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Calibrating a large-extent high-resolution coupled groundwater-land
surface model using soil moisture and discharge data
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[1] We explore the possibility of using remotely sensed soil moisture data and in situ
discharge observations to calibrate a large-extent hydrological model. The model used is
PCR-GLOBWB-MOD, which is a physically based and fully coupled groundwater-land
surface model operating at a daily basis and having a resolution of 30 arc sec (about 1 km at
the equator). As a test bed, we use the combined Rhine-Meuse basin (total area: about
200,000 km?), where there are 4250 point-scale observed groundwater head time series that
are used to verify the model results. Calibration is performed by simulating 3045 model
runs with varying parameter values affecting groundwater head dynamics. The simulation
results of all runs are evaluated against the remotely sensed soil moisture time series of SWI
(Soil Water Index) and field discharge data. The former is derived from European Remote
Sensing scatterometers and provides estimates of the first meter profile soil moisture content
at 30 arc min resolution (50 km at the equator). From the evaluation of these runs, we then
introduce a stepwise calibration approach that considers stream discharge first, then soil
moisture, and finally verify the resulting simulation to groundwater head observations. Our
results indicate that the remotely sensed soil moisture data can be used for the calibration of
upper soil hydraulic conductivities determining simulated groundwater recharge of the
model. However, discharge data should be included to obtain full calibration of the coupled

model, specifically to constrain aquifer transmissivities and runoff-infiltration partitioning
processes. The stepwise approach introduced in this study, using both discharge and soil
moisture data, can calibrate both discharge and soil moisture, as well as predicting
groundwater head dynamics with acceptable accuracy. As our approach to parameterize and
calibrate the model uses globally available data sets only, it opens up the possibility to set
up large-extent coupled groundwater-land surface models in other basins or even globally.
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1. Introduction

[2] Groundwater serves as a primary source of drinking
water and supplies water for agricultural and industrial
activities. During times of drought, groundwater sustains
water flows in streams, rivers, lakes, and wetlands, and thus
supports ecosystem habitat and biodiversity, while its large
natural storage provides a buffer against water shortages.
However, groundwater is known as a vulnerable resource.
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In many areas, it is being consumed faster than naturally
replenished [Rodell et al., 2009; Wada et al., 2010]. Given
increasing population and heightened variability and uncer-
tainty in precipitation due to climate change, the pressure
upon groundwater resources is expected to intensify.
Therefore, modeling and predicting groundwater variabil-
ities and changes are imperative.

[3] Yet, the current generation of global-scale hydrologi-
cal models [e.g., van Beek et al., 2011; Widén-Nilsson
et al., 2007; Liang et al., 1994] still does not include a
groundwater lateral flow component which is an important
link in the hydrological cycle. In addition to river networks,
groundwater bodies transport precipitation falling to the
earth from higher elevations via lateral fluxes to lower ele-
vations. Water that infiltrates to groundwater bodies subse-
quently flow to low-pressure areas and discharges in the
form of stream base flow, soil evaporation, and plant tran-
spiration. Hence, under close interaction with land surface,
groundwater influences root-zone soil moisture, and poten-
tially affect water and energy fluxes between the land and
atmosphere [see e.g., Shukla and Mintz, 1982; Koster
et al., 2004; Fan and Miguez-Macho, 2010, 2011 ; Alkhaier
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et al., 2012a]. Bierkens and van den Hurk [2007] show that
rainfall persistence may be partly explained by ground-
water confluence to discharge zones throughout the year to
sustain evaporation for longer periods of time. These exam-
ples show the importance of including a groundwater flow
component into global-scale hydrological models [see also
Fan et al., 2007 ; Yeh and Eltahir, 2005a, b]. Such an inclu-
sion is also crucial for the study of hydrological drought as
drought propagation in areas with large aquifers cannot be
correctly simulated by the current generation of global
hydrological models [van Loon et al., 2012].

[4] Most large-scale hydrological models are evaluated
using discharge data at catchment outlets [e.g., Ddll et al.,
2003 ; Zaitchik et al., 2010; van Beek et al., 2011]. Yet, cali-
brating hydrological models to discharge data alone does not
guarantee the correct simulation of other model states and out-
put variables, such as soil moisture and groundwater. An
obvious advantage of having a model that includes ground-
water lateral flow is that it simulates groundwater head
dynamics. As groundwater head can be measured in the field,
we can evaluate and even calibrate the simulated groundwater
head dynamics. Such a calibration will greatly complement
the traditional discharge calibration. Nevertheless, it is diffi-
cult to calibrate large-extent groundwater models due to the
sparseness of in situ groundwater head measurement data in
many parts of the world. In the limited areas where they are
available, head measurements are sparsely located and avail-
able over limited spatial extent. Moreover, ground-based
groundwater head observations provide only information with
limited spatial support (i.e., point scale). Nevertheless,
groundwater head spatial variation tends to be smoothly vary-
ing over space such that a single point measurement may still
be informative for larger areas.

[s] The main strength of spaceborne remote sensing
observations is the ability to provide spatially and tempo-
rally exhaustive maps of earth surface properties with a
near-global coverage. In the last decades, many studies
have investigated the possibility of using earth observa-
tion for hydrological purposes and spaceborne remote
sensing is increasingly being used for mapping hydrologi-
cal states and fluxes, such as precipitation [e.g., Kum-
merow et al., 2000], soil moisture [Kerr et al., 2001;
Njoku et al., 2003 ; Wagner et al., 1999b; Wanders et al.,
2012], snow cover [Dankers and de Jong, 2004; Immer-
zeel et al., 2009], land surface temperature [Wan and Li,
1997], and evaporation [Bastiaanssen et al., 1998a,
1998b; Su, 2002; Mu et al., 2007; Jung et al., 2010].
However, their benefits for groundwater hydrology appli-
cations are still limited. Up to now, only the space grav-
ity satellite Gravity Recovery and Climate Experiment
(GRACE) [Tapley et al., 2004] from the National Aero-
nautics and Space Administration (NASA) is acknowl-
edged as a groundwater assessment tool, specifically for
detecting groundwater storage changes [e.g., Rodell
et al., 2009]. A major drawback of GRACE is its coarse
resolution of approximately 400 km, severely hampering
its regional-scale application. Nevertheless, Becker [2006]
argues that groundwater behavior may be inferred from
remotely sensed surface expressions, such as surface tem-
perature and soil moisture. Indeed, in a recent application
Alkhaier et al. [2012a, b] show that remotely sensed
evaporation and land surface temperature correlate well

with groundwater depth and can be physically connected
by means of a soil water and heat flux model.

[6] In this study, we aim to explore the potential of using
remotely sensed soil moisture data [see also Jackson,
2002]—currently having a better spatial resolution (25-50
km) than the GRACE product—to support groundwater
studies. More specifically, we investigate whether the global
coverage soil moisture product of Soil Water Index (SWI)—
derived by Wagner et al. [1999b] based on European
Remote Sensing (ERS) scatterometer signals—can be used
to calibrate a large-scale coupled groundwater-land surface
model of PCR-GLOBWB-MOD [Sutanudjaja et al., 2011,
Sutanudjaja, 2012]. The model is built by using only global
data sets such that it is portable to other areas of the world,
including data-poor areas. The underlying idea of this study
is that the combination of setting up the model using only
global data sets and calibrating it with remote sensing data
can make large-scale groundwater modeling feasible
throughout the world. As discharge data are commonly used
in hydrological model calibration and in principle globally
available from the Global Runoff Data Centre (GRDC,
http://www.bafg.de/GRDC), we also aim to calibrate the
model based on in situ discharge measurements. The com-
bined calibration to soil moisture and discharge can be con-
sidered as a complementary to the commonly used
multiobjective approaches [e.g., Gupta et al., 1998 ; Fenicia
et al., 2007] that aim to reproduce different parts of dis-
charge (i.e., low and high flow parts of hydrographs) and
other studies focusing on various model components, such
as evapotranspiration [Crow et al., 2003] and total water
storage variations [Werth et al., 2009; Lo et al., 2010].

