© Adis International Limited. All rights reserved.

Drug Interactions Between Antiretroviral Drugs and Comedicated Agents

Monique M.R. de Maat,¹ *G. Corine Ekhart*,¹ *Alwin D.R. Huitema*,¹ *Cornelis H.W. Koks*,¹ *Jan W. Mulder*² and *Jos H. Beijnen*^{1,3}

1 Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands

- 2 Department of Internal Medicine, Slotervaart Hospital, Amsterdam, The Netherlands
- 3 Faculty of Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands

Contents

Abstract 2' 1. Methods 2'	
2. Pharmacokinetics of Antiretroviral Drugs	25
2.1 Nucleoside Reverse Transcriptase Inhibitors	
2.2 Non-Nucleoside Reverse Transcriptase Inhibitors	25
2.3 Protease Inhibitors	25
3. Mechanisms of Drug Interaction	25
3.1 Pharmacokinetic Interactions	27
3.1.1 Drug Absorption	27
3.1.2 Metabolism and P-Glycoprotein	27
3.1.3 Protein Binding	73
3.1.4 Excretion	74
3.2 Pharmacodynamic Interactions	74
3.2.1 Efficacy	74
3.2.2 Toxicity	74
4. Practical Issues for Use of Interactions Table	74
5. Conclusions	75

Abstract

HIV-infected individuals usually receive a wide variety of drugs in addition to their antiretroviral drug regimen. Since both non-nucleoside reverse transcriptase inhibitors and protease inhibitors are extensively metabolised by the cytochrome P450 system, there is a considerable potential for pharmacokinetic drug interactions when they are administered concomitantly with other drugs metabolised via the same pathway. In addition, protease inhibitors are substrates as well as inhibitors of the drug transporter P-glycoprotein, which also can result in pharmacokinetic drug interactions. The nucleoside reverse transcriptase inhibitors are predominantly excreted by the renal system and may also give rise to interactions.

This review will discuss the pharmacokinetics of the different classes of antiretroviral drugs and the mechanisms by which drug interactions can occur. Furthermore, a literature overview of drug interactions is given, including the following items when available: coadministered agent and dosage, type of study that is performed to study the drug interaction, the subjects involved and, if specified, the type of subjects (healthy volunteers, HIV-infected individuals, sex), antiretroviral drug(s) and dosage, interaction mechanism, the effect and if possible the magnitude of interaction, comments, advice on what to do when the interaction occurs or how to avoid it, and references.

This discussion of the different mechanisms of drug interactions, and the accompanying overview of data, will assist in providing optimal care to HIVinfected patients.

The treatment of HIV-1 infection has been improved markedly during recent years by the introduction of new classes of antiretroviral drugs, resulting in decreased morbidity and mortality.^[1-3] Antiretroviral therapy generally involves combination therapy and consists typically of three or four drugs, in most cases from different drug classes.^[4] Although regimens have recently become more convenient after the reduction in dietary restrictions and pill burden due to (i) the implementation of boosting protease inhibitors (PIs) with ritonavir^[4,5] and (ii) the introduction of coformulations (lopinavir and ritonavir [Kaletra^{™1}]; lamivudine, zidovudine, and abacavir [Trizivir[®]]; lamivudine and zidovudine [Combivir®]), the treatment still requires much attention.

HIV-infected individuals usually have an impaired immune response. Therefore, they are frequently confronted with opportunistic infections and malignancies. In addition, comorbidity such as drug dependence, psychiatric disorders, neurological manifestations of HIV disease (HIV-1 dementia complex) or hepatic disease may also be present. Due to this comorbidity, a wide variety of drugs (e.g. antidepressives or antibacterials) is used in addition to the antiretroviral regimen. Since both non-nucleoside reverse transcriptase inhibitors (NNRTIs) and PIs are extensively metabolised by the cytochrome P450 (CYP) system,^[6,7] there is a considerable potential for pharmacokinetic interactions when these drugs are administered concomitantly with drugs metabolised via the same pathway. Awareness, recognition and management of drug interactions are important in the optimisation of pharmaceutical care to HIVinfected patients, helping to prevent adverse events and/or loss in efficacy of the drugs administered.^[8-11] This review presents a tabulated overview of interactions of antiretroviral drugs and comedicated agents based on drug-drug interaction studies, case reports, population pharmacokinetic data, *in vitro* studies and theoretical grounds. Furthermore, a concise review is presented of the pharmacokinetics and mechanisms of interaction of antiretroviral drugs.

1. Methods

A Medline search was performed using the keywords 'human immunodeficiency virus', 'pharmacokinetics', 'metabolism', 'drug interactions' and the names of the individual antiretroviral drugs. Information gathered from a review of the literature, including peer-reviewed journals, abstracts from large congresses, review articles and package inserts, has been incorporated in the overview. The drug interactions were tabulated with the comedicated agent (as a single drug or as a specific drug class) in alphabetical order. The following items were described in as much detail as possible: coadministered agent and dosage, type of study that was performed to study the specific drug interaction, the subjects involved and, if specified, the kind of subjects (healthy volunteers, HIV-infected individuals, sex), antiretroviral drug and dosage, mechanism of interaction, the effect, comments, advice on what to do when the interaction occurs

¹ Use of tradenames is for product identification only and does not imply endorsement.

or how to avoid the interaction, and references used to assemble the information. Advice on how to cope with specific interactions will be given as completely and clearly as possible. This review will only focus on drug interactions between antiretroviral drugs and comedicated agents, and not on drug interactions among antiretroviral drugs. For information on this subject, we refer to earlier published reviews.^[12-15]

2. Pharmacokinetics of Antiretroviral Drugs

2.1 Nucleoside Reverse Transcriptase Inhibitors

At this moment, six representatives of this class are licensed: zidovudine (AZT), didanosine (DDI), zalcitabine (DDC), stavudine (D4T), lamivudine (3TC), and abacavir (ABC). The NRTIs are prodrugs that require intracellular phosphorylation to the active dideoxynucleoside triphosphates, which compete with the natural substrates for HIV reverse transcriptase (deoxynucleoside triphosphates) for incorporation into newly synthesised proviral DNA. The NRTIs lack a 3'-hydroxyl group, thereby preventing growth of the DNA and resulting in termination of virus replication.^[16] As a class, the NRTIs are predominantly excreted by the renal system (tubular secretion) and interactions based upon CYP are not regularly encountered.^[17] However, drugs influencing renal clearance or intracellular phosphorylation may cause drug interactions with the NRTIs. Table I presents an overview of the pharmacokinetic parameters of each NRTI.

2.2 Non-Nucleoside Reverse Transcriptase Inhibitors

Currently, three drugs from this class are available: nevirapine (NVP), efavirenz (EFV) and delavirdine (DLV). In contrast to the NRTIs, the NNRTIs are not incorporated in the proviral DNA, but bind directly to the viral reverse transcriptase to block polymerase activity by causing a disruption of the enzyme catalytic site.^[6] The NNRTIs are extensively metabolised by the liver via the CYP enzyme system. Besides substrates, NVP and EFV are both inducers of CYP3A4, whereas DLV acts as a potent inhibitor of CYP3A4.^[50] In addition, *in vitro* studies showed that EFV inhibits CYP2C9, 2C19 and 3A4.^[30] Therefore, drug interactions can be anticipated if the NNRTIs are coadministered with other drugs that are metabolised via the same metabolic pathway. Table I summarises the pharmacokinetic parameters of the different NNRTIs, including the specific enzymes involved in their metabolism.

2.3 Protease Inhibitors

Six PIs are currently commercially available for the treatment of HIV-1-infection: amprenavir (AMP), indinavir (IDV), ritonavir (RTV), lopinavir (LPV) [coformulated with a low dose of RTV], nelfinavir (NFV), and saquinavir (SQV) [formulated as hard or soft gelatin capsules]. The target of these drugs is the viral protease that is a key enzyme in the synthesis of structural proteins and replicative enzymes. Inhibition of the viral protease leads to production of noninfectious virus particles.^[51,52] Pharmacokinetic parameters and metabolic pathways of each PI are listed in table I. As can be observed, CYP3A isoenzymes are predominantly responsible for the metabolism of the PIs. In addition, all PIs are inhibitors of CYP3A. Both RTV and LPV have also CYP-inducing properties. Besides being substrates of CYP, PIs are also substrates and can act as inhibitors of Pglycoprotein, a transmembrane glycoprotein that functions as an energy-dependent efflux pump for a wide variety of structurally unrelated compounds.^[53-55] Furthermore, the multidrug resistance associated proteins, MRP1 and possibly MRP2, are known to be involved in the disposition of the PIs.^[53] These transporter proteins are also involved in drug efflux.

3. Mechanisms of Drug Interaction

Drug interactions are of pharmacokinetic or pharmacodynamic nature or consist of a combination of both. Generally, pharmacokinetic interac-

Drug	Typical adult dosage (mg)	F (%)	Protein binding (%)	t¹ _{⁄2β} (h)	AUC ^a (mg ∙ h/L)	C _{max} (mg/L)	C _{min} (mg/L)	Metabolism	Induction of CYP	Inhibition of CYP
Nucleoside reverse trans	criptase inhibi	tors								
Abacavir ^[17-19]	300 bid	83	50	1.5	6.02	$\textbf{3.0} \pm \textbf{0.89}^{b}$	<0.1	ADH, GT		
Didanosine ^[17,20,21]	200 bid	42	5	1.5	1.2	0.9	<0.01			
Lamivudine ^[17,22]	150 bid	86	<36%	5–7	12	1.5	0.1			
Stavudine ^[17,23]	40 bid	86	5	1.4	1.9	0.85	0.02			
Zalcitabine ^[24]	0.75 tid	>80	5	2	0.07	0.03	<0.005			
Zidovudine ^[17,25-27]	300 bid	65	34–38	1	2.0 ^c	1.2 ^c	<0.02	GT		
Non-nucleoside reverse	transcriptase ir	hibitors								
Delavirdine ^[6,28,29]	400 tid	85 ^d	98	2–11	$82.2\pm45.7^{\text{b}}$	$16.0\pm9.1^{\text{b}}$	$\textbf{6.8} \pm \textbf{4.6}^{b}$	3A4, 2D6, 2C9/19		3A4
Efavirenz ^[30-32]	600 qd	NA	>99	18–51	54.8 (33.3–66.6) ^e	3.63 (2.61–5.37) ^e	1.55 (0.93–2.04) ^e	3A4, 2B6	3A4	2C9/19, 3A4
Nevirapine ^[33-35]	200 bid	90	60	12–22	54.5 (48.0–72.0) ^e	5.86 (5.52–7.22) ^e	3.72 (3.07–4.91) ^e	3A4, 2B6	3A4, 2B6	
Protease inhibitors										
Amprenavir ^[36]	1200 bid	35–90	90	2–10	$\textbf{18.9} \pm \textbf{6.1}^{b}$	7.55 (54) ^f	0.32 (77) ^f	3A4		3A4
Indinavir ^[37,38]	800 tid	70	60	1–2	20.2 ± 7.8^{b}	$\textbf{8.98} \pm \textbf{2.87}^{b}$	$\textbf{0.18} \pm \textbf{0.13}^{b}$	3A4		3A4
Lopinavir ^{g [39,40]}	400 bid	NA	98–99	5–6	$\textbf{82.8} \pm \textbf{44.5}^{b}$	$9.6\pm4.4^{\text{b}}$	5.5 ± 4.0^{b}	3A4	GT	3A4, 2D6
Nelfinavir ^[41,42]	750 tid	70–80	>98	3.5–5	15.5	$3.0\pm\!\!1.6^{b}$	2.2 ± 1.3^{b} (morning) 0.7 ± 0.4^{b} (evening)	3A4, 2C9 /19, 2D6		3A4
Ritonavir ^[43,44]	600 bid	60–80	98–99	3–5	78	$11.2\pm3.6^{\text{b}}$	3.7 ± 2.6 ^b	3A, 2D6	GT, 1A2, 3A, 2C9	3A, 2D6
Saquinavir HGC ^[45-47]	600 tid	4	98	1.5	$0.9\pm0.5^{\text{b}}$	0.2	$0.04\pm0.03^{\text{b}}$	3A4		3A4
Saquinavir SGC ^[46,48,49]	1200 tid	331 ^h	97	1.5	$\textbf{7.2}\pm\textbf{6.2}^{b}$	2.2	0.07	3A4		3A4

a During one administration interval of a typical adult dose.

b Mean \pm standard deviation.

c After 200mg single dose.

- d Relative to oral solution.
- e Median (interquartile range).
- f Mean (% coefficient of variation).

g In combination with ritonavir 100mg bid.

h Relative to saquinavir HGC.

ADH = alcohol dehydrogenase; AUC = area under the concentration-time curve; bid = twice daily; C_{max} = maximum drug concentration; C_{min} = minimum drug concentration; CYP = cytochrome P450; F = oral bioavailability; GT = glucuronosyltransferase; HGC = hard gel capsules; NA = data not available; qd = once daily; SGC = soft gel capsules; tid = thrice daily; $t_{1/2B}$ = elimination half-life.

tions involve alterations in absorption, transport, distribution, metabolism or excretion of a drug. The results of these interactions can be a decreased or an increased exposure, which in turn can lead to reduced efficacy or increased toxicity, respectively. Pharmacodynamic interactions are those where the pharmacological response to a drug is directly altered. This can lead to potentiation of effect (including toxicity) in either an additive or synergistic manner, or antagonism.

Table II presents the comedicated drugs (with abbreviations) that are involved in the drug interactions that are displayed in table III. Mechanisms that may be involved in these drug interactions are outlined in the following sections.

3.1 Pharmacokinetic Interactions

3.1.1 Drug Absorption

All currently available antiretroviral drugs are given orally and require absorption through the mucous membranes of the gastrointestinal tract. A dramatic change in plasma concentrations can be the result of incomplete drug absorption. A clear distinction must be made between an effect on the rate of absorption or the total amount absorbed. For drugs used long-term, which is the case in the treatment of HIV-1-infection, the rate of absorption is usually of less importance, provided that the total amount absorbed is not markedly changed. A variety of mechanisms could lead to reduced or increased absorption from the gastrointestinal tract.

Both DLV and IDV need normal gastric (acidic) pH for optimum absorption.^[28,37] The concomitant administration of DLV with antacids led to impaired absorption of DLV, yielding a decrease of 41% in the area under the plasma concentration-time curve (AUC) [table III].^[28] A similar effect on IDV when coadministered with antacids can be expected.

Originally, DDI tablets were formulated with a buffer (because of instability of DDI in the presence of gastric acid) that contains calcium carbonate and magnesium hydroxide and can influence drug absorption.^[20] Coadministration of fluoroquinolones and these tablets results in complexation of the quinolone with the cations in the DDI formulation, leading to a significant decrease in the AUC of the quinolone (table III).^[76] This type of drug interaction can easily be avoided by separation of drug administration. Alternatively, the new, enteric-coated formulation of DDI,^[21,126] which lacks the buffer, could be used.

Change in gastrointestinal motility can also influence drug absorption. For instance, methadone decreases D4T absorption by decreasing gastrointestinal motility, which results in a 25% reduction in the AUC of D4T (table III).^[144]

3.1.2 Metabolism and P-Glycoprotein

Metabolism of most drugs occurs by the liver via phase I reactions (involving oxidation, reduction and hydrolysis) into more polar compounds. In addition, phase II reactions involve conjugation of the drugs. The metabolites formed are usually pharmacologically inactive. Both types of reactions result in more water-soluble compounds that are more easily excreted by the kidneys. The most important enzymes involved in phase I reactions are the CYP enzymes,^[228] a family of mixed function oxidases that account for the majority of oxidative biotransformations of xenobiotics and endogenous biochemicals.^[229] These metabolic enzymes can both be induced and inhibited. It may take days to up to 2-3 weeks, depending on the drug and its dosage, to fully develop enzyme induction. Enzyme induction can lead to an increased (in case of the use of a prodrug) as well as a decreased drug effect. Another process involves enzyme inhibition, which unlike enzyme induction, can occur almost immediately.

In humans, CYP3A is the largest fraction of the total CYP content.^[230] CYP3A4 is responsible for the metabolism of a broad spectrum of drugs, including the PIs and the NNRTIs (table I). Furthermore, CYP3A4 is located in the small bowel and liver and is, therefore, also involved in presystemic (first-pass) metabolism.^[229]

As mentioned earlier, P-glycoprotein acts as an energy-dependent efflux pump that exports substrates out of the cell. P-glycoprotein is expressed in the epithelial cells of the gastrointestinal tract,

Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation
Acenocoumarol	ACE	Clorazepate	CLR	γ-Hydroxybutyrate	GHB	Morphine	MOR	Ranitidine	RAN
Acetylsalicylic acid (aspirin)	ASA	Clozapine	CLZ	Ganciclovir	GAN	Mucosal protectives	MUC	Ribavirin	RIB
Albendazole	ALB	Codeine	COD	Garlic supplements	GAR	Nefazodone	NEF	Rifabutin	RFB
Alendronate	See bisphosphonates	Corticosteroids ^a	COR	Gemfibrozil	GEM	Nicardipine	See calcium channel antagonists	Rifampicin (rifampin)	RIF
Alfentanil	ALF	Cyclobarbital	See barbiturates	Gentamicin	See aminoglycosides	Nifedipine	See calcium channel antagonists	Risperidone	RIS
Alimemazine	ALI	Cyclophosphamide	CYC	Glutethimide	GLU	Nimodipine	See calcium channel antagonists	Roxithromycin	ROX
Allobarbital	See barbiturates	Cyclosporin	CsA	Grapefruit juice	GRJ	Nisoldipine	See calcium channel antagonists	Salicylic acid	SAC
Allopurinol	ALU	Dapsone	DAP	Haloperidol	HAL	Nitrendipine	See calcium channel antagonists	Secobarbital	See barbiturates
Alprazolam	ALP	Daunorubicin	DAU	Heptobarbital	See barbiturates	Nitrofurantoin	NIT	Sertraline	See SSRIs
Amikacin	See aminoglycosides	Demeclocycline	See tetracyclines	Hexobarbital	See barbiturates	Nizatidine	NIZ	SSRIs	SSRI
Aminoglycosides	AMG	Desipramine	DES	Hydralazine	HYD	Norethindrone	See oral contraceptives	Sildenafil	SIL
Amiodarone	AMI	Dexamethasone	DEX	Hydroxycarbamide	НҮХ	Norfloxacin	See fluoroquinolones	Simvastatin	SIM
Amitriptyline	See tricyclic antidepressants	Dextropropoxyphene	DRX	lfosfamide	IFS	Nortriptyline	See tricyclic antidepressants	Sirolimus	SIR
Amlodipine	See calcium channel antagonists	Diazepam	DIA	Imipramine	See tricyclic antidepressants	Ofloxacin	See fluoroquinolones	Sparfloxacin	See fluoroquinolone
Amobarbital	See barbiturates	Digoxin	DIX	Interferon- α	INFα	Olanzapine	OLE	St Johns wort	SJW

н.

