
Geomorphology 221 (2014) 298–319

Contents lists available at ScienceDirect

Geomorphology

j ourna l homepage: www.e lsev ie r .com/ locate /geomorph
Semi-automatedmapping of landforms using multiple point geostatistics
E. Vannametee ⁎, L.V. Babel, M.R. Hendriks, J. Schuur, S.M. de Jong, M.F.P. Bierkens, D. Karssenberg
Department of Physical Geography, Faculty of Geosciences, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands
⁎ Corresponding author. Tel.: +31 302532183.
E-mail address: e.vannametee@uu.nl (E. Vannametee)

http://dx.doi.org/10.1016/j.geomorph.2014.05.032
0169-555X/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 October 2013
Received in revised form 30 May 2014
Accepted 31 May 2014
Available online 18 June 2014

Keywords:
Automated landform mapping
Landscape delineation
Multiple point geostatistics
SNESIM
Buëch
French Alps
This study presents an application of a multiple point geostatistics (MPS) to map landforms. MPS uses informa-
tion at multiple cell locations including morphometric attributes at a target mapping cell, i.e. digital elevation
model (DEM)derivatives, and non-morphometric attributes, i.e. landforms at the neighboring cells, to determine
the landform. The technique requires a training data set, consisting of a field map of landforms and a DEM.
Mapping landforms proceeds in two main steps. First, the number of cells per landform class, associated with a
set of observed attributes discretized into classes (e.g. slope class), is retrieved from the training image and stored
in a frequency tree, which is a hierarchical database. Second, the algorithm visits the non-mapped cells and
assigns to these a realization of a landform class, based on the probability function of landforms conditioned to
the observed attributes as retrieved from the frequency tree. The approach was tested using a data set for the
Buëch catchment in the French Alps. We used four morphometric attributes extracted from a 37.5-m resolution
DEM aswell as two non-morphometric attributes observed in the neighborhood. The training data set was taken
frommultiple locations, covering 10% of the total area. Themappingwas performed in a stochastic framework, in
which 35 map realizations were generated and used to derive the probabilistic map of landforms. Based on this
configuration, the technique yielded a map with 51.2% of correct cells, evaluated against the field map of land-
forms. The mapping accuracy is relatively high at high elevations, compared to the mid-slope and low-lying
areas.Debris slopewasmappedwith the highest accuracy, whileMPS shows a low capability inmapping hogback
and glacis. Themapping accuracy is highest for training areaswith a size of 7.5–10% of the total area. Reducing the
size of the training images resulted in a decreased mapping quality, as the frequency database only represents
local characteristics of landforms that are not representative for the remaining area. MPS outperforms a rule-
based technique that only uses the morphometric attributes at the target mapping cell in the classification
(i.e. one-point statistics technique), by 15% of cell accuracy.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Geomorphological maps are among the most important tools for
studying earth surface processes. Fieldmaps of landforms, in combination
with other terrestrial archives such as aerial photographs and satellite
images, can deliver useful information for land evaluation, landscape
planning, geo-hazard risk assessment, and analysis of landscape evolu-
tion (e.g. Otto and Dikau, 2004). Manual derivation of landform maps
is labor-intensive and time-consuming, particularly for large areas
(Adediran et al., 2004).Mappingqualitymay be influenced by individual
experiences in landscape interpretation, which can result in bias in
landform categorization (Williams et al., 2012). These problems
encourage scientists to resort to automated landformmapping, because
the amount of fieldwork can be largely reduced (Seijmonsbergen et al.,
2011). Automated mapping is particularly useful for areas with limited
accessibility, such as high and dense-forested regions (e.g. Schneevoigt
et al., 2008) and planetary surfaces other than those on the Earth
.

(Florinsky, 2008), i.e. Mars (e.g. Stepinski et al., 2007), Venus (e.g. Burl
et al., 1994), and the Moon (e.g. Jain et al., 2013).

Automated landform classification has shown a rapid growth over
recent years due to advances in machine-learning technologies and the
increasing availability of high-resolution digital terrain data (Evans,
2012). Automated landform classification can be done following induc-
tive or deductive approaches, or a combination of these. The inductive
approach, also referred to as unsupervised classification, derives land-
form classes based on internal characteristics and self-organizing struc-
ture of the terrain attributes without imposing prior knowledge of the
geomorphological characteristics (Irvin et al., 1997; Burrough et al.,
2000; Bue and Stepinski, 2006; Etzelmüller et al., 2007). The deductive
approach performs the classification based on pre-set class definitions
of the cell properties representing particular landform classes obtained
from field evidence, i.e. supervised classification (Hengl and Rossiter,
2003; Reuter et al., 2006; Seijmonsbergen, 2008; Ho et al., 2013). Digital
elevation models (DEMs) are primarily used to deliver morphometric
attributes such as slope for identifying different landform types
(Sulebak et al., 1997; Bolongaro-Crevenna et al., 2005; Gharari et al.,
2011). Non-morphometric information related to vegetation, lithology,
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land cover, and soil derived from remote sensing and field observations
can be used to improve the classification (Irvin et al., 1997; Benger,
2003; Adediran et al., 2004; Luoto and Hjort, 2005; Schneevoigt et al.,
2008; Chartin et al., 2011).

Many existing automated classification techniques delimit landform
units based on the statistical analysis of terrain attributes obtained at a
single location, often neglecting spatial relations of landscape character-
istics and landform patterns. These include, for instance, techniques
based on automated data grouping such as clustering (MacMillan
et al., 2000), classification trees (Thuiller et al., 2003; Stepinski and
Vilalta, 2005; Chartin et al., 2011), and regression (Atkinson et al.,
1998; Luoto and Hjort, 2005; Ridefelt et al., 2010). These techniques
often produce units lacking spatial coherence, because spatial relations
are not considered in the classification (Minár and Evans, 2008). Also,
they may result in misrepresentation of morphological breaks (sharp
transitions) in the landscape, as this requires information at more
than one location to locate terrain discontinuities (van Niekerk, 2010).
To overcome this problem, a number of techniques have been proposed
that incorporate spatial information and relations between locations.
These include region growing approaches (Romstad, 2001; van
Asselen and Seijmonsbergen, 2006), terrain segmentation approaches
(Dymond et al., 1995; Klingseisen et al., 2008; Matsuura and Aniya,
2012), and approaches using variograms (Jordan, 2003; Bishop et al.,
2012) to give information on the spatial continuity of differentmorpho-
logical features that can aid landform discrimination (e.g. Trevisani
et al., 2009). These techniques are, however, only based on statistics
calculated between two locations, which are often insufficient to
capture complex spatial patterns (Wood, 1996; Caers and Zhang,
2004). Applications of the two-point statistics classification techniques
are, thus, mainly limited to extracting morphological features that have
a relatively simple geometry (e.g. Dymond et al., 1995; Etzelmüller
et al., 2007; van Niekerk, 2010), or as a basis for object-based classifica-
tion (Drăguţ and Blaschke, 2006; Anders et al., 2011).

Multiple point geostatistics (MPS) is developed to overcome limita-
tions of one or two point statistics in simulating complex spatial
patterns (Guardiano and Srivastava, 1993). This method characterizes
and simulates a random variable at specific locations based on the
spatial configuration of properties and their autocorrelations atmultiple
spatial locations retrieved from a training image (Strebelle, 2002; Caers
and Zhang, 2004; de Vries et al., 2009). This training image can be a con-
ceptual drawing, geological analogue, outputs from process-based
modeling, or unconditional object-based simulations that contain data
patterns deemed present in the area that has to be mapped (Hu and
Chugunova, 2008; Honarkhah, 2011). Simulation of a random variable
can be done for a 2D domain or image (Liu and Journel, 2004), a 3D
block (Comunian et al., 2011), or even in 4D (Wu, 2007). MPS has
beenwidely used to simulate geological facies distribution for petroleum
reservoir modeling (Caers, 2001; Strebelle, 2002; Caers and Zhang,
2004), and to reconstructfluvial depositional architecture for simulation
of groundwater and hydrogeological transport (Feyen and Caers, 2005;
Knudby and Carrera, 2005; Huysmans and Dassargues, 2009). Recent
research applies MPS for mapping the spatial pattern of land surface
phenomena; for example, soil type distribution (Meerschman et al.,
2013), geological features using outcrop information from LiDAR images
(Viseur, 2013), sub-pixel land cover mapping (Boucher, 2007), and rain
clusterswithin cloudy regions (Wojcik et al., 2009). However, to our best
knowledge, there has been no attempt to use MPS for mapping
landforms.