[7]1 As a test bed, we use the combined Rhine-Meuse basin
(see Figure 12' The large size of the study area, covering
+200,000 km~, makes it well suited for large-extent modeling
studies. The Rhine basin includes the upstream areas in the
Alps of Austria and Switzerland and cover large areas in Ger-
many with the outlet located in the town of Lobith on the
Dutch eastern border. The Meuse basin used stretches from its
headwaters, mainly in France and Belgium, to the town of
Borgharen on the Dutch southern border. To simplify this
study, the delta area of Rhine-Meuse basin, mainly in Nether-
lands, is excluded due to strong anthropogenic water manage-
ment practices (see Figure 1a). Nevertheless, the chosen study
area, which is situated in the humid temperate zone of West-
ern Europe, has a good coverage of SWI, discharge and ample
groundwater head observations. For this study, there are 4250
point-scale groundwater head observations used for verifica-
tion. By verifying the calibrated model results to these head
observations, we analyze the benefits of using soil moisture
and discharge time series, as well as the combination of both,
for calibrating the model.

[8] The paper is organized as follows: section 2 briefly
explains the coupled groundwater-land surface model
used; section 3 describes the calibration procedure; section
4 presents the results and analyses; section 5 provides the
discussion in the light of this study; and section 6 summa-
rizes and concludes this paper.

2. Model Structure: PCR-GLOBWB-MOD

[o] Briefly stated, PCR-GLOBWB-MOD, having the
spatial resolution of 30 arc sec (30” X 30", about 1 km X 1
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Figure 1. The Rhine-Meuse basin: (a and b) 30 arc sec digital elevation and groundwater depth maps;
(c) lithological map; (d) locations of head stations and average heads per pixel; (e and f) 30 arc min
SWI fields in August 1995 and January 2005; (g and h) saturated conductivities (K,) of the first and
second soil layers used in the REFERENCE; and (i) total soil water storage capacities
(Wmax =SC1+8C,). Figure le includes the pixel codes used and Figure 1f also shows the discharge and
head stations corresponding to the time series in Figures 4 and 11. White area in Figure 1f indicates
missing SWI values due to snow cover and frozen soil.
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The model structure and coupling strategy: (a) the land surface model of PCR-GLOBWB

[van Beek and Bierkens, 2009; van Beek et al., 2011]: (Figure 2a, left) the soil compartment, divided in
the two upper soil stores, S; and S,, and the linear groundwater store, S, that is replaced by the MOD-
FLOW [McDonald and Harbaugh, 1988] groundwater model; (Figure 2a, right) the total local gains
from all cells are routed along the drainage direction (not shown) to yield the channel discharge, Q.pn.
(b) The coupling between PCR-GLOBWB and MODFLOW. The latter simulates lateral groundwater
flow. In both figures, we indicate the parts that are controlled by the prefactors fjy, fx, and fxp calibrated

in this study (see sections 2 and 3.1).

km at the equator) and operating based on daily basis water
balance, is the land surface model PCR-GLOBWB [van
Beek and Bierkens, 2009 ; van Beek et al., 2011] coupled to
a MODFLOW [McDonald and Harbaugh, 1988] ground-
water model. The coupled model structure is illustrated in
Figure 2. The land surface model part conceptualizes the
hydrological processes above the surface and in two unsat-
urated zone soil layers (in which their storages are symbol-
ized as S; and S, [L] with indexes indicating the sequence
of soil layers), while the groundwater model part contains
an underlying groundwater layer store (S3 [L]) conceptual-
izing deeper saturated lateral flows. The runoff from every
cell consists of surface or direct runoff Qg [L T '], inter-
flow Qg [L T~ '] from the second soil layer and base flow
Qv [L T~ '] from the groundwater layer. The channel dis-
charge Qunn [L T °] is calculated by implementing a rout-
ing scheme to accumulate the local runoff from all cells
along the drainage network. This routing procedure is
implemented by considering traveling time through surface
water bodies and based on the unit hydrograph method
[Soil Conservation Service (SCS), 1972; Solyom and
Tucker, 2004].

[10] In this paper, we briefly explain only the model com-
ponents that are relevant for the purpose of this calibration
study. The following section 2.1 mainly summarizes how
direct runoff and vertical fluxes between soil layers are con-
ceptualized, while lateral groundwater flow and base flow
related processes are briefly explained in section 2.2.
Detailed description of other model components can be
found in Sutanudjaja et al. [2011] and Sutanudjaja [2012].

2.1. The Land Surface Model Part

2.1.1. Direct Runoff and Net Infiltration

[11] As illustrated in Figure 2a, the main storages of a
cell in the land surface part of PCR-GLOBWB-MOD are
two upper soil stores S and S, (Figure 2a) representing the
top 30 cm and the following 70 cm of soil (thicknesses
Z1 <30 cm and Z, <70 c¢cm). The model also includes an
interception storage and a snow module based on the
Hydrologiska Byrans Vattenbalansavdelning (HBV) model
[Bergstrom, 1995]. After passing the interception and snow
melting-related processes, the basic input to the soil stores
is a certain amount of liquid rainfall P, [L T 11, which con-
sists of the net rainfall above the interception capacity and
melt water from the snow pack.

[12] P, is later partitioned into direct runoff Q4 and net
infiltration to the first soil layer, Py, [L T '1. The partition-
ing is done by adopting the improved Arno scheme [7odini,
1996; Hagemann and Gates, 2003], in which the total soil
water storage capacity of a cell is the aggregate of many
different soil water storage capacities. Through this
scheme, the fraction of saturated soil of a cell, x [-], is
given by [van Beek and Bierkens, 2009]:

b _b_
x=1-— (Wmax - Wact )Ml: 1— <AVVact)hJrl
Wmax - Wmin AW

(1)
with

AWact = Wmax - Wact (2)
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AW = Wmax — Whin (3)
where Wi, [L] is the cell-(local)-minimum capacity, W,
[L] is the cell-average actual storage, and Wi,.x [L] is the
storage capacity of the entire soil profile:

Waet =S1+52 (4)

Wax = SC1+SC, 4)

with SC [L] indicating the soil water capacity for each

PoAt— AW, +

Q/dr At=

PnAt_AWact

with the superscript ' in Q’dr indicating the estimated
amount direct runoff component, without considering the
soil permeability.

[14] Equation (6) is only used in a cell with W, < W-
max, 1.€., a cell with subgrid variability of local soil water
capacities. If Wyin = Whax, it implies that there is no var-
iation of soil water capacities within a cell. In this case,
P, infiltrates if soil is not fully saturated yet, and causes
direct runoff if soil is saturated. The estimate of direct
runoff for a uniform soil (i.e., Winin = Wiax) 18 given as:

0 if P,At+ Waet < Winax

0 4 At= (7)

P At—=AW,e  if PoAt+Waee > Winax

[15] The amount of infiltration into the first soil layer,
Py, is basically the difference between liquid rainfall and
direct runoff. However, the infiltration rate Py, cannot
exceed the saturated conductivity of the first layer, K1 [L
T '. If there is any excess of Py; above K, 1, direct runoff
is increased. Hence, the partitioning liquid rainfall, P,, into
Py, and actual direct runoff component Qq, [L 7™ '] is given
as follows:

®)
©)

Py At = min |:PnAl‘ - Q,dr At, Ksat,lAt:|
Qgr At = P, At— Py At

2.1.2. Vertical Water Exchange Between Soil and
Groundwater Stores

[16] Figure 2a illustrates the conceptualization of vertical
fluxes between upper soil stores. In addition to infiltration
fluxes Py, changes in soil storages arise due to evaporation
E [L T '] (consisting of bare soil evaporation and plant
transpiration) and depletion or specific runoff components

1
AWyt bl P, At
o ()= ]

layer. The parameter b [-] in equation (1) defines the distri-
bution of soil water storage capacities within a cell. In this
study, the values of b are estimated based on the elevation
variability within a cell, such that for a given soil wetness,
more runoff is produced in mountainous than flat regions.
The value of b ranges from 0.01 for flat areas and up to 0.5
in very rough terrain [see Hagemann and Gates, 2003].