AstemizoleASTDisulframDISIsotretinoinISOOxytetracyclineSee tetracyclinesTacrolinusAtorvastatinATRDothiepinSee tricyclic antidopressantsIsradipineSee calcium channel antagonistsPamidronateSee bisphosphonatesTarcolinusAtovaquoneATODoxepinSee tricyclic antidopressantsItraconazoleITRPacitaxelPACTerfenadineAurothiogluccesAURDoxorubicinDOXKetoconazoleKETParcetineSee SSRIsTetracyclinesAzithromycinAZIDoxycyclineSee tetracyclinesLacidipine tetracyclinesSee calcium channel antagonistsPertoxacinSee fluoroquinolonesTetracyclinesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidenPETThaidomideBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidenPETTheophyllineBarbitalSee barbituratesEncainideSee ergot derivativesLevofloxacinSee fluoroquinolonesPerciazinePECTiludronateBarbitalSee barbituratesErgonovineSee ergot derivativesLevofloxacinSee fluoroquinolonesPECTiludronateBarbitalSee barbituratesErgot derivativesERDLevothyroxineLEVPerphenazinePEZTinololBuppopionBUPErgotherivativesERYLidocaineLIDPhenobarbital <th></th>										
AprobarbitalSee barbituratesDisopyramideDSPIsoniazidINHOxazepamOXESulfamefrozzoleAstemizoleASTDisulfiramDISIsotretinoinISOOxytetracyclineSee tetracyclinesTarcolinusAtorvastatinATRDothiepinSee tricyclc antidepressantsIsradipineSee calcium channel antagonistsPamidronate bisphosphonatesSee tetracyclinesTarcolinusAtovaquoneATODoxepinSee tricyclc antidepressantsItraconazoleITRPaclitaxelPACTerfenadineAtrothioglucoseAURDoxorubicinDOXKetoconazoleKETParoxetineSee SSRIsTetracyclinesAzithromycinAZIDoxycyclineSee tetracyclinesLacidipineSee calcium channel antagonistsPefloxacin fluoroquinolonesSee fluoroquinolonesTetracyclinesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThaldomideBarbitalSee barbituratesErcainideENCLansoprazoleLANPentamidinePETThaldomideBarbitalSee barbituratesErgonovineSee ergot derivativesLevodopaDOPPentobarbitalSee barbituratesThoridazineBepridilBEPErgonovineSee ergot derivativesLevofloxacinSee fluoroquinolonesPETTitodonateBisphosphonatesBIPErgonovineSee ergot derivativesLevothyroxine	Amphotericin B	AMB	Dihydroergotamine	•	Interleukin-2	IL-2	Omeprazole	OME	Streptomycin	See amino- glycosides
AstemizoleASTDisulfiramDISIsotretinoinISOOxytetracyclineSee tetracyclinesTacrolimusAtorvastatinATRDothiepinSee tricyclic antidepressantsIsradipineSee calcium channel 	Antacids	ANT	Diltiazem	DIL	lodoquinol	IDO		OC	Sulfadiazine	SUF
AtorvastatinATRDothiepinSee tricyclic antidepressantsIsradipine antidepressantsSee calcium channel antagonistsPamidronate bisphosphonatesSee bisphosphonatesAtovaquoneATODoxepinSee tricyclic antidepressantsItraconazoleITRPaciltaxelPACTerfenadineAturothioglucoseAURDoxorubicinDOXKetoconazoleKETParoxetineSee SSRIsTetracyclinesAurothioglucoseAURDoxorubicinDOXKetoconazoleKETParoxetineSee SSRIsTetracyclinesAzithromycinAZIDoxycyclineSee tetracyclinesSee calcium channel antagonistsPefloxacin channel antagonistsSee fluoroquinolonesSee fluoroquinolonesBarbitalSee barbituratesEncainideENC tetracyclinesLansoprazoleLAN PentamidinePETThaidomideBarbituratesBAREtidronateSee tetracyclinesSee tetracyclinesDOPPentobarbitalSee tetracyclinesTheophylline barbituratesBepridilBEPErgotamineSee ergot derivativesLevofloxacinSee fluoroquinolonesPECTiludronate tetracyclinesBisphosphonatesBIPErgotovineSee ergot derivativesLevofloxacinSee fluoroquinolonesPEZTinololBuptopionBUPErgot derivativesERDLevoflyroxineLEVPerpenazinePEZTimololBuptopionBUPErythromycinERY	Aprobarbital	See barbiturates	Disopyramide	DSP	Isoniazid	INH	Oxazepam	OXE	Sulfamethoxazole	SUL
AltovaquoneATODoxepinSee tricyclic antidepressantstraconazoleITRPaclitaxelPACTerfenadineAltovaquoneATODoxepinSee tricyclic antidepressantsITRPaclitaxelPACTerfenadineAurothioglucoseAURDoxorubicinDOXKetoconazoleKETParoxetineSee SSRIsTetracyclinesAzithromycinAZIDoxycyclineSee tetracyclinesLacidipineSee calcium channel antagonistsPefloxacin channel antagonistsSee fluoroquinolonesTetracyclinesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThalidomideBarbitalSee barbituratesEtidronateSee bisphosphonatesLevodopaDOPPentobarbitalSee barbituratesTheophylline barbituratesBepridilBEPErgotamineSee ergot derivativesLevoftoxacinSee fluoroquinolonesPERTiludronateBisphosphonatesBIPErgonovineSee ergot derivativesLevothyroxineLEPPericiazinePECTiludronateBuropoinoBUPErgot derivativesERDLevothyroxineLEVPerphenazinePEATiotixeneBurpopionBUPErgot derivativesERDLevothyroxineLEVPerphenazinePHB, see tarbituratesTiotixeneButabibitalSee barbituratesEthanolETHLomefloxacinSee fluoroquinolonesPenotophylinePHB, see t	Astemizole	AST	Disulfiram	DIS	Isotretinoin	ISO	Oxytetracycline		Tacrolimus	TAC
AurothioglucoseAURDoxorubicinDOXKetoconazoleKETParoxetineSee SSRIsTetracyclineAzithromycinAZIDoxycyclineSee tetracyclinesLacidipineSee calcium channel antagonistsPefloxacin fluoroquinolonesSee fluoroquinolonesTetracyclinesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThalidomideBarbitalSee barbituratesBAREtidronateSee see bisphosphonatesLevodopaDOPPentobarbital fluoroquinolonesSee barbituratesTheophylline barbituratesBepridilBEPErgotamineSee ergot derivativesLevofloxacin derivativesSee fluoroquinolonesPERThioridazineBisphosphonatesBIPErgonovineSee ergot derivativesLevomepromazineLEPPericiazinePEZTimololBurpopionBUPErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololButabitialSee barbituratesErgot derivativesERDLidocaineLIDPhenobarbitalPHB, see barbituratesTotixene barbituratesButabitialSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPHTTramadolButabitialSee barbituratesEthanolETNLoperamideLOPPinozidePIMTrazodone TrazolamButabitialSee barbituratesEthanolETNLoperamideLOP<	Atorvastatin	ATR	Dothiepin	,	Isradipine	channel	Pamidronate			ТАМ
AzithromycinAZIDoxycyclineSee tetracyclinesLacidipineSee calcium channel antagonistsPefloxacinSee fluoroquinolonesTetracyclinesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThalidomideBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThalidomideBarbitalSee barbituratesBAREtidronateSee bisphosphonatesLevodopaDOPPentobarbitalSeeTheophyllineBepridilBEPErgotamineSee ergot derivativesLevofloxacinSee fluoroquinolonesPERThioridazineBisphosphonatesBIPErgonovineSee ergot derivativesLevomepromazineLEPPericiazinePEZTimololBurlobarbitalSee barbituratesErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololBurpopionBUPErythromycinERYLidocaineLIDPhenobarbitalPHB, see barbituratesTiotixene barbituratesButabitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneButobarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneButobarbitalSee barbituratesEthanolSee oralLoratadineLOPPimozidePIMTrazodone	Atovaquone	ΑΤΟ	Doxepin	,	Itraconazole	ITR	Paclitaxel	PAC	Terfenadine	TER
tetracyclinestetracyclineschannel antagonistsfluoroquinolonesBarbitalSee barbituratesEncainideENCLansoprazoleLANPentamidinePETThalidomideBarbituratesBAREtidronateSee bisphosphonatesLevodopaDOPPentobarbitalSee barbituratesTheophylline barbituratesBepridilBEPErgotamineSee ergot derivativesLevofloxacinSee fluoroquinolonesPerazinePERThioridazineBisphosphonatesBIPErgonovineSee ergot derivativesLevothyroxineLEPPericiazinePECTiludronateBurpopionBUPErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololButalbitalSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPHB, see barbituratesTiotixene barbituratesButabarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneButobarbitalSee barbituratesEthanolETNLoperamideLOPPinozidePIMTrazodoneCalcium channelCACEthinylestradiolSee oralLoratadineLOPPipotiazinePIMTrazodone	Aurothioglucose	AUR	Doxorubicin	DOX	Ketoconazole	KET	Paroxetine	See SSRIs	Tetracycline	See tetra- cyclines
BarbituratesBAREtidronateSee bisphosphonatesLevodopaDOPPentobarbitalSee barbituratesTheophyllineBepridilBEPErgotamineSee ergot derivativesLevofloxacinSee 	Azithromycin	AZI	Doxycycline		Lacidipine	channel	Pefloxacin			TET
bisphosphonatesbisphosphonatesbisphosphonatesbisphosphonatesbisphosphonatesbisphosphonatesbisphosphonatesbisphosphonatesBEPErgotamineSee ergot derivativesLevofloxacin fluoroquinolonesSee fluoroquinolonesPerazinePERThioridazineBisphosphonatesBIPErgonovineSee ergot derivativesLevomepromazineLEPPericiazinePECTiludronateBrallobarbitalSee barbituratesErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololBupropionBUPErythromycinERYLidocaineLIDPhenobarbitalPHB, see barbituratesTiotixeneButalbitalSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPhenytoinPHTTrazodoneButobarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneCalcium channelCACEthinylestradiolSee oralLoratadineLORPipotiazinePIPTriazolam	Barbital	See barbiturates	Encainide	ENC	Lansoprazole	LAN	Pentamidine	PET	Thalidomide	THA
JunctionJunctionJunctionJunctionJunctionJunctionJunctionBisphosphonatesBIPErgonovineSee ergot derivativesLevomepromazineLEPPericiazinePECTiludronateBrallobarbitalSee barbituratesErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololBupropionBUPErythromycinERYLidocaineLIDPhenobarbitalPHB, see barbituratesTiotixene barbituratesButalbitalSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPhenytoinPHTTramadolButobarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneCalcium channelCACEthinylestradiolSee oralLoratadineLORPipotiazinePIPTriazolam	Barbiturates	BAR	Etidronate			DOP	Pentobarbital		Theophylline	THE
derivativesBrallobarbitalSee barbituratesErgot derivativesERDLevothyroxineLEVPerphenazinePEZTimololBupropionBUPErythromycinERYLidocaineLIDPhenobarbitalPHB, see barbituratesTiotixene barbituratesButalbitalSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPHTTramadolButobarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneCalcium channelCACEthinylestradiolSee oralLoratadineLORPipotiazinePIPTriazolam	Bepridil	BEP	Ergotamine	0	Levofloxacin			PER	Thioridazine	ТНІ
BupropionBUPErythromycinERYLidocaineLIDPhenobarbitalPHB, see barbituratesTiotixene barbituratesButalbitalSee barbituratesEthambutolETHLomefloxacinSee fluoroquinolonesPhenytoinPHTTramadolButobarbitalSee barbituratesEthanolETNLoperamideLOPPimozidePIMTrazodoneCalcium channelCACEthinylestradiolSee oralLoratadineLORPipotiazinePIPTriazolam	Bisphosphonates	BIP	Ergonovine	0	Levomepromazine	LEP	Periciazine	PEC	Tiludronate	See bisphos phonates
Butalbital See barbiturates Ethambutol ETH Lomefloxacin See Phenytoin PHT Tramadol Butobarbital See barbiturates Ethanol ETN Loperamide LOP Pimozide PIM Trazodone Calcium channel CAC Ethinylestradiol See oral Loratadine LOR Pipotiazine PIP Triazolam	Brallobarbital	See barbiturates	Ergot derivatives	ERD	Levothyroxine	LEV	Perphenazine	PEZ	Timolol	TIM
fluoroquinolones Butobarbital See barbiturates Ethanol ETN Loperamide LOP Pimozide PIM Trazodone Calcium channel CAC Ethinylestradiol See oral Loratadine LOR Pipotiazine PIP Triazolam	Bupropion	BUP	Erythromycin	ERY	Lidocaine	LID	Phenobarbital	,	Tiotixene	TIO
Calcium channel CAC Ethinylestradiol See oral Loratadine LOR Pipotiazine PIP Triazolam	Butalbital	See barbiturates	Ethambutol	ETH	Lomefloxacin			PHT	Tramadol	TRM
······································	Butobarbital	See barbiturates	Ethanol	ETN	Loperamide	LOP	Pimozide	PIM	Trazodone	TRA
	Calcium channel antagonists	CAC	Ethinylestradiol	See oral contraceptives	Loratadine	LOR	Pipotiazine	PIP	Triazolam	TRI

Drug Interactions with Antiretrovirals

Table II. Contd									
Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation	Coadministered drug	Abbreviation
Carbamazepine	CAR	Ethionamide	ETI	Lovastatin	LOV	Piroxicam	PIR	Tricyclic antidepressants	TRC
Chloramphenicol	СНА	Ethosuximide	ETX	Maprotiline	See tricyclic antidepressants	Pravastatin	PRA	Trifluoperazine	TRF
Chlordiazepoxide	CHL	Famotidine	FAM	MDMA	MDMA	Prazepam	PRZ	Triflupromazine	TRP
Chlorpromazine	СНР	Felodipine	See calcium channel antagonists	Mebendazole	MEB	Prednisone	PRE	Trimethoprim	ТМР
Chlortetracycline	See tetracyclines	Fentanyl	FEN	Medroxypro- gesterone	MED	Prednisolone	PRD	Trimipramine	See tricyclic antidepressants
Cimetidine	CIM	Flecainide	FLE	Mefloquine	MEF	Primaquine	PRQ	Tobramycin	See amino- glycosides
Ciprofloxacin	CIP	Fluconazole	FLC	Meperidine (pethidine)	MEP	Primidone	PRI	Trovafloxacin	See fluoro- quinolones
Cisapride	CIS	Flucytosine	FLY	Methadone	MET	Probenecid	PRO	Valproic acid	VAL
Cisplatin	CIT	Fluticasone	See corticosteroids	Methylergonovine	See ergot derivatives	Prochlorperazine	PRC	Verapamil	VER
Citalopram	See SSRIs	Fluoroquinolones	FLQ	Methylpheno- barbital	See barbiturates	Promethazine	PRM	Vincristine	VIN
Clarithromycin	CLA	Fluoxetine	FLX, see SSRIs	Metoprolol	MEO	Propafenone	PRP	Warfarin	WAR
Clindamycin	CLI	Flurazepam	FLU	Metronidazole	MEN	Pyrazinamide	PYR	Zolpidem	ZOL
Clodronate	See bisphosphonates	Fluvoxamine	See SSRIs	Mexiletine	MEX	Pyrimethamine	РҮМ		
Clomipramine	See tricyclic antidepressants	Foscarnet	FOS	Midazolam	MID	Quinidine	QUI		
Clonazepam	CLO	Fusidic acid	FUA	Minocycline	See tetracyclines	Quinine	QUN		

a Inhaled or rectal.

MDMA = methylenedioxymethamphetamine; SSRI = selective serotonin reuptake inhibitor.

Clin Pharmacokinet 2003; 42 (3)

Drug
Intera
actions v
with
Antiretrovirals

Table III. Overview of drug interactions of antiretrovirals drugs and coadministered drugs

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Acenocoumarol (ACE)	Т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, NVP, SQV	Inhibition CYP3A? by PI; inhibition CYP2C9/2C19 by DLV/NFV?; induction CYP3A? by EFV/NVP	Conc. ACE ↑ (PI/DLV) or ↓ (EFV/NVP)	Based on case report with RTV	Monitor INR	28
	Т		RTV	Induction CYP2C9, 3A? by RTV	Conc. ACE \downarrow		Monitor INR	43,56
	Case report	1 HIV+, female	RTV		Anticoagulant activity \downarrow , prothrombin test \uparrow			
Acetylsalicylic acid (ASA)	<i>In vitro</i> (human liver microsomes)		AZT	Inhibition of glucuronidation by ASA	0.5 mmol/L 97.8% enzyme activity remained; 10 mmol/L 43.9% emzyme activity remained	Conc. AZT probably ↑; significance?	Monitor blood counts regularly	57
Albendazole (ALB)	т		RTV	Inhibition/induction CYP3A by RTV	Conc. ALB \uparrow or \downarrow	Influence on first pass, hepatic elimination?	Monitor efficacy ALB, monitor leucocytes and LEs regularly	58
Alfentanil (ALF) [see also fentanyl]	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. ALF ↑	Based on study with fentanyl	Monitor for increased respiratory depression	
Alimemazine (ALI)	т		RTV	Inhibition CYP2D6 by RTV, ALI	Conc. ALI ↑; conc. RTV ↑	Based on interaction with perphenazine	Monitor for 1 sedation. Dosage reduction ALI, RTV may be needed. TDM RTV recommended.	
Allopurinol (ALU) 300mg/day	S	2 HIV+	DDI single dose 200mg	Inhibition tubular secretion by ALU?	AUC, C _{max} DDI ↑ 312%, 232%, resp.		Coadministration not recommended	20,21
ALU 7 days 300mg/day	S	14 vol	Single dose 400mg		AUC, C _{max} DDI ↑ 113%, 69%, resp.			
Alprazolam (ALP)	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, NVP, SQV	Inhibition CYP3A by PI/DLV, induction CYP3A by EFV/NVP	Conc. ALP \uparrow (PI/DLV) or \downarrow (EFV/NVP)	Risk for ↑ (PI/DLV) or ↓ (EFV/NVP) sedation.	Coadministration not recommended; A = oxazepam, lorazepam	28,36

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
ALP single dose 1mg	Open-label crossover	12 vol	RTV 10 days 500mg bid (escalation scheme)	Induction CYP3A4 by RTV	AUC ALP ↓ 12%, C _{max} ↓ 15.7%	During initial exposure inhibition may predominate, while during extended exposure induction may offset inhibition	Coadministration not recommended; A = oxazepam, lorazepam	43,59-61
ALP single dose 1mg	Double-blind, randomised, 2- way crossover	10 vol	RTV 200mg bid (4 doses)	Inhibition hepatic CYP3A4 by RTV	CL ALP \downarrow 41%, \uparrow sedation			
Aminoglycosides (AMG)	т		DDC	Inhibition of renal elimination by AMG	Increased risk for peripheral neuropathy, other AE		Frequent clinical/laboratory monitoring. Adjust dosage DDC based on renal function	24
Amiodarone (AMI)	т		AMP, DLV, EFV, LPV/RTV, NFV, NVP, RTV, SQV	Inhibition CYP3A by PI/DLV, induction CYP3A by EFV/NVP	Conc. AMI ↑ (PI/DLV) or ↓ (EFV/NVP)	May result in potential serious or life- threatening AEs.	CI (NFV, RTV), dose increase (+NVP/EFV), reduction (+PI/DLV) AMI may be needed, TDM AMI recommended	28,36,39, 41,43
AMI 200mg/day ss	Case report	1 HIV+	IDV 800mg tid	Inhibition hepatic CYP3A by IDV	Conc. AMI 0.9 \rightarrow 1.3 mg/L (\uparrow 44%)	Not above therapeutic window in this case, but higher baseline conc. AMI \rightarrow toxic values	TDM AMI recommended	62
Amphotericin B (AMB)	Т		AZT, DDC	Similar toxicity profile, inhibition renal elimination by AMB (DDC)	Increased risk haematological toxicity (AZT), peripheral neuropathy (DDC)		Avoid where possible. Monitor blood counts regularly (AZT)	24,25
Antacids containing magnesium + aluminium or carbonates (ANT)	S (30ml Maalox [®])	12 HIV+	DDC single dose 1.5mg	Gastric pH ↑ by ANT	BA/absorption DDC ↓ 25%	Not recommended to ingest simultaneously	DDC >2h before ANT	24

de Maat et al.

ANT	Т		DDI	Similar ingredients in formulation	↑ risk AEs related to ingredients DDI		Monitor toxicity; A = DDI EC	20
ANT	Single-dose	12 vol	DLV single dose 300mg	Gastric pH ↑ by ANT	AUC DLV \downarrow 41 \pm 19%		DLV >1h before or after ANT	28
ANT	т		amp, idv	Gastric pH ↑ by ANT	Absorption AMP/IDV \downarrow	Normal (acidic) pH necessary for optimum absorption IDV	AMP/IDV >1h before or after ANT	36,37
Astemizole (AST)	T, <i>in vitro</i> (AMP)		AMP, DLV, EFV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. AST ↑	Risk for cardiac arrhythmias (↑ QT interval)	CI; A = cetirizine, acrivastine	28,30,36,37 39,41,43,45 48,63
Atorvastatin (ATR)	Т		amp, idv	Inhibition CYP3A by PI	Conc. ATR ↑	Risk of myopathy including rhabdomyolysis	Combination not recommended; A = pravastatin, fluvastatin	36,37
ATR 20mg qd	Case report	1 HIV+, male	DLV 400mg tid	Inhibition CYP3A4 by DLV	Generalised malaise with muscle pain in legs and lower back, nausea, vomiting, dark urine: acute renal failure		Combination not recommended; A = pravastatin, fluvastatin	64
ATR 4 days 20mg qd	S	12 vol	LPV/RTV 14 days 400/100mg bid	Inhibition CYP3A by LPV/RTV	AUC, C _{max} ATR ↑ 5–6- fold; no effect on LPV	Risk of myopathy including rhabdomyolysis	Combination not recommended; A = pravastatin, fluvastatin	65
ATR 14 days 10mg qd	Open-label, sequential, multiple-dose	15 vol	NFV 14 days 1250mg bid	Inhibition CYP3A4 by NFV	AUC ATR ↑ 74%; C _{max} ATR ↑ 122%	Risk of myopathy including rhabdomyolysis	Combination not recommended; A = pravastatin	41,66,67
ATR 5 days 40mg qd	3-way crossover	8 vol	NFV 5 days 750mg tid		AUC ATR			
ATR 4 days 40mg qd	Randomised, open-label, multiple dose	14 vol	RTV/SQV-SGC 4 days 400/400mg bid	Inhibition CYP3A by RTV/SQV	AUC ATR ↑ 347%; AUC total active ATR ↑ 79%	Risk of myopathy including rhabdomyolysis	Combination not recommended; A = pravastatin, fluvastatin	43,45,48,68
Atovaquone (ATO) 12 days 750mg bid	Crossover	14 HIV+ male	AZT 12 days 200mg tid	Inhibition glucuronidation by ATO	AUC AZT \uparrow 33%; CL AZT \downarrow 34%; ratio GAZT : AZT \downarrow 31%; PK ATO \leftrightarrow	Clinical significance unknown	Monitor blood counts regularly	25,69
ΑΤΟ	Т		LPV/RTV, RTV	Induction glucuronidation by LPV/RTV	Conc. ATO \downarrow	Clinical significance unknown	Dose increase ATO may be needed	39,43

Clin Pharmacokinet 2003; 42 (3)

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Aurothioglucose (AUR)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor closely for peripheral neuropathy	20,21,24
Azithromycin (AZI) single dose 1200mg	Open-label, 2- way crossover	12 vol	NFV 11 days 750mg tid	Inhibition P-gp by NFV	$\begin{array}{l} \text{AUC, } C_{max} \text{AZI} \uparrow \\ 107\%, 107\%, \text{resp.;} \\ \text{AUC, } CL_{oral} \text{M8} \downarrow 24\%, \\ \uparrow 30\%, \text{resp.;} \text{AUC, } t_{1\!2\beta} \\ \text{NFV} \downarrow 28\%, 24\% \end{array}$	No increase in AEs	TDM NFV recommended	70
Barbiturates (BAR) [see also phenobarbital]	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, NVP, RTV, SQV	Induction CYP3A by BAR/EFV/ NVP, inhibition CYP3A by PI/DLV	Conc. PI/NNRTI ↓; conc. BAR ↑ (PI/DLV) or ↓ (EFV/NVP)	Based on predicted interaction with PHB	TDM PI/NNRTI/BAR recommended; A = valproic acid (anticonvulsant)	
Bepridil (BEP)	т		amp, dlv, idv, NFV, lpv/rtv, RTV, sqv	Inhibition CYP3A by PI/DLV	Conc. BEP ↑	Risk for cardiac arrhythmias	Avoid where possible or CI (AMP, RTV used as sole PI)	4,36,39,43
Bisphosphonates (BIP)	Т		DDI	Chelation with cations in DDI tablets	\downarrow absorption BIP		BIP >2h before DDI; A = DDI EC	
Bupropion (BUP) 10 μmol/L	. <i>In vitro</i> (human liver microsomes)		NFV, RTV 0–50 μmol/L	Inhibition CYP2B6 by NFV/RTV	NFV: IC_{50} 2.5 \pm 0.4 $\mu mol/L$	$\begin{array}{l} IC_{50} < clinical \\ plasma \\ concentration \\ \rightarrow in \ vivo \\ interaction \\ possible: \uparrow risk \\ for \ convulsions. \end{array}$	Dose increase (EFV/NVP), reduction (>50%) [PI] BUP may be needed.	30,43,71
BUP	т		EFV, NVP	Induction CYP2B6 by EFV/NVP	RTV: IC_{50} 2.2 \pm 0.1 $\mu mol/L;$ conc. BUP \downarrow			
Calcium channel antagonists (dihydropyridines) [CAC]	т		AMP, DLV, IDV, NFV, LPV/RTV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. CAC ↑	↑ risk for hypotension	Dosage reduction CAC may be needed	28,36,37,39, 41,43,45

de Maat et al.

