, timbre fea-
tures such as spectral centroid, flux and zero crossing rate),

7http://www.echonest.com/

spectral crest factor and spectral flatness measure. All fea-
ture vectors were calculated using the Marsyas toolbox [8]
with 512-sample frames with no overlap. For the dynamic
emotion estimation task, first order statistics (mean and
standard deviation) of the feature vectors were calculated
for a window of about 1 second giving 45 vectors per ex-
cerpt. For the static emotion estimation, the same statistics
for these 45 vectors were calculated, resulting in a single
high dimensional feature vector per song.

Valence and arousal were modeled by separate Gaussian
process regression (GPR). UAizu used standard Gaussian
likelihood function which allows exact inference to be per-
formed. The GP mean was set to zero and the type of covari-
ance kernel was set a composite function including the sum
of squared exponential (SE) and rational quadratic (RQ)
function defined as follows:

• SE: k(x,x′) = σ2 exp(−(x− x′)T (x− x′)/2l2)

• RQ: k(x,x′) = σ2(1 + (x− x′)T (x− x′)/2αl2)−α

where σ and l are parameters learned from the training data.

3.4 UU system
Utrecht University (UU) team used two MATLAB tool-

boxes, the MIRtoolbox [3] and the PsySound [1], to extract
42 audio features. The features include low-level spectral
features, as well as some high level harmonic and rhyth-
mic features such as harmonic change detection function
(HCDF) [3], and dynamic loudness (using the model of Chalup-
per and Fastl [1]). For the dynamic task, the features were
extracted from every second of the audio with no overlap;
for the static task, the averaged features and their standard
deviation was used.

UU discovered some outliers in the data, containing speech,
noise and clapping. The most influential ones were removed
by calculating Cook’s distance for each data point for both
valence and arousal regressive models. The outlier points
with Cook’s d > 0.05 both for valence and arousal (4 files)
were removed, which increased prediction accuracy.

UU used M5 algorithm to select features. M5 removes the
weakest features until no improvement is observed in the es-
timate of the error given by the Akaike information crite-
rion. For valence, 24 features were selected; for arousal, 27
features out of 42. Among the most important features were
loudness (accounted for 44% of variance in case of arousal
and 9% of variance in case of valence), spectral centroid,
entropy, spectral spread and HCDF.

The dynamic valence and arousal were estimated using
SVR with the RBF kernel using WEKA8, where parameters
were optimized manually.

4. RESULTS AND DISCUSSION
All the static and dynamic annotations and subsequently

the predictions were scaled between [−0.5, 0.5]. A summary
of the results is given in Table 1. Both in the static and
dynamic task, the arousal estimations are far better than
valence estimations. All the RMSE for dynamic estimations
of valence and arousal for the three submissions are signif-
icantly lower (one-sided Wilcoxon test p-value<0.01) than
the random level (averaged training targets) and than the
Baseline. The simple Baseline system was able to perform
better than random for arousal but fell short of performing

8http://www.cs.waikato.ac.nz/ml/weka/
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Table 1: To evaluate the estimation models from
content features the R2 statistics and root-mean-
square error (RMSE) are reported for static esti-
mation and averaged correlation (ρ̄) and RMSE for
dynamic estimation. τ̄ is the normalized ranking
distance of the retrieved songs using emotions. For
RMSE and τ̄ , smaller is better and for R2 and ρ̄
larger is better, where RMSE,R2, τ̄ ∈ [0, 1], ρ̄ ∈ [−1, 1].
Acronyms: RND: random level, BSL: Baseline

(a) Static

Run
Arousal Valence Ranking Dist.

RMSE R2 RMSE R2 τ̄

RND 0.16 0 0.15 0 0.43

BSL 0.12 0.48 0.15 0 0.40

TUM 0.10 0.59 0.11 0.42 0.34

UAizu 0.10 0.63 0.12 0.35 0.35

UU 0.10 0.59 0.12 0.31 0.35

(b) Dynamic

Run
Arousal Valence

RMSE ρ̄ RMSE ρ̄

RND 0.25± 0.13 0.10± 0.33 0.23± 0.11 0.05± 0.31

BSL 0.25± 0.11 0.16± 0.36 0.23± 0.10 0.06± 0.30

TUM 0.08± 0.05 0.31± 0.37 0.08± 0.04 0.19± 0.43

UAizu 0.10± 0.05 0.11± 0.36 0.09± 0.05 0.06± 0.28

UU 0.10± 0.06 0.14± 0.28 0.12± 0.07 −0.01± 0.27

better than random for valence estimation for both static
and dynamic subtasks. However, their correlations vary by
submissions and emotion dimensions. For the static sub-
task, all submissions outperformed the provided Baseline.
The dynamic subtask appeared to be more challenging and
only TUM could consistently beat the baseline performance.
The BLSMT-RNN takes advantage of temporal dependen-
cies, which is not supported by MLR, SVR or GPR that was
used in the Baseline, UAizu and UU systems.
Although the inter-annotator agreement of valence is higher

for the dynamic task, the accuracy of arousal prediction is
still higher than that of valence in both static and dynamic
tasks, which is consistent with results reported in the liter-
ature [2]. The more comprehensive set of features in TUM
could outperform the other systems in the static estimation
of valence but not arousal. The combination of a large fea-
ture set and a recurrent neural network has largely outper-
formed the other proposed methods for dynamic music emo-
tion estimation. Although it is important to have a model
that is intuitive, in practice it is still advantageous to extract
a large number of audio features and feed them into a so-
phisticated machine learning model. UU team also showed
that outlier removal and feature selection can improve the
performance.
In order to test whether theR2 and RMSEmetrics are rep-

resentative for real use cases of music information retrieval,
we calculated the averaged Kendall Tau τ̄ normalized rank-
ing distance (the smaller the better) of a hypothetical re-
trieval system as follows. Any given song in the evaluation
set was taken as a query by example given to a system that
indexes songs based on valence and arousal scores. We then
calculated the ranked retrieved results based on their simi-
larity defined by the Euclidean distance of the songs to each
other with static valence and arousal scores as features. The

ground truth ranking to which the ranking distance was cal-
culated was created based on the ground truth annotations
whereas the second ranking was based on the estimated va-
lence and arousal scores by regression models. The results
are shown in the last column of Table 1(a). The averaged
ranking distances (τ̄) are consistent with the regression eval-
uation metrics we employed.

From the experience of collecting this dataset we found
it important to carefully listen to the audio files to remove
outliers and duplicates. Moreover, in order to get a more
stable dynamic annotation, we should discard the first few
seconds of the annotations; we regret that we only experi-
mented with the case of dropping the first 5 seconds albeit
our analysis shows dropping 10 to 20 seconds might be bet-
ter. Our current study only identifies a few user factors
that have some influence on the behavior/preference of the
annotators in emotion annotation. In future work, we will
explore more factors such as the credential of an MTurk
worker, personality traits, gender, age, musical expertise,
active musicianship, broadness of taste and familiarity with
music.

5. SUMMARY
In this paper, we have presented a comparative study of

four systems for automatic music emotion recognition, which
employ different feature sets and training schemes. The
study is conducted on a novel dataset of substantial size
of music dynamically annotated with emotion, with a de-
tailed discussion of the implications of the results. We hope
this study can contribute to the advancement of affective
analysis in music and other art forms.
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