In this paper, we explore and investigate the use ofMPS for landform
classification, focusing on medium-scale landform types with a dimen-
sion between 10−2 and 101 km2, such as alluvial fans, fluvial terraces,
and debris slopes (Dramis et al., 2011). Here, we follow the SNESIM
approach (Strebelle, 2002), which is the first practical MPS algorithm
that has shown a profound success in many applications (e.g. Feyen
and Caers, 2005; Rezaee et al., 2011; Tang et al., 2013). SNESIM
retrieves, for each pixel on a training image consisting of a field map
of landforms and a DEM, a landform class including associated DEM
attributes in categorical values (e.g. slope classes) and landforms
at the neighboring pixels. Frequencies (i.e. number of cells) of each
landform class corresponding to all sets of attributes observed in the
training image are stored in a search tree (i.e. frequency database). In
the classification stage, the algorithm stochastically assigns to every
pixel, in a sequential order, a realization of a landform class drawn
from a conditional probability distribution of landform types, read
from the search tree, for observed DEM attributes at the target pixel
and previously-mapped landforms in its neighborhood. In this manner,
landform mapping can be set in a probabilistic framework using a
Monte Carlo simulation approach, giving information on mapping
uncertainty. Furthermore, with a capability of using information at
multiple cell locations, landforms in the surroundings can be explicitly
used to determine the landform class of the target cell. This information
is potentially useful in mapping, because landforms exhibit a structural
pattern in the landscape due to the dominant geomorphic processes at
different locations (Evans and Cox, 1999; Dehn et al., 2001).

As a pioneer study, we will investigate the configuration and imple-
mentation of MPS in geomorphological mappingwith an aim to answer
four questions: 1)What are the key attributes and their associated class
discretization that enable the best discrimination between different
landforms? 2) What is the capability of the MPS technique in mapping
landforms in the study area? 3) What is the relation between size of
the training area and mapping quality? 4) What is the performance of
MPS relative to a standard classification technique? This study is carried
out using a data set from the Buëch region in the French Prealps.
To investigate the fourth research question, we use a rule-based
approach because it has been widely applied in a stand-alone mode
(e.g. Dikau et al., 1995; Ho et al., 2013) or in combination with other
techniques (e.g. Seijmonsbergen et al., 2011). Also, this technique is
relatively similar to MPS in that a set of heuristic rules or conditions,
representing specific landform classes defined a priori, is used to
inform a landform class at unknown locations. Unlike MPS, the rule-
base classification does not consider spatial relations between landform
units.

The paper is organized as follows. Section 2 describes the geological
and geomorphological background of the study area. A description of
the MPS technique for mapping landforms, including the configuration
of the technique for mapping landforms is presented in Section 3.
Mapping results are shown in Section 4; from these, mapping accuracy
and the effect of the training area on mapping quality are analyzed and
discussed. Conclusions and future perspectives, including general
guidelines in applying MPS in mapping landforms are presented in
Section 5.

2. Study area

Wedemonstrate theMPS approach inmapping the landforms in the
Buëch Valley, located within the southern subalpine chain of the
Dauphiné and Provence Prealps, in the department Hautes Alpes,
France (Fig. 1). The Buëch River is a tributary to the Durance River.
The mapping site covers an area of approximately 280 km2, stretching
roughly for approximately 20 km along two main tributaries of
the Buëch River (Grand Buëch and Petit Buëch), from the town of
Aspres-sur-Buëch (Grand Buëch) and Veynes (Petit Buëch) down to
some 10 km south of the confluence of these tributaries near the town
of Serres. The elevation ranges between 700 and 1800 m (Fig. 1). The
geology of the area is characterized by a sequence of sediments from
the late Jurassic (Fig. 2; Dumas et al., 1987). The upper-most layer con-
sists of highly-resistant massive limestone of Kimmeridgian–Tithonian
age (i.e. Calcaire Tithonique), which overlies alternating layers of
limestone and marl (i.e. marno-calcaires) of Argovian age. The bottom
layers in the sequence are calcareous black marls deposited during the
Callovian and Oxfordian (i.e. Terres Noires; Miramont et al., 2000;
Battiau-Queney, 2005). These marl deposits are thick (1500–2000 m)
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Fig. 1. Location and topography of the study area.
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compared to the overlying Argovian deposits (300 m) and Calcaire
Tithonique (20–80 m) (Descroix and Olivry, 2002; Brocard et al.,
2003). The sedimentary layers were intensively deformed during two
subsequent orogenic phases: the Pyreneo-Provencale orogeny from
the late Cretaceous to the Eocene with a West–East strike; and the Al-
pine orogeny in the lateMiocenewith anNNE–SSWstrike. This resulted
in a sequence of short folds and thrusts pertaining to these two orogenic
phases (Blanchard, 1921; Battiau-Queney, 2005; Brocard and van der
Beek, 2006), and a landscapemade up of anticlinorial domes and smaller
synclinal structures, sometimes at high elevation (synclinaux perchés).
The constituent rocks are heavily affected by this deformation by folding
and faulting (e.g. diastrophism) and by subsequent weathering during
the deglaciation period and theHolocene (Blanchard, 1921). Quaternary
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deposits are widely found throughout the area, of which the deposits
from the last glacial (Würm) period aremost prominent. These deposits
are largely of glacio-fluvial origin, with material delivered by meltwater
streams from the Durance glacier that intruded the Buëch valley at the
Freissinouse pass (Brocard et al., 2003). Locally, hillslope deposits from
the Holocene can be found.

Present-day geomorphological characteristics (Fig. 2) can be traced
back to the late Miocene after the Alpine orogeny. Geomorphological
development in the Buëch Valley is strongly linked to differences in
lithological resistance to erosion between the massive limestone
(e.g. Calcaire Tithonique) and soft marls (e.g. Terres Noires). The
Calcaire Tithonique is resistant to erosion, resulting in hogbacks at
anticlinal valley sides that tower high above the valley floor. In contrast,
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the Terres Noires marls show relatively little resistance to erosion. In
conjunction with material supplied from the Calcaire Tithonique
hogbacks, the Terres Noires marls have given rise to the development
of concave, pediment-like slope surfaces (i.e. glacis d'érosion) during
the Pleistocene. These glacis d'érosion slopes, referred to as glacis
hereinafter, have been formed under the influence of frost weathering,
solifluction and/or gelifluction when cold, periglacial conditions existed
and vegetation was largely absent. Cold conditions then also resulted in
large quantities of debris to be transported to the river system, resulting
in river valley infilling and raised riverbeds. During a subsequent inter-
glacial periodwith decreased sediment supply, the river incised, causing
the formerly elevated floodplains to become glaciofluvial terraces.With
a consecutive alternation of glacial and interglacial periods during the
Pleistocene, a sequence of fluvial terraces was successively created at
different levels: since large parts of the Buëch Valley were not covered
by glaciers, these glacio-fluvial terraces were not eroded by glacier ice
and can nowadays be found at elevations of approximately 190 and
80mabove the present-day valleyfloor (Brocard et al., 2003). Colluviums
and alluvial fans in the area stem from the end of the last ice
age (Würm), which resulted in progressive accumulation of fine sedi-
ments downslope (Descroix and Gautier, 2002). The sharply incised
badland topography of certain marl areas was subsequently formed in
the Holocene due to high-intensity precipitation, causing severe
erosion of the marl deposits downslope. Badlands are prominent
landforms in the Buëch valley, responsible for a significant amount of
the sediment supply to streams and rivers in the area (Descroix and
Olivry, 2002).

3. Methodology

3.1. Field mapping of landforms

A field map of landforms is required to train and validate the
automatically created landform map. In this study, we mainly focus on
mapping the ‘landform complex’ (Dramis et al., 2011), which is a
sequence of relatively homogeneous entities representing a characteristic
morphological pattern of landform elements, for example, debris slopes,
alluvial fans, and fluvial terraces. Landform units at this scale can
be chosen as model units in a hydrological model (e.g. Vannametee
et al., 2013) or as functional units for planning and management
(e.g. Arattano et al., 2010).

Following van Asselen and Seijmonsbergen (2006), a map legend
was constructed using two criteria: the environment in which land-
forms were developed (i.e. hillslope or fluvial), and the dominant
forming process (i.e. structural control, erosion, or accumulation). This
resulted in eight landform classes (Table 1). Hydro-geographical
featureswere alsomapped into four classes: lake (natural and artificial),
main river, perennial stream, and ephemeral stream.

Classification rules or criteria were defined for each landform class.
These mapping criteria include locally-observable terrain characteris-
tics and the topographical context observed in the vicinity sufficiently
covering the characteristic dimension of the landform units,
i.e. approximately 500 m for the landform types mapped in this study
(Speight, 1990). The mapping criteria can be grouped into characteris-
tics of lithology (e.g. regolith type, texture, thickness of regolith layer,
color, and sorting), topography (e.g. relief, composition and spatial
arrangement of landform elements), morphology (e.g. slope angle,
aspect, and curvature), vegetation (e.g. type and coverage), channels
(e.g. form, pattern, and density), status of geomorphological activity
(e.g. active, inactive), dominant geomorphological agents, position rel-
ative to the main channel and watershed divide, and relations between
different landform types. These criteria were observed and evaluated at
approximately 400 locations and the landform class was identified. The
topographical map at a scale of 1:10,000 was used as a base map to de-
lineate landform boundaries. This mapping scale is suitable because the
typical size of the landform units examined in this study (i.e. N104 m2)
can be captured at this scale (Speight, 1990;MacMillan et al., 2004; van
Asselen and Seijmonsbergen, 2006; Dramis et al., 2011). The field cam-
paign of geomorphologicalmapping took onemonth. Themapping pro-
cedure started by identifying the hydrological features, particularly the
main rivers and perennial streams, because they often indicate the bor-
ders between different landform units. The units that can be easily rec-
ognized from a long distance, i.e. large-size units or units with a distinct
shape (e.g. alluvial fans), were mapped in a subsequent order. Finally,
the mapping was done for units with smaller sizes, requiring detailed
inspection at a local scale.