[13] Based on equation (1), the following equation (6) esti-
mates the direct runoff from a cell with subgrid variation of
soil water capacities (i.e., for the case Wi, < Winax):

if PoAt+ Waee < Winin

b+1

(6)

if Wiin < PaAt + Waee < Winax

if P At + Wact > Wax

(interflow from S, and base flow from S3), as well as verti-
cal water exchanges between the first and second stores,
P, [L T '], and between the second and groundwater
stores, Po3 [L T~ '] (see Figure 2a). Py, and P,3 consist of
downward percolation, P; ., and P, .5 [L T 1], and
upward capillary rise fluxes, P,_.; and P;_, [L T 1. These
vertical fluxes are driven by the degrees of saturation of
both stores: s;=S,/SC; and s,=5,/SC, determining the
unsaturated conductivity of each soil layer: K; (s;) and
K> (s5) [L T ']. For each layer, this unsaturated conductiv-
ity K(s) is calculated as [Campbell, 1974]:

K(s)=Kg X 23 (10)
where the subscript sat indicates saturation, f [-] is an
empirical exponent in the matric suction y [L] function of
Clapp and Hornberger [1978]:

V() =Vrgq X 57" (11)
with f§ varying on average between 4 and 11 over the range
from sand to clay.

[17] If the degree of saturation of the top layer is higher
than that of the underlying store (s; > s,), the percolation
rate Py_,, occurs with the rate of unsaturated conductivity
of the first soil layer: K (sy). If 51 <s,, capillary rise sus-
tains the soil moisture deficit in the top layer with upward
fluxes equal to: K;(s2) (1—s7).

[18] To calculate the capillary rise P3_., for the second
soil layer, the method of Gardner [1958] and Eagleson
[1978] is adopted [see also Soylu et al., 2011]. Assuming a
steady state condition with a suction head at the surface
that is (negatively) large (i.e., dry soil surface), the maxi-
mum capillary rise rate CRyax [L T '], is given as a func-
tion of groundwater table position:
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3 |l//sat ,2| 2+3/F,
wanl(7) 0

CR jax = Kt 2 |:1
where Z,,, [L] is the difference between surface level (from
the digital elevation model) and groundwater head % [L]
(from the MODFLOW groundwater model output, see sec-
tion 2.2). Equation (12) is used to estimate the maximum
P;_, and limited by K, if the groundwater is at or above
the surface (Z,,, <0). The model also limits the capillary
rise fluxes P3_,, and P,_,; such that they do not make the
upper soil storages exceed the equilibrium water content,
Wequ [L T '1. The form of this equilibrium soil moisture
profile, determined from the balance between the gravity
(downward direction) and pressure head gradient (which
tends to draw moisture up), is given as [Clapp and Horn-
berger, 1978 ; Koster et al., 2000]:

AP
i 52)

13)
where scq, [-] is the degree of saturation at a height z above
the water table. The equilibrium storage Wy, is determined
by integrating s.q, from groundwater to surface levels.

2.2. The Groundwater Model Part

[19] The link between the land surface model part of
PCR-GLOBWB-MOD—written in the PCRaster scripting
language [Wesseling et al., 1996]—and the MODFLOW
groundwater model, is providled by a PCRaster-
MODFLOW extension developed by Schmitz et al. [2009].
Using this extension, the dynamics of groundwater head #
and lateral groundwater flow through aquifer bodies are
simulated on a daily basis. A single layer MODFLOW
groundwater model is constructed and forced with the out-
put from the land surface model part, specifically the net
groundwater recharge (P;3=P, 3—P3_,) and surface
water levels HRIV [L]. The latter is derived from the routed
discharge Q. by assuming channel dimensions and prop-
erties based on geomorphological relations to bankfull dis-
charge [Lacey, 1930; Savenije, 2003]. Within the
MODFLOW model, the “recharge” (RCH) package is
used to introduce P,3, while the “river” (RIV) and “drain”
(DRN) packages are used to introduce HRIV as the bound-
ary conditions of the MODFLOW model [see Sutanudjaja
etal., 2011].

[20] The implementation of RIV and DRN packages
gives the possibility to quantify flow between stream and
aquifer, symbolized as —(qRIV + qDRN) [L T " (with the
negative sign is introduced as MODFLOW uses a positive
sign for flow entering aquifer). The amount of
—(qRIV + gDRN), which depends on the difference
between groundwater head / and surface water level
HRIV, is the main component of the base flow Oy, espe-
cially for channels in flat sedimentary pockets where
groundwater flow is relatively slow. However, the magni-
tude of —(qRIV + gDRN) is too small to satisfy the fast
base flow component originated from mountainous areas,
where many springs tapping groundwater are located
higher up in the valleys. To include this fast base flow com-
ponent, feeding tributaries to main rivers, it is assumed that

the groundwater above the flood plain is drained based on a
linear reservoir concept as follows:

Obt = —(qRIV +qDRN )+ (JS3 51 ) (14)
where S3 ¢, [L] is the groundwater storage above the flood
plain and J [T~ '] is a recession coefficient parameterized
based on [Kraaijenhoff van de Leur, 1958]:

_ (kD)
/= 48yL? (9
with KD [L? T '] and Sy [-] indicating aquifer transmissiv-
ities and specific yields, and L [L] indicating average flow
lengths.

[21] The consequence of incorporating the fast-response
base flow component—represented by the second term of
equation (14): (JS3g1)—is that the water balance of the
model must be closed by subtracting it from the input of
the MODFLOW recharge package, RCH;, [L T 3

RCH inp = (P23—JS3 51 ) Acell (16)
where A [Lz] is the surface area of each 30 arc sec cell.
In equation (16), RCH;,, can have negative values, indicat-
ing water leaving the groundwater store (S;) via capillary
rise to its overlying soil stores or base flow to surface water
bodies.

3. Calibration Procedure

[22] To calibrate the model, we simulated a large number
of runs with different parameter values (explained in sec-
tion 3.1). All runs used the same forcing (section 3.2). Sub-
sequently, using observed discharge and remotely sensed
soil moisture data (section 3.3), we evaluated and com-
pared the model performances of all runs. The “best fit” or
“optimal” parameter sets were then identified as the “cali-
brated” parameter sets. As in situ discharge observations
are traditionally used to calibrate hydrological models, we
identified the calibrated parameter sets based on discharge
time series (alone). Also we evaluated the soil moisture fits
of all runs to SWI time series and identified the calibrated
parameter sets based on (only) these remotely sensed soil
moisture time series.

[23] While evaluating the model fits of all runs, we
examined how well unique parameter sets could be identi-
fied by inspecting the behaviors of various objective func-
tions and their parameter spaces. These analyses were done
based on observed discharge and soil moisture SWI time
series.