т		AMP, EFV, LPV/RTV, NFV, NVP, SQV	Induction CYP3A by CAR/NVP/ EFV, inhibition CYP3A by PI	Conc. PI/NNRTI ↓, conc. CAR ↑ (PI), conc. CAR ↓ (EFV/NVP)	Potentially significant	TDM PI/NNRTI, CAR recommended; A = amitriptyline/ gabapentin (PHN); valproic acid/lamotrigine (anticonvulsant)	12,36,39,41 45,48,72
Population PK data	8 HIV+	DLV	Induction CYP3A by CAR, inhibition CYP3A by DLV (T)	Substantial reduction C_{min} DLV; conc. CAR \uparrow			28
Case report	1 HIV+	IDV 800mg tid (ss) [incl. AZT/3TC]	Induction CYP3A4 by CAR; inhibition CYP3A4 by IDV	Plasma conc. IDV \downarrow ; plasma conc. CAR high in contrast to low dose used			37,73
Case report	2 HIV+	RTV 400mg bid (incl. SQV 400 bid or SQV 600mg bid and EFV 600mg qd)	Inhibition CYP3A4 (possibly CYP2C8) by ARV drugs	Conc. CAR ↑ 3-4-fold	Possibly conc. PI/NNRTI ↓		12,30,43, 74,75
<i>In vitro</i> (human liver microsomes)		AZT	Inhibition glucuronidation by CHA	0.5 mmol/L 63.3% enzyme activity remained; 10 mmol/L 11.3% emzyme activity remained	Conc. AZT probably ↑. Significance?	Monitor blood counts regularly	57
т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
т		RTV	Inhibition CYP3A by RTV	Conc. CHL ↑	Metabolism CHL via CYP3A. Risk for ↑ sedation.	Dosage reduction CHL may be needed; A = oxazepam, lorazepam	
т		RTV	Inhibition CYP2D6 by RTV, CHP	Conc. CHP ↑, conc. RTV ↑	Based on interaction with perphenazine	Dose reduction CHP, RTV may be needed. TDM RTV recommended	
Single dose	12 HIV+	DDC single dose 1.5mg	Inhibition renal tubular secretion by CIM	AUC DDC \uparrow 36%; CL _R DDC \downarrow 24%		Monitor for peripheral neuropathy; decrease dose DDC if warranted	24
	Population PK data Case report Case report <i>In vitro</i> (human liver microsomes) T T T	Population PK data8 HIV+Case report1 HIV+Case report2 HIV+In vitro (human liver microsomes)	LPV/RTV, NFV, NVP, SQVPopulation PK data8 HIV+ DLVCase report1 HIV+IDV 800mg tid (ss) [incl. AZT/3TC]Case report2 HIV+RTV 400mg bid (incl. SQV 400 bid or SQV 600mg bid and EFV 600mg qd)In vitro (human liver microsomes)AZTTDDC, DDI, D4TTRTVTRTVSingle dose12 HIV+DDC single dose	LPV/RTV, NFV, NVP, SQVby CAR/NVP/ EFV, inhibition CYP3A by PIPopulation PK data8 HIV+ DLVDLVInduction CYP3A by CAR, inhibition CYP3A by DLV (T)Case report1 HIV+IDV 800mg tid (ss) [incl. AZT/3TC]Induction CYP3A4 by CAR; inhibition CYP3A4 by IDVCase report2 HIV+RTV 400mg bid (incl. SQV 400 bid or SQV 600mg bid and EFV 600mg qd)Inhibition CYP3A4 (possibly CYP2C8) by ARV drugs qd)In vitro (human liver microsomes)AZTInhibition glucuronidation by CHATDDC, DDI, D4TSimilar toxicity profileTRTVInhibition CYP3A4 (possibly)TRTVInhibition CYP3A by CHATDDC, DDI, D4TSimilar toxicity profileTRTVInhibition CYP3A by RTVSingle dose12 HIV+DDC single dose 1.5mgInhibition renal tubular secretion	LPV/RTV, NFV, NVP, SQV by CAR/NVP/ EFV, inhibition CYP3A by PI conc. CAR 1 (P), conc. CAR ↓ (EFV/NVP) Population PK data 8 HIV+ data DLV Induction CYP3A by CAR, inhibition CYP3A by DLV (T) Substantial reduction Cm DLV; conc. CAR 1 Case report 1 HIV+ IDV 800mg tid (ss) [incl. AZT/3TC] Induction CYP3A by CAR; inhibition CYP3A4 by DLV (T) Plasma conc. IDV ↓; plasma conc. CAR 1 Case report 2 HIV+ RTV 400mg bid (incl. SQV 400 bid and EFV 600mg qd) Inhibition CYP3A4 by CAR; inhibition CYP3A4 by IDV Plasma conc. CAR 1 Plasma conc. CAR 1 ocs used <i>In vitro</i> (human liver microsomes) AZT Inhibition glucuronidation by CHA 0.5 mmol/L 63.3% enzyme activity remained; 10 mmol/L 11.3% emzyme activity remained T DDC, DDI, D4T Similar toxicity profile 0.5 mmol/L 63.3% enzyme activity remained; 10 mmol/L 11.3% emzyme activity remained T RTV Inhibition CYP3A by RTV Conc. CHL 1 T RTV Inhibition CYP2D6 by RTV, CHP Conc. CHP 1, conc. RTV 1 Single dose 12 HIV+ DDC single dose 1.5mg Inhibition renal tubular secretion AUC DDC 1 36%; CL _R DDC ↓ 24%	LPV/RTV, NFV, NVP, SQV by CAR/NVP/ EFV, inhibition CYP3A by PI conc. CAR ↑ (PI), conc. significant Population PK 8 HIV+ data DLV Induction CYP3A by CAR, inhibition CYP3A by DLV (T) Substantial reduction Cmm DLV; conc. CAR ↑ Case report 1 HIV+ IDV 800mg tid (ss) [incl. AZT/3TC] Induction CYP3A by CAR; inhibition CYP3A by DLV (T) Plasma conc. IDV ↓; high in contrast to low dose used Possibly conc. CAR ↓ (EFV/NVP) Case report 2 HIV+ RTV 400mg bid (incl. SQV 400 bid or SQV 600mg bid and EFV 600mg qd) Inhibition CYP3A4 (possibly CYP2C8) by ARV drugs Conc. CAR ↑ 3-4-fold Possibly conc. PI/NNRTI ↓ Possibly conc. PI/NNRTI ↓ T DDC, DDI, D4T Similar toxicity profile Peripheral neuropathy profile Conc. AZT Conc. AZT Conc. AZT T DDC, DDI, D4T Similar toxicity profile Peripheral neuropathy profile Metabolism CYP3A, Risk for ↑ sedation. T RTV Inhibition CYP3A by RTV Conc. CHL ↑ Conc. CHL ↑ Metabolism CHL via CYP3A, Risk for ↑ sedation. T RTV Inhibition CYP2D6 by RTV, CHP Conc. CHP ↑, conc. RTV ↑ Based on interaction with perphenazine	LPV,RTV, NFV, NVP, SQV EV, Inhibition CYP3A by PI conc. CAR ↑ (PI), conc. CAR ↓ (EFV/NVP) significant conc. CAR ↑ (PI), conc. CAR ↓ (EFV/NVP) significant conc. CAR ↑ (PI), conc. CAR ↓ (EFV/NVP) significant conc. CAR ↑ (PI), conc. CAR ↓ (EFV/NVP) Population PK data 8 HIV+ data DLV Induction CYP3A by CAR, inhibition CYP3A by DLV (T) cYP3A by DLV (T) Substantial reduction CMR ↓ (conc. CAR ↑ CYP3A by DLV (T) Pasma conc. CAR ↑ by CAR, inhibition CYP3A by IDV dose used Possibly conc. PUNNRTI ↓ For substantial reduction CYP3A by IDV by CAR, inhibition cYP3A by IDV dose used Possibly conc. PUNNRTI ↓ Possibly conc. PUNNRTI ↓ Case report 2 HIV+ (Incl. SQW 400 bid (Incl. SQW 400

Drug Interactions with Antiretrovirals

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
CIM	Т		DLV	↑ gastric pH by CIM	\downarrow absorption DLV	Clinical significance unknown	Long-term use CIM with DLV not recommended. TDM DLV recommended	28
CIM	S	11 HIV+	NVP (ss)	Inhibition CYP3A by CIM	$C_{min}NVP \uparrow 21\%$	Significance?	TDM NVP recommended	33
Ciprofloxacin (CIP) 3 days 750mg bid, 2h prior to DDI	Open-label, multiple-dose	16 HIV+	DDI 3 days 200mg bid	Formation of chelation complex CIP and Mg/Al in DDI tablets	AUC DDI \downarrow 21%; C _{max} DDI \downarrow 33%; AUC CIP \downarrow 26%	DDI EC single dose 400mg + CIP single dose 750mg \rightarrow no effect	CIP 2h prior to DDI or 6h after DDI; A = DDI EC	20,76-78
CIP single dose 750mg, concomitant administration (see also fluoroquinolones)	Randomised, 2-treatment crossover	12 vol	DDI-placebo tablets bid		AUC CIP \downarrow 98%; C _{max} CIP \downarrow 93%; t _{max} CIP \downarrow 52%			
Cisapride (CIS)	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A4 by PI/NNRTI	Conc. CIS ↑	Risk for cardiac arrhythmias	Cl; A = metoclopramide	28,30,36,37, 39,41,43, 45,48
Cisplatin (CIT)	т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Clarithromycin (CLA) 4 days 500mg bid	Open-label, randomised, multiple-dose, 3-period crossover	12 vol, male	AMP 4 days 1200mg bid	Inhibition CYP3A4 (P-gp?) by CLA	$\begin{array}{l} \text{AUC AMP} \uparrow 18\%;\\ C_{max}, C_{min} \text{ AMP} \uparrow 15\%\\ \text{and } 39\%, \text{ resp.};\\ \text{CL AMP} \downarrow 15\%;\\ C_{max} \text{ CLA} \downarrow 10\% \end{array}$	Dose adjustment CLA not necessary	TDM AMP recommended	36,79
CLA 7 days 500–3000mg bid	Crossover	15 HIV+, male	AZT 3 days 100mg 6×d	↓ absorption by CLA	AUC, C _{max} , t _{max} AZT ↓ 25%, 41%, ↑ 84%	Possibly not clinically relevant	Separate administration >2h is recommended	80
CLA 7 days 500mg bid (see also fluconazole + D4T and rifabutin + D4T)	Sequential, eight-part, multiple-dose, non-blinded, randomised	10 HIV+	D4T 7 days 40mg bid	↓ absorption by CLA?	C _{max} D4T ↓ 35% when combined with CLA + RFB + FLU	Significance?		81

de Maat et al.

CLA 500mg bid	S	6 HIV+	DLV 300mg tid	Inhibition CYP3A by DLV, CLA	AUC DLV ↑ 44%; AUC CLA ↑ 100%; AUC 14OH-CLA ↓ 75%	CLA PK compared with HCs	Maximum dosage CLA 1 g/day; A = azithromycin; reduce dosage CLA by $50-75\%$ in patients with CL _{CR} $<60ml/min$; TDM DLV recommended	28
CLA 7 days 500mg bid	Multiple-dose	12 vol	EFV 7 days 400mg qd	Induction CYP3A4 by EFV, inhibition CYP3A4 by CLA	AUC CLA \downarrow 26%; C _{max} CLA \downarrow 39%; AUC, C _{max} 14OH-CLA \uparrow 34% and 49%, resp.; C _{max} EFV \uparrow 11%	Clinical significance unknown for CLA, effect on EFV not relevant; 46% developed rash	Maximum dosage CLA 1 g/day; A = azithromycin; monitor for rash	30,82
CLA 7 days 500mg bid	S	?	IDV 7 days 800mg tid	Inhibition CYP3A4 by IDV, CLA	AUC IDV ↑ 29%; AUC CLA ↑ 53%		Maximum dosage CLA 1g/day; A = azithromcyin	37,83
CLA 7 days 500mg bid	Multiple-dose, randomised, 3-period, crossover, placebo- controlled	14 vol, male	7 days 800mg tid	Inhibition hepatic CYP3A4 by CLA, inhibition CYP3A4 by IDV	$\begin{array}{l} C_{min} \text{IDV} \uparrow 52\%; \text{AUC}, \\ C_{max} \text{CLA} \uparrow 47\%, 19\%; \\ \text{AUC}, C_{max} 14\text{OH-CLA} \\ \downarrow 49\%, 48\% \end{array}$	CLA wide safety margin, AE IDV associated with Cmax/AUC rather than Cmin	Reduce dosage CLA by 50–75% in patients with CL _{CR} <60ml/min; TDM IDV recommended	
CLA	т		LPV/RTV, NFV	Inhibition CYP3A by PI, CLA	Conc. CLA and/or PI ↑		Maximum dosage CLA 1g/day; A = azithromycin; reduce dosage CLA by $50-75\%$ in patients with CL _{CR} < 60 ml/min; TDM PI recommended	39,41
CLA ss 500mg bid	Multiple dose	15 HIV+	NVP 14 days 200mg qd, thereafter 200mg bid	Induction CYP3A by NVP, inhibition CYP3A by CLA	AUC CLA \downarrow 30%, C _{max} , C _{min} CLA \downarrow 46% and 21%, resp.; AUC NVP \uparrow 26%	Total exposure to CLA (incl. metabolite) not changed	TDM NVP recommended	84-86

237

Drug Interactions with Antiretrovirals

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
CLA 10 days 500mg bid	Case report	1 HIV+, male	2 months 200mg bid	Accumulation of active 14-OH metabolite of CLA by NVP	Hyperactivity: pressure of speech, poor concentration, extreme anxiety, suicidal/homicidal ideation			
CLA 4 days 500mg bid	Open-label, randomised, 3-period, crossover	22 vol	RTV 4 days 200mg tid	Inhibition hepatic CYP3A4 by RTV, CLA	AUC RTV ↑ 13%; C _{max} RTV ↑ 15%; C _{min} RTV ↑ 15%; AUC CLA (14OH-CLA) ↑ 77% (↓ 100%); C _{max} CLA (14OH-CLA) ↑ 31% (↓ 99%); C _{min} CLA ↑182%	$\begin{array}{l} \text{CLA} \rightarrow \\ \text{14OH-CLA} \\ \text{completely} \\ \text{inhibited by} \\ \text{RTV} \end{array}$	Maximum dosage CLA 1g/day; A = azithromycin; reduce dosage of CLA by 50–75% in patients with CLcR <60ml/min; TDM RTV recommended	43,87
CLA 7 days 500mg bid	Multiple dose	12 vol	SQV-SGC 7 days 1200mg tid	Inhibition CYP3A4 by CLA and SQV	AUC CLA (14OH-CLA) \uparrow 45% (\downarrow 24%); C _{max} CLA (14OH-CLA) \uparrow 39% (\downarrow 34%); AUC SQV \uparrow 177%; C _{max} SQV \uparrow 187%		Maximum dosage CLA 1g/day; A = azithromycin; reduce dosage of CLA by 50–75% in patients with CL _{CR} <60ml/min; TDM SQV recommended	88,89
Clindamycin (CLI)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. CLI ↑		Combination not recommended; A = azithromycin, (flu)-cloxacillin	45
Clonazepam (CLO)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. CLO ↑		Monitor for increased sedation, dose reduction CLO may be needed	43
Clorazepate (CLR)	Т		AMP, RTV	Inhibition CYP by RTV	Conc. CLR ↑	Sedation, respiratory depression	Cl; A = lorazepam, oxazepam	7,12,36,43
Clozapine (CLZ)	Т		RTV	Induction CYP1A2 by RTV	Conc. CLZ \downarrow		CI	4,7

de Maat et al.

Codeine (COD)	Т		RTV	Inhibition CYP by RTV	$COD \to morphine \downarrow$	Analgesic efficacy ↓		72
Corticosteroids (COR) [see also fluticasone]	Т		DLV, IDV, LPV/RTV, NFV, SQV	Inhibition (presystemic) CYP by PI/DLV	Systemic conc. COR \uparrow		Monitor for symptoms of hypercorticism	
Cyclosporin (CsA)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV	Inhibition CYP3A by PI/DLV, CsA	Conc. CsA, PI/NNRTI ↑		TDM CsA, PI/NNRTI recommended	36,39,41,43
CsA ss 175mg bid	Case report	1 HIV+, male	EFV 600mg qd	Induction CYP3A4 by EFV, inhibition CYP3A by CsA (?)	Conc. CsA \downarrow 75% 1 month after start EFV		Frequent TDM CsA, EFV recommended	90
CsA	Т		NVP	Inhibition CYP3A by CsA, induction CYP3A by NVP	Conc. CsA \downarrow , conc. NVP \uparrow	Based on interaction with EFV	TDM CsA, PI/NNRTI recommended	
CsA ss 150mg bid	Case report	1 HIV+	SQV 1200mg tid (added to CsA)	Similar metabolism via CYP3A, P-gp	Conc. CsA [↑] 3-fold, fatigue, headache, GI discomfort, AUC SQV [↑]		TDM CsA, SQV recommended	91
Cyclophosphamide (CYC)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV, induction CYP by CYC	Conc. CYC \uparrow ; metabolism to active metabolite \downarrow ; conc. PI/NNRTI \downarrow		TDM PI/NNRTI recommended; monitor blood counts regularly	
Dapsone (DAP)	т		AZT	Similar toxicity profile	Haematological toxicity		Monitor blood counts regularly	25
DAP	Т		DDC, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	23,24
DAP single dose 100mg	S	6 HIV+	DDI EC 14 days 200mg bid		No change AUC / C _{max}	Multiple dose studies show no clinically significant PK interaction, but conflicting reports	DAP should be administered > 1h before or 2h after DDI tablets. A = DDI EC	20,21,92,93
DAP	Multiple dose, case reports	?	DDI	↓ absorption by DDI	DDI		Avoid where possible, monitor for peripheral neuropathy	
DAP	т		DDI	Similar toxicity profile	Peripheral neuropathy			
DAP	т		DLV, SQV	Inhibition CYP3A	Conc. DAP ↑		Monitor blood	28,45

н.

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Daunorubicin (DAU)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. DAU ↑	Consider ↑ risk for cardiotoxicity	Monitor blood counts regularly, dosage reduction DAU may be needed.	
Desipramine (DES) 0–300 μmol/L	<i>In vitro</i> (human liver microsomes)		RTV 5–25, IDV 10– 25, SQV 25–50, NFV 25–50 μmol/L	Mixed competitive and noncompetitive inhibition CYP2D6 by PI	K:: RTV (4.84) > IDV (15.6) > SQV (24.0) > NFV (51.9) [μmol/L]		Dosage reduction DES may be needed, TDM DES recommended	43,94,95
DES single dose 100mg (see also tricyclic antidepressant <i>s</i>)	S	14 vol	RTV 12 days escalating to 500mg bid		AUC DES (2OH-DES) ↑ 145% (↓ 15%); C _{max} DES (2OH-DES) ↑ 22% (↓ 67%)			
Dexamethasone (DEX)	Т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, NVP, RTV, SQV	Induction CYP3A4 by DEX, EFV/NVP, inhibition CYP3A4 by PI/DLV	Conc. PI/NNRTI \downarrow , conc. DEX \uparrow (PI/DLV) or \downarrow (EFV/NVP)		TDM PI/NNRTI recommended, dosage increase (EFV/NVP), reduction (PI/ DLV) DEX may be needed	28,30,36,37, 39,43,45,48
Dextropropoxyphene (DRX)	т		RTV	Inhibition CYP3A/2D6 by RTV	Conc. DRX ↑	↑ risk for sedation, CNS toxicity	CI	43
Diazepam (DIA)	т		AMP, DLV, IDV, NFV, LPV/RTV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. DIA ↑	Risk for ↑ sedation.	CI (RTV); A = lorazepam, oxazepam	36,39,43,72
Digoxin (DIX)	Case report	1 HIV+, female	IDV/RTV 800/200mg bid	Inhibition P-gp in the small intestine or proximal renal tubules by RTV	Nausea, vomiting, mildly dehydrated. Conc. DIX (5h post ingestion) 7.2 nmol/L (± 2.5 × normal upper level)		TDM DIX recommended	96
Diltiazem (DIL)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. DIL \uparrow		Dosage reduction DIL may be needed	36,43
Disopyramide (DSP)	т		RTV	Inhibition CYP3A by RTV	Conc. DSP ↑	Cardiac events have been reported with this combination	Avoid where possible, dosage reduction DSP >50% may be needed	43

240

de Maat et al.

Disulfiram (DIS)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
DIS	Т		LPV/RTV liquid, RTV liquid	Irreversible inhibition ADH by DIS	Disulfiram-like reactions by ↑ conc. acetaldehyde	LPV/RTV and RTV liquids contain alcohol	A = LPV/RTV or RTV capsules	39,43
Doxorubicin (DOX)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. DOX ↑	Consider ↑ risk for cardiotoxicity	Monitor blood counts regularly, dosage reduction DOX may be needed	
DOX	In vitro		DDC	Inhibition of phosphorylation by DOX	>50% inhibition of phosphorylation	Clinical relevance unknown		24
Encainide (ENC)	т		LPV/RTV, RTV	Inhibition CYP2D6 by LPV/RTV, RTV	Conc. ENC \uparrow	Based on CI for FLE	CI	
Ergot derivatives (ERD)	Т		AMP, DLV, EFV, LPV/RTV, SQV	Inhibition CYP3A4 by PI/DLV	Conc. ERD ↑	Ergotism = vasospasm	CI; A = paracetamol (acetaminophen)/ sumatriptan	28,30,36,39 45,48
ERD	Т		IDV	Inhibition hepatic CYP3A4 by IDV	Conc. ERD ↑	Ergotism = vasospasm	CI; A = paracetamol/suma triptan	37,97 I
Ergotamine 1mg bid	Case report	1 HIV+	IDV 800mg tid (incl. 3TC 150mg/D4T 40mg bid)		Conc. ERD not determined, ergotism			
ERD	Т		NFV	Inhibition CYP3A by NFV	Conc. ERD ↑	Ergotism = vasospasm	CI; A = paracetamol/suma triptan	41,98
Ergotamine single dose 2 mg	Case report	1 HIV+, female			Pain, oedema, cyanosis feet and hands. Symptoms resolved after 6–15 days			
ERD	Т		RTV	Inhibition CYP3A4 by RTV	Conc. ERD ↑	Ergotism = vasospasm	CI; A = paracetamol/suma triptan	43,99,100
Ergotamine single dose 1mg (n = 1) or 5 days 3mg (n = 1)	Case report	2 HIV+	RTV 600mg bid		Ergotism	Toxicity of ERD linked to peak serum conc.		