3.2. Multiple point geostatistics for mapping landforms

3.2.1. Concept
We use the multiple point geostatistical method developed by

Strebelle (2002), which is a single normal equation simulation algo-
rithm often referred to as SNESIM. This MPS approach is a probabilis-
tic technique: the data value (i.e. landform class) at a pixel is
simulated based on the discrete probability function of a random
variable given a conditioning data event at multiple locations
(Honarkhah, 2011). SNESIM is regarded as the first practical MPS
algorithm and it has brought the initial MPS concept by Guardiano
and Srivastava (1993) into practice (Hu and Chugunova, 2008;
Mariethoz and Lefebvre, 2014). In this study, the SNESIM algorithm
was implemented in Python, and run in the PCRaster Python frame-
work for stochastic modeling, which has operators on raster maps
(Karssenberg et al., 2007). As with other MPS algorithms, SNESIM
derives from a training image the statistics of a multiple-point pat-
tern that is used in the mapping phase. In this study, the training
data set consists of a field map of landforms and the DEM. In the
training phase of the algorithm, the landform class at a location
(i.e. pixel) is characterized by a set of topographical properties for
that location, taken from the DEM, and landforms at multiple neigh-
boring locations. This information, collected from all pixels in the
training area, is used as ‘knowledge’ to map landforms in other
areas where only the DEM is available (Fig. 3). To define the condi-
tional relationships between topographical attributes and land-
forms, the continuous data (e.g. DEM derivatives) must be
converted to categorical variables.

The SNESIM approach generates an automated landformmap in two
stages: training and mapping (Fig. 3). In the training stage, the SNESIM
algorithm visits each cell in the training image and retrieves a set of
attributes over the data search template with a central node at the cell
visited (Fig. 4), referred to as an attribute pattern. The attribute pattern
consists of morphometric attributes, given as categorical values of DEM
derivatives (e.g. elevation and slope classes) at the central template
node, and landforms at two locations in the downstream direction
from the central template node (Fig. 4; Section 3.2.2). The downstream
direction is retrieved from a local drainage direction map, in which the
flow direction in each cell is assigned to one of its eight surrounding
cells with the steepest descending slope in the DEM (Burrough and
McDonnell, 2004). The algorithm stores the attribute patterns of all
nodes in a search tree structure, i.e. a frequency database, as shown on
the right of Fig. 3. This form of data storage results in a fast retrieval of
the information in the mapping stage (Strebelle, 2002; de Vries et al.,
2009).

In the mapping stage, the order in which the cells in the mapping
area are sequentially visited is specified first (Section 3.2.5). The
algorithm visits the cells in this order, executing the following three
steps for each cell. First, the algorithm retrieves the attribute pattern
in the template centered at the cell visited, which includes the DEM
attributes of the central template node and the landforms at its down-
stream locations (in case neighboring cells have already been visited
and mapped). Second, the frequencies of each of the landform class
occurrences (i.e. number of cells) conditioned to the attribute pattern
observed in the template are retrieved from the search tree. This



Table 1
Descriptions of the landform classes used in landform mapping.

Geomorphological
environment

Process Landform
class

Descriptions

Topography/morphology Material deposits Vegetation/landuse

Hillslope Structural
control

Hogback Steep ridge or cliff (60–80°) of bare rock as a
result of lithological resistance to erosion.
Located at the highest position in the
landscape as a stretching rocky belt with
narrow width along the mountain crest or
watershed divide in a perpendicular
direction to the slope.

Highly-resistant massive limestone. Absence
of material deposits or soil layer due to
steepness.

No vegetation, or short grasses or
shrub vegetation.

Erosion Badlands Intensely dissected terrain with extensive
branches of interconnected sharp ridges,
forming local watershed divides and V-
shaped gullies with steep side slopes (N65°).
Slopes are highly incised by small rills
showing high drainage density as a result of
intensive erosion by overland flow. Mostly
bordered by deep-cut ephemeral channels.
Situated at a variable height in the landscape.

Very thin layer of dark-color marls or clay
with high weathering degree. Relatively im-
permeable and erodible.

Absence or sparse vegetation (b10%),
of which short grass, shrubs and
coniferous tree are themost common
species. Agricultural activities not
present.

Glacis Concave slope surface, narrow and
elongated, with decreasing slope angle from
25° to 3° in downstream direction. Situated
at a relatively high position in the landscape,
but not always connected to the mountain
crest. The lower part might be disconnected
from the main part due to erosion, resulting
in low-relief isolated hills with flat top. Bad-
lands often present at the side or at a lower
part.

Relatively thin deposit layer with increasing
thickness downslope (i.e. 0.5–2 m).
Moderately-sorted angular clasts with rela-
tively fine matrix; boulder-size materials

Mainly forest. Deciduous species at
low elevation and coniferous species
at high elevation.

Accumulation Debris
slope

Extensive rectilinear slope surface with slope
angle between 25°–40°. Positioned high in
the landscape, below mountain crests or
hogbacks. Mass movements are included in
this class.

Heterogeneous matrix-rich deposit,
consisting of loose and angular materials of
limestone fragments, mostly eroded from
higher elevation and crudely stratified.
Thickness of deposit up to 10 m.

Lack of vegetation at the steep part
while densely-vegetated in moder-
ate to low lying slope (b25°).

Fluvial Accumulation Alluvial
fan

Fan-shape landform with a convex cross-
sectional profile across the main slope, usu-
ally covering a large area of up to a few km2

with gentle slope gradient varying from 0.5°
to 20°. Developed at a relatively low position
in the landscape at the foot of a steep slope
with an abrupt transition of slope gradient.
Deep-incised streams at lateral boundaries.

Well-developed soil layer, heterogeneous
and poorly-sorted materials dominated by
fine-grained marls or calcareous debris par-
ticles. Decreased grain size along the slope.
Thickness of deposits between 1 and 10 m

Grassland and intensive agricultural
activities.

Colluvium Deposits without a clear fan shape and
source areas. Situated directly at the foot of
moderate to steep slopes. Often laterally
interconnected. Slope profile slightly
concave.

Materials are generally composed of
abundant angular gravel within a finer
matrix. Internal structures poorly developed
to absent.

Grassland, light density forest.
Agricultural activities can be found.

Fluvial
terrace

Elevated plane of flat surface slope with
sharp-cut boundary (i.e. steep side slope).
Developed along the main valley parallel to
the main river. Position variable in the land-
scape, higher than the present-day river
level. No longer flooded by the river.

Relatively fine grains (i.e. sand and silt) with
rounded gravel. Moderately to well sorted.
Variable deposit thickness, usually N0.5 m.

Grassland, shrubs, and forest.
Agricultural activities can be found

River
plain

Low-lying flat terrain unit bordering the
main river channel or permanent streams at
the same or slightly-higher elevation. Regu-
larly or yearly flooded. Relatively unclear
boundary with the landforms at a higher
position (e.g. colluviums).

Similar to fluvial terraces. Sedimentation
process still active. Gravel bar present.

Forest, shrub, grassland, or no
vegetation. Small agriculture
activities.
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information is converted into a categorical probability distribution
giving the probability of landform classes at the cell visited:

Prob I i; gð ÞjVif g ¼ f Vi jgð Þ
f Við Þ

ð1Þ

where I(i, g) is the event that the cell i belongs to the landform class g,Vi

is the vector containing the attribute pattern observed at location i: f Við Þ
is the number of cells in the training area with the attribute pattern Vi,
and f Vi gj Þð is the number of cells in the training area with the attribute
pattern Vi that belong to the landform class g. In the third and final
steps, a realization of the landform class is drawn from this probability
distribution and assigned to the cell visited. The algorithm then moves
to the next cell in the predefined sequential order and repeats the
mapping procedure. This is done until all cells in the mapping area
have been assigned a realization of a landform class.

In case the attribute pattern Vi observed at the target mapping
cell does not exist in the database (e.g. attributes are missing or not
observed in the training images), the last attribute in Vi will be
disregarded, resulting in a new attribute pattern. This attribute trim-
ming process is done until the trimmed attribute pattern matches an
attribute pattern in the frequency database. Then, the numbers of cell
occurrenceswith respect to this trimmed attribute pattern are retrieved
and converted into the categorical probability distribution of landform
classes to be used in mapping. If the entire set of observed attributes
Vi does not match the attribute patterns observed in the training area
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(i.e. all attributes have been dropped out), a probability distribution of
landform classes over the entire training area (i.e. marginal probability
distribution) will be calculated and used in mapping.