[24] Based on these analyses, we then performed a
stepwise calibration procedure to identify the parameter
sets that were able to simultaneously reproduce observed
discharge and SWI time series. We started this stepwise
approach by calibrating all model parameters based on
discharge data. Subsequently, the parameters expected to
influence the soil moisture performance were recali-
brated. By doing this, we could obtain a parameter set
that fits well with both observed discharge and SWI time
series.
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Table 1. Aquifer Parameters for the REFERENCE Run®

Lithology/Aquifer Class Transmissivity KD (m?/d)

Nonconsolidated sediments 533.52
Carbonate sedimentary rocks 67.17
Volcanic rocks 13.40
Crystalline rocks 0.50
Siliciclastic sedimentary rocks 13.40

“The values are adopted from Gleeson et al. [2011] who attributed the
global lithological map of Diirr et al. [2005] with the geometric mean per-
meability of each class in the map (Figure 1c).

[25] Next, as the last step, we compared the performance
of runs with the calibrated parameter sets based on
observed discharge, SWI and the combination of both.
More specifically, we compared their simulated ground-
water head time series to measurements. In this way, we
assessed to what extent each observation type (i.e., dis-
charge and SWI) and the combination (of both) is suitable
for the calibration.

3.1.

[26] A 3045 model runs were simulated with different
values of minimum (local) soil water capacities W,
upper soil saturated conductivities K1 and Kg,, and
aquifer transmissivities KD. These various parameters,
which are spatially varying over the study area, control dif-
ferent parts of the model (see Figure 2). We used spatially
uniform prefactors to vary these parameters over 3045
model runs (see Table 2).

[27] The parameter W,,;,, defined in the improved Arno
scheme for conceptualizing the subgrid variation of the soil
saturation stores [Zodini, 1996; Hagemann and Gates,
2003 ; van Beek and Bierkens, 2009], controls the partition-
ing of rainfall into direct runoff and infiltration to the soil
(section 2.1.1). For W, =0, direct runoff always occurs
for a rainfall event. If W,,;, > 0, no direct runoff occurs as
long as the total soil storage does not exceed W,,,. The
parameters Kg,; and K, o, defined in the land surface
model part, mainly affect groundwater recharge as they
control fluxes between the upper soil stores P, and to the
groundwater store P,; (section 2.1.2). The transmissivity
KD is a MODFLOW groundwater model parameter con-
trolling lateral groundwater flow and also governing the
base flow recession coefficient J (section 2.2).

[28] A REFERENCE run was defined before we started
this procedure. Figures 1g and lh, respectively, show the
spatially distributed parameters K, and K, » used in the
REFERENCE run, for which W,,;, = 0 is uniformly intro-
duced within the study area and Table 1 is used to assign

Model Parameters and Runs

Table 2. Parameter Values Used in the Calibration Processes®

KD based on the lithological map in Figure lc [Diirr et al.,
2005; Lehner et al., 2008 ; Sutanudjaja et al., 2011; Glee-
son etal.,2011].

[29] To vary the parameter values of a run over the
others, three nonspatially distributed prefactors are intro-
duced (uniformly within the study area): fy, fx, and fxp.
Table 2 shows how these prefactors are introduced for
3045 model runs. The prefactors used are referred to the
parameters of the REFERENCE run, which has f;;;=0,
fx =0, and fxp = 0. The prefactor f} is used to vary Wpin,
the prefactor fx is introduced to vary simultaneously K1
and K, o, while the prefactor fxp is used to vary KD. All
other model parameters remain fixed.

3.2. Forcing Data and Simulation Period

[30] The meteorological forcing data, supplied on a daily
basis to force the land surface model, consist of tempera-
ture, precipitation, and reference potential evaporation. For
all model runs, we used the daily precipitation and temper-
ature input time series obtained by downscaling the
monthly CRU-TS2.1 [Mitchell and Jones, 2005] data set
with the daily ERA-40 reanalysis [Uppala et al., 2005] data
(see also Sutanudjaja et al. [2011], for detailed methodol-
ogy]. For the reference potential evaporation, we used the
data set of van Beek [2008], derived based on the FAO
Penman-Monteith method [4/len et al., 1998] using the cli-
matological fields from CRU-TS2.1 and CRU-CL1.0 [New
etal., 1999].

[31] In this study, all simulations of PCR-GLOBWB-
MOD were performed for the period 1992-2008. As the
initial condition for each simulation, the model was spun-
up—using the average forcing from the years 1974—
2008—until reaching a dynamically steady state. More-
over, to be safe from spin-up problem, we used only the
results from the period 1995-2000 for analyzing the model
performance. The following section describes the approach
for evaluating results of each model runs (based on
observed discharge, soil moisture, and groundwater head
data).

3.3. Model Evaluation Criteria

3.3.1. Using Discharge Measurement Time Series

[32] The discharge performance of each run was eval-
uated at daily resolution. The modeled discharge time
series, Omod (i.€., the routed discharge QO.p,), were com-
pared with the observations, Qps, at two downstream loca-
tions (see Figure 1f): Lobith (Rhine) and Borgharen
(Meuse). In both locations, we determined the Nash and
Sutcliffe [1970] efficiency coefficients, NS¢r:

Prefactors Parameter Values Number of Discrete Values
fw €{0,0.25,0.5,0.75, 1} Wanin =i X Winax =fi X (SC; +5Cs) 5
fx €{-3.5,-3.25,-3,...,0,...,3,3.25,3.5} log EKsa[,lg:fKHog EKWM; 29
IOg Ksat 2 :fK+10g Ksat ,2,ref
Jxkp € {—2.5,-2.25,-2,...,0,...,2,2.252.5} log (KD)=fxp~+10g (KDxer ) 21

Total number of model runs: 3045

*The subscript ref indicates the REFERENCE run with the prefactors fi = 0, fx = 0, and fxp = 0. Kgaq. 1 rer ad Kga 2 rer are shown in Figures 1g and 1h,
while KD,.ris based on Table 1 and Figure 1c. W, is given in Figure li. All parameters have spatially distributed values, except fiy, fx, and fxp.
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Z (Qobs,thmodAz‘)2
Z (Qobs ,7_%)2

with Qs indicating the average of observed data and ¢
indicating the time index. We also calculated the discharge
efficiency coefficients NS,,, using anomaly time series of
the model results and observation data:

NS =1—

(17)

Z ((Qobs Jt 7@) - (Qmod N 7Qm—0d))2
Z (Qobs it 7@)2

with Onog indicating the average of modeled time series.

3.3.2. Using Soil Water Index Time Series

[33] The Soil Water Index (SWI) product is derived from
European Remote Sensing (ERS) scatterometers and pro-
vides spatiotemporal estimates of the first meter profile soil
moisture content at about 25-50 km resolution [Wagner
et al., 1999b]. SWI [-] time series are derived based on
SSM [-] (Surface Soil Moisture) time series measured by
the active scatterometers of ERS. The scatterometers
retrieve SSM 3—4 times per week, which represent soil
moisture content in the top soil layer (as discussed in
Wagner et al. [1999b]). The retrieval of SSM is based on a
change detection approach of backscatter measured by the
scatterometers. The approach assumes that backscatter
measurements have a linear relationship to soil moisture
and are corrected from the vegetation effects by knowing
the typical vegetation phenology and how it affects back-
scatter measurements [Wagner, 1998; Wagner et al.,
1999a, b]. SSM time series are then derived from the
vegetation-corrected backscatter time series as relative sat-
uration with the historically lowest and highest values are
assigned to the 0% (dry) and 100% (wet) references,
respectively. To derive SWI time series, the following low-
pass filter is then applied to SSM time series [Wagner
etal., 1999b]:

NS o = 1— (18)

dSWl

[SSM syt X e~ (dswi —dssm/r]

dswi {e— (dswi —dssm )/Ti|

dssm

SWI dswi =
‘ (19)

dssm

for dssm < dswi

where dgw; and dsgy are the (daily) time indexes of SWI
and SSM, and 7 [7] is the characteristic time length, taken
as 20 days as [Wagner et al., 1999b] showed that it pro-
vided the best correlation to the field data [see also Wagner,
1998].