Clin Pharmacokinet 2003; 42 (3)

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Erythromycin (ERY)	Т		AMP, DLV, IDV, NFV, LPV/RTV, RTV	Inhibition CYP3A by ERY or PI/DLV	Conc. ERY ↑ or PI/NNRTI ↑	Based on interaction of ERY + SQV	TDM PI/NNRTI recommended, dosage reduction ERY may be needed. Monitor for GI toxicity	
ERY	Monitoring plasma conc.	24 HIV+	NVP	Inhibition CYP3A by macrolides (ERY)	C_{min} ss NVP \uparrow 12%	Probably not significant	TDM NVP recommended	33
ERY 7 days 250mg qid	Open-label, substudy	11 HIV+	SQV-SGC 7 days 1200mg tid (ss)	Inhibition CYP3A4 by ERY	AUC, C _{max} SQV ↑ 99%, 106%, resp.		No dosage adjustment necessary	101
Ethambutol (ETH)	т		DDI	Similar toxicity profile	Peripheral neuropathy, ocular effects		Avoid where possible, monitor for peripheral neuropathy, neuritis optica	4,92
Ethanol (ETN) 0.7mg/kg	Open-label, randomised, 3- way-crossover	25 HIV+ male	ABC single dose 600mg	Competition for metabolism by ADH	AUC ABC \uparrow 41%, t _{1/2} β \uparrow 26%, C _{max} \uparrow 15%	Not considered clinically significant		18,102,103
Ethionamide (ETI)	т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Ethosuximide (ETX)	т		RTV	Inhibition CYP3A by RTV	Conc. ETX ↑	Risk for ↑ sedation	TDM ETX recommended. Dosage reduction ETX (>50%) may be needed	43
Famotidine (FAM)	Т		DLV, IDV	↑ gastric pH by FAM	\downarrow absorption DLV, IDV	Clinical significance unknown	Long-term use FAM with DLV, IDV not recommended	28
Fentanyl (FEN) single dose 5 μg/kg IV 2min	Double-blind, placebo- controlled, crossover, 2 phases	11 vol	RTV 3 days 300mg tid	Inhibition CYP3A4 by RTV	AUC FEN ↑ 170%, CL FEN ↓ 67%	Fatal respiratory depression	Small bolus FEN: no dose adjustment. Continuous administration FEN: reduce dosage FEN	104

de Maat et al.

Flecainide (FLE)	Т		LPV/RTV, RTV	Inhibition CYP2D6 by LPV/RTV, RTV	Conc. FLE ↑	Risk for cardiac arrhythmias	CI	39,43
Fluconazole (FLC) 7 days 400mg qd	Randomised, 2-period, 2-treatment crossover	12 HIV+	AZT 200mg bid ss	Inhibition CYP3A4 by FLC, substrate competition for UDPGT binding sites	AUC AZT \uparrow 74%, C _{max} AZT \uparrow 84%, t _{\2β} AZT \uparrow 128%		Monitor blood counts regularly	25,105
FLC 7 days 200mg qd (see also clarithromycin + D4T and rifabutin + D4T)	Sequential, eight-part, multiple-dose, non-blinded, randomised	10 HIV+	D4T 7 days 40mg bid	Inhibition absorption by FLC?	C_{max} D4T \downarrow 35% when combined with CLA + RFB + FLC	Significance?		81
FLC 7 days 200mg qd	S	10 vol	EFV 7 days 400mg qd	Inhibition CYP3A by FLC, induction CYP3A by EFV	AUC EFV ↑ 16%, PK FLC?		TDM EFV recommended	30
FLC 8 days 400mg qd	Multiple-dose 3- period, placebo- controlled, crossover	11 HIV+	IDV 7¾ days 1000mg tid	Induction CYP?, inhibition absorption by FLC	$\begin{array}{l} \text{AUC IDV} \downarrow 24\%, \\ \text{C}_{\text{max}} \text{ IDV} \downarrow 13\%, \\ \text{C}_{\text{min}} \text{ IDV} \downarrow 10\% \end{array}$	Probably not clinically significant	TDM IDV recommended	106
FLC	Population pharmacokinetic data	23 HIV+ (n = 174)	NFV 500 or 750mg tid	Inhibition CYP2C19 by FLC	CL NFV ↓ 26–27%	Probably not clinically significant	TDM NFV recommended	107
FLC 4 days 200mg	Open-label, randomised, 2-period crossover	8 vol	RTV (liquid) 4 days 200mg 4dd	Inhibition CYP3A4 in gut wall by FLC		Probably not clinically significant	TDM RTV recommended	43,108
FLC day 1 400mg, then 5 days 200mg qd	Open-label, crossover	5 HIV+	SQV 6 days 1200mg tid	Inhibition CYP3A4 and/or P-gp in gut wall by FLC	AUC, C _{max} , CL SQV \uparrow 50%, 56%, \downarrow 50%, respectively		TDM SQV recommended	109
Flucytosine (FLY)	т		AZT	Similar toxicity profile	Haematological toxicity		Monitor blood counts regularly	25
Fluoroquinolones (FLQ) [see also ciprofloxacin]	т		DDI	Formation of chelation complex FLQ and Mg/Al in DDI tablets	Probably ↓ absorption both drugs		FLQ 2h prior to DDI or 6h after DDI; A = DDI EC	20,21
Fluoxetine (FLX)	Population PK data	36 HIV+	DLV	Inhibition CYP2D6 by FLX	$C_{trough}DLV\uparrow\pm50\%$		TDM DLV recommended	28
FLX 20-40mg/day	Case study	5 HIV+	EFV, IDV, RTV, SQV	Inhibition CYP by PI/EFV	Development serotonin syndrome after introduction PI/NNRTI	One case also used GRJ	Dose reduction FLX >50–60%, then adjustment as necessary (RTV)	43,110,111

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
FLX 8 days 30mg bid (see also selective serotonin reuptake inhibitors)	Phase I, open-label	16 vol	RTV (liquid) single dose 600mg	Inhibition CYP2D6 (postabsorption) by FLX	AUC RTV	ss RTV: ↓ impact CYP2D6 with multiple doses, induction 3A by RTV		
Fluticasone (FLT) 500mg bid inhaled (see also corticosteroids)	Case report	1 HIV+	AMP/RTV 600/100mg bid	Inhibition CYP by RTV	Hypercorticism (moon facies, acute weight gain, diffuse acne, candidal oesophagitis). Undetectable cortisol, ACTH plasma conc.			112
Flurazepam (FLU)	т		AMP, RTV	Inhibition CYP3A by AMP, RTV	Conc. FLU ↑	Risk for ↑ sedation, respiratory depression	CI; A = oxazepam, lorazepam	36,43
Foscarnet (FOS)	Т		DDC	Inhibition renal elimination by FOS	Increased risk for peripheral neuropathy, other AE		Monitor for peripheral neuropathy. Adjust dosage DDC based on renal function	24
Fusidic acid (FUA) 500mg tid	Case report	1 HIV+	RTV/SQV 400/400mg bid	Inhibition CYP3A4 by FUA and RTV/SQV	$\begin{array}{l} \text{RTV}^{\uparrow} 19.3 \rightarrow 43.4 \\ \text{mg/L; SQV}^{\uparrow} 11.2 \rightarrow \\ 16.3 \text{ mg/L; FUA high} \\ \text{conc. and decreased} \\ \text{elimination. Acute} \\ \text{onset of nausea,} \\ \text{fatigue, arthralgias,} \\ \text{vertigo, jaundice} \end{array}$		Avoid where possible, TDM RTV/SQV recommended	113
γ -Hydroxybutyrate (GHB) [+ MDMA] ±10 mg/kg	Case report	1 HIV+	RTV/SQV 400/400mg bid	Inhibition (presystemic) metabolism by RTV/SQV	GHB intoxication: loss of consciousness, seizurelike activity, respiratory depression, rapid/complete recovery		Discourage coadministration of illicit substances	114
Ganciclovir (GAN)	S	8 HIV+	AZT	Induction enzymes by GAN; related to CMV disease?	CL AZT ↑	Effect < usual inter- and intraindividual variability	Monitor blood counts regularly, dosage reduction AZT may be needed	4,25,115, 116

244

н.

GAN 7 days 1000mg tid PO	Multicentre, open-label, randomised, crossover	12 HIV+	AZT 7 days 100mg 5 times/day	↑ absorption by GAN	AUC AZT $\downarrow \pm 30\%$; AUC ₀₋₄ AZT \uparrow 20%; C _{max} AZT \uparrow 62%			
GAN	т		AZT	Similar toxicity profile	Haematological toxicity			
GAN 4 days 1000mg tid	Open-label, multidose, 3- way crossover	10 HIV+ and CMV+	DDC 4 days 0.75mg tid	↑ absorption by DDC	AUC GAN [↑] 22.2%		Monitor blood counts regularly	117
GAN 13 days 1000mg tid PO	Multicentre, open-label, randomised, crossover	12 HIV+	DDI 13 days 200mg bid	↓ intestinal absorption by DDI; alteration absorption, metabolism DDI by GAN (?)	(sim) AUC DDI ↑ 108%; (seq) AUC DDI ↑ 115%; (sim) GAN ↔; (seq) AUC GAN ↓ 21%	Note: neuropathy, pancreatitis DDI conc. dependent	Administer GAN and DDI simultaneously, monitor for peripheral neuropathy, pancreatitis	20,21,116, 118
GAN 3 days 2000mg tid PO	Open-label, randomised, 3-period crossover	16 HIV+	DDI 3 days 200mg bid	↑ extent of absorption by GAN	$\begin{array}{l} GAN{\rightarrow}DDI : AUC, \ C_{max} \\ DDI \uparrow 124\%, 87\%, \\ resp.; \ DDI{\rightarrow}GAN : \\ AUC, \ C_{max} \ DDI \uparrow 87\%, \\ 59\%, \ resp. \end{array}$	n = 12 DDI PK; n = 9 GAN PK		
Garlic supplements (GAR): allicin/allin 4.64/11.2mg caplet 20 days bid	2-treatment, 3- period, single- sequence, longitudinal	9 vol (4 male, 5 female)	SQV 3 days 1200mg tid	Induction intestinal CYP (P-gp?) by GAR	AUC SQV \downarrow 51%; C _{max} SQV \downarrow 54%; C _{min} SQV \downarrow 49%	After 10-day washout AUC, C _{min} , C _{max} returned to 60– 70% of baseline	Use GAR with caution when SQV is used as sole PI. TDM SQV recommended	119
GAR	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, NVP	Induction CYP (P-gp) by GAR	Conc. PI/NNRTI \downarrow	Based on interaction with SQV	TDM PI/NNRTI recommended	
Gemfibrozil (GEM) 600mg bid	Placebo- controlled (interim analysis)	14 HIV+	RTV/SQV both 400 or 600mg bid; RTV 600mg bid	?	C _{min} RTV ↑ 45%; effect on SQV?		TDM RTV/SQV recommended	120
Glutethimide (GLU)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Grapefruit juice (GRJ) single dose 240ml	Single-dose	Vol	IDV single dose 400mg	Inhibition intestinal CYP3A4, induction P-gp by GRJ	AUC IDV ↓ 26%		TDM IDV recommended	29,37,121

Drug Interactions with Antiretrovirals

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
GRJ double-strength 180ml	Randomised, crossover, open-label	14 HIV+	IDV ss 800mg tid	+	AUC IDV \leftrightarrow ; t _{max} \uparrow 39%; gastric pH \uparrow 130%	Effect GRJ on BA IDV is variable		
GRJ single dose 150(1)/300(2)ml	Single-dose	12 vol	SQV single dose 600mg	Inhibition CYP3A by GRJ	 (1) AUC SQV ↑ 39%; (1) C_{max} SQV ↑ 63%; (2) AUC SQV ↑ 121%; (2) C_{max} SQV ↑ 120% 	'Boosting' BA	TDM SQV recommended	122,123
GRJ 2 x 200ml single- strength	Open crossover	8 vol	SQV single dose 600mg PO (1); single dose 12mg IV (2)	Inhibition intestinal CYP3A4 by GRJ	 (1) AUC SQV ↑ 50%; (1) F SQV ↑ 100%; (2) PK SQV ↔ 			
Haloperidol (HAL)	Т		RTV	Inhibition CYP2D6 by RTV	Conc. HAL ↑	Risk for extrapyramidal symptoms	Dosage reduction HAL may be needed	12
Hydralazine (HYD)	т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Hydroxycarbamide (HYX)	т		AZT	Similar toxicity profile	Haematological toxicity		Avoid where possible, monitor blood counts regularly	4,25
lfosfamide (IFS)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. IFS \uparrow ; metabolism to active metabolite \downarrow		Monitor blood counts regularly	
Interferon-α (INFα)	Т		AZT	Similar toxicity profile	Haematological toxicity		Dose reduction or interruption of one or both agents. Monitor blood counts regularly	4,25
Interleukin-2 (IL-2) 5 days 3-12 MIU/day, continuous infusion	Prospective, open-label, nonrandomised	9 HIV+	IDV 800mg tid, for at least 4 weeks	Inhibition CYP by IL-2	AUC IDV ↑ 88%	Cytokines suppress mRNA of CYP isoenzymes by ↓ transcriptional rate of corresponding gene	TDM IDV recommended	124

н.

lodoquinol (IDO)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Isoniazid (INH)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Isotretinoin (ISO) 50mg qd	Case report	1 HIV+, male	RTV/IDV 400/400mg bid (incl AZT/3TC)	Inhibition CYP3A by RTV/IDV, intracellular blockage of CRABP-1 by RTV/IDV	Dry skin, cheilitis with painful fissures lips, growth, dull curly hair, 'sticky skin'	Syndrome disappeared after 50mg minocycline	Avoid where possible	125
Itraconazole (ITR)	Т		AMP, DLV, EFV, LPV/RTV, NFV, NVP, RTV, SQV	Inhibition CYP3A by PI/DLV and/or ITR, induction CYP3A by EFV/NVP	Conc. ↑ ITR and/or PI/DLV; conc. ITR ↓ (EFV/NVP)	Based on interaction study with KET	Avoid dosages ITR >200mg/day (PI/DLV). TDM PI/NNRTI recommended. A = fluconazole	36,39,43,45 48
ITR	S		DDI	↑ gastric pH by DDI	\downarrow absorption ITR	Based on interaction with KET	Administer ITR >2h prior to DDI, or >2h after DDI. A = DDI EC or itraconazole liquid	20,21,126
ITR 200mg bid	Multiple-dose		IDV 600mg tid	Inhibition CYP3A4 by ITR	AUC IDV ↑	AUC ≈ AUC IDV 800mg tid administered alone for 1 week	TDM IDV recommended, dosage reduction IDV may be needed. A = fluconazole	37
Ketoconazole (KET) single dose 400mg	Open-label, randomised, balanced, single-dose, 3-period crossover	12 vol, male	AMP single dose 1200mg	Inhibition CYP3A by KET, AMP	AUC, C _{max} AMP ↑ 31%, ↓ 16%, resp. AUC, C _{max} KET ↑ 44%, ↑ 19%, resp.	↑ BA AMP by KET, may alter both BA and CL of KET	Dose reduction KET may be needed when KET >400mg/day. A = fluconazole	36,127,128
КЕТ	Concurrently/ historically controlled trials		AMP	Inhibition CYP3A by KET	AUC AMP \uparrow 32%, C _{max} AMP \downarrow 16%			
KET 4 days 200mg qd, 2h before DDI	Open-label, randomised, 3- way crossover	12 HIV+, male	DDI (buffered powder for oral solution)	↑ gastric pH by DDI	AUC DDI \downarrow 8%, C _{max} DDI \downarrow 12%, no effect on KET	Effect is within variability	Administer KET >2h prior to DDI. A = DDI EC	20,21,78, 129

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
KET	Population PK data	26 HIV+	DLV	Inhibition CYP3A by KET	$C_{trough} \; DLV \uparrow \pm 50\%$		TDM DLV recommended	28
KET single dose 400mg	Single dose		IDV single dose 400mg	Inhibition CYP3A by KET	AUC IDV ↑ 68%		Reduce dose IDV to 600mg tid, TDM IDV recommended	37
KET 400mg qd	Multiple dose		IDV 600mg tid		AUC IDV \downarrow 18% (compared with 800mg tid)			
KET single dose 200mg	S	12	LPV/RTV 16 days 400/100mg bid	Inhibition CYP3A by LPV/RTV	AUC KET [↑] 3-fold, no effect on LPV		Avoid dosages KET > 200 mg/day. A = fluconazole	39
KET 7 days 400mg qd	Randomised, crossover	12 vol	NFV 6 days 500mg tid	Inhibition CYP3A by KET	AUC NFV ↑ 35%, C _{max} NFV ↑ 25%	Not clinically significant. <i>In</i> <i>vitro</i> data: KET may cause modest elevation in NFV conc.	No dosage adjustment (TDM NFV recommended)	41,130,131
KET 32 days 400mg qd	Open-label single arm	22 HIV+	NVP 28 days 200mg bid (1st 2 weeks 200mg qd)	Induction CYP3A by NVP, inhibition CYP3A by KET	AUC KET \downarrow 63%, C _{max} KET \downarrow 40%, C _{max} , C _{min} NVP \uparrow ± 15–20% (HC)		CI; A = fluconazole	33,132
KET 7 days 200mg qd	S	12 HIV+	RTV 10 days 500mg bid	Inhibition CYP3A by RTV and KET	AUC, $C_{max} RTV \uparrow 18$, 10%, resp., AUC, C_{max} KET \uparrow 3.4-fold, 55%, resp.		Avoid dosages KET > 200mg/day. A = fluconazole	43
KET 10 days 200 or 400mg qd	Two-period, 3- group, dose- escalation, longitudinal PK	12 HIV+, male	RTV/SQV 400/400mg bid	Inhibition hepatic CYP3A by KET, (RTV/SQV?), inhibition CSF-to- plasma active transport by KET	$\begin{array}{l} \text{AUC, } t_{^{1/2}\beta}, C_{\text{min}}, \text{CL/F} \\ \text{SQV} \uparrow 37\%, 38\%, \\ 94\%, \downarrow 27\%, \text{resp.} \\ \text{AUC, } t_{^{1/2}\beta}, C_{\text{min}}, \text{CL/F} \\ \text{RTV} \uparrow 29\%, 31\%, \\ 62\%, \downarrow 22\%, \text{resp.} \text{CSF} \\ \text{RTV conc.} \uparrow 2.8\text{-fold.} \\ \text{CSF SQV conc.} \uparrow \\ 3.6\text{-fold} \end{array}$		No dosage adjustment, TDM RTV/SQV recommended	133
KET 6 days 200mg qd	Multiple dose study	12 vol	SQV-HGC 6 days 600mg tid	Inhibition hepatic CYP3A by KET	AUC SQV		No dosage adjustment, TDM SQV recommended	45,88,101

de Maat et al.

KET 7 days 400mg qd	Retrospective review	?	SQV-SGC single dose 1200mg		AUC SQV ↑ 190%, C _{max} SQV ↑ 171%			
KET 7 days 200mg qd	Open-label, substudy	11 HIV+	SQV-SGC 1200mg tid (ss)		AUC SQC			
Lansoprazole (LAN)	Т		DLV, IDV	↑ gastric pH by LAN	\downarrow absorption DLV, IDV	Normal acidic pH necessary for optimum absorption	TDM DLV/IDV recommended	28,37,134
LAN 15mg qd (a)/15mg bid (b) [n = 2] (see also omeprazole)	Case reports	4 HIV+	(a) DLV 600mg bid, (b) DLV 800mg bid, IDV 1200mg bid		(a) low trough conc. DLV, (b) no effect on DLV, low trough conc. IDV			
Levodopa (DOP) 700–750 mg/day + DOPA decarboxylase inhibitor	Case report	1 HIV+	IDV 800mg tid	Inhibition oxidative reactions by IDV, or delayed dopaminergic receptor hypersensitivity by IDV	After 4 weeks: severe dyskinesias occurring at peak dose periods, on-periods lasted the whole day without fluctuations	Potentially be used to potentiate DOP?	Dosage reduction DOP may be necessary	135
Levomepromazine (LEP)	Т		RTV	Inhibition CYP2D6 by RTV, LEP	Conc. LEP \uparrow , conc. RTV \uparrow	Based on interaction with perphenazine	Dosage reduction LEP, RTV may be needed. TDM RTV recommended	
Levothyroxine (LEV) 0.125mg qd	Case report	1 HIV+, female	IDV 800mg tid followed by NFV 1250mg bid (PEP regimen +AZT/3TC)	Competition glucuronidation by AZT/IDV (?)	Hypercholesterolaemia within 1–2 weeks, headache, nausea, which resolved with switch to NFV, and fatigue		High cholesterol during PEP may be reversible, may not require intervention	136
LEV 0.125mg qd	Case report	1 HIV+, male	RTV/SQV 400/600mg bid	Induction glucuronosyl- transferase by RTV	TSH levelsî		Adjust dosage LEV based on thyroid function testing	137
Lidocaine (LID)	т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. LID ↑	Risk for cardiac arrhythmias	Use with caution, TDM LID recommended	28,36,39,43
Loperamide (LOP) single dose 16mg	Randomized, double-blind, 2- way crossover	12 vol	RTV single dose 600mg	Inhibition CYP3A by RTV	AUC, C _{max} , CL _{oral} LOP ↑ 223%, 17%, ↓ 70%, resp.	Lack of central effects when combined with RTV \rightarrow no P-gp involvement	No dosage adjustment necessary	138