To ensure reliable statistics, the attribute patterns used in mapping
should have enough replicates (i.e. cell counts) in the training image
(Liu, 2006). In this study, a minimum number of replicates allowing
an attribute pattern to be used in mapping are set to five. This value
was derived based upon a number of test runs. If this condition is not
satisfied, attributes in the observed attribute pattern are dropped one-
by-one, until the number of cells corresponding to the new attribute
pattern is equal to or above five.

Since the MPS technique assigns to the cells a realization of a land-
form class drawn from a conditional probability function, the landform
class assigned to the given cells may vary from one map realization to
another. Thus, the landform mapping has to be done in a stochastic
Monte Carlo framework, in which a number of different equally likely
map realizations are generated and used to derive the final landform
map, which contains for each cell the most often occurring landform
class in the cell, calculated over all map realizations. In addition,
this stochastic framework allows calculating uncertainty in the map
Table 2
Attributes used in geomorphological mapping.

Type Attributes Symbol Descriptions/remar

Morphometric Height above the
nearest drainage

HAND Adjusted terrain he
(Rennó et al., 2008;
as cells with the up
based on the elevat

Slope gradient S Absolute change in
window of 3 × 3 ce

Profile curvature φ Change in slope gra
(Zevenbergen and T

Slope variability Svar Absolute difference
(Ruszkiczay-Rüdige

Non-morphometric Landform at one cell
downstream

G1 A landform at a clos

Landform at 10 cells
downstream

G10 A landform at a cell
along the local drain
(Section 3.3.1). The Monte Carlo procedure has been run by generating
35 map realizations. Test runs with a larger number of realizations
gave comparable results, indicating that the 35 realizations are
sufficient.

3.2.2. Attributes used in mapping
We investigate the suitability of four morphometric and two non-

morphometric attributes for mapping landforms in the study area
(Table 2). These attributes are chosen analogous to the criteria used in
field mapping (Section 3.1). Morphometric attributes are derived from
a 37.5 m resolution DEM. These attributes are retrieved from the same
location as in the field map of landforms, i.e. at the central node of
the data search template (Section 3.2.1, Fig. 4). Three of the morpho-
metric attributes used, elevation, slope gradient, and profile curvature,
are among the most fundamental attributes that are considered as
sufficient in characterizing and discriminating different landform types
(Hammond, 1964). These attributes are, thus, commonly chosen for
automated landform classification (e.g. MacMillan et al., 2000; van
Asselen and Seijmonsbergen, 2006; Gharari et al., 2011). Note that
elevation used in this study is the relative elevation to the regional
base level, i.e. elevation at the nearest river to which cells drain, or the
lowest elevation in sub-catchments (Rennó et al., 2008). In addition,
slope variability is used to represent topographical roughness around
the cell of interest.

Non-morphometric attributes in the neighborhood (i.e. landform
classes) are used to represent the spatial patterns of landform units in
the landscape. We consider landforms at two locations, i.e. at the direct
downstream neighbor of the central template node, and at 10 cells
downstream (i.e. 375–530m) from the central template node following
the drainage path. A group of cells in proximity is likely to belong to the
same class of landform; as such a landform at the adjacent location is a
good indicator to determine a landform at a location of interest. This
information can also help in maintaining the spatial continuity of
mapped landform features. Landforms have a structure of organization
across the landscape; certain landforms coexist resulting in a sequential
formation of landformunits along the hillslope (Fig. 2). A landform at 10
cells downstream from the central template node is used to represent a
landform at the lower boundary of the landform at the cell of interest,
giving positional relations between landforms (Section 4.2.2).

3.2.3. Class numbers and class boundaries of morphometric attributes
SNESIM requires the use of categorical variables to create the

frequency database (Section 3.2.1). The number of classes and class
boundaries for discretization of continuous morphometric attributes
was selected based on the zonal statistics of DEM derivatives for each
landform class calculated over the entire study region. Class boundaries
were manually defined such that each of the resulting attribute classes
represents a single or a small number of different types of landforms.
We kept the number of classes at a minimum, because increasing
ks

ight relative to the elevation at the nearest channel to which a cell drains
Nobre et al., 2011). The channels, as a reference elevation level, are defined
stream area exceeding 2 km2 (i.e. 1500 cells). A cell drainage direction is calculated
ion data using the eight-point pour algorithm (Burrough and McDonnell, 2004).
height per distance in horizontal direction; a value between 0 and 1, calculated over a
lls using the third-order finite difference method (Skidmore, 1989).
dient per distance in horizontal direction along direction of the slope
horne, 1987). Negative at concave slopes and positive at convex slopes.
between the minimum and maximum slope gradients over certain areas
r et al., 2009), obtained over a 7 × 7 cell window (i.e. about 0.07 km2).
e proximity to the cell of interest, located at an adjacent downstream position.

located 10 cells (375–530 m) away from a cell of interest in the downstream direction
age direction map.
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the number of classes leads to a larger number of different attribute pat-
terns in the frequency tree, resulting in a smaller number of replicates
per attribute pattern. A small number of replicates should be avoided,
as this reduces the reliability of the conditional probability functions
represented by the frequency tree.

3.2.4. Training images
Training images should contain sufficient information on the charac-

teristics and spatial pattern of landforms present in the mapping areas.
In this study, we select a training image covering an area of 28 km2 or
10% of the study area. The training image consists of four circular
areas, each of which has a diameter of 3 km (i.e. 80 cells) and size of
approximately 7 km2. This size is chosen based on an assumption that
field mapping of landforms could possibly be done by one or two per-
sons in a short time period. Also, the dimension of a single training
image sufficiently covers the characteristic length of most landform
units, including the spatial pattern of landforms (Fig. 5). Although
large and elongated landforms (i.e. debris slopes and river plains) may
not be entirely captured within the training image, the position of
these units relative to other landforms is well represented. These four
areas are randomly located over the study region to account for the
spatial variability in landform characteristics and to increase the statis-
tical reliability in the training data sets (Fig. 5). Landformmapping using
this training image is referred to as the ‘base’ mapping scenario.

We also examine the effect of the size of training images onmapping
quality since the amount of information used in mapping is strongly
related to the size and coverage of the training images. A set of mapping
scenarios with different sizes of training images is created. This is done
by dropping out at least one of the four training areas used in the base
mapping scenario. This results in 16 mapping scenarios with training
image sizes ranging from 7 to 20 km2 or 2.5–7.5% of the total area.
B

A

C

D

Legend

Hogback
Fluvial terrace
River plain
Alluvial fan
Colluvium
Badlands
Glacis
Debris slope

Training area 0 2.5

Fig. 5. Field map of landforms; rasterized to a 37.5 m cell size. Hydrological fea
Accuracy of the auto-generated landformmaps is expected to be related
to the size of the training images used in mapping.

3.2.5. Path of cell visit in mapping
SNESIM visits the cells in a sequential order in the mapping stage.

Landforms that have been previously mapped in the nearby pixels will
be conditions to map the cell under a current visit. In this way, the
path of cell visits may have a strong influence on the mapping quality
as it is directly related to the information content used in mapping
(Liu and Journel, 2004). Here, we investigate two different cell mapping
orders, i.e. one on a random basis and one along the local drainage net-
work in upstream direction. For the latter approach, landforms at the
downstream cells will be initially mapped, providing hard conditions
for mapping the landforms at the upstream cells. The path of cell visits
that results in a higher mapping quality is chosen and used throughout
the study.

3.3. Evaluation of the MPS technique

3.3.1. Uncertainty in the mapping results
Variation of landform classes mapped at a cell over map realizations

can be quantified using the index of qualitative variation (Gibbs and
Poston, 1975):

qi ¼
Gi

Gi−1
1−∑Gi

g¼1p
2
g;i

� �
ð2Þ

where qi is the index of landform variation mapped at cell i, pg,i is the
proportion of realizations with a landform g that is assigned to cell i,
and Gi is the total number of landform classes assigned to cell i. The
index varies between 0 and 1, indicating, respectively, that a single
5 7.5 10
Kilometers

tures are not shown. The training areas (A to D) are indicated with circles.
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landform class is observed over all map realizations, and a lowmapping
uncertainty; and that all landform classes are evenly assigned across all
map realizations and a high uncertainty in mapping.

3.3.2. Mapping accuracy
The accuracy of the landform maps produced from the MPS tech-

nique is evaluated against the field map of landforms obtained in
Section 3.1. It is assumed that errors of field-mapped landforms are
relatively small and do not have a significant effect on the evaluation
results. Evaluation of the mapping accuracy is done for the final land-
form map for each mapping scenario, separately for the area outside
the training area used in the base scenario (i.e. all training images),
and for the training area itself of the respective scenario. The latter is
done to retrieve information on the possible maximum mapping accu-
racy when there is no discrepancy between landform characteristics in
the training and mapping areas. The quality of the automated map is
evaluated per pixel and over a group of adjacent pixels.