[34] In their original format, SWI fields have about 25—
50 km and 10 day resolution. For this study, the SWI data
were resampled to 30 arc min (about 50 km at the equator)
and monthly resolution. This is to reduce the number of
missing values that often occur due to snow cover or frozen
soil condition (as example, see Figure 1f). In this study, the
monthly SWI time series are used as the benchmark for
evaluating the soil moisture simulation of PCR-GLOBWB-
MOD.

[35] For each model run, we compared the time series
of the modeled degree of saturation s, [-] of the
(entire) upper soil stores of PCR-GLOBWB-MOD to

SWI. The modeled degree of saturation sy, is calculated
as follows:

NEAY)

=172 2
SCy+5C, 20)

S12

[36] Evaluations s, to SWI were done at monthly reso-
lution. As a measure of performance, we calculated the
cross-correlation coefficient pgy between SWI and 57, time
series. This performance indicator—calculated without
considering lags—evaluates the timing of modeled to
measured time series.

[37] As a measure of accuracy, we evaluated the mean
absolute error of modeled soil moisture time series. While
evaluating this error, we have to consider that while the
simulated sy, is given in its absolute saturation value
(equation (20)), the remotely sensed data SWI are given in
its relative saturation value (see the previous explanation,
also Brocca et al. [2011]). Moreover, there can be system-
atic differences or biases between satellite-derived soil
moisture time series and soil moisture time series simu-
lated with hydrological models [Reichle and Koster,
2004; Drusch et al., 2005]. These systematic differences,
attributable to difference in layer thickness or characteris-
tics of data sets (e.g., minimum and/or maximum refer-
ence values, as discussed in this study), prevent a
statistically optimal analysis and therefore have to be cor-
rected [Dee and Da Silva, 1998]. Hence, due to the
expected discrepancy between the reference values of both
s1o and SWI time series, the cumulative distribution func-
tion (cdf) matching technique was implemented to rescale
s, against SWI time series [see Reichle and Koster,
2004; Liu et al., 2011, 2012]. Using this cdf matching
procedure, we adjusted the modeled soil moisture time
series to the same range and distribution of SWI time
series. More specifically, we rescaled the actual values s,
to the scaled (“corrected”) values s 1, [-] such that the
cdf curves of s 1, and SWI match. After rescaling, we then
evaluated the mean absolute error between s1, and SWI
time series—symbolized as MAEgy.cpr [-]. Due to the
cdf matching, MAEgy.cpr is only a measure of precision
as bias has been removed. The correlation coefficient
between s 1, and SWI time series—symbolized as psy.cpr
[-]—was also evaluated.

3.3.3. Using Groundwater Head Measurement Time
Series

[38] The modeled groundwater head time series were
compared to head observations from the uppermost aquifer.
There are 4250 stations used in this study. Evaluations
were done at monthly resolution. In each station, we calcu-
lated the correlation coefficient between the monthly
observed and simulated time series—symbolized as pygap.
Also, we calculated the mean absolute error of predicted
time series. Note that biases between observed groundwater
head time series are expected, especially due to the discrep-
ancies in the resolution and elevation references of 30 arc
sec resolution model results and point-scale measurement
data [see Sutanudjaja et al., 2011]. Hence, to evaluate the
error of simulated head dynamics, we preferred to calculate
the mean absolute error MAE,,, using the anomaly time
series of the model results and observation data, i.e., devia-
tions from the time series mean values.
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Figure 3. Scatterplots of discharge performance indicators NS.¢ and NS,,,, (v axes) based on the daily
observations in (a) Lobith, Rhine basin and (b) Borgharen, Meuse basin versus prefactors fj, fx, and fxp
(x axes). In each column, the three graphs plot the same performance on the y axes using different param-
eters on the x axes. The prefactor f; controls the partitioning of rainfall into direct runoff and infiltration
to the soil (section 2.1.1), while the prefactor fx affects groundwater recharge (section 2.1.2) and the pre-
factor fxp controls lateral groundwater flow and base flow (section 2.2). Different colors and dot shapes

indicate different fj;.

4. Results

4.1. Calibration Using Discharge Data

[39] To summarize the results of all 3045 runs, Figures
3a and 3b present the scatterplots between the prefactors
(given in x axes: fy, fx, and fxp) and the discharge per-
formance indicators (y axes: NS,y and NS,.,), for the
Rhine basin and Meuse basin, respectively. For the Rhine
(Figure 3a), we find that the scatterplots of NS.¢ and NS,
are similar. Yet, for the Meuse (Figure 3b), the values of
NS.no are higher than NS¢ This difference results from a
bias between simulated and observed time series that can
be explained by the fact that the model did not include the

water diversion from the Meuse River to sustain the navi-
gation function of the Scheldt River, as reported by de Wit
[2001].

[40] The scatterplots in Figures 3a and 3b show that all
prefactors are identifiable. We can readily distinguish
parameter ranges leading to better and worse performance,
as well as their global optimal values. A combination of
high £y, high fx, and low fxp provides the best performance
in terms of discharge. For the Rhine, the optimal discharge
performance is obtained with f;;=0.75, fxr=1.5, and
Jfxp = —1.5. The run with this parameter set reproduces the
observed discharge at Lobith well, as plotted in Figure 4a
(at monthly resolution: NS . =0.76 and NS ,,, =0.77) and
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Figure 4. Comparisons between measured discharge (red) and simulated discharge (gray and blue)
time series. The gray lines are from the REFERENCE (uncalibrated run) and the blue lines are from the
calibrated time series, which are taken from the runs that yield the best simulations based on discharge
observations near the basin outlets (see section 4.1).
Figure 4b (at daily resolution: NS.;=0.62 and the rescaled time series s |, (after cdf matching technique

NS ano =0.63), except some extreme peaks which cannot be
simulated properly. This lack of fit may be due to errors in
the forcing data and other parameters, such as the snow
module and soil thickness parameters which were not cali-
brated. For the Meuse, the optimal parameter set is a com-
bination of f;;=0.75, fx=23, and fxp= —0.75. The
modeled discharge time series of this run at Borgharen,
given in Figure 4c (monthly resolution, NS . =0.72 and
NS ano =0.88) and Figure 4d (daily resolution, NS ¢ =0.66
and NS ,,, =0.77), indicate good model performance. As
expected, the major drawback of this run is that the low
flow events during the summer cannot be properly simu-
lated as the model does not incorporate water diversion
from the river.

[41] We also performed a single model run that reprodu-
ces well the discharge data of both rivers, simultaneously.
For this run, the combination of f),=0.75, fr=1.5, and
Jxkp = —1.5 was assigned for the Rhine basin (which gives
the highest NS ¢ and NS,,,, at Lobith), while the combina-
tion of fjy = 0.75, fx = 3, and fxp = —0.75 was assigned for
the Meuse basin (providing the highest NS.¢ and NS, at
Borgharen). This combined set—considered as the cali-
brated prefactors based on discharge data—gives discharge
time series which are identical to the best runs discussed
previously and presented in Figure 4 (see also Table 4).

4.2. Calibration Using Soil Water Index

[42] In Figures 5a and 5b, we plotted the simulated soil
moisture time series of the REFERENCE run against SWI
time series for pixel 21, located in the low-lying areas (see
Figure le, for the pixel location). In Figure 5a, the original
simulated soil moisture time series s, are plotted, while

implemented, see section 3.3.2) are plotted in Figure 5b. In
both figures, the observed SWI time series are also given.
Comparing both figures, we observe that the cdf matching
technique effectively removes the biases between the simu-
lated and observed soil moisture time series. The soil mois-
ture performance indicators are given in every chart in
Figure 5. From all 3045 model runs, we identified the best
run that yields the highest pgy; for pixel 21 and plotted it in
Figure 5c.