Table III.	Contd
------------	-------

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Loratadine (LOR)	Т		RTV	Inhibition CYP3A (2D6) by RTV	Conc. LOR ↑	Risk for tachycardia, headache	A = cetirizine, acrivastine	58
Lovastatin (LOV)	т		amp, dlv, idv, lpv/rtv, nfv, rtv, sqv	Inhibition CYP3A4 by PI/DLV	Conc. LOV ↑	Risk of myopathy including rhabdomyolysis	Combination not recommended. A = pravastatin, fluvastatin (not with NFV)	36,37,39,41, 43,45,48
Mebendazole (MEB)	Т		RTV	Inhibition CYP? by RTV	Conc. MEB ↑		Risk for ↑ diarrhoea, suggest supportive care	
Medroxyprogesterone (MED)	т		RTV	Inhibition CYP3A by RTV	Conc. MED↑			
Mefloquine (MEF) 3 days 250mg qd, then 250 mg/week (I). 3 days 250mg qd, then 250mg/4 weeks (II)	Open-label, nonfasting, 3-treatment, 3-period, longitudinal	12 vol (I), 11 vol (II)	RTV 7 days 200mg bid (I), single dose 200mg (II)	Reduction bile production by MEF $\rightarrow \downarrow$ solubility/absorption RTV in small intestine	I: CL, AUC, C _{max} RTV ↑ 45%, ↓ 31%, 36%. II: no effect	Despite strong inhibition CYP3A4 from single 200mg dose RTV, no effect on MEF PK	TDM RTV recommended	139
Meperidine (MEP) [= pethidine], single oral dose 50mg	Open-label	8 vol	RTV 10 days 500mg bid	Induction CYP1A2 by RTV, concomitant induction/inhibition competing metabolic pathways, inhibition P-gp in gut wall	AUC MEP ↓ 62%, C _{max} MEP ↓ 59%. n = 6: AUC N-MEP ↑ 47%, C _{max} N-MEP ↑ 87%	N-MEP = normeperidine	Dosage increase and long-term use of MEP not recommended due to 1 conc. N- MEP which has both analgesic and CNS activity (seizures)	43,140
Methadone (MET) maintenance 12.5– 112.5mg/day	S	16 vol	AMP 10 days 1200mg bid	Both metabolised via CYP3A4	AUC ₂₄ (<i>R</i>)-MET, (<i>S</i>)-MET \downarrow 12%, 37%, resp. C _{max} (<i>R</i>)-MET, (<i>S</i>)-MET \downarrow 24%, 45%, resp. AMP PK no change	Interim analysis (12 subjects): opioid PD measures did not change	Adjustment dosage MET may be necessary	141,142
MET	Prospective, cross-over	5 HIV+	AMP (+ ABC 600mg/day) 14 days 1200mg bid	Induction CYP3A4 by AMP (effect of ABC cannot be excluded)	Conc. MET ↓ 35%	n = 2 nausea		

MET	Prospective	5 HIV+	AZT morning dose 100–500mg	Inhibition glucuronidation by MET (<i>in vitro</i>)	CL AZT ↓ 45%		Monitor blood counts regularly, consider dosage reduction to 400/500mg AZT daily when symptoms suggestive of AZT toxicity are observed	25,115,143
MET maintenance 30–90mg daily	S	9 HIV+	AZT 200mg every 4h		n = 4 AUC AZT ↑ 2-fold; n = 5 AUC AZT = AUC control			
MET maintenance	Within-subject	8 HIV+	AZT 200mg tid	Inhibition Type 2 UDPGT by MET	Acute effect: PO AUC AZT \uparrow 41%; IV AUC AZT \uparrow 19%. Long-term effect: PO AUC AZT \uparrow 29%; IV AUC AZT \uparrow 41%	Higher MET conc. in long- term phase (IV); ↑ first pass metabolism (PO)		
MET maintenance	Open-label, intersubject (parallel design)	17, 10 (9, 5 HIV+)	D4T 40mg bid	\downarrow GI motility by MET $\rightarrow \downarrow$ absorption d4T	AUC d4T \downarrow 25%, C _{max} d4T \downarrow 44%, t _{max} d4T \uparrow 2-fold, C _{trough} MET \downarrow	Effect on MET not clinically significant		144
MET chronic maintenance	Parallel design	16, 10	DDI EC single dose 200mg	\downarrow GI motility by MET $\rightarrow \downarrow$ absorption DDI	AUC DDI ↓ 41%, C _{max} DDI ↓ 59%	Appropriate dosages DDI have not been established		20,21,144
MET maintenance	Open-label, intersubject (parallel design)	17, 10 (9, 5 HIV+)	DDI 200mg bid		AUC DDI \downarrow 60%, C _{max} DDI \downarrow 66%, C _{trough} MET \downarrow	Effect on MET not clinically significant		
MET 100mg maintenance	Case report	1 HIV+	EFV600mg qd	Induction CYP3A4 by EFV	Typical withdrawal symptoms: tiredness, headache, cold sweats and shivering. Conc. (<i>R</i>)-MET $\downarrow \pm 46\%$, (<i>S</i>)-MET $\downarrow \pm 72\%$	Regimen + D4T 40mg bid, 3TC 150mg bid	Dosage increments MET of 10mg with daily supervision of dosage and clinical evaluation	145-147
MET 30mg maintenance	Case report	1 HIV+, male	EFV 600mg qd		Withdrawal symptoms after 2 days	Regimen + D4T, DDI		
MET 35–100mg maintenance	Crossover	11 HIV+	EFV 14 or 21 days 600mg qd		C _{max} , AUC ₂₄ MET↓ 48%, 57%, MET dose ↑ 22%	Dose increase not as large as would be expected by individual's PK. Higher initial dose = higher increase	Continu	ed over pag

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
MET 7 days 20–60mg daily	S	?	IDV 7 days 800mg tid	Inhibition CYP3A by IDV	No change AUC MET, little or no change AUC IDV		TDM IDV recommended	37
MET single dose 5mg	S	11 vol	LPV/RTV 10 days 400/100mg bid	Induction CYP by LPV/RTV	AUC MET \downarrow 53%, C _{max} MET \downarrow 45%		Dosage increase MET may be needed	39
MET	Part of case series	2 HIV+	NFV	Induction isoenzymes of CYP other than 3A4 by NFV	Conc. ss MET $\downarrow \pm 55\%$		Dosage increase MET may be needed, TDM NFV/M8 may be recommended	148-150
MET maintenance 10–140mg/daily	Prospective	14 HIV+	NFV 1250mg bid		Plasma concentration (+)-MET, (-)-MET \downarrow 47%, 39%, respectively	No withdrawal symptoms, no dosage adjustment		
MET maintenance 20–110mg/daily	Retrospective case series	36 HIV+	NFV 750mg tid and 1250mg bid		34/36 unchanged dose, 1/36 dose increase, 1/36 dose reduction			
MET 40–120mg/day	Non-crossover	16 vol	NFV 5 days 1250mg bid	Inhibition metabolism NFV to M8 by MET	AUC, $C_{max} M8 \downarrow 47\%$, 53%, respectively	MET PK not determined		
MET chronic maintenance	Retrospective chart review	7 HIV+	NVP	Induction CYP3A4 by NVP	Withdrawal symptoms 4–8 days after start NVP. Trough conc. MET ↓	Use MET trough conc. at baseline and titrate	Dosage increments MET of 10mg with daily supervision of dosage and clinical evaluation	33,146, 151-153
MET 80mg	Case report	1 HIV+, female	NVP		Withdrawal symptoms, dose to 130mg	Twice daily MET may be needed		
MET	Case series	5 HIV+	NVP		4/5 mild–severe withdrawal symptoms			
MET 40mg maintenance	Case report	1 HIV+, male	NVP (+D4T and DDI)		Withdrawal symptoms after 2 days	Rechallenge: recurrence symptoms		

de Maat et al.

MET	Part of case series	1 HIV+	RTV	Induction CYP3A as well as GT, 1A2, possibly 2C9 by RTV	Conc. ss MET ↓ ± 56%		Dosage increments MET of 10mg with daily supervision of dosage and clinical evaluation	43,148, 154-156
MET single dose 5mg C = single dose 20mg	Crossover study, dose- normalised	11 vol	RTV 15 days 500mg bid		AUC MET \downarrow 36%, C _{max} MET \downarrow 38%			
MET 90mg/day	Case report	1 HIV+, male	RTV/SQV 400/400mg bid	Induction CYP3A4, may be that 2C9 induction offsets 3A4/2D6	Shakiness, blurred vision, anxiety, hypotension etc			
MET maintenance	Crossover	12 HIV+	15 days RTV/SQV 400/400mg bid (RTV liquid)	Induction CYP2C19, CYP2B6 by RTV	AUC _{total} (<i>R</i>)-MET \downarrow 32%, AUC _{free} (<i>R</i>)-MET \downarrow 20%, 37% of \downarrow in total (<i>R</i>)-MET conc. = protein displacement	PD evaluations showed no difference		
МЕТ	т		SQV (sole PI) [see also combination with RTV]	Induction/inhibition (?) CYP3A by SQV	Conc. MET \uparrow or \downarrow	Based on similar metabolism via CYP3A	Dosage adjustment may be needed	
Methylenedioxy metamphetamine (MDMA) ±180mg	Case report	1 HIV+, male	RTV 600mg bid	Hepatic inhibition CYP2D6 by RTV, deficiency in CYP2D6, impaired hepatic function	Conc. MDMA 4.56 mg/L (normally 0.5 mg/L); hypertonic, sweating profusely, tachypnoeic, tachycardia, cyanosed	Patient deficiency in CYP2D6, impaired hepatic function? Patient died	Discourage coadministration illicit substances	114,157,15
MDMA (+ GHB)	Case report	1 HIV+, male	RTV/SQV 400/400mg bid	Inhibition metabolism by RTV	Sustained effect MDMA: repetitive, clonic contractions of legs, and left side body			
MDMA + amyl nitrate	Case report	1 HIV+, male	RTV/SQV 400/400mg bid	Inhibition CYP by NO (metabolite amyl nitrate), inhibition CYP2D6 by RTV	Autopsy: moderate atheroma, up to 40% occlusion; MDMA plasma conc. 0.5 mg/L, traces DIA/nor-DIA in blood			
Metoprolol (MEO)	т		RTV	Inhibition CYP2D6 by RTV	Conc. MEO ↑		Dosage reduction (>50%) MEO may be needed	43

253

Drug Interactions with Antiretrovirals

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Metronidazole (MEN)	Т		AMP, DLV, IDV, NFV, SQV	Inhibition CYP3A by PI/DLV	Conc. MEN ↑	↑ risk for convulsions	Dose reduction MEN may be necessary	
MEN	т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
MEN	т		LPV/RTV(-liquid), RTV(-liquid)	Irreversible inhibition ADH by MEN, inhibition CYP3A by RTV	Disulfiram-like reactions by ↑ conc. acetaldehyde, conc. MEN ↑	LPV/RTV and RTV liquids contain alcohol, ↑ risk for convulsions	CI (liquid). A = LPV/RTV, RTV capsules. Dosage reduction MEN may be necessary	39
Mexiletine (MEX)	т		RTV	Inhibition CYP2D6 by RTV	Cardiac events have been reported with this combination		Use with caution. Dosage reduction (>50%) MEX may be needed	43
Midazolam (MID)	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, RTV	Inhibition CYP3A by PI/DLV/EFV	Conc. MID ↑	Risk for prolonged or ↑ sedation, respiratory depression	CI	28,30,36,37, 39,41,43,159
MID 2–15mg IV bolus form	Outpatient bronchoscopies	73 HIV+	PI		No change in oxygenation or procedure time	\uparrow Sedation?	A = oxazepam, lorazepam	
MID 5mg IV	Case report	1 HIV+, male	SQV-HGC 600mg tid	Inhibition CYP3A4 by SQV	Flumazenil 300µg IV necessary, >5h free of sedative effects	Control: awaking spontaneously, >2h free of sedative effects	Combination not recommended	45,48,160, 161
MID 7.5mg PO 0.05mg/kg IV	Double-blind, randomised, 2-phase crossover	12 vol	SQV-SGC 5 days 1200mg tid	Inhibition CYP3A4 in gut wall, liver by SQV	PO: AUC, C_{max} MID \uparrow 2.3-, 5-fold, resp.; C_{max} α OH-MID \downarrow 38%. IV: AUC, CL MID \uparrow 2.4- fold, \downarrow 56%, resp.; C_{max} α OH-MID \downarrow 43%		Initial dosage reduction of 50%; careful titration	
Morphine (MOR)	т		RTV	Induction CYP3A, incl. GT, CYP1A2, and possibly CYP2C9 by RTV	Conc. MOR \downarrow		Dose increase MOR may be needed to get desired effect	43,72

Mucosal protectives containing bismuth (MUC)	Т		DDC, DLV, IDV	↑ gastric pH by MUC	\downarrow absorption DDC, DLV, IDV		DDC, DLV, IDV >1h before or after MUC	
Nefazodone (NEF)	т		AMP, DLV, IDV, LPV/RTV, NFV, SQV	Inhibition CYP3A by PI/DLV	Conc. NEF ↑		Dosage reduction NEF may be needed.	12,43
NEF 7 days 75mg bid, 2 days 150mg bid	Case report	1 HIV+	RTV ss	Inhibition CYP3A4 by RTV	Headache, confusion, dizziness, nausea, intense anxiety, agitation		Start with ≤50– 100mg qd and increase slowly if necessary	162
Nitrofurantoin (NIT)	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Nizatidine (NIZ)	Т		DLV, IDV	↑ gastric pH by NIZ	\downarrow absorption DLV, IDV	Clinical significance unknown	Long-term use NIZ with DLV, IDV not recommended. TDM DLV/IDV recommended	28
Olanzapine (OLE) single dose 10mg	Crossover	14 vol	RTV 12 days escalated to 500mg bid	Induction CYP1A2 and GT by RTV	AUC, $t_{t_{2}\beta}$, CL/F OLE \downarrow 53%, 50%, \uparrow 115%, resp.	All had wild type CYP1A2 genotype	Dosage increase OLE may be needed to get desired effect	163
Omeprazole (OME)	Т		DLV	[↑] gastric pH by OME	\downarrow absorption DLV	Clinical significance unknown	Long-term use OME with DLV not recommended	28,134
OME 20mg bid (n = 1) [rabeprazole 20mg qd (n = 1)] (see also lansoprazole)	Case reports	4 HIV+	DLV ss		\downarrow trough conc. DLV	1/4 used rabeprazole 20mg qd $\rightarrow \downarrow$ trough conc. DLV		
OME 20–40mg daily	Retrospective case series	9 HIV+	IDV 800mg tid	Induction 3A by OME; pH ↑ by OME → ↓ solubility IDV	$\label{eq:n=4} \begin{array}{l} n=4 < \!\!95\% \mbox{ confidence} \\ \mbox{interval of ref., } n=4 \\ \mbox{within 95\% confidence} \\ \mbox{interval, } n=1 > \!95\% \\ \mbox{ confidence interval of} \\ \mbox{ref.} \end{array}$	Variable effect: interindividual variability IDV PK?	A = ranitidine (only pH ↑), IDV 1000mg tid	164,165
OME 14 days 40mg qd	Multiple dose OME	8 vol, male	IDV single dose 800mg	Hepatic induction, ↓ absorption by OME	d5: AUC IDV \downarrow 2.4%. d14: AUC IDV \downarrow 9.5% (n = 4: >25% \downarrow)		TDM IDV recommended	

255

Drug Interactions with Antiretrovirals

Table III.	Contd
------------	-------

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Oral contraceptives (OC), ethinylestradiol (EE) component	<i>In vitro</i> (human liver microsomes)		AZT	Inhibition glucuronidation by EE	0.5 mmol/L 46.8% enzyme activity remained; 10 mmol/L 21.0% enzyme activity remained	Conc. AZT probably ↑. Significance?	Monitor blood counts regularly	57
OC-EE	Т	-	AMP	?	Effect on EE not known, probably conc. EE \downarrow		Use additional methods of birth control	36
OC-EE single dose	S	13 vol	EFV 10 days 400mg qd	Not fully characterised: CYP-mediated, glucuronidation	AUC EFV \uparrow 2%, C _{max} EFV \uparrow 5%, AUC EE \uparrow 37%, C _{max} EE \uparrow 8%	Clinical significance unknown	Use additional methods of birth control	30,166
OC-EE 7 days 35µg (Ortho Novum [®])	S	12 vol	LPV/RTV 400/100mg bid	Induction CYP by LPV/RTV	AUC EE \downarrow 42%, C _{max} EE \downarrow 41%, C _{min} EE \downarrow 58%		Use additional methods of birth control	39,167
OC-EE 15 days 35µg	S	12	NFV 7 days 750mg tid	Induction of estrogen glucuronidation by NFV	AUC EE \downarrow 47%, C _{max} EE \downarrow 28%		Use additional methods of birth control	14,41
OC-EE single dose 50μg	Open-label, multiple-dose	23 vol	RTV 16 days escalating dose to 500mg bid	Induction glucuronidation, and CYP- mediated pathway	AUC EE \downarrow 41%, C _{max} EE \downarrow 32%		Use additional methods of birth control	43,168
OC, norethindrone (NET) component, 21 days 1mg qd (Ortho Novum [®])	S	12 vol	LPV/RTV 14 days 400/100mg bid	Induction metabolism by LPV/RTV	AUC, C _{max} , C _{min} NET↓ 17%, 16%, 32%		Use additional methods of birth control	39,167
OC-NET 15 days 0.4mg qd	S	12 vol	NFV 7 days 750mg tid	Induction metabolism by NFV	AUC NET \downarrow 18%, C _{max} NET \leftrightarrow	Clinical significance unknown	Use additional methods of birth control	41
OC-NET/EE 7 days 1mg NET/35μg EE qd (Ortho Novum [®])	S	?	IDV 7 days 800mg tid	Inhibition CYP3A4 by IDV	AUC EE	Clinical significance unknown	Use additional methods of birth control	37
OC-NET/EE single dose (Ortho Novum [®])	Open-label, crossover	14 HIV+	NVP 14 days 200mg, qd, thereafter 200mg bid	Induction CYP3A4 by NVP	AUC NET/EE \downarrow 18/29%, $t_{^{1\!}2\beta}$ EE \downarrow 26%, no effect on NVP PK	PK analysis on 10 subjects	Use additional methods of birth control	169

Oxazepam (OXE)	<i>In vitro</i> (human liver microsomes)		AZT	Inhibition glucuronidation by OXE	0.5 mmol/L 89.5% enzyme activity remained, 10 mmol/L 67.9% enzyme activity remained	Probably conc. AZT ↑. Significance?		57,170
OXE 2 days 15mg tid	3-phase, crossover	6 HIV+	AZT 2 days 100mg every 4h			Frequency headache ↑		
Paclitaxel (PAC) 100mg/m ² 3h infusion	Case report	1 HIV+, male	Different ARV drugs (RTV/SQV or IDV, NVP)	Similar metabolism: CYP, P-gp	AUC, C _{max} PAC \downarrow		Modify dose PAC when necessary. Monitor leucocytes regularly	171,172
PAC 100mg/m ² 3h infusion	Case report	2 HIV+, male/ female	DLV + SQV	Inhibition CYP3A by DLV, SQV	Mucositis, febrile neutropenia, total alopecia ($n = 1$), respiratory distress ($n = 1$)	1 PAC dose biweekly 60mg/m ² 3h infusion = tolerable AE		
Pentamidine (PET)	Т		DDI, 3TC, D4T	Similar toxicity profile	Pancreatitis		Avoid where possible, monitor for pancreatitis	4
Perazine (PER)	Т		RTV	Inhibition CYP2D6 by RTV, PER	Conc. PER ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction PER, RTV may be needed. TDM RTV recommended	
Periciazine (PEC)	Т		RTV	Inhibition CYP2D6 by RTV, PEC	Conc. PEC ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction PEC, RTV may be needed. TDM RTV recommended	
Perphenazine (PEZ)	Т		RTV	Inhibition CYP2D6 by RTV, PEZ	Conc. PEZ ↑. Conc. RTV ↑		Dosage reduction PEZ, RTV may be needed	12,43
Phenobarbital (PHB) [see also barbiturates]	Population PK data	8 HIV+	DLV	Induction CYP3A by PHB, inhibition CYP3A by DLV (T)	C _{trough} DLV ↓. Conc. PHB ↑		TDM DLV/PHB recommended. A = valproic acid	28
Phenytoin (PHT)	Т		AMP, EFV, IDV, LPV/RTV, NVP, RTV, SQV	Induction CYP3A by PHT/EFV/ NVP, inhibition CYP3A by PI	Conc. PI/NNRTI \downarrow . Conc. PHT \uparrow (PI) or \downarrow (EFV/NVP)		TDM PI/NNRTI/ PHT recommended. A = valproic acid	30,36,37,3 43,45,48
PHT single dose 300mg	S	12 HIV+	AZT 200mg 4dd, ss conditions	?	CL AZT ↓ 30%. PK PHT \leftrightarrow		Monitor blood counts regularly	25

Drug Interactions with Antiretrovirals

Continued over page

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
PHT	Т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
РНТ	Population PK data	8 HIV+	DLV	Induction CYP3A by PHT, inhibition CYP3A by DLV (T)	C _{trough} DLV ↓. Conc. PHT ↑		TDM PHT/DLV recommended. A = valproic acid	28
PHT 7 days 300mg qd	Parallel design	15, 12 vol	NFV 7 days 1250mg bid	Induction CYP3A by NFV	AUC ₂₄ , C _{max} , C _{min} PHT ↓ 30%, 21%, 39%, resp.; NFV/M8 not determined	Possibly conc. NFV \downarrow	TDM PHT/NFV recommended. A = valproic acid	41,173,174
PHT ss 300mg/day	Case report	1 HIV+, male	NFV 750mg tid	Induction CYP by NFV ? (or inter- action with AZT/ D4T)	Numbness left upper limb followed by generalised tonic-clonic seizure; serum conc. PHT \downarrow	Interaction via CYP2C9, 2C19?		
Pimozide (PIM)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. PIM ↑	Risk for cardiac toxicity	Combination not recommended. CI (AMP, IDV, LPV/RTV)	36,37,39,43
Pipotiazine (PIP)	т		RTV	Inhibition CYP2D6 by RTV, PIP	Conc. PIP ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction PIP, RTV may be needed. TDM RTV recommended.	
Piroxicam (PIR)	т		RTV	Inhibition metabolism by RTV	Conc. PIR ↑	Risk for ↑ GI and CNS toxicity	CI. A = diclofenac, ibuprofen	7,44
Pravastatin (PRA) 4 days 20mg qd	S	12 vol	LPV/RTV 14 days 400/100mg bid	Inhibition CYP3A by LPV/RTV	AUC, C _{max} PRA \uparrow 33%, 26%, resp. AUC, C _{max} , C _{min} LPV \downarrow 5%, 2%, 12%, resp.	PRA is to minor extent metabolised by CYP3A	No dosage adjustment required	65
PRA 4 days 40mg qd	Randomised, open label, multiple dose	14 vol	RTV/SGQ-SGC 4 days 400/400mg bid	Induction glucuronidation by RTV	AUC PRA ↓ 50%		Higher doses PRA may be needed	68
Prazepam (PRZ)	т		RTV	Inhibition CYP3A by RTV	Conc. PRZ ↑	Based on similar metabolism via CYP3A	A = oxazepam, lorazepam	

de Maat et al.