For a pixel-based evaluation, the fraction of correctly classified cells
and the kappa statistics are used. The kappa coefficient (κ) is computed
as (Lillesand et al., 2004):

κ ¼ pa−pe
1−pe

ð3Þ

where pa is the fraction of correctly classified cells, and pe is the overall
probability of random agreement among landform classes whose cells
aremapped both correctly and incorrectly. The kappa coefficient ranges
from 0 to 1. A value of 1 represents a perfect agreement between two
maps, and 0 corresponds to an agreement that would only be obtained
by chance.

Evaluation of mapping quality over a group of contiguous pixels is
done using two criteria. First, we evaluate the degree of landform simi-
larity between the automated and field maps, for every cell location,
over a template of 4 × 4 pixels (150 × 150 m). This is calculated as
(Pontius et al., 2004):

si ¼
XG

g¼1

min f Ag;i; f
F
g;i

� �
ð4Þ

where si is an index of landform similarities over a window with a
central location i, g is a landform class (=1,…,G, with G the total num-
ber of landform classes observed in the study area), fg,i is a fraction of
cells with a landform class g over the window with a central location i,
the superscripts A and F indicate the automatedmap and field landform
map, respectively, and min(x,y) selects the lesser value of x and y. The
index of cell similarities ranges between 0 and 1. A value of 0 means
that landform classes over the window between the two maps are
totally different, while a value of 1 indicates identical landforms
between the two maps. Total landform similarity can be obtained by
averaging the index of similarity over the whole map.
Table 3
Percentage of landform units in the training images and mapping areas.

Area Area coverage (km2) Percent to the
total area

Label of training image⁎

Hogback Flu

Training 7 2.5 A 0
7 2.5 B 0.7
7 2.5 C 0
7 2.5 D 0
28 10 A + B + C + D** 0.2

Mapping 247.6 90 – 0.2

Total 275.6 100 – 0.2

*Referred to the label of area in Fig. 4.
** Combination of all training images: A to D (i.e. base scenario).
Second, we evaluate the average difference Di (m2) in the size
of landform units between the automated and the field maps (Hagen-
Zanker, 2006). This metric is calculated as follows. First, areas (m2)
of contiguous patches (i.e. representing single landform units) are
retrieved and assigned to the cells that belong to the units. The cell
values are, then, distance-weighted averaged using a search radius of
4 cells. These are done for both the automated and field maps. In the
next step, these two maps are subtracted to result in a new map
representing cell-by-cell differences in the weight-averaged unit sizes.
These values are, then, averaged over the whole map to retrieve the
average difference in unit sizes between the automated and field
maps. This calculation was made using the Map Comparison Kit soft-
ware package (Visser and de Nijs, 2006). A positive value of Di indicates
that the average size of landform units in the automated map is larger
than that of the field map, and a negative value means the opposite.

3.3.3. Performance relative to the rule-based classification approach
To evaluate our mapping algorithm, the automated maps generated

by MPS are compared to those from a rule-based classification, which
is a widely used automated technique (e.g. Ho et al., 2012, 2013).
Here, the classification procedure is set up in a similar manner as MPS.
The classification rules are defined as combinations of different
attributes discretized into classes; each combination describes the
characteristics of a particular landform. We only use morphometric
attributes (Section 3.2.2) to define the classification rules, neglecting
the non-morphometric attributes in the neighborhood. Thus, the classi-
fication is only based on statistics of attributes at the target mapping
cells without considering spatial relations between cells. The classifica-
tion rules are heuristically derived from the statistical analysis of
attributes for each landform class sampled in the training image. Distri-
bution characteristics ofmorphometric attributes for different landform
classes are analyzed to identify the attribute values that enable discrim-
ination between landform classes. This is done in a hierarchical order for
eachmapping attribute.HAND is used as the first condition, followed by
slope gradient, profile curvature, and slope variability. This results in a
classification tree whose lowest branches (i.e. rules) represent single
types of landform. With these heuristic rules, the landform class in
each pixel is identified deterministically. Note that class numbers and
class boundaries chosen for morphometric attributes in the rule-based
classification are different from those used in the MPS.

4. Results

4.1. Field map

The Buëch valley (Fig. 5) is dominated by debris slopes and badlands
(16%) (Table 3). Hogback is the least present landform type (0.2%).

Landforms show a sequential organization from the mountain crest
to the valley bottom, as shown in the schematic cross section of Fig. 2.
Hogbacks occupy the highest position in the landscape, below which
debris slopes extend over the upslope part. Glacises are generally
Landform classes

vial terrace River plain Alluvial fan Colluvium Badlands Glacis Debris slope

29.0 14.6 14.8 40.8 1.0 0 0
0 5 0 5.6 3.6 4.0 81.0
4 0 19.7 0.7 23.5 4.0 48.0
3.7 25.2 5.6 10.8 5.4 2.4 46.9
9.1 11.2 10.0 14.6 8.3 2.6 44.0

7.5 11.3 14.2 9.4 17.2 4.7 35.5

7.6 11.3 13.8 9.9 16.3 4.5 36.3
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best discrimination between landform classes (see Fig. 8).
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Table 4
Correlation coefficients between morphometric attributes used in mapping.

Attributes Correlation coefficient

HAND S φ Svar

HAND 1 0.68 0.53 0.5
S – 1 0.25 0.6
Φ – – 1 0.23
Svar – – – 1

Referred to the symbols used in Table 2.
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found at approximately the same elevation as debris slopes, and are
sometimes still connected to hogbacks at their upper boundaries. Bad-
lands and colluviums are typically positioned below the debris slopes
and glacises. River plains are present at the valley bottom, surrounded
by elevated plains of fluvial terraces and alluvial fans. This sequence of
landform classes suggests that the relative elevation and position of
units over a slope profile between the watershed divide and streams
are of importance in characterizing the landforms.

The proportion of landform units in the training area of the base
scenario (i.e. A to D combined, Table 3) is slightly different from that
of the area outside the training image (i.e. mapping area). The propor-
tion of landform classes in individual training areas (i.e. A, B, C, and D
separately, Table 3) shows quite some variation.

4.2. Analysis of mapping attributes

4.2.1. Morphometric attributes
The morphometric attributes (Fig. 6A, C, E, G) are positively and

moderately correlated (Table 4), indicating that the attributes partly
contain similar information. However, each attribute carries specific
information that, when combined, is expected to be valuable in the
automated mapping process.

The landforms in thefluvial environment (river plain, fluvial terrace, al-
luvial fan, and colluvium) have comparable meanmorphometric attribute
values (Fig. 7A). The range of variation of morphometric attributes is
however small, resulting in limited overlap between these landform clas-
ses, implying that the landforms can possibly be distinguished, despite
their similarity in mean values (Fig. 8). A landform class can often be dis-
tinguished from the others using a singlemorphometric attribute. For ex-
ample, HAND is the most useful attribute to distinguish river plain from
other landform classes because the river plains are situated at the lowest
position in the landscape and have the lowest HAND value. However, al-
luvial fan and fluvial terrace are an exception, as morphometric character-
istics of these two landform classes considerably overlap (Fig. 8).
Discrimination between alluvial fan and fluvial terrace, using these mor-
phometric attributes alone, is expected to be difficult.

Morphometric properties of landforms in the hillslope environment
(debris slope, glacis, hogback, and badlands) are clearly different
from those in the fluvial environment. HAND appears to be the most
important attribute capable of distinguishing units as the mean values
differ between landform classes in the hillslope environment (Fig. 7B).
However, Fig. 8 shows that morphometric properties of landforms in
the hillslope environment exhibit large variation and overlap between
landforms, i.e. morphometric properties of debris slope significantly
overlap with glacis and hogback. However, debris slope can possibly be
discriminated from badlands using HAND and slope gradient.

4.2.2. Non-morphometric attributes
Non-morphometric attributes, i.e. landforms at downstream

locations from the cell of interest, provide additional information to
distinguish between landform classes. A landform at the immediate
downstream neighboring cell is mostly identical to the landform at
the target cell (results not shown). However, this is exceptional for
hogback where the direct downstream cells are of other landform
types, mainly debris slope. This is due to the small size and elongated
shape of hogback, extending along watershed boundaries (Table 1).

Landforms at a location of 10 cells downstream along the local
drainage network from the cell of interest (Fig. 9) often correspond to
the immediately next landform class in the top-down landform sequence
shown in Fig. 2. However, for very large landform units (i.e. alluvial fan
and debris slope), a distance of 10 cells downstream may not be sufficient
to retrieve the landform at the adjacent downstream neighbor.

Landform classes located 10 cells downstream from the cells of
interest can be explained by the processes during landscape evolution
(Section 2). There is a dominating landform class at 10 cells down-
stream for some landform types. For example, the majority of landform
classes observed at 10 cells downstream from the fluvial terrace cells is
river plain (i.e. 50% of the fluvial terrace cells; Fig. 9A). This is because flu-
vial terrace and river plain are both found in the river valleys, often
neighboring each other, where river plain is by definition at a lower el-
evation and thus often occurring 10 cells downstream from fluvial ter-
race. So, a landform at a 10 cell downstream location is an important
criterion to distinguish fluvial terrace from other landform classes in the
fluvial environment. Generally speaking, non-morphometric attributes
in the surroundings (i.e. landform types) provide additional informa-
tion where morphometric attributes alone are insufficient in
distinguishing between landforms.