[43] The results from all 3045 model runs are summar-
ized in Figure 6 showing the scatterplots between the pre-
factors used to vary parameter values (x axes: fy, fx, and
fxp) and soil moisture performance indicators (y axes:
objective functions psm, Psm.cor, and MAEgym.cpr) for
pixel 21. For all objective functions psm, Psm.cpr, and
MAEgw.cpr, the prefactors f and fxp are not identifiable.
Hence, it can be concluded that the parameters W,,;, and
KD cannot be calibrated if we rely on SWI data alone. The
prefactor fx is somewhat better identifiable. This implies
that SWI may be used to indirectly tune groundwater
recharge by calibrating the upper soil saturated hydraulic
conductivities, K. Yet, there are two distinct local optima
observed in Figure 6: fx= —2 (global optimum) and
fx=2.75 (local optimum). The occurrence of these two
optima indicates that the calibration of K, is not trivial if
we only calibrate the model output to monthly SWI time
series. Other observations, such as discharge or ground-
water head measurements, are needed to further constrain
this parameter.

[44] The results found for pixel 21 are exemplary for the
other pixels located in the low-lying areas, specifically the
Dutch and Flemish lowlands, which are sedimentary basin
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Figure 5. Comparisons between remotely sensed soil moisture data of SWI (red) and simulated soil
moisture (degree of saturation) from PCR-GLOBWB-MOD (gray and green). Time series given are for
pixel 21 (see Figure le, for the pixel location): (a and b) from the REFERENCE run (gray); (c) from the
calibrated or best run (green) that yields the highest correlation pgys to SWI data at pixel 21 (see section
4.2). The simulated soil moisture time series in Figure 5a is plotted before the cdf matching technique
implemented, while the simulated time series in Figures 5b and Sc are rescaled based on the cdf match-

ing technique (section 3.3.2).

areas having shallow groundwater tables (see Figures 1b
and 1c). As illustration for other pixels, Figures 7a and 7b
show the scatterplots between the soil moisture perform-
ance indicators pgy and fx for pixels 197 and 112 (see Fig-
ure le, for the pixel location). Pixel 197 is an example for a
location in the mountainous regions, while pixel 112 is rep-
resentative for the Upper Rhine Graben area, which is an
intermediate site between low-lying and mountainous
regions.

[45] Figure 7b shows that in mountainous regions model
performances are low (pgy < 0.29). A possible explanation
for this reduced performance is the fact that scatterometer
signals from mountainous regions often contain artifacts
affecting the accuracy of SWI [Wagner, 1998; Wagner
et al., 1999a). The scatterplots of f} and fxp are not pre-
sented in Figure 7 as they are hardly identifiable for all pix-
els in the study area (like the case for pixel 21 in Figure 6).
Moreover, as the performance indicator, we plotted only
psm as there are strong and significant correlations among
the objective functions used to evaluate soil moisture per-
formance, as illustrated in Figure 8. These correlations are
found at all pixels. Figure 6 shows this in addition to Figure
8. Hence, most analyses and discussions in this paper are
simplified by focusing only on pgy.

[46] Figure 7a shows that the performance in an interme-
diate site (e.g., pixel 112) is somewhat better than that in
mountainous regions, but still lower than the performance
in low-lying regions (Figure 6). Prefactor fx is difficult to
identify. This is corroborated by Figure 9 that shows the
prefactor spaces of pixel 112. In Figure 9, the magnitude of
psm—indicated by the sizes of circles—is plotted for all
combinations of prefactors. Figures 9a—9e show pgy, for all
combinations fx and fxp, with fj, set to defined values (i.e.,
fw =0 in Figure 9a, f;y = 0.25 in Figure 9b, fjy = 0.5 in Fig-
ure 9c, fiy = 0.75 in Figure 9d, f;y = 1 in Figure 9e, respec-
tively). Prefactor fx is identifiable for f;><0.5. For

fw>0.5, fx becomes less identifiable. Overall, fx is hardly
identifiable. The latter conclusion is corroborated by Figure
9f that shows the maximum values of pgy—also indicated
by the sizes of circles—from all combinations of fx and fxp
in Figures 9a—9e. In Figure 91, the values of f;—indicated
by the subscript opt—are varying for every combination of
fx and fxp. Similarly to Figure 91, the prefactor space of fx
and fj are given in Figure 9g, while Figure 9h shows the
prefactor space of f and fxp. Figure 9g indicates that there
is mutual dependence between increasing fx and fy  for
high psm. This suggests that there are multiple solutions
leading to an equal performance. This equifinality is also
apparent from Figure 9h that shows that the prefactors fj-
and fxp are hardly identifiable.

[47] To illustrate the study area-wide soil moisture per-
formance, we plotted the study area averages of pgy
against the prefactor fx in Figure 7c. Figure 7c shows rela-
tively weak performance (psp < 0.65). This low perform-
ance is expected as the study area (Figure 1) is dominated
by mountainous areas, where SWI data most likely contain
artifacts. From the results of 3045 model runs, we identified
one single run with the “best” soil moisture performance,
i.e., the run with the highest study area-average value of
psm (Figure 1). This run may be considered as the cali-
brated run based on SWI data alone. Having identified this
“best” run for soil moisture, we then checked the discharge
performance of this run. Unfortunately, this results in rela-
tively low discharge performance, with NS ¢ =0.01 and
NS ano =0.04 for its daily discharge simulation at Lobith
and NS¢ =0.13 and NS,,, =0.25 for its daily discharge
simulation at Borgharen. These efficiency coefficients are
much lower than the ones for the run calibrated using
(only) the discharge data (see Figure 4 and section 4.1).

[48] Table 3 summarizes the identifiability of each
parameter based on each observation type: in situ discharge
data (section 4.1) and remotely sensed soil moisture data of
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Figure 6. Scatterplots of soil moisture performance indi-
cators psm, Psm-cor, and MAEgy_cpr versus prefactors fjp,
fx, and fxp for pixel 21 (see Figure le for the pixel loca-
tion). Different colors and dot shapes indicate different f;.
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Figure 7. Scatterplots of soil moisture performance indi-
cators pgy versus prefactor fi for pixels (a) 112, (b) 197
(see Figure le, for the pixel locations), and (¢) using study
area-average values.
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Figure 8. Scatterplots between soil moisture performance
indicators pgy and MAEgy.cpr, showing their significant
correlations (all p values <0.001), shown for pixels (a)
112, (b) 197 (see Figure le, for the pixel locations), and (c)
using study area-average values.

SWI (section 4.2). In this table, if identifiable, the optimal
prefactor values are listed. The highest performance indica-
tors (from all 3045 model runs) are also given in the table.

4.3. Step-Wise Calibration: Using Discharge and Soil
Water Index Time Series

[49] The results and analyses discussed in sections 4.1
and 4.2 are summarized in Table 3 showing the parameter
identifiabilities and optimal values according discharge and
SWI data. Learning from these results, a stepwise proce-
dure combining discharge and soil moisture calibration was
introduced and explained as follows.

[s0] We started this multiobjective calibration by adopt-
ing the parameter sets identified during the discharge cali-
bration: f;;=0.75 for the entire study area; fx = 1.5 and
fx = —1.5 for the Rhine basin; and fx = 3 and fxp = —0.75
for the Meuse basin (see Table 3). As fx is identifiable from
soil moisture, we recalibrated the prefactor fx based on the
objective function pgy such that the pixel-scale values of
psm were optimized. In this procedure, we assigned differ-
ent fx for different half arc-degree pixels. However, the
recalibration of fx was limited to pixels that have
psm > 0.75 from any of 3045 model runs performed previ-
ously (e.g., pixels 21, 25, 38, 39, and 112, as indicated in
Table 3). For pixels with all runs having pgy < 0.75 (such
as pixels 117 and 197, Table 3), we suspected that SWI
data contain artifacts (e.g., due to the influence of moun-
tainous landscape) and decided to fix fx based on the
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Figure 9. Prefactor spaces corresponding to the soil moisture correlation objective function pgy—indi-
cated by areas of circles—for pixel 112 (see Figure le, for the pixel location). The subscript opt in Figure
9f-9h indicates several optimal values of a certain prefactor that give the highest psy in a combination
with the other two prefactors. These results shows that soil moisture data are less suitable for determin-
ing optimal prefactors for this pixel, which is located in an intermediate site between low-lying and

mountainous regions.

discharge calibration. For pixels having pgy > 0.75—most
of which are located in the Dutch and Flemish lowlands,
the recalibration of fx was constrained such that fx must be
higher or equal to the reference value (i.e., fx >0). This
constraint was added because we found that too low fx val-
ues may lead to good soil moisture reproduction but at that
same time lead to bad discharge reproduction. This is con-
sistent to the analysis during the discharge calibration in

section 4.1, in which we found that high saturated hydraulic
conductivities are required to yield good discharge
reproduction.

[51] The run identified from this stepwise calibration
procedure results in good discharge performance with
NS e =0.62 and NS, =0.62 for its daily discharge simu-
lation at Lobith (Rhine), and NS ¢ =0.66 and NS ,,, =0.77
for its daily simulated discharge at Borgharen (Meuse).
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Table 3. Parameter Identifiabilities and Optimal Values According Each Observation Type

Observation Type fw fx fxp Performance®
Discharge at Lobith (Rhine)—Figure 3 0.75 1.5 -1.5 NS <0.62 (0.43)
Discharge at Borgharen (Meuse)—Figure 3 0.75 3.0 —0.75 NS, < 0.66 (0.50)
SWI for pixel 21 (lowland)—Figure 6 NI® —2and 2.75° NI psm < 0.86 (0.67)
SWI for pixel 25 (lowland) NI —2.25and 2.75 NI psm <0.82(0.61)
SWI for pixel 38 (lowland) NI —2and 1.75 NI psm < 0.84 (0.56)
SWI for pixel 39 (lowland) NI —2.25and 2.5 NI psm <0.83 (0.57)
SWI for pixel 112 (intermediate)—Figure 7a NI NI NI psm < 0.80 (0.69)
SWI for pixel 117 (mountainous) NI NI NI psm < 0.64 (0.54)
SWI for pixel 197 (mountainous)—Figure 7b NI NI NI psm < 0.29 (0.19)
SWI study area-wide average values—Figure 7¢ NI -1 NI psm < 0.65 (0.58)

*Values within parentheses are from the REFERENCE run, which has f;, = 0, fx = 0, and fxp = 0.

°NI indicates that a parameter is nonidentifiable.

“Two optimal values of fx are found for the pixels located in low-lying areas.

These efficiency coefficients are similar to the ones
obtained from calibrating on discharge alone (see Figure 4
and Table 4).

4.4. Verification to Observed Groundwater Head
Time Series

[s2] The performances of all calibration scenarios
defined in sections 4.1-4.3 were verified by evaluating their
simulated groundwater head time series to observations at
4250 stations. These groundwater head performances are
summarized as violin plots in Figure 10. A violin plot is a
modified box plot with its sides showing the shape of its
density trace (or “smoothed histogram™) and indicates the
distributional characteristics of data (for more detailed
explanation, see Hintze and Nelson [1998]). In each violin
plot, the median is shown as a circle, and 25th and 75th
percentiles are indicated as the low and high ends of bold
lines. The whisker (or thin line) extends to the most
extreme data which are no more than 1.5 times the inter-
quantile range of the data [see also Tukey, 1977]. Figures
10a and 10b present the groundwater head performance
indicators of all calibration scenarios—measured in pygap
and MAE,,,—for head stations located in pixels 21 and
112—arbitrarily chosen in order to illustrate overall phe-
nomena found. Figure 10c gives pypap and MAE,,, for all
head stations used. In Figure 10, there are six groups
described as follows.

[53] The first group, REFERENCE, is the uncalibrated
model run, having fj =0, fx =0, and fxp = 0. The results
from this group are already quite good. In terms of pggap,
there are 3034 stations (71%) having pygap > 0.5 and there

are 1897 stations (45%) having pygap > 0.7. In terms of
MAE,,,, there are 2044 stations (48%) having
MAE,,, < 0.25 m. This groundwater head performance is
summarized in Table 4 that also lists the performance of
the other groups, including their discharge performance.

[54] The last group in Figure 10, HEAD-BEST, (“by
proxy”) represents the “best results”—based on ground-
water head observations. For this group, in each ground-
water head station (total: 4250 stations), we identified the
best run (from 3045 runs that we simulated), i.e., the high-
est pupap and the lowest MAE,,,. HEAD-BEST is a col-
lection of “best runs” and none of the runs performed in
this study would have the equal performance as HEAD-
BEST, as indicated by its superiority in Table 4.

[55] The second group, DISCHARGE, represents the
calibrated model run based on discharge data alone, as
explained in section 4.1. Figure 10 shows that, in terms of
model fit to heads, the performance of DISCHARGE is
almost similar to the performance of REFERENCE. Yet,
DISCHARGE gives a better discharge simulation (see
Table 4).

[s6] The SM-BASIN and SM-PIXEL groups represent
the calibration scenarios using (only) SWI data, based on
the objective function pgy. Given their highest pgy, SM-
BASIN and SM-PIXEL represent the “best runs” in simu-
lating soil moisture dynamics. The SM-BASIN is the run
with the highest study area-average value of pgy, as dis-
cussed in section 4.2. Figure 10 shows that the head per-
formances of REFERENCE, DISCHARGE, and SM-
BASIN are similar. However, only DISCHARGE provides
good discharge simulation (see Table 4). The SM-PIXEL

Table 4. Groundwater Head and Discharge Performance for Each Calibration Scenario

Head Performance

Discharge Performance

Number of Head Stations Rhine (Lobith) Meuse (Borgharen)
Calibration Scenarios pueap > 0.5 Pueap > 0.7 MAE,;,,0<0.25m NSesr NSano NSetr NS.no
REFERENCE 3034 (71%) 1897 (45%) 2044 (48%) 0.43 0.43 0.50 0.67
DISCHARGE 2733 (65%) 1770 (42%) 1744 (41%) 0.62 0.63 0.66 0.77
SM-BASIN 2743 (65%) 1611 (38%) 2170 (51%) 0.01 0.04 0.13 0.25
SM-PIXEL? 1765 (42%) 870 (20%) 452 (11%) NA NA NA NA
SM-DISCHARGE 2709 (64%) 1748 (41%) 1772 (42%) 0.62 0.62 0.66 0.77
HEAD-BEST?* 4060 (96%) 3706 (87%) 3400 (91%) NA NA NA NA

ISM-PIXEL and HEAD-BEST are collections of runs (not a single run).
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Figure 10. Violin plots summarizing groundwater head
performance in the measurement stations located in pixels
(a) 21, (b) 112, and (c) in the entire study area.

group represents the “best runs” that give the highest pgw,
locally, at any half arc-degree pixel (e.g., as identified from
the highest pgy in Figure 6 for the case of pixel 21). Here,
we find that the reproduction of groundwater head observa-
tions worsens, as indicated in Figure 10 and Table 4.

[571 The SM-DISCHARGE represents the results from
the stepwise calibration procedure, using the combination
of discharge data and remotely sensed soil moisture data of
SWI, as discussed in section 4.3. From Figure 10 and Table
4, we find that the performance of this group is similar to
REFERENCE, DISCHARGE, and SM-BASIN. However,
SM-DISCHARGE is the only calibration scenario that can
reproduce both soil moisture and discharge reasonably
well, while at the same time producing acceptable ground-
water heads.

[s8] Figure 11 compares the simulated head dynamics of
SM-DISCHARGE to observation data, as well as those of
some other calibration scenarios, specifically DISCHARGE
and SM-PIXEL. The time series of REFERENCE and SM-
BASIN are not given for the sake of clarity of plots and
due to the fact that it is clear that simulated discharge time
series for these cases perform poorly (see Table 4). Figures
11a and 11b show time series from points a and b in Figure
1f. Figure 11c plots the average time series from all mea-
surement stations in pixel 21. These figures suggest that the
simulated time series of DISCHARGE and SM-
DISCHARGE provide equally good groundwater head per-
formance. Both of them also provide similar discharge per-
formance (see Table 4). Yet, as discussed previously in
section 4.3, SM-DISCHARGE gives a better soil moisture
simulation as the upper soil saturated hydraulic conductiv-
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ities (fx) were recalibrated to improve the soil moisture per-
formance (section 4.3).

5. Discussion

[59] The results of this study show that SWI time series
can be used to calibrate the upper soil saturated hydraulic
conductivities (fx), determining the recharge to the deeper
groundwater zone. However, calibration using only SWI
data is difficult for two major reasons. First, remotely
sensed soil moisture data of SWI for mountainous regions
often contain artifacts. This makes SWI more suitable to
calibrate soil moisture dynamics in low-lying areas. Sec-
ond, there is the problem of equifinality as there is more
than one optimal parameter set capable of reproducing the
soil moisture dynamics of SWI. To overcome these prob-
lems, discharge observations are needed, particularly to
determine the optimal upper soil saturated hydraulic con-
ductivities (fx) in nonlow-lying areas and to constrain aqui-
fer transmissivities (fxp) and runoff-infiltration partitioning
(fiy) parameters, which are hardly identifiable from the
evaluation of soil moisture dynamics alone. A combined
and stepwise calibration approach using both discharge
observations and remotely sensed soil moisture data yields
a model that can fit both discharge and soil moisture, as
well as predicting the dynamics of groundwater head with
acceptable accuracy.

[60] Although there is still room for improvement, this
study shows the prospect of incorporating soil moisture
data in large-extent and high-resolution coupled
groundwater-land surface models. As all data used in build-
ing and parameterizing the model are globally available
[Sutanudjaja et al., 2011], the results of this study suggest
that applying the methods in other basins or even globally
is in principle possible. In addition discharge data, this
study uses and shows the added values of the spaceborne
soil moisture data of Soil Water Index (SWI) for model cal-
ibration. It suggests the potential of using other satellite
soil moisture products for groundwater modeling studies,
such as those from the Advanced Microwave Scanning
Radiometer-Earth Observation System (AMSR-E) [Njoku
et al., 2003 ; de Jeu and Owe, 2003] and Soil Moisture and
Ocean Salinity (SMOS) [Kerr et al., 2001] missions. Soil
moisture data sets from these missions should be explored
in future studies. Future studies may also aim for a com-
bined evaluation or calibration approach using discharge,
soil moisture, and GRACE data. The latter has been used in
many large-scale or even global-extent modeling evalua-
tion [e.g., Doll et al., 2012; Kim et al., 2009; Pokhrel
et al., 2011]. As GRACE is typically used to evaluate total
water storage variations (i.e., soil moisture and ground-
water) at lower resolutions (400 km), remotely sensed soil
moisture data, such as SWI, can be used to constrain soil
moisture dynamics at higher resolutions (50 km), as shown
here, specifically in lowland or shallow groundwater areas,
i.e., the areas where shallow groundwater matters for the
surface energy balance, agriculture, and ecosystem biodi-
versity [Fan et al., 2013]. This complementary approach
may be further encouraged for other available remote sens-
ing products, such as the recently issued 1° scaled (100 km)
GRACE data [Landerer and Swenson, 2012] and an
improved SWI from de Lange et al. [2008], derived by
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incorporating the influence of soil texture. By combining
several data sets, various objective functions can be used to
evaluate different parts or components of the model. Alter-
natively, an error-based weighting approach may be used to
integrate different types of measurement data into a single
objective function [Hill and Tiedeman, 2007 ; Foglia et al.,
2009, 2013], specifically considering low flow conditions
in a more balanced way. Low flow metrics are not investi-
gated in the present study, but should be the concern for
future research, specifically in areas with high groundwater
demand problems and large base flow contribution to
streamflow.

[61] In this paper, we did not consider human interven-
tions in the water cycle whereas in many parts of the world
groundwater and surface water is abstracted [Rodell et al.,
2009; Wada et al., 2011; Gleeson et al., 2012] in great
amounts such that it will affect both discharge and ground-
water heads. Also, we simplified the present study by
excluding the downstream areas in Netherlands where
water management practices are dominant. In future stud-
ies, such human interventions should be part of the model
if parameters are to be estimated through calibration more
accurately.

[62] Nevertheless, the successful inclusion of the well-
known MODFLOW [McDonald and Harbaugh, 1988]
code groundwater model in PCR-GLOBWB-MOD shown
in this study should suggest an opportunity to improve any
existing global or large-extent hydrological models, such as
the original version of PCR-GLOBWB [van Beek et al.,
2011], WASMOD-M [Widén-Nilsson et al., 2007], and
variable infiltration capacity (VIC) [Liang et al., 1994],
which still do not have the ability to calculate spatio-
temporal groundwater heads, and hence do not simulate
any lateral flows in their groundwater compartments. Incor-
porating such lateral flows are important for future global
hydrological models that may have 1 km or even finer reso-
lutions [Wood et al., 2011]. The inclusion of MODFLOW
in the model is particularly relevant for areas with large

sedimentary basins or pockets, such as the basins of Dan-
ube, Mekong, Yellow, and Ganges-Brahmaputra Rivers.
The ability to simulate groundwater head dynamics in such
large-extent or global-extent high-resolution models will
greatly enhance the applicability of such models as ground-
water head is an important variable in many land-surface
processes and real-world applications, including land subsi-
dence, irrigation, nutrient transport, salt water intrusion,
drought, and forest fire hazard.

6. Summary and Conclusions

[63] In areas without ground-based measurements, appli-
cations of satellite-based remote sensing for hydrological
studies have received increased attention. Yet groundwater
studies, which are very important for agricultural areas and
ecosystems, rarely utilize the benefits of spaceborne remote
sensing. In this study, we explored the possibility of cali-
brating a high-resolution and large-extent integrated
groundwater-land surface model using remotely sensed soil
moisture data in the form of Soil Water Index (SWI) and in
situ discharge observations. We introduced and used a mul-
tiobjective and stepwise calibration approach that exploits
the strength of each observation type in order to reproduce
the observed dynamics of different parts of the model, i.e.,
discharge and soil moisture, as well as groundwater head.
Results suggest that SWI time series are suitable for cali-
brating soil moisture dynamics in low-lying areas. In such
low-lying areas, SWI data can be used to estimate the upper
soil hydraulic conductivities, that determine the recharge to
the deeper groundwater zone. Nevertheless, discharge
observations are needed to obtain full calibration of the
coupled model, particularly to determine the optimal upper
soil hydraulic conductivities in mountainous regions and to
estimate aquifer transmissivities, as well as to constrain
runoff-infiltration partitioning processes. A combined and
stepwise calibration approach using both discharge obser-
vations and remotely sensed soil moisture data yields a
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model that can fit both discharge and soil moisture, as well
as predicting the dynamics of groundwater head with
acceptable accuracy. Although there is still room for
improvement, this study show that with the combination of
globally available data sets and remote sensing products,
large-extent or even global-extent coupled groundwater-
land surface modeling is within the reach.
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