Prednisone (PRE)	Т		RTV	Inhibition CYP3A by RTV	Conc. PRE ↑		Monitor toxicity PRE, dosage reduction (>50%) may be necessary	43
Prednisolone (PRD)	т		RTV	Inhibition CYP3A by RTV	Conc. PRD ↑	Based on interaction with PRE	Monitor toxicity PRD, dosage reduction may be necessary	43
Primaquine (PRQ)	т		AZT	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor blood counts regularly	4,25
Primidone (PRI)	т		AMP, EFV, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Induction CYP3A by PRI	Conc. PI/NNRTI ↓	Chemically related to barbiturates	TDM PI/NNRTI recommended. A = valproic acid	28,30,36,37 39,41,43,45 48
Probenecid (PRO) 3 days 500mg tid	2-part, open-label	8 HIV+	AZT 3 days 200mg every 4h	Inhibition hepatic glucuronidation, renal organic anion secretory mechanism by PRO	AUC AZT ↑ 80%. CL _R GAZT ↓ 58%		Avoid combination where possible, reduce dosage AZT. Monitor blood counts regularly.	25,175-178
PRO 28 days 500mg tid	S	8 vol, male	AZT 200mg tid		n = 4: completed study, n = 4: discontinuation PRO because of rash	3/4 severe rash and constitutional symptoms		
PRO 3 days 500mg every 6h, >3h prior to AZT	S	2 vol, male	AZT single dose 200mg		AUC AZT ↑ 115%, CL AZT ↓ 51%, AUC GAZT ↑ >3.5-fold			
PRO 500mg every 6h, separated >2h from AZT dose	Balanced, crossover	7 HIV+	AZT 2mg/kg tid (oral solution)		AUC AZT, CL \uparrow 106%, \downarrow 45%, resp. GAZT/AZT urine \downarrow 58%			
PRO 500mg >2h prior and >4h after DDC	Randomised 2- way crossover	12 HIV+	DDC single dose 1.5mg	Inhibition tubular secretion by PRO	AUC DDC \uparrow 54%, CL DDC \downarrow 37%, CL _R DDC \downarrow 42%	Specific nucleoside transport system?	Monitor for peripheral neuropathy, dosage reduction DDC may be needed	24,179
Prochlorperazine (PRC)	Т		RTV	Inhibition CYP2D6 by RTV, PRC	Conc. PRC ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction PRC, RTV may be needed. TDM RTV	

Table III.	Contd
------------	-------

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Promethazine (PRM)	Т		RTV	Inhibition CYP2D6 by RTV, PRM	Conc. PRM ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction PRM, RTV may be needed. TDM RTV recommended	
Propafenone (PRP)	т		LPV/RTV, RTV	Inhibition CYP2D6 by PI	Conc. PRP ↑	Risk for cardiac arrhythmias	CI	39,43
Pyrazinamide (PYR)	Prospective, observational	4 HIV+/ TBC+, 7 HIV+/ TBC+ (controls)	AZT	?	n = 4: very low PYR conc.	2h serum concentrations were drawn	Avoid combination	180
Pyrimethamine (PYM)	Т		AZT	Similar toxicity profile	Haematological toxicity		Avoid where possible, monitor blood counts regularly	4,25
РҮМ	Т		RTV	Inhibition/induction CYP3A by RTV	Variable or unknown effect		Monitor blood counts and efficacy PYM regularly	14
Quinidine (QUI)	Т		AMP, DLV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. QUI ↑	Risk for cardiac toxicity	CI (RTV, NFV). A = indinavir, TDM QUI recommended	28,36,39,41 43,45
Quinine (QUN)	Т		RTV	Inhibition CYP3A by RTV	Conc. QUN ↑	Risk for cardiac toxicity	Monitor toxicity QUN, dose reduction QUN may be needed	43
Ranitidine (RAN) single dose 150mg, 2h prior to DDI	Open, randomised, 3- way crossover	12 HIV+	DDI single dose 375mg	↑ BA by ↑ gastric pH by RAN, ↓ absorption RAN in presence of antacid	AUC, C_{max} DDI \uparrow 14%, 13%, resp. AUC, C_{max} RAN \downarrow 16%, \leftrightarrow , resp.	No dosage modification; buffer formulation DDI adequate protection	RAN 2h prior to DDI. A = DDI EC	20,181
RAN	т		DLV, IDV	↑ gastric pH by RAN	\downarrow absorption DLV, IDV	Clinical significance unknown	Long-term use RAN with DLV, IDV not recommended. TDM DLV/IDV recommended	28

de Maat et al.

н

RAN 150mg 2 doses	S	12 vol	SQV-HGC single dose 600mg	?	AUC, C _{max} SQV ↑ 67%, 74%, resp.		TDM SQV recommended	45,48
Ribavirin (RIB)	т		AZT	Interference with phosphorylation by RIB	Conc. triphosphate anabolite-AZT \downarrow (active)		Avoid where possible, monitor blood counts regularly	25,182
RIB 2, 20 μmol/L	In vitro		AZT 10, 100 μmol/L	↑ formation dTTP by RIB $\rightarrow \downarrow$ activity thymidine kinase	↓ phosphorylation AZT; effect primarily on AZT- MP rather than active AZT-TP	Concentration dependent; \downarrow AZT-MP, thus \downarrow toxicity		
RIB	т		DDC, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	24
RIB 6 months 800–1200 mg/day	Case reports	3 HIV+, male	DDI 400mg qd	RIB promotes phosphorylation by inhibition of IMP	Moderate hyperlactacidaemia, severe clinical symptoms; ↑ intracellular/mitochondrial conc. of ddATP (suggested)		Avoid where possible, dosage reduction DDI may be needed	20,21,183
RIB	Т		DDI	Similar toxicity profile	Peripheral neuropathy			
Rifabutin (RFB) 10 days 300mg qd	Open-label, randomised, parallel-group, 3-period	12 vol	AMP 10 days 1200mg bid	Inhibition CYP3A4 by AMP	AUC, C _{max} , C _{min} RFB ↑ 2.9-, 2.2-, 3.7-fold, resp. AUC, C _{max} , C _{min} 25- <i>O</i> -desacetyl-RFB ↑ 13.35-, 7.39-, 32.9- fold, resp.	Combination poorly tolerated: only 6 evaluable, PK AMP?	Monitor neutrophil counts regularly, dosage reduction RFB >50%. TDM AMP recommended	36,184
RFB	т		AZT	Similar toxicity profile	Haematological toxicity		Avoid where possible, monitor blood counts regularly	4,25
RFB 14 days 300mg qd	Open-label, parallel-group, multiple-dose, randomised	7, 5 HIV+ (controls)	DLV 30 days 400mg tid	Induction CYP3A by RFB, inhibition CYP3A by DLV	CL DLV \uparrow 445%, C _{min} , C _{max} DLV \downarrow 95%, 75%, resp. C _{max} RFB \uparrow 20%, C _{trough} , CL RFB \downarrow 40%, 20%, resp.		Avoid where possible, monitor neutrophil counts regularly. TDM DLV recommended, DLV 600mg tid	28,185,186
RFB 30 days 300mg	S	6 HIV+	DLV 14 days 400mg tid	Inhibition hepatic CYP3A by DLV	AUC, C _{min} RFB ↑ 242%, 455%, resp. AUC DLV ↓ 80%	RFB compared with historical data		
RFB 300mg qd	S	7 HIV+	DLV 400mg tid		AUC RFB 100%		Continu	ied over page

Table III.	Contd
------------	-------

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
RFB 7 days 300mg qd (see also clarithromycin + D4T and fluconazole + D4T)	Sequential, 8- part, multiple- dose, non-blinded, randomised	10 HIV+	D4T 7 days 40mg bid	Inhibition absorption by RFB?	C _{max} D4T ↓ 35% when combined with CLA + RFB + FLU	Significance?		81
RFB 14 days 300mg qd	S		EFV 14 days 600mg qd	Induction CYP3A by EFV	Conc. RFB ↓, PK EFV?		Increase dose RFB to 450– 600mg/day. TDM EFV recommended	30,187
RFB (1) 300mg qd, (2) 150mg qd	S		IDV 800mg tid	Inhibition CYP3A by IDV, induction CYP3A by RFB	 (1) AUC IDV ↓ 32%, AUC RFB ↑ 204%. (2) AUC IDV ↓ 31%, AUC RFB ↑ 60% 	AUCs compared with RFB 300mg qd without IDV	Reduce dosage RFB >50% (300mg qd 2–3 times/week), monitor neutrophil counts regularly	37,188
RFB 150mg qd when + IDV, 300mg qd when alone	A: multiple- dose, 3-period, randomised crossover. B: multiple-dose, 2-period sequential	?	1000mg tid when + RFB, 800mg tid when alone		A: AUC RFB 150mg qd + IDV 1000mg tid = 60% ↑ than AUC RFB 300mg qd. B: AUC IDV 1000mg tid + RFB 150mg qd = AUC IDV 800mg tid	Sequential administration = simultaneous administration when RFB PK were compared	IDV 1000mg tid, TDM IDV recommended	
RFB 10 days 150mg qd	S	14 vol	LPV/RTV 20 days 400/100mg bid	Inhibition CYP3A by LPV/RTV	AUC RFB + 25- <i>O</i> - desacetyl-RFB ↑ 5.7- fold. AUC LPV ↑ 17%		Maximum dose RFB 150mg every other day or 3× per week. Monitor neutrophil counts regularly. TDM LPV/RTV recommended	39
RFB 8 days 150mg qd	S	12 vol	NFV 7/8 days 750mg tid	Inhibition CYP3A by NFV, induction CYP3A by RFB	AUC, C _{max} RFB ↑ 83%, 19%, resp. AUC, C _{min} NFV ↓ 23%, 18%, resp.	NFV 1250mg bid shows no change in PK when combined with RFB 150mg qd	Reduce dosage RFB >50% (300mg qd 2–3 times/week), monitor neutrophil counts regularly	41

RFB 8 days 300mg qd	S	10 vol	NFV 7/8 days 750mg tid		AUC, C _{max} RFB ↑ 207%, 146%, resp. AUC, C _{min} NFV ↓ 32%, 25%, resp.		TDM NFV recommended, preferred dosage NFV 1250mg bid	
RFB	S	19	NVP	Induction CYP3A by RFB	C _{trough} ss NVP ↓ 16%		Avoid where possible, TDM NVP recommended	33
RFB 24 days 150mg qd	Multiple-dose, randomised, parallel-group, double-blind	5, 11 (control) vol	RTV 10 days 500mg bid (escalation scheme)	Inhibition CYP3A (intestinal, hepatic, or combi) by RTV	AUC, C _{max} , C _{min} RFB ↑ 4-, 2.5-, 6-fold, resp. AUC, C _{max} , C _{min} 25- <i>O</i> - desacetyl-RFB ↑ 35-, 16-, 200-fold, resp.	8 patients discontinued because of AE (1 control, 7 case).	RTV/SQV 400/400mg bid + RFB 300mg/week or 150mg every 3 days, monitor neutrophil counts regularly. TDM RTV/SQV recommended	189,190
RFB	S		SQV		AUC SQV ↓ 45%		RTV/SQV 400/400mg bid + RFB 300mg/week or 150mg every 3 days, monitor neutrophil counts regularly.	45,48,190
RFB 14 days 300mg qd	Preliminary data	12 HIV+	SQV-HGC 14 days 600mg tid	Induction CYP3A by RFB	AUC, C _{max} SQV ↓ 43%, 30%, resp.		TDM RTV/SQV recommended	
Rifampicin (RIF) 10 days 600mg qd	Open-label, randomised, parallel-group, 3-period	12 vol	AMP 10 days 1200mg bid	Induction hepatic/intestinal CYP3A4 by RIF	AUC, C _{max} , C _{min} , CL AMP ↓ 82%, 70%, 92%, ↑ 5.45-fold resp.	Combination poorly tolerated: only 6 evaluable	CI; A = AMP + RFB reduced dose > 50%	36,184
RIF 14 days 600mg qd	2-treatment, 3-period, single sequence, repeated measures	8 HIV+	AZT 14 days 200mg tid	Induction glucuronidation, amination by RIF; induction AMT formation	AUC, C _{max} AZT ↓ 47%, 43%, resp. AUC: GAZT/AZT ↑ 99%; AMT/AZT ↑ 36%		No dosage adjustment necessary	25,191,192
RIF 600mg qd	S	10	AZT 200mg qd		AUC AZT \downarrow 48%			
RIF 600mg qd		4 HIV+, male	AZT 200–500mg bid/tid		AUC normalised AZT \downarrow > 50%; $t_{\nu_{2}\beta} \leftrightarrow$ for n = 3	AUC AZT compared with AUC AZT of population not using RIF		

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
RIF 600mg qd	S	7 HIV+	DLV 400mg tid	Induction CYP3A by RIF, inhibition CYP3A by DLV	AUC DLV ↓ 96%; CL DLV ↑ 27-fold	Conc. RIF ↑ (T)	CI; A = NVP + RFB	28,193
RIF 15 days 600mg qd	S	7, 5 HIV+	DLV 30 days 400mg tid		Metabolite formation/metabolite elimination 16-fold	Virtually negligible ss C _{trough} DLV		
RIF 7 days 600mg qd	S	12 vol	EFV 14 days 600mg qd	Induction CYP3A by RIF, induction CYP3A by EFV	AUC, $C_{max} EFV \downarrow 13\%$, 14%, resp. n = 10: AUC, $C_{max} EFV \downarrow 33\%$, 23%, resp.	2 patients had ↑ AUC, C _{max} EFV. Clinical significance unknown	A = RFB 450– 600mg/day. Increase dose EFV to 800mg qd. TDM EFV recommended.	30,194,195
RIF 7 days	Randomised, 3-group	24 HIV+	EFV 600mg qd/800mg qd		7/8 (600mg qd) C _{max} , C _{min} , AUC EFV ↓ 30%, 24%, 22%, resp. EFV 800mg qd: conc. in therapeutic range	Conc. RIF \downarrow (T)		
RIF 7 days 600mg qd	S		IDV 7 days 800mg tid	Induction CYP3A4 by RIF, inhibition CYP3A4 by IDV	AUC IDV ↓ 89%		Avoid combination; IDV 1000mg tid + reduced dose RFB (>50%), TDM IDV recommended	14,37,196
RIF single dose 600mg	S	11 HIV+	IDV 14 days 800mg tid		AUC₂₄ RIF ↑ 73%		A = 9-month streptomycin- based regimen	
RIF 10 days 600mg qd	S	22 vol	LPV/RTV 20 days 400/100mg bid	Induction CYP3A by RIF, inhibition CYP3A by LPV/RTV	AUC, C _{max} , C _{min} LPV ↓ 75%, 55%, 99%, resp.	Conc. RIF ↑ (T)	CI. A = RFB maximum dosage 150mg every other day or 3× per week. TDM LPV/RTV recommended	39,167
RIF 7 days 600mg qd	Randomised crossover	12 vol	NFV 6 days 750mg tid ss	Induction CYP3A by RIF, inhibition CYP3A by NFV	AUC ₈ , C _{max} NFV ↓ 82%, 76%	Conc. RIF ↑ (T)	CI; A = RFB reduced dosage >50% + NFV 1250mg bid	130,197

н.

RIF 7 days 600mg qd	Case report	1 HIV+ infant	NFV ss 27 mg/kg bid (+ 380mg/m ² RTV bid)	Blocking RIF- induced metabolism NFV by addition RTV	$\begin{array}{l} AUC_{24} \ (NFV + M8), \\ C_{min} \ (NFV + M8) \uparrow \\ 130\%, 142\% \ compared \\ with \ population \ values \end{array}$	Addition of RTV resulted in highly elevated M8 conc.	TDM NFV (+ M8) recommended	
RIF 43 days 600mg qd	Open-label, single arm	22 HIV+	NVP 28 days 200mg bid	Induction CYP3A4 by RIF, NVP	Average conc., C_{min} NVP \downarrow 58%, 68%, resp. n= 3: C_{trough} ss NVP \downarrow 37%	RIF 600mg twice weekly less marked drug interaction than with daily RIF. Conc. RIF \downarrow (T)	Consider NVP 300mg bid, TDM NVP recommended. A = RFB	33,198,199
RIF 10 days 600mg/300mg qd	Parallel design	7/9	RTV 20 days 500mg bid	Induction CYP3A by RIF, inhibition CYP3A by RTV	AUC, C _{max} RTV ↓ 35%, 25%, resp.	Conc. RIF ↑ (T)	A = RFB 150mg every other day. TDM RTV recommended	43,200
RIF 28 weeks 600mg qd	Pilot, non- randomised, open-label	18 HIV+	RTV 28 weeks 600mg bid		$\label{eq:model} \begin{array}{l} n=8: \mbox{ median } C_{min} \mbox{ RTV} \\ 2.22 \mbox{ mg/L}, > IC_{90} \mbox{ at} \\ most time-points. \mbox{ RIF} \\ level \mbox{ within normal limits} \end{array}$	6 discontinued because of intolerance to RTV liquid		
RIF 7 days 600mg qd	S	12 vol	SQV-HGC 14 days 600mg tid	Induction CYP3A by RIF, inhibition CYP3A by SQV	AUC, C _{max} SQV ↓ 84%, 79%, resp.	Conc. RIF ↑ (T)	Avoid combination or use SQV combined with RTV, TDM RTV/SQV recommended	45,48,88, 101,201
RIF	Retrospective review				AUC, C_{max} SQV \downarrow 70%, 65%, resp.			
RIF 14 days 600mg qd	Open-label, randomised, 2- way crossover	14 vol	SQV-SGC 1200mg tid ss		AUC, C _{max} SQV ↓ 70%, 65%, resp.	SQV plasma concentrations < EC ₅₀ SQV		
RIF 14 days 600mg qd	Open-label, substudy	11 HIV+	SQV-SGC 1200mg tid ss		AUC, C _{max} SQV ↓ 46%, 43%, resp.			
Risperidone (RIS) 1.5mg daily	Case report	1 HIV+, female	RTV/IDV	Inhibition CYP2D6 by RTV and CYP3A4 by RTV/IDV	Neuroleptic malignant syndrome: persistent fever, rigidity, tremor, autonomic instability, ↑ CPK. AUC RIS ↑ 1. 5–3-fold by RTV		Avoid combination	12,43,202

Drug Interactions with Antiretrovirals

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Roxithromycin (ROX) 300 or 600mg/day	Open-label, randomised	6 HIV+	NFV	Protein (AAG) binding displacement by ROX?	3/6 no baseline resistance to NFV: median ↑ HIV-RNA 0.96 log after 1 week. 3/6 baseline resistance to NFV: transient/no virological response		TDM NFV recommended	203
Salicylic acid (SAC)	<i>In vitro</i> (human liver microsomes)		AZT	Inhibition glucuronidation by SAC	0.5 mmol/L 99.7% enzyme activity remained; 10 mmol/L 52.2% emzyme activity remained	Conc. AZT probably ↑. Significance?	Monitor blood counts regularly	57
Selective serotonin reuptake inhibitors (SSRI) [see also fluoxetine]	т		RTV	Inhibition CYP3A and/or CYP2D6 by RTV	Conc. SSRI ↑		Use lowest dose SSRI possible and titrate	12,43
Sildenafil (SIL)	т		AMP, DLV, LPV/RTV, NFV	Inhibition CYP3A by PI/DLV	Conc. SIL ↑	Based on studies with other PIs	Starting dose SIL 25mg in 48h, monitor for AEs	28,36,39,41
SIL single dose 25mg	S	6 HIV+	IDV 800mg tid ss	Inhibition CYP3A4 IDV/SIL	AUC ₈ , C _{max} IDV ↑ 11%, 48%, resp. Headache, flushing, dyspepsia, rhinitis, blood pressure ↓	PD effect >72h post ingestion	Starting dose SIL 25mg in 48h	204
SIL 25mg	Case report	1 HIV +, male	RTV/SQV 400/400mg bid	Inhibition CYP3A4 (first-pass)/2C9 (systemic CL) by RTV	Severe central chest pain		Starting dose SIL 25mg in 48h	43,205,206
SIL single dose 100mg	Independent, open, randomised, placebo- controlled, parallel-group	28 vol	RTV 8 days 500mg bid (escalation scheme)		AUC, C _{max} SIL ↑ 11-, 3.9-fold			
SIL 100mg	Independent, open, randomised, placebo- controlled, parallel-group	27 vol	SQV-SGC 7 days 1200mg tid	Inhibition CYP3A4 (both intestinal and hepatic) by SQV	AUC, C _{max} SIL [↑] 3.1-, 2.4-fold	See also case report RTV/SQV	Starting dose SIL 25mg in 48h	45,48,206

266

Simvastatin (SIM)	Т		AMP, DLV, IDV, LPV/RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. SIM ↑	Based on interaction with atorvastatin, risk for myopathy	Combination not recommended. CI (AMP), A = fluvastatin, pravastatin	36,37,39,45 48,207
SIM	Case report	1 HIV+, male	IDV/RTV	Inhibition CYP3A by PI/DLV	RTV was added to IDV and SIM \rightarrow rhabdomyolysis, renal failure			
SIM 14 days 20mg qd	Open-label, sequential, multiple-dose	16 vol	NFV 14 days 1250mg bid	Inhibition CYP3A by NFV	AUC, C _{max} SIM ↑ 505%, 517%, resp.	Risk for myopathy, including rhabdomyolysis	CI; A = pravastatin	41,66
SIM 4 days 40mg qd	Randomised, open label, multiple dose	14 vol	RTV/SQV-SGC 14 days 400/400mg bid	Inhibition CYP3A by RTV/SQV	AUC SIM [↑] 30-fold	Risk for myopathy, including rhabdomyolysis	CI; A = fluvastatin, pravastatin	43,68
Sirolimus (SIR)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. SIR ↑	TDM SIR recommended. Risk for anaemia, thrombo- cytopenia	Monitor blood counts regularly. TDM SIR recommended	36,39
St John's wort (SJW)	т		AMP, DLV, EFV, LPV/RTV, NFV, RTV, SQV	Induction CYP3A by SJW	Conc. PI/NNRTI ↓		Coadministration not recommended. TDM PI/NNRTI recommended	36,39,41,43
SJW 14 days 300mg tid	Open-label	8 vol, male	IDV 800mg tid	Induction CYP3A4 by SJW, maybe effect on P-gp	AUC ₈ , C _{min} , C _{max} IDV ↓ 57%, 49–99%, 28%, resp.	After 4th dose IDV PK	Coadministration not recommended. TDM IDV recommended	37,208
SJW	Population PK data	5 HIV+ (n = 176)	NVP	Induction CYP3A4 by SJW	CL NVP ↑ 35%		Coadministration not recommended. TDM NVP recommended	33,209
Sulfadiazine (SUF)	Т		AZT	Similar toxicity profile	Haematological toxicity		Avoid where possible, monitor blood counts regularly	4,25

267

Drug Interactions with Antiretrovirals

Table III. Contd

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Tacrolimus (TAC)	Т		AMP, DLV, IDV, LPV/RTV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. TAC ↑		Monitor blood counts regularly. TDM TAC recommended	36,39,41,43
TAC 0.5mg weekly	Case report	1 HIV+, male	NFV 500mg tid	Inhibition CYP3A by NFV	Conc. TAC 5–15µg/L. Conc. NFV slightly ↑ than normal		Monitor blood counts regularly. TDM TAC recommended	41,210
TAC	Case report	1 HIV+, female	(1) RTV/SQV 400/400mg bid. (2) NFV	Inhibition CYP3A by Pl	(1) Conc. TAC \uparrow 120 μ g/L, severe prolonged toxicity. (2) Confusion, lethargy, delusional		Monitor blood counts regularly. TDM TAC recommended	41,43,211
Tamoxifen (TAM)	Т		RTV	Inhibition CYP3A by RTV	Conc. TAM ↑		Monitor for neurotoxicity, dosage reduction TAM may be needed	
Terfenadine (TER)	T, <i>in vitro</i> (AMP)		AMP, DLV, EFV, IDV, LPV/RTV, RTV, SQV-HGC (see also TER + SQV-SGC)	Inhibition CYP3A4 by PI/NNRTI	Conc. TER ↑	Risk for cardiac arrhythmias	CI; A = cetirizine, acrivastine	28,36,37,39, 43,63
TER single dose 60mg	S	12 vol	NFV 7 days 750mg tid	Inhibition CYP3A4 by NFV	Conc. TER alone <5 µg/L. C _{max} TER + NFV 5–15 µg/L	Risk for cardiac arrhythmias	CI; A = cetirizine, acrivastine	130
TER 11 days 60mg bid	S	12 vol	SQV-SGC 4 days 1200mg tid	Inhibition CYP3A4 by SQV	AUC, C _{max} TER ↑ 368%, 253%, resp. AUC, C _{max} TER acid metabolite ↑ 120%, 93%, resp.	Risk for cardiac arrhythmias	CI; A = cetirizine, acrivastine	45,48,89
Tetracyclines (TET)	Т		DDI	Chelation with cations in DDI tablets	\downarrow absorption TET		TET > 2h prior to DDI or 6h after DDI; A = DDI EC	92
Thalidomide (THA)	т		RTV	Inhibition CYP by RTV	Conc. THA ↑		Monitor for neurotoxicity THA, dosage reduction THA may be needed	

268

de Maat et al.