4.3. Configuration of the MPS technique

4.3.1. Defining class boundaries for morphometric attributes
TheMPS technique requires the attribute values to be discretized into

classes (see Section 3.2.3, Fig. 6B, D, F, H). The analysis of the fourmorpho-
metric attributes used in this study has shown that HAND and slope gra-
dient are key attributes in distinguishingdifferent landformclasses. In this
study, HAND and slope gradient are classified into seven and five classes,
respectively (Fig. 8A, B). Landforms in thefluvial environment correspond
to narrow ranges of variation in HAND and slope gradient (see
Section 4.2.1). Narrowclass intervalswere, therefore, chosen for lowattri-
bute values. On the other hand, given the large ranges of variation in
HAND and slope gradient observed in the hillslope environment, coarser
class intervals were used for higher attribute values. The two other mor-
phometric attributes, profile curvature and slope variability, do not show
a large capability of discriminating between landform classes. Here, we
used low class numbers for these attributes; two classes for profile curva-
ture and three classes for slope variability (Fig. 8C, D).

4.3.2. Order of cells in mapping
The order used in visiting cells during automated mapping

(Section 3.2.5) affects the mapping results. Mapping the cells on a ran-
dom basis results in map realizations with excessive noise (Fig. 10A).
On the other hand, the mapped landform units are more spatially con-
tiguous when cells are visited and mapped in an upstream direction
along the drainage network (Fig. 10B). Results from the base mapping
scenario (i.e. Section 3.2.4) show that the average difference in unit
size, Di, between mapping realizations with different orders of cell visit
is between 1 and 4 km2. The average number of attributes used in
mapping of a cell is 4.7 when the cells in the map are randomly visited.
This number increases to 5.6 when cells are mapped along the drainage
network. This finding indicates that, with a random cell mapping order,
non-morphometric attributes are not fully used during the mapping
process because landforms at downstream locations may not be avail-
able (i.e. cells are not visited and mapped). Thus, information used in
mapping is mostly limited to the morphometric attributes. This has
the main disadvantage that the spatial relation between landform
units in the landscape is not used in mapping, resulting in noise in the
automated maps, which reduces mapping accuracy, and particularly
causes errors in average unit size between the automated and field
maps. Based on a single map realization, the fraction of correctly-
mapped cells using four attributes (only morphometric attributes
used) is 0.35, while this fraction increases to 0.55 for cells that are
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mapped using six attributes (i.e. landforms in the neighborhood are
used). These results show that the non-morphometric attributes in the
neighborhood are beneficial and should be used in mapping. However,
using the path of cell visits along the drainage networkmay result in arti-
facts of simulated landform features, i.e. straight lines along the flow di-
rection (Fig. 10B). These artifacts are caused by propagation of mapping
the same landform class in the upstream direction when a landform at a
direct downstreamneighbor is used inmapping (i.e. a landform at the di-
rect downstreamneighbor is often the same type as a landform at the tar-
get cell; see Section 4.2.2). These artifacts can be minimized by
aggregating a large number of map realizations. We selected the option
of cell mapping along the drainage path for all scenarios, as it results in
a higher mapping quality than randomly visiting cells.

4.4. Mapping results

4.4.1. Overall mapping quality
Individual map realizations show considerable variation in the land-

form class mapped at a particular cell (Fig. 10); in the base scenario
30–35% of cells in the area do not have the same landform class for all
realizations. The index of cell similarity over 4 × 4 windows between
map realizations, si (Eq. (4)), is 0.76, i.e. the value averaged over the
map. The variation in landform classes mapped at cells, evaluated over
all map realizations, is quite large in low-lying areas and mid-level
positions in the landscape (Fig. 11), indicating a large uncertainty in
mapping landforms in these areas. Mapping uncertainty is somewhat
smaller at higher elevations. A single class of landform is mapped at
many locations in this area (i.e. qi = 0; Fig. 11). The probability of the
most occurring landform class at cells (Fig. 12) is typically small for
cells close to the unit boundaries, while this probability gradually
becomes larger toward the center of units. This probability pattern indi-
cates an uncertainty in defining the boundaries between landformunits,
as the cells at this location may exhibit characteristics that can be
considered as belonging tomultiple types of units. Thus, the cells cannot
always be classified as a certain landform class in everymap realization.

In the base scenario, the percentage of correct cells and the kappa
coefficient for individual map realizations are 48.6 ± 0.6% and 0.34 ±
0.05, respectively. The index of cell similarity (Eq. (4)) ranges between
0.51 and 0.53. The average unit size of individual map realizations is
somewhat larger than the field map with Di values of 1.35–3.60 km2.
The overall accuracy of the final map (Fig. 13) is slightly better than
that of a singlemap realization. The percentage of correct cells increases
to 51.2%, with a kappa coefficient of 0.37. The index of cell similarity also
increases to 0.54. However, the quality of the final map with regard to
the unit size is slightly lower than that of individual map realizations,
with Di increasing to 4.6 km2.

There is considerable spatial variation in themapping accuracy. Cells
located at a high elevation near local watershed boundaries aremapped
with a higher accuracy than cells at lower elevation. The automated
map also exhibits a larger degree of similarity with the field map at
higher elevations (Fig. 14A). The probability in mapping the correct
landforms at cells even reaches unity at many high-elevation locations
(Fig. 14B), mainly because usually only one type of landform (debris
slope) is found at high elevations. Mapping accuracy is relatively low
in areas at mid-slope positions and near the main river. In these
areas, different landforms that have overlapping morphometric and
non-morphometric properties can be observed (see Section 4.2). Accord-
ingly, the degree of cell similarity in these areas is also quite small (Fig. 14A).

4.4.2. Mapping quality per landform class
The landform classes are different regarding the mapping accuracy.

Because the results for the different criteria are comparable, we focus
on the mapping quality as presented by the percentage of correct cells
for the base mapping scenario. The class debris slope can be mapped
with the highest accuracy. It is shown that 90% of the debris slopes in
the field map are correctly mapped (i.e. Producer's Accuracy), while
75% of the debris slope cells in the automated map truly represent
debris slopes in the field (i.e. User's Accuracy) (Table 5). The accuracy
of mapping debris slope corresponds well with the spatial pattern in
mapping uncertainty. Figs. 11 and 14B show that debris slope is mapped
with a high certainty (i.e. qi=0) and that a large number of these debris
slope cells in the automatedmaps are correct (probability of a correctly-
mapped landform class of 1). As noted, debris slope is the dominating
landform class in the higher part of the landscape. Thus, mapping the
debris slopes in this area is relatively straightforward. Alluvial fan is
the second most accurately mapped landform class in this study
(Producer's Accuracy of 57%). However, the proportion of alluvial fans
in the automated map that really represent alluvial fans in the field is
smaller (User's Accuracy of 34%). This indicates an overestimation of
alluvial fan in the automated map. A large mapping accuracy of alluvial
fan may be partly due to this overestimation. Other landforms are
mapped with Producer's Accuracies below 35%.

Mapping accuracy is lowest for hogback. It is shown that hogback is
scarcely present in map realizations, and totally absent in the final
map (Fig. 13). This is due to the small proportion of hogbacks present
in the training image.With a small number of cell counts in the frequen-
cy database, probability of hogback under any attribute conditions is
low. As a result, the cells tend to be misclassified to other landform
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classes that have similar characteristics to hogback and are more often
present in the training image. The hogback was entirely misclassified
as debris slope (Table 5).

Mapping accuracy is also relatively low for glacis, with Producer's
Accuracy only 5%. Glacis is considerably misidentified as either debris
slope, or, to a lesser extent, as badlands and colluvium (Table 5). The
lowmapping accuracy of glacis can be mainly explained by two factors.
First, its characteristics overlap with other landform classes. With the
chosen class boundaries, it is not possible to discretize themorphomet-
ric attributes to specifically correspond to the properties of glacis only
(Fig. 8). This includes profile curvature, which is the key criterion to dif-
ferentiate glacis from debris slope in field mapping, but does not enable
discrimination between these two classes in automated mapping
(Fig. 8C). Second, the training images contain a relatively low number
of glacis cells compared to those of other units with overlapping charac-
teristics, which affect the probability of the glacis with respect to other
landforms. This results in an underestimation of glacis in the automated
map and, consequently, in a low mapping accuracy of the glacis
class. Glacis is only misclassified to landforms found in its adjacency
(e.g. debris slope, colluvium, and badlands; Fig. 2).

Among the landforms in the fluvial environment, fluvial terrace is
mapped with the lowest Producer's Accuracy of 20% (Table 5). Fluvial
terrace is mainly misclassified as alluvial fan (42%) due to the overlap-
ping properties of these two classes (Section 4.2). It is obvious that the
mapping attributes used in this study are not sufficient to discriminate
between fluvial terrace and alluvial fan. In field mapping, alluvial fans
can easily be identified and separated from the fluvial terraces due to
its prominent fan shape. However, attributes representing the shape
and geometry of landforms are not used in this study due to the difficul-
ties in translating and representing these attributes in a single grid cell
as a DEM derivative. The low mapping accuracy of fluvial terrace may
also be caused by low mapping quality of river plain, which is often ob-
served at a direct downstream position of fluvial terrace (Fig. 9A). As the
mapping criteria include landforms at downstream neighbors, errors in
mapping the landforms at downslope locations mayworsen the quality
of mapping the upslope landforms. River plain is highly underestimated
in the automated map and heavily misclassified to alluvial fan (Fig. 13,
Table 5), causing omission errors in mapping fluvial terrace. Similarly
to glacis, fluvial terrace and river plain are often misclassified to land-
forms in the fluvial environment, but rarely to landforms found in the
hillslope environment.

4.4.3. Mapping quality relative to rule-based classification
MPS shows a better performance in creating the automated land-

formmap compared to the rule-based classification. Using the rules de-
fined in Fig. 15, the resulting automated map has 35.3% of correct cells
(Fig. 16). Even though the rule-based map contains less noise and the
landform units show a large spatial continuity with sizes comparable
to those in the field map (i.e. average unit size difference of 1.9 km2),
the geometry of glacis, badlands, colluvium, and alluvial fan, is not cor-
rect. The rule-based technique produces units that are largely elongated
in the direction of the elevation contours; however, in reality landform
units extend along the slope direction or drainage network due to the
slope aggradation or degradation processes that form the units
(Fig. 5). This problem does not occur in the automated map generated
byMPS. The rule-based technique largely overestimates the proportion
of landforms that are not frequently observed in the field, i.e. hogback,
glacis, and fluvial terrace, which results in an increasedmapping accura-
cy of these landform classes compared to using MPS (Table 5). Debris
slope, alluvial fan, and badlands, on the other hand, are considerably un-
derrepresented in the rule-based map, while these landforms are quite
ubiquitous in the Buëch valley. As a result, the mapping accuracy of
these landform classes is low (Table 5). These findings clearly show
that MPS outperforms the rule-based classification technique in land-
formmapping. The rule-based technique, however, has a superior capa-
bility to MPS in mapping river plain. This landform class can bemapped
with correct shape and relatively high accuracy (80%), while its propor-
tion is also comparable to the field map. Since river plain is specifically
found at the lowest position in the landscape and its characteristics do
not overlap other units, river plains can be mapped accurately even
with a rule based on a single morphometric attribute (i.e. HAND, see
Fig. 15).

4.5. Effect of training area on map quality

The size of the training area affects themapping quality, irrespective
of the criteria used in evaluating mapping accuracy. Here, we only dis-
cuss the results based on the percentage of correct cells (Fig. 17). It is
shown that the average map quality in themapping area (i.e. excluding
the training area used in the base scenario) is highest for the scenario
with the largest training area (i.e. the base mapping scenario). The de-
crease in mapping accuracy with training area size is related to the de-
gree of mismatch between landform characteristics in the training
area and the mapping area. Relations between topographical attributes
and landform classes vary over the study site. This spatial non-
stationarity is due to variations in geomorphological processes, to a
large extent caused by variations in geology and hydrology. With a
large training area, these variations are averaged out, resulting in a fre-
quency tree that is representative for the entire region, and a highmap-
ping accuracy. On the other hand, with a small training area, the
frequency tree of the training area may not be representative for the
mapping area, as it is derived from a small area that may have very spe-
cific landform characteristics. This bias results in a lower mapping accu-
racy. It is additionally shown that the mapping quality of individual
training scenarios does significantly differ when the training area is
small (Fig. 17), which is caused by the considerable differences in the
frequency trees between small training areas.

It is found that the average mapping accuracy outside the training
areas is only slightly lowerwhen the size of the training areas is reduced
from 10% to 7.5% of the total area. This reveals that in our study area, the
optimal size of the training image is already reached at about 7.5% of the
whole area. At this size, the training data set is already sufficiently large
to establish a frequency database that is representative for mapping
landforms in the remaining area.

The mapping quality is relatively high within the training areas (i.e.
proportion of correct cells of 60–85%, and a kappa coefficient of
0.5–0.7). This can be regarded as the highest possible mapping accuracy
because the information used to map landforms is completely contained
in the training data set. Mapping errors inside the training images are
solely caused by overlapping characteristics of landform classes. This
source of error is intrinsic and unavoidable in the automated mapping,
even when the landform characteristics of the training and mapping
areas would be identical. The map quality within the training areas de-
creases with increasing size of the training images (Fig. 17). This can be
explained by an increase in variability in the relations between landform
classes and terrain attributes in the training data set, as certain landforms
can be found under different attribute conditions over a large area. This
non-stationarity results in more uncertainty in mapping.

5. Discussion and conclusion

5.1. General findings

In this study, we present an application of the multiple point
geostatistics (MPS) technique to mapping the landforms, following
the SNESIM approach and using a data set from the Buëch catchment,
Southern France. The training data set consists of a field map of land-
forms and a DEM. In this approach, the data set is used to character-
ize the landforms, given (1) properties observed at the location
itself and (2) properties in the neighborhood. The properties used
in the study include four morphometric attributes at the cell of
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interest and two non-morphometric attributes at the neighboring
cells.

The results show that theMPS technique is capable of reconstructing
the general pattern of the landforms in the study areawith a percentage
of total correct cells of 51% and a kappa coefficient of 0.37, using training
areas of 28 km2, which represents 10% of the total mapping area. MPS
outperforms a rule-based classification, which is essentially a one-
point statistics technique, by 15% of overall cell accuracy, and regarding
the capability of reproducing the shape of landform units and overall
proportions of different landforms. With MPS, the mapping accuracy is
largest at a high position in the landscape, where a single landform
type, debris slope dominates. Quality of the automatedmap is somewhat
lower in mid-slope and low-elevation areas as several landform types
with overlapping characteristics can be found at these positions in the
landscape. Mapping accuracy for landform classes considerably varies,
with percentages of total correct cells ranging from 90% (i.e. debris
slope) to 5% (i.e. glacis). With the exception of debris slope, landforms
are generally better classified in thefluvial environment than in the hill-
slope environment. This is related to the statistical properties of the
morphometric attributes characterizing the landforms. Landforms in
thefluvial environment correspond to narrow ranges of attribute values
with sharp boundaries, while the attribute values of a particular land-
form class often overlap with each other in the hillslope environment.
It is also shown that mapping uncertainty is relatively large at cells
near the boundaries of landform units, implying difficulties in identify-
ing distinct boundaries between different landforms due to overlapping
cell characteristics. The mapping quality decreases with a decrease in
the size of the training area.
5.2. Evaluation of MPS for landform mapping

MPS has a number of advantages compared to other automated
mapping techniques. Themain advantage is that non-morphometric at-
tributes atmultiple point locations, i.e. landformsobserved in the neigh-
borhood, can be used to provide contextual information for mapping
landforms at the location of interest. This contextual information is
mostly used in field-geomorphological mapping, but often neglected
in automated mapping techniques due to the incapability of two-point
statistics in using these attributes to characterize landforms. MPS,
thus, offers the opportunity to combine two classification paradigms
using both geometric properties and the spatial pattern in geomorpho-
logical mapping. Also, using attributes in the neighborhood results in
less noisy landform maps, because spatial correlation is taken into ac-
count. Furthermore, the MPS technique can be used to map landforms
at any scale of interest because the landform classes to be mapped can
be directly defined in the training data set. Finally, MPS allows probabi-
listic landformmapping,which enables the investigation and evaluation
of mapping uncertainty at different locations and for different land-
forms. Map uncertainty is valuable information, both in academic and
applied research, and is essential when landform maps are used as
input to other analyses or models, for instance, when they are used as
inputs to hydrological models for estimation of the spatial distribution
ofmodel parameters. Also, uncertainty information can be used to iden-
tify locations where additional field observations are required to im-
prove the mapping quality.

The MPS technique has, however, a number of weaknesses in
landform mapping. As categorical attribute values are used to
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characterize the occurrence of landforms, it is likely that landforms
with overlapping characteristics are often related to the same
set of attribute values. This hampers the discrimination between
landform classes. Increasing the number of classes per attribute
or using more attributes to improve the discrimination between
landform classes may not be an appropriate solution. Indeed,
the information used in characterizing and mapping landforms
must be kept at a minimum to ensure a sufficient number of cell
occurrences for each attribute pattern in the frequency database.
Capability of the MPS technique in distinguishing different
landforms is, therefore, limited by the amount of information toler-
ated to produce a reliable probability distribution. Another weakness
of theMPS technique is the use of training data sets as an information
source in mapping. Errors in the training data sets are intrinsically
transferred to the automated map. These include errors in the
field map of landforms itself, which are unavoidable in the
automated map and cannot be evaluated, and errors caused by
using training data sets that are not representative of landform
characteristics in the mapping area. Also, the MPS technique tends
to underestimate the landforms that are undersampled in the train-
ing images due to a low probability of unit occurrences, resulting
from small counts in the frequency database, compared to those of
other landforms with overlapping characteristics that are more
often present in the training images. Finally, MPS is computationally
intensive since the cells are sequentially mapped, and multiple map
realizations are required. However, run time is not a big issue
nowadays due to large computational capabilities of available
computers.
5.3. Configuration of MPS for landform mapping

Results from this study suggest a promising future of the MPS tech-
nique in landform mapping. Successful application of MPS in landform
mapping is, however, largely dependent on the configuration of the
technique. Finding the appropriate configuration is not easy, as it de-
pends on many factors, including the geomorphology at the study site.
Thus, configuration of MPS should be optimized for individual cases
based on expert knowledge and exploratory analysis of field data as
was done in this study. Although a number of challenges exist for future
research (see Section 5.4), we can provide from this study a number of
recommendations for configuring MPS for mapping landforms.

5.3.1. Number of attributes and classes
First, during the training and mapping phases, the number of map-

ping attributes (e.g. DEM derivatives) and associated class numbers
(e.g. slope classes) should not be too high. This is to ensure that suffi-
cient replicates (i.e. number of cell counts) of attribute patterns occur
in the training image, which is required for obtaining reliable statistics.
In addition, we recommend to use a minimum number of cell counts
during the mapping phase, as was also done by Liu (2006). We used a
minimum of five, which could probably be used as a rule of thumb, al-
though the optimal value will differ between studies, as it depends on
the information used to create the search tree.

5.3.2. Order of visiting cells in mapping phase
The sequence of cell visits duringmapping should not be randombut

organized to use previously-mapped cells, as conditioningdata, asmany
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as possible. This is the case when visiting cells along the drainage
network, because the mapping attributes include landforms at
downstream cells. This issue is also addressed in Liu and Journel
(2004) who developed an approach to structure the path of cell visit
to maximize the number of conditioning data for simulation at non-
visited cells.

5.3.3. Training image
The training image should contain multiple areas in the study site

to avoid sampling bias. There is no strict guideline on the size of
training image to be used (Hu and Chugunova, 2008); however, it
should be sufficiently large to capture the spatial pattern and range
of landform units (Caers and Zhang, 2004). We found an optimal
training image size of 7.5–10% in the study area (20–28 km2),
which implies that the training image can be rather small to obtain
a good mapping quality. Above this size, mapping quality does not
significantly improve. This can be explained by an increase in varia-
tion in landform types observed under particular attribute condi-
tions when the size of the training images becomes larger. Thus,
the size of the training images must be chosen as to balance the var-
iability within the training data set and the representativeness of the
training data set for the mapping area.

5.3.4. Use of probabilistic information
We do not recommend deterministic mapping based on the maxi-

mum probability of landform class per attribute. In deterministic
mapping, the landform most frequently observed per attribute pat-
tern in the training image will always be mapped, while other land-
forms with overlapping characteristics that are less present in the
training images will be totally neglected. This results in an overrep-
resentation in the automated map of landforms that are most dom-
inating in the training image. Therefore, it is beneficial to follow a
Monte Carlo approach, requiring at least 30 realizations for consis-
tent results.
5.4. Future perspectives

A number of strategies need to be explored to improve the quality of
the automatedmaps in future studies. Morphometric attributes that are
not capable of discriminating between landform classes (e.g. profile cur-
vature) should most likely be dropped out and replaced by non-
morphometric attributes, which include landforms at a larger number
of neighboring locations (i.e. landforms at longer distances than 10
cells downstream), and attributes related to vegetation, soil, or land
cover, possibly retrieved through remote sensing. This information en-
ables more detailed landform classification; for instance, badlands
with different stages of development, or fluvial terraces with different
formation ages. With the use of more neighborhood attributes, a
multi-grid simulation approach is required to prevent attribute patterns
with a too small number of replicates and to reduce the size of frequen-
cy tree (Hu and Chugunova, 2008).
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Mapping quality could also be improved by using hard conditioning
data such as landforms mapped in the field at multiple locations in the
study area, or automatically extracted landform features with extreme
morphometric characteristics (e.g. Miliaresis and Argialas, 2000; Stout
and Belmont, 2013). Note that this option requires a very large number
1

0

Mapping area

(A) (B

0 3 6

Index of
landform
similarities 

Fig. 14.Quality of the automatedmap in the base scenario. A) Index of cell similarities (i.e. landfo
over a template of 4 × 4 pixels (si, Eq. (4)); 1 = similar, 0 = dissimilar. B) Probability of corre
of conditioning locations since the cells at further distancesmight not be
influenced by this hard conditioning data (Liu, 2006). Quality of the au-
tomatedmap can be also improved by improving the quality of the field
geomorphological map used as a training data set. Also, high-resolution
topographical data such as LIDAR DTMs (Anders et al., 2011), ASTER
Mapping area

)

Probability 
1

0

9 12
Kilometers

rm classes) between the automatedmap in the base scenario and thefieldmap, evaluated
ct cell mapping.



Table 5
Confusion matrix showing the number of cells in the automatedmap of the base scenario (column), derived fromMPS, classified to landform classes in the field map (row). Mapping ac-
curacy of the automated map from the rule-based classification is shown in the last column.

Landform
classes

Automated map Producer's Accuracy,
MPS (%)

Producer's Accuracy,
rule-based (%)

Hogback Fluvial
terrace

River
plain

Alluvial
fan

Colluvium Badlands Glacis Debris
slope

Total
cells

Field map

Hogback 0 0 0 0 0 0 0 420 420 0 57.1
Fluvial terrace 0 2709 1485 5517 1826 949 7 637 13,130 20.6 42.4
River plain 0 1016 5185 11,820 604 525 6 817 19,973 26.0 81.1
Alluvial fan 0 1883 1289 14,338 2391 3959 172 1026 25,058 57.2 18.4
Colluvium 0 1689 598 3367 5222 2665 174 2801 16,516 31.6 30.7
Badlands 0 1343 464 5830 6838 6609 1068 8228 30,380 21.8 12.3
Glacis 0 288 68 488 1063 1046 444 4836 8233 5.4 22.6
Debris slope 0 437 756 333 2346 1727 1215 55,676 62,490 89.1 39.9

Total cells 0 9378 9854 41,734 20,307 17,508 3088 74,469 176,338 Overall accuracy (%)

User's accuracy (%) 0 28.9 52.6 34.4 25.7 37.7 14.3 74.8 51.2 35.3
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GDEM (Tachikawa et al., 2011), and HRSC-A (Otto et al., 2007), can be
used as base information to improve mapping quality of small-scale
landform units (e.g. slopes with mass movement and hogbacks).

Future studies also need to use an improved simulation procedure.
Bayesian updating and servo-system correction can be implemented
to constrain the statistics of the simulated map to the global statistics
of the mapping area (Liu, 2006). If landform characteristics exhibit a
strong spatial inconsistency (i.e. non-stationarity), the entire mapping
area can be dissected into sub-regions of relatively uniformgeomorpho-
logical characteristics, where mapping the landforms can be done on a
separate basis using different training data sets (e.g. de Vries et al.,
2009). It would also be worthwhile to apply other MPS approaches in
geomorphological mapping. Recent MPS algorithms (e.g. Zhang et al.,
2006; Chugunova and Hu, 2008; Mariethoz et al., 2010; Straubhaar
et al., 2011) allow using continuous data as auxiliary variables to control
the position of the pattern; and classification is made based on pattern
matching. These techniques are computationally fast as they avoid
using the search trees to store the statistics from the training images
and allow a parallel simulation within the same mapping domain.
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Fig. 15. Landform classification rules derived from the analysis of information in training image
HAND= height above the nearest drainage; S = slope gradient; φ = profile curvature; Svar =
These algorithms are, therefore, suitable to dealwith non-stationary im-
ages and simulation domain (Straubhaar et al., 2011). It might also be
important to revise the procedure in deriving the final landform map,
in order to reduce the possible overestimation of landform classes that
are oversampled in the training image (Soares, 1992).

In addition to improving mapping quality, it is also important to
prove the applicability of the automated maps generated by the MPS
technique, for example, in landscape planningor hydrological prediction.
Delineation of the response units used in the semi-distributed hydrolog-
ical modeling is in many studies based on landform components and
geomorphological features as they generally represent areaswith hydro-
logical similarities due to internal homogeneity of morphometric and
physical properties (e.g. Tilch et al., 2002; Güntner and Bronstert, 2004;
Uhlenbrook et al., 2004; Pluntke et al., 2013; Vannametee et al., 2013).
Thus, an automated landformmap can be incorporated into a hydrolog-
ical modeling framework to provide information on themodel units and
model parameterization (e.g. Khan et al., 2013). In this way, benefits and
values of automated landform mapping, including the performance of
the MPS technique, can be evaluated from a practical perspective. This
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s in the base scenario. Each rule represents a single landform class (bold and underlined).
slope variability.
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Fig. 16. Automated geomorphological map derived from the classification rules in Fig. 15.
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will, in turn, deliver useful information for an improvement of the MPS
technique in mapping landforms to serve a specific application.
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