Theophylline (THE)	Placebo-	13, 11	RTV 10 days		AUC, C _{max} , C _{min} THE \downarrow		TDM THE	43,212
5 days 3 mg/kg tid	controlled	(control)	500mg bid (escalation scheme)	by RTV?	43%, 32%, 57%, resp.		recommended	
Thioridazine (THI)	Т		RTV	Inhibition CYP2D6 by RTV, THI	Conc. THI potential \uparrow . Conc. RTV potential \uparrow	Based on interaction with perphenazine	Dosage reduction THI may be needed	12,43
Timolol (TIM)	Т		RTV	Inhibition CYP2D6 by RTV	Conc. TIM ↑	↑ risk for bradycardia and hypotension	Dosage reduction TIM (>50%) may be needed	43
Tiotixene (TIO)	Т		RTV	Inhibition CYP2D6 by RTV	Conc. TIO ↑	↑ risk for sedation	Dosage reduction TIO may be needed	
Tramadol (TRM)	Т		RTV	Inhibition CYP3A by RTV	Conc. TRM ↑	↑ risk for GI toxicity	Dosage reduction TRM (>50%) may be needed	43
Trazodone (TRA)	T, <i>in vitro</i> (human liver microsomes)		IDV, RTV	Inhibition CYP3A (2D6) by IDV, RTV	IC ₅₀ IDV 0.63 μ mol/L, IC ₅₀ RTV 0.30 μ mol/L, conc. TRA potential \uparrow		Monitor for increased sedation. Dosage reduction may be needed	12,213
Triazolam (TRI)	т		AMP, DLV, EFV, IDV, LPV/RTV, NFV, SQV	Inhibition CYP3A by PI/NNRTI	Conc. TRI ↑	Risk for prolonged or ↑ sedation, respiratory depression	Cl; A = oxazepam, lorazepam	28,30,36,3 39,41,45,4
TRI Single dose 0.125mg	Double-blind, randomised, 5- way crossover	6 vol, male	RTV 200mg bid (4 doses)	Initial inhibition of CYP3A by RTV (presystemic)	AUC, t½β, Cmax TRI ↑ 19-, 13-fold, 87%, resp. CL TRI ↓ 96%. PD: ↑ sedation	Probably induction from long-term exposure will offset inhibition due to short- term exposure	Cl; A = oxazepam, lorazepam	43,59,60
Tricyclic antidepressants (TRC) [see also desipramine]	т		AMP, RTV	Inhibition CYP2D6 and/or CYP3A by PI	Conc. TRC ↑		TDM TRC recommended, dosage reduction TRC may be needed	12,36,43

269

Drug Interactions with Antiretrovirals

Table III. Contd

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
Trifluoperazine (TRF)	Т	Involved (n)	RTV	Inhibition CYP2D6 by RTV. TRF	Conc. TRF ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction TRF, RTV may be needed. TDM	
							RTV recommended	
Triflupromazine (TRP)	т		RTV	Inhibition CYP2D6 by RTV. TRP	Conc. TRP ↑. Conc. RTV ↑	Based on interaction with perphenazine	Dosage reduction TRP, RTV may be needed. TDM RTV recommended	
Trimethoprim (TMP) 8 days 200mg bid	Open, randomised, crossover	8 HIV+	AZT single dose 200mg	Competition by TMP at the renal tubular site	CL _R AZT ↓ 58%	Only 20% of CL/F AZT by CL_R , thus probably not significant	Monitor blood counts regularly	4,25,214
TMP/sulfamethoxazole SUL) [cotrimoxazole]	Т		AZT	Similar toxicity profile	Haematological toxicity			
TMP	S	? HIV+	DDC	Inhibition renal tubular secretion	$CL_R DDC \downarrow$	Clinical significance unknown		215
FMP/SUL 5 days 300/160mg qd	Randomised, 2- way crossover	14 HIV+	3TC single dose 300mg	Competitive inhibition renal tubular secretion by TMP	AUC 3TC \uparrow 44%, CL _R 3TC \downarrow 30%, CL 3TC \downarrow 29%	No intervention when TMP/SUL is used to prevent PCP (480mg qd)	Stop 3TC during high dose therapy with TMP/SUL (>960 mg/day)	4,22, 216-218
TMP/SUL	Т		3TC	Similar toxicity profile	Pancreatitis		Monitor for pancreatitis	
TMP/SUL	т		DDI, D4T	Similar toxicity profile	Pancreatitis		Monitor for pancreatitis	4
TMP/SUL 7 days 400/80mg bid	S	?	IDV 400mg qid	Inhibition CYP by IDV	AUC TMP ↑ 19%		No dosage adjustment	37

Clin Pharmacokinet 2003; 42 (3)

.

necessary

TMP/SUL single dose 800/160mg	Open-label	15 vol	RTV 12 days 500mg bid (escalation scheme)	Induction <i>N</i> - glucuronidation, inhibition CYP by RTV	$\begin{array}{l} \text{AUC, } C_{max} \text{ SUL} \downarrow 20\%, \\ \leftrightarrow, \text{resp. AUC, } C_{max} \\ \text{TMP} \uparrow 20\%, \leftrightarrow, \text{resp.} \end{array}$	Not clinically relevant	No dosage adjustment necessary	43,219
Valproic acid (VAL) 4 days 250mg tid	S	6 HIV+	AZT 4 days 100mg tid	Inhibition glucuronidation, first-pass metabolism by VAL	AUC, C_{max} , CL AZT \uparrow 80%, 41%, \downarrow 38%, resp. AUC, C_{max} GAZT \downarrow 22%, 36%, resp. GAZT/AZT urinary excretion ratio \downarrow 58%	Clinical significance unknown	Monitor blood counts regularly	25,220
VAL	Case report	1 HIV+, male	RTV/SQV 400/400mg bid, followed by NVP 200mg bid	↑ risk carnitine depletion, accumulation toxic VAL metabolites by CYP-inducing agents RTV, NVP	Headache, nausea, vomiting, anorexia, fevers etc. → hepatitis	Levocarnitine 1g tid administered	Replacement of carnitine is recommended	221
Verapamil (VER)	Т		AMP, DLV, IDV, LPV/RTV, NFV, RTV, SQV	Inhibition CYP3A by PI/DLV	Conc. VER ↑	Risk for hypotension, bradycardia etc.	Dosage reduction VER may be needed	36,43
Vincristine (VIN)	т		DDC, DDI, D4T	Similar toxicity profile	Peripheral neuropathy		Avoid where possible, monitor for peripheral neuropathy	20,21,24
Warfarin (WAR)	Т		AMP, DLV, EFV, LPV/RTV, NFV	Inhibition CYP3A by PI/DLV, induction CYP3A by EFV	Conc. WAR \uparrow (or \downarrow in case of EFV)		Monitor INR	28,30,36,39
WAR 5mg/day	Case report	1 HIV+, male	IDV 800mg tid, followed by RTV 600mg bid	Induction metabolism by RTV/IDV	Both regimens ↑ PCA → dosage WAR ↑ 8.75mg/day		Monitor INR	43,222
WAR	Case reports	3 HIV+	NVP 200mg bid	Induction of CYP by NVP	Dosage increase WAR was needed to stabilise Quick time and INR within therapeutic range		Monitor INR	223

Drug Interactions with Antiretrovirals

271

Coadministered agent and dosage	Type of study	Subjects involved (n)	Antiretroviral agent and dosage	Interaction mechanism	Effect of interaction	Comments	Advice	References
WAR 12.5mg qd	Case report	1 HIV+, female	RTV 400mg bid	↓ anticoagulant effect, results of RTV effect on TMP-SUL interaction/RTV affected WAR directly	Paradoxical effect: INR↓, WAR dosage ↑, RTV discontinued: INR ↑ 3-fold	Comedication CLA, TMP/SUL	Monitor INR	43,224,225
WAR 10mg/day	Case report	1 HIV+, male	RTV 400mg bid, NFV 750mg tid (switch from EFV 600mg qd)	Inhibition CYP2C9 by RTV	INR ↑ 4-fold			
WAR	Case report	1 HIV+, male	SQV 600mg tid	Inhibition CYP3A4 by SQV	INR \uparrow slowly \rightarrow hypoprothrombinaemia		Monitor INR	226
Zolpidem (ZOL)	Т		AMP, DLV, IDV, LPV/RTV, NFV, SQV	Inhibition CYP3A by PI/DLV	Conc. ZOL ↑	Based on interaction with RTV	Dosage reduction ZOL may be needed. A = oxazepam, lorazepam	
ZOL single dose 5mg	Double-blind, randomised, 5- way crossover	6 HIV+	RTV 200mg bid (4 doses)	Initial inhibition CYP3A by RTV	AUC, t¹ _{2β} , C _{max} ZOL ↑ 28%, 20%, 22%, resp. CL ZOL ↓ 26%	Probably induction from long-term exposure will overcome inhibition due to short-term exposure	Dosage reduction ZOL may be needed. A = oxazepam, lorazepam	43,227

A = alternative; AAG = α_1 -acid glycoprotein; ABC = abacavir; ADH = alcohol dehydrogenase; AE = adverse events; AMP = amprenavir; AMT = 3 -amino-3 -deoxythymidine; ARV = antiretroviral; AUC = area under the plasma concentration-time curve; AZT = zidovudine; BA = bioavailability; bid = twice daily; C = controls; CI = contraindicated; CL = apparent ('oral') systemic clearance; CL_{CR} = creatinine clearance; CL_R = renal clearance; C_{max} = maximum plasma concentration; C_{min} = minimum plasma concentration; CNS = central nervous system; Conc. = plasma concentration; CPK = creatinine phosphokinase; CRABP-1 = cellular retinoic acid-binding protein-1; CSF = cerebrospinal fluid; C_{trough} = trough plasma concentration; CYP = cytochrome P450; dd = times per day; DDC = zalcitabine; DDI = didanosine; DLV = delavirdine; dTTP = deoxythymidine triphosphate; D4T = stavudine; EC = enteric coated; EFV = efavirenz; F = oral bioavailability; GAZT = 3 -azido-3 -deoxy-5 -O-β-D-glucopyranuronosylthymidine; GI = gastrointestinal; HC = historical controls; HGC = hard gel capsule; IC₅₀ = concentration giving 50% inhibition; IDV = indinavir; IMP = inosine monophosphate dehydrogenase; INR = international normalised ratio; IV = intravenous; K₁ = inhibitory constant; LEs = liver enzymes; LPV/RTV = lopinavir/irtonavir; NFV = nefinavir; NNFTI = non-nucleoside reverse transcriptase inhibitors; NO = nitric oxide; NVP = nevirapine; PCA = prothrombin complex activity; PCP = *Pneumocystis carinii* pneumonia; PD = pharmacodynamic; PEP = post-exposure prophylaxis; PHN = postherpetic neuralgia; PI = protease inhibitor; PK = pharmacokinetic; PO = oral; P-gp = P-glycoprotein; qd = once daily; qid = four times daily; ref. = reference population; resp. = respectively; RTV = ritonavir; S = study, design not specified; seq = sequential; SGC = soft gel capsule; sim = simultaneous; SQV = saquinavir; ss = steady state; T = theoretical; TDM = therapeutic drug monitoring; tid = three times daily; t_{max} = time to C_{max}; TSH = thyroid stimulating hor

Table III. Contd

the liver, the kidney, the blood-brain barrier and in CD4+ lymphocytes. Kim et al. demonstrated in *Mdr1a* knockout mice that P-glycoprotein has a role in the absorption, distribution and elimination of PIs,^[231] indicating that P-glycoprotein may affect these processes in humans too. Moreover, data indicate that modulation of P-glycoprotein function plays an important role in drug interactions.^[54,232] Many substrates metabolised by CYP-3A4 are also substrates for P-glycoprotein. The spatial relationship of P-glycoprotein traversing the plasma membrane and CYP3A inside the cell on the endoplasmic reticulum suggests that P-glycoprotein may act to control exposure of substrates to metabolism by CYP3A enzymes.^[233]

Induction of CYP3A and/or P-glycoprotein was suggested in the interaction of St John's wort and IDV, in which St John's wort reduced the AUC of IDV by 57% (table III).^[208,234] That herbal agents are not as harmless as generally thought is also illustrated by clinically important interactions observed with garlic supplements and grapefruit juice (table III). In a study in healthy volunteers, garlic supplements administered twice daily for 20 days resulted in a 51% reduction in the AUC of SQV, probably by induction of CYP enzymes.^[119] After a 10-day washout the AUC of SQV was still only 60-70% of the AUC at baseline. The effect of grapefruit juice on the pharmacokinetics of protease inhibitors appears unpredictable. Grapefruit juice reduced the AUC of IDV by 26%, while the AUC of SQV increased, depending on the dose of grapefruit juice, by 39-121%.[122,123] Grapefruit juice was thought to exert these effects by modulation of the function of P-glycoprotein and/or CYP3A. Based on these results and the fact that the interacting potential for most of these herbal agents has not been completely elucidated, one should always be aware of possible interactions with herbal agents.

Modulation of P-glycoprotein function was also suggested in an HIV-infected patient who received digoxin and started with IDV and RTV as part of the antiretroviral regimen. This patient experienced nausea, vomiting and mild dehydration. The digoxin plasma concentration was 2.5 times the upper limit of normal and inhibition of P-glycoprotein in the small intestine or renal proximal tubules by RTV was suspected as the cause of this drug interaction (table III).^[96]

PIs and NNRTIs are substrates of CYP3A4 and P-glycoprotein and can modulate their function. Therefore, these drugs are expected to have considerable effects on coadministered agents that are also using this metabolic pathway. Coadministered drugs may, however, also influence the pharmacokinetics of PIs and NNRTIs by modulation of CYP enzymes or drug transporters. Furthermore, besides the influence of drug-drug interactions on the pharmacokinetics of the antiretroviral drugs and comedicated agents, polymorphism of several CYP enzymes (e.g. CYP3A4/5, CYP2D6 and CYP2C19) and P-glycoprotein may also result in large interindividual differences in plasma concentrations.^[235]

3.1.3 Protein Binding

Following absorption, drugs are rapidly distributed by the body circulation. Most drugs are partly protein-bound, particularly to albumins and α_1 acid glycoprotein (AAG). In contrast to the NNRTIs, which are predominantly bound to albumin, PIs are mostly bound to AAG.^[6,7] Only the unbound fraction is considered to have pharmacological activity. Variations in plasma albumin and/or AAG levels may alter free drug fractions and may, therefore, influence activity. On the other hand, changes in unbound fraction will generally not lead to changes in free drug concentrations due to other equilibrium processes. Protein binding displacement of one drug by another may increase the free plasma concentration of the former drug, and hence the effect of that drug. For drugs with a high hepatic extraction ratio, the free plasma concentration determines the elimination rate. However, for drugs with a low hepatic extraction ratio, an increase in the free plasma concentration will not lead to a proportional increase in clearance. This type of interaction mostly has minor effects on drug exposure and is, therefore, in general not clinically relevant.[236]

Drug interactions based on alterations in renal elimination mainly involve changes in tubular secretion or changes in kidney function. Drugs that use the same active transport system in the kidney tubules can compete for this excretory system. Probenecid and trimethoprim are known inhibitors of tubular secretion,^[237] and the observation that the AUC of AZT increased 80–115% when concomitantly used with probenecid can partly be explained by this effect (table III).^[175-177] Aminoglycosides are nephrotoxic drugs^[238] and the use of this class of drugs might lead to a decreased renal clearance, as demonstrated for DDC (table III).^[24]

3.2 Pharmacodynamic Interactions

3.2.1 Efficacy

An example of a synergistic pharmacodynamic interaction is combination treatment with hydroxycarbamide (hydroxyurea) and DDI. By adding hydroxycarbamide to the regimen, levels of deoxyadenosine triphosphate (dATP; cellular competitor) decrease, favouring incorporation of dideoxyadenosine triphosphate (ddATP; DDI is the precursor of ddATP) into proviral DNA.^[239] This combination provides a simultaneous inhibition of a cellular protein (by hydroxycarbamide) and a viral protein (by DDI), which should result in a sustained suppression of HIV-1. However, in practice it appears that a higher rate of toxicity was encountered without increased efficacy.^[240,241]

3.2.2 Toxicity

Combinations of drugs may lead to an increased toxicity compared with administration of the single drugs. For example, both AZT and ganciclovir used as single agents show bone marrow suppression.^[25,242] When these drugs are used concomitantly, this toxic effect is enhanced and increased incidence of severe neutropenia and anaemia are found. DDI, D4T and DDC are associated with the development of peripheral neuropathy,^[20,21,23,24] and DDI and 3TC are associated with the development of pancreatitis.^[20-22] Patients using these drugs and other agents with a similar toxicity profile should be monitored closely and frequently for

signs of these adverse effects. In addition, drugs with adverse events similar to those of PIs and NNRTIs should be added with caution to a PI- or NNRTI-containing antiretroviral regimen.

4. Practical Issues for Use of Interactions Table

In table III we have defined nine areas that are considered essential for overviewing drug interactions between antiretroviral drugs and comedicated agents:

1. The first column ('Co-administered agent and dosage') is presented in alphabetical order, either for the individual drug or the drug class (see table II). The dosage of the coadministered drug is given when available from the cited interaction study.

2. The second column describes 'Type of study'. As can be observed from the table, most drug interactions are based on theoretical considerations (= T), e.g. because it is known that the drugs are metabolised by the same CYP isoen-zymes.

3. In the third column, the 'Number of subjects' involved in the interaction study is mentioned. In case of an interaction based on theoretical grounds, this field is empty. Whenever possible, the type of subjects (healthy volunteers, HIV-infected patients, gender) is presented.

4. The fourth column includes 'Antiretroviral agent and dosage'. For one comedicated agent, more than one row can be presented. This occurs when information on a drug interaction with one specific drug or drug group includes more than just theoretical information. Antiretroviral drugs are then presented in different rows for that comedicated agent. The antiretroviral drugs are in alphabetical order per row and per comedicated agent.

5. In the section 'Interaction mechanism', the most plausible mechanism is given. When a question mark is given, it is possible, but not completely certain, that the interaction is caused by the mentioned mechanism.

6. The column 'Effect of interaction' includes the effect of the increase or decrease in plasma con-

centration of the antiretroviral drug and/or comedicated agent. In addition, other observations made during the observation of drug interaction (increase in adverse events, change in International Normalised Ratio) are presented.

7. In the column 'Comments', additional information on the drug interaction that cannot be classified into another category is presented.

8. The section 'Advice' suggests how to deal with the interaction. Therapeutic drug monitoring (TDM) of PIs and NNRTIs is currently valued as an additional clinical tool in HIV care, since relationships have been described between plasma concentrations and efficacy and/or toxicity.^[4,8-11] When TDM of drugs is suggested, the plasma concentration needs to be quantified with a validated method and interpretation of the result should be performed by a qualified person (e.g. clinical pharmacologist). When TDM of RTV is recommended, this only refers to RTV used as an antiviral rather than a pharmacoenhancer. Management of interactions with drugs that have a similar toxicity profile will include regular monitoring of the most frequent and prominent toxicity, although other adverse events may occur. The frequency of monitoring is dependent on hospital procedures and needs to be judged by the treating physician.

9. The last column ('Reference') provides the literature source that describes the drug interaction. It could be that a presented drug interaction is not supported by a literature reference. In this case, an interaction can be based on another drug interaction with a comedicated agent that is structurally similar. In addition, the drug interaction can be based on knowledge of the metabolic pathway of the drugs involved and/or the capacity to inhibit or induce this metabolic pathway by one of the implicated drugs.

5. Conclusions

When using this overview in the management of drug interactions, it should be kept in mind that most information is based on theoretical considerations and *in vitro* data. Extrapolating *in vitro* data to the *in vivo* situation requires consideration of a number of factors such as the role of metabolites and interindividual differences in clearance.^[58] Case reports should also be interpreted with caution as they usually provide limited information and can be outliers in a population.

For some drug combinations, well-designed drug interaction studies have been performed, but not all involve HIV-infected patients. Pharmacokinetic studies are often performed in healthy volunteers who are exposed to two-drug combinations, whereas in the treatment of HIV infection more complex multidrug regimens are used. In addition, CYP3A4 activity appears to be more variable in HIV-positive patients than in non-infected subjects.^[243] Moreover, Lee et al. demonstrated that AIDS patients with acute illnesses had altered patterns of drug metabolism.^[244] Data collected from studies performed in healthy volunteers should thus be extrapolated carefully to HIVinfected individuals.

The use of a single dose in some studies is also an important factor to consider. Some drugs must be administered for longer times before the effect of an interaction can be observed. An example is the interaction between RTV and alprazolam, in which opposite effects of RTV on alprazolam clearance were found with short and extended administration of RTV.^[59,60] During initial exposure to RTV, inhibition of CYP3A may predominate, while during extended exposure induction may offset this inhibition.

Special care should also be addressed to the effect of a drug interaction when an enzyme-inducing agent is discontinued. Toxicity may then occur due to continuation of the high dose of the drug that was formerly needed to offset the inducing effect.

In this overview, the aim was to provide a complete overview about drug interactions between antiretroviral drugs and comedicated agents. New information in this field, however, emerges rapidly. An excellent review on drug interactions among drugs for HIV and opportunistic infections was published in 2001 in which some web sites were suggested for the most recent information on this subject.^[15]

Overall, this overview may be a further aid in understanding and addressing drug interactions that can be encountered in the treatment of HIVinfected persons. Awareness of the mechanisms of drug interactions and clinical consequences, as well as interventions to minimise these interactions, are pivotal in the optimisation of treatment of HIV-infected individuals.

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. There are no conflicts of interest directly relevant to the content of this review.

References

- Ledergerber B, Egger M, Opravil M, et al. Clinical progression and virological failure on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study. Lancet 1999; 353: 863-8
- Berrey MM, Schacker T, Collier AC, et al. Treatment of primary human immunodeficiency virus type 1 infection with potent antiretroviral therapy reduces frequency of rapid progression to AIDS. J Infect Dis 2001; 183: 1466-75
- Vittinghoff E, Scheer S, O'Malley P, et al. Combination antiretroviral therapy and recent declines in AIDS incidence and mortality. J Infect Dis 1999; 179: 717-20
- Yeni PG, Hammer SM, Carpenter CCJ, et al. Antiretroviral treatment for adult HIV infection in 2002. Updated recommendations of the International AIDS Society-USA Panel. JAMA 2002; 288: 222-35
- Moyle G. The role of combinations of HIV protease inhibitors in the management of persons with HIV infection. Exp Opin Invest Drugs 1998; 7: 413-26
- Smith PF, Dicenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893-905
- Sommadossi J-P. HIV protease inhibitors: pharmacologic and metabolic distinctions. AIDS 1999; 13 Suppl. 1: S29-40
- Veldkamp AI, Weverling GJ, Lange JM, et al. High exposure to nevirapine in plasma is associated with an improved virological response in HIV-1-infected individuals. AIDS 2001; 15: 1089-95
- Murphy RL, Sommadossi J-P, Lamson M, et al. Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunodeficiency virus type 1. J Infect Dis 1999; 179: 1116-23
- Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1- infected patients. AIDS 2001; 15: 71-5
- Dieleman JP, Gijssens IS, van der Ende ME, et al. Urological complaints in relation to indinavir plasma concentration in HIV-infected patients. AIDS 1999; 13: 473-8
- Tseng AL, Foisy MM. Significant interactions with new antiretrovirals and psychotropic drugs. Ann Pharmacother 1999; 33: 461-73

- Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999; 36: 289-304
- Malaty LI, Kuper JJ. Drug interactions of HIV protease inhibitors. Drug Saf 1999; 20: 147-69
- Piscitelli SC, Gallicano KD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med 2001; 344: 984-96
- 16. Lipsky JJ. Antiretroviral drugs for AIDS. Lancet 1996; 348: 800-4
- Hoetelmans RMW. Clinical pharmacokinetics of antiretroviral drugs. AIDS Rev 1999; 1: 167-78
- ZiagenTM (abacavir sulfate) tablets, oral solution [product information]. Research Triangle Park (NC): GlaxoWellcome, 1998 Dec
- Hervey PS, Perry CM. Abacavir: a review of its clinical potential in patients with HIV infection. Drugs 2000; 60: 447-79
- Videx[®] (didanosine) chewable/dispersible buffered tablets, buffered powder for oral solution, pediatric powder for oral solution [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 Dec
- Videx[®] EC (didanosine) delayed-release capsules entericcoated beadlets [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 Dec
- Epivir[®] Tablets (lamivudine tablets), Epivir[®] Oral solution (lamivudine oral solution) [product information]. Research Triangle Park (NC): GlaxoWellcome, 2001
- Zerit[®] (stavudine) capsules and for oral solution [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 Dec
- 24. Hivid[®] (zalcitabine) tablets [product information]. New Jersey: F. Hoffman-La Roche, 2000
- Retrovir[®] (zidovudine) tablets, capsules, syrup [product information]. Research Triangle Park (NC): GlaxoWellcome, 1998 May
- Hoetelmans RMW, Burger DM, Meenhorst PL, et al. Pharmacokinetic individualisation of zidovudine therapy: current state of pharmacokinetic-pharmacodynamic relationships. Clin Pharmacokinet 1996; 30: 314-27
- 27. Sperling R. Zidovudine. Infect Dis Obstet Gynecol 1998; 6: 197-203
- Rescriptor (brand of delavirdine mesylate tablets) [product information]. Detroit (MI): Pharmacia & Upjohn, 1999 Jul
- Tran JQ, Gerber JG, Kerrs BM. Delavirdine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet 2001; 40: 207-26
- SustivaTM (efavirenz) capsules [product information]. Wilmington (DE): DuPont Pharma, 2000 Feb
- 31. Veldkamp AI, Harris M, Montaner JSG, et al. The steady-state pharmacokinetics of efavirenz and nevirapine when used in combination in human immunodeficiency virus type 1infected persons. J Infect Dis 2001; 184: 37-42
- 32. Adkins JC, Noble S. Efavirenz. Drugs 1998; 56: 1055-64
- Viramune[®] (nevirapine) tablets and oral suspension [product information]. Columbus (OH): Roxane Laboratories Inc, 2000 Nov
- 34. Van Heeswijk RPG, Veldkamp AI, Mulder JW, et al. The steady-state pharmacokinetics of nevirapine during once daily and twice daily dosing in HIV-1-infected individuals. AIDS 2000; 14: F77-82
- Riska P, Lamson M, MacGregor T, et al. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos 1999; 27: 895-901
- Agenerase[®] (amprenavir) [product information]. Research Triangle Park (NC): GlaxoWellcome, 2000

- Crixivan[®] (indinavir sulfate) capsules [product information]. Westpoint (PA): Merck & Co, 2000
- Plosker GL, Noble S. Indinavir: a review of its use in the management of HIV infection. Drugs 1999; 58: 1165-203
- KaletraTM(lopinavir/ritonavir) capsules, (lopinavir/ritonavir) oral solution [product information]. North Chicago (IL): Abbott Laboratories, 2000
- 40. Hurst M, Faulds D. Lopinavir. Drugs 2000; 60: 1371-9
- Viracept[®] (nelfinavir mesylate) tablets and oral powder [product information]. La Jolla (CA): Agouron Pharmaceuticals Inc, 2000 May
- 42. Bardsley-Elliot A, Plosker GL. Nelfinavir: an update on its use in HIV infection. Drugs 2000; 59: 581-620
- Norvir[®] (ritonavir capsules) soft gelatin, ritonavir oral solution [product information]. North Chicago (IL): Abbott Laboratories, 2000
- 44. Lea AP, Faulds D. Ritonavir. Drugs 1996; 52: 541-6
- Invirase[®] (saquinavir mesylate) capsules [product information]. Nutley (NJ): F. Hoffman-La Roche, 2000
- Hoetelmans RMW, Meenhorst PL, Mulder JW, et al. Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir. Pharm World Sci 1997; 19: 159-75
- Regazzi MB, Villani P, Maserati R, et al. Pharmacokinetic variability and strategy for therapeutic drug monitoring of saquinavir (SQV) in HIV-1 infected individuals. Br J Clin Pharmacol 1999; 47: 379-82
- Fortovase[®] (saquinavir) soft gelatine capsules [product information]. Nutley (NJ): F. Hoffman-La Roche, 2001
- 49. Hugen PWH, Burger DM, Koopmans PP, et al. Differences in pharmacokinetics (PK) of saquinavir soft-gel capsules (SQVsgc, Fortovase) after a normal and high fat breakfast [abstract 7.3]. First International Workshop on Clinical Pharmacology; 2000 Mar 30-31; Noordwijk, The Netherlands
- Joly V, Yeni P. Non nucleoside reverse transcriptase inhibitors. AIDS Rev 1999; 1: 37-44
- Kohl NE, Emini EA, Schleif WA, et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 1988; 85: 4686-90
- McDonald CK, Kuritzkes DR. Human immunodeficiency virus type 1 protease inhibitors. Arch Intern Med 1997; 157: 951-9
- 53. Srinivas RV, Middlemas D, Flynn P, et al. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 1998; 42: 3157-62
- Huisman MT, Smit JW, Schinkel AH. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 2000; 14: 237-42
- Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS 1999; 13: 1623-7
- Bouscarat F, Certain A, Picard C, et al. Pharmacological interaction between acenocoumarol and ritonavir [abstract 459]. 6th European Conference on Clinical Aspects and Treatment of HIV-Infection; 1997 Oct 11-15; Hamburg
- Sim SM, Back DJ, Breckenridge AM. The effect of various drugs on the glucuronidation of zidovudine (azidothymidine; AZT) by human liver microsomes. Br J Clin Pharmacol 1991; 32: 17-21
- Bertz RJ, Granneman GR. Use of *in vitro* and *in vivo* data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210-58

- 59. Greenblatt DJ, von Moltke LL, Daily JP, et al. Extensive impairment of triazolam and alprazolam clearance by short-term low-dose ritonavir: the clinical dilemma of concurrent inhibition and induction. J Clin Psychopharmacol 1999; 19: 293-6
- Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Alprazolamritonavir interaction: implications for product labeling. Clin Pharmacol Ther 2000; 67: 335-41
- 61. Frye R, Bertz R, Granneman GR, et al. Effect of ritonavir on the pharmacokinetics and pharmacodynamics of alprazolam [abstract A-59]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997; Toronto (ON)
- Lohman JJHM, Reichert LJM, Degen LPM. Antiretroviral therapy increases serum concentrations of amiodarone. Ann Pharmacother 1999; 33: 645-6
- Decker DJ, Latinen LM, Bridson GW, et al. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998; 87: 803-7
- Castro JG, Gutierrez L. Rhabdomyolysis with acute renal failure probably related to the interaction of atorvastatin and delavirdine [letter]. Am J Med 2002; 112: 505
- 65. Carr RA, Andre AK, Bertz RJ, et al. Concomitant administration of ABT-378/ritonavir (ABT-378/r) results in a clinically important pharmacokinetic (PK) interaction with atorvastatin (ATO) but not pravastatin (PRA) [abstract 1644]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17-20; Toronto (ON)
- 66. Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001; 45: 3445-50
- Barry M, Belz G, Roll S, et al. Interaction of nelfinavir with atorvastatin and pravastatin in normal healthy volunteers [abstract P260]. 5th International Congress on Drug Therapy in HIV Infection; 2000 Oct 22-26; Glasgow
- Fichtenbaum C, Gerber J, Rosenkranz S, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 2002; 16: 569-77
- Lee BL, Täuber MG, Sadler B, et al. Atovaquone inhibits the glucuronidation and increases the plasma concentrations of zidovudine. Clin Pharmacol Ther 1996; 59: 14-21
- Amsden GW, Nafziger AN, Foulds G, et al. A study of the pharmacokinetics of azithromycin and nelfinavir when coadministered in healthy volunteers. J Clin Pharmacol 2000; 40: 1522-7
- Hesse LM, von Moltke LL, Shader RI, et al. Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with bupropion. Drug Metab Dispos 2001; 29: 100-2
- Greenwood I, Heylen R, Zakrzewska JM. Anti-retroviral drugs: implications for dental prescribing. Br Dent J 1998; 184: 478-82
- Hugen PWH, Burger DM, Brinkman K, et al. Carbamazepineindinavir interaction causes antiretroviral failure. Ann Pharmacother 2000; 34: 465-70
- Berbel Garcia A, Latorre Ibarra A, Porta Etessam J, et al. Protease inhibitor-induced carbamazepine toxicity. Clin Pharmacol 2000; 23: 216-8
- Burman W, Orr L. Carbamazepine toxicity after starting combination antiretroviral therapy including ritonavir and efavirenz. AIDS 2000; 14: 2793-4

- 76. Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 1993; 53: 292-7
- 77. Knupp CA, Barbhaiya RH. A multiple-dose pharmacokinetic interaction study between didanosine (Videx®) and ciprofloxacin (Cipro®) in male subjects seropositive for HIV but asymptomatic. Biopharm Drug Dispos 1997; 18: 65-77
- 78. Mummaneni V, Damle B, Kaul S, et al. Lack of effect of didanosine encapsulated enteric coated beadlet formulation on the pharmacokinetics of indinavir, ketoconazole, and ciprofloxacin in healthy subjects [abstract 1629]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17-20; Toronto (ON)
- Brophy DF, Israel DS, Pastor A, et al. Pharmacokinetic interaction between amprenavir and clarithromycin in healthy male volunteers. Antimicrob Agents Chemother 2000; 44: 978-84
- Polis MA, Piscitelli SC, Vogel S, et al. Clarithromycin lowers plasma zidovudine levels in persons with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; 41: 1709-14
- Piscitelli SC, Kelly G, Walker RE, et al. A multiple drug interaction study of stavudine with agents for opportunistic infections in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1999; 43: 647-50
- 82. Benedek IH, Joshi A, Fiske WD, et al. Pharmacokinetic (PK) interaction studies in healthy volunteers with efavirenz (EFV) and the macrolide antibiotics, azithromycin (AZM) and clarithromycin (CLR) [abstract 347]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-5; Chicago (IL)
- Boruchoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67: 351-9
- Mirochnick M, Clarke DF, Dorenbaum A. Nevirapine. Pharmacokinetic considerations in children and pregnant women. Clin Pharmacokinet 2000; 39: 281-93
- 85. Robinson P, Gigliotti M, Lamson M, et al. Effect of the reverse transcriptase inhibitor, nevirapine, on the steady-state pharmacokinetics of clarithromycin in HIV-positive patients [abstract 374]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31-Feb 4; Chicago (IL)
- Prime K, French P. Neuropsychiatric reaction induced by clarithromycin in a patient on highly active antiretroviral therapy (HAART). Sex Transm Infect 2001; 77: 297-8
- Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64: 355-62
- Jorga K, Buss NE, F. Hoffman-La Roche Ltd., Basel, Switzerland. Pharmacokinetic (PK) drug interaction with saquinavir soft gelatin capsule [abstract 339]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999, San Francisco (CA)
- Buss N, Fortovase[®] Study Group. Saquinavir Soft Gel Capsule (Fortovase[®]): pharmacokinetics and drug interactions [abstract 354]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-5; Chicago
- Tseng A, Nguyen ME, Cardella C, et al. Probable interaction between efavirenz and cyclosporine. AIDS 2002; 16: 505-6
- Brinkman K, Huysmans F, Burger DM. Pharmacokinetic interaction between saquinavir and cyclosporine. Ann Intern Med 1998; 129: 914-5

- Perry CM, Balfour JA. Didanosine: an update on its antiviral, pharmacokinetic properties and therapeutic efficacy in the management of HIV disease. Drugs 1996; 52: 928-62
- Huengsberg M, Castelino S, Sherrard J, et al. Does drug interaction cause failure of PCP prophylaxis with dapsone? [letter]. Lancet 1993; 341: 48
- 94. Von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998; 87: 1184-9
- Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of desipramine [abstract Mo.B.1201]. 11th International Conference on AIDS; 1996 Jul 7-12; Vancouver (BC)
- 96. Phillips EJ, Rachlis AR. Digoxin toxicity and ritonavir: a drug interaction mediated through P-glycoprotein? [abstract 1.9]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2-4; Noordwijk, The Netherlands
- Rosenthal E, Sala F, Chichmanian R-M, et al. Ergotism related to concurrent administration of ergotamine tartrate and indinavir [letter]. JAMA 1999; 281: 987
- Mortier E, Pouchot J, Vinceneux P, et al. Ergotism related to interaction between nelfinavir and ergotamine [letter]. Am J Med 2001; 110: 594
- Montero A, Giovannoni AG, Tvrde PL. Leg ischemia in a patient receiving ritonavir and ergotamine. Ann Intern Med 1999; 130: 329-30
- Liaudet L. Severe ergotism associated with interaction between ritonavir and ergotamine [letter]. BMJ 1999; 318: 771
- 101. Grub S, Bryson H, Goggin T, et al. The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001; 57: 115-21
- 102. McDowell JA, Chittick GE, Stevens CP, et al. Pharmacodynamic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 2000; 44: 1686-90
- 103. Ravitch JR, Bryant BJ, Reese MJ, et al. In vivo and in vitro studies of the potential for drug interactions involving the anti-retroviral 1592 in humans [abstract 634]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-5; Chicago (IL)
- Olkkola KT, Palkama VJ, Neuvonen PJ. Ritonavir s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 1999; 91: 681-5
- 105. Sahai J, Gallicano K, Pakuts A, et al. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 1994; 169: 1103-7
- 106. Wit S de, Smet M de, McCrea J, et al. Effect of fluconazole on indinavir pharmacokinetics in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1998; 42: 223-7
- 107. Jackson KA, Rosenbaum SE, Kerr BM, et al. A population pharmacokinetic analysis of nelfinavir mesylate in human immunodeficiency virus-infected patients enrolled in a phase III clinical trial. Antimicrob Agents Chemother 2000; 44: 1832-7
- Cato III A, Cao G, Hsu A, et al. Evaluation of the effect of fluconazole on the pharmacokinetics of ritonavir. Drug Metab Dispos 1997; 25: 1104-6
- 109. Koks CHW, Crommentuyn KML, Hoetelmans RMW, et al. The effect of fluconazole on ritonavir and saquinavir pharmacokinetics in HIV-1-infected individuals. Br J Clin Pharmacol 2001; 51: 631-5

- DeSilva KE, Le Flore DB, Marston BJ, et al. Serotonin syndrome in HIV-infected individuals receiving antiretroviral therapy and fluoxetine. AIDS 2001; 15: 1281-5
- Ouellet D, Hsu A, Qian J, et al. Effect of fluoxetine on pharmacokinetics of ritonavir. Antimicrob Agents Chemother 1998; 42: 3107-12
- 112. Clevenbergh P, Corcostegui M, Gérard D, et al. Iatrogenic Cushing's syndrome in a HIV-infected patient treated with inhaled corticosteroids and low dose ritonavir enhanced PI containing regimen [abstract 1.8]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2-4; Noordwijk, The Netherlands
- 113. Khaliq Y, Gallicano K, Leger R, et al. A drug interaction between fusidic acid and a combination of ritonavir and saquinavir. Br J Clin Pharmacol 2000; 50: 81-3
- Harrington RD, Woodward JA, Hooton TM, et al. Life-threatening interactions between HIV-1 protease inhibitors and the illicit drugs MDMA and γ-hydroxybutyrate. Arch Intern Med 1999; 159: 2221-4
- Burger DM, Meenhorst PL, ten Napel CHH, et al. Pharmacokinetic variability of zidovudine in HIV-infected individuals: subgroup analysis and drug interactions. AIDS 1994; 8: 1683-9
- 116. Cimoch PJ, Lavelle J, Pollard R, et al. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 227-34
- 117. Jung D, AbdelHameed MH, Teitelbaum P, et al. The pharmacokinetics and safety profile of oral ganciclovir combined with zalcitabine or stavudine in asymptomatic HIV- and CMV-seropositive patients. J Clin Pharmacol 1999; 39: 505-12
- Jung D, Griffy K, Dorr A, et al. Effect of high-dose oral ganciclovir on didanosine disposition in human immunodeficiency virus (HIV)-positive patients. J Clin Pharmacol 1998; 38: 1057-62
- Piscitelli SC, Burstein AH, Welden N, et al. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002; 34: 234-8
- 120. Miller J, Carey D, Ray J, et al. Potential interaction with protease inhibitors and gemfibrozil [abstract 2.11]. First International Workshop on Clinical Pharmacology; 2000 Mar 30-31; Noordwijk, The Netherlands
- 121. Shelton MJ, Wynn HE, Hewitt RG, et al. Effects of grapefruit juice on pharmacokinetic exposure to indinavir in HIV-positive subjects. J Clin Pharmacol 2001; 41: 435-42
- 122. Fuhr U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf 1998; 18: 251-72
- 123. Kupferschmidt HHT, Fattinger KE, Ha HR, et al. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355-9
- 124. Piscitelli SC, Vogel S, Figg WD, et al. Alteration in indinavir clearance during interleukin-2 infusions in patients infected with the human immunodeficiency virus. Pharmacotherapy 1998; 18: 1212-6
- 125. Padberg J, Schürmann D, Grobusch M, et al. Drug interaction of isotretinoin and protease inhibitors: support for the cellular retinoic acid-binding protein-1 theory of lipodystrophy? AIDS 1999; 13: 284-5
- 126. Damle BD, Mummaneni V, Kaul S, et al. Lack of effect of simultaneously administered didanosine encapsulated enteric bead formulation (Videc EC) on oral absorption of indinavir, ketoconazole, or ciprofloxacin. Antimicrob Agents Chemother 2002; 46: 385-91

- 127. Polk RE, Crouch MA, Israel DS, et al. Pharmacokinetic interaction between ketoconazole and amprenavir after single doses in healthy men. Pharmacotherapy 1999; 19: 1378-84
- Sadler B, Gillotin C, Chittick GE, et al. Pharmacokinetic drug interactions with amprenavir [abstract 12389]. 12th World AIDS Conference; 1998 Jun 29-Jul 3; Geneva
- 129. Knupp CA, Brater DC, Relue J, et al. Pharmacokinetics of didanosine and ketoconazole after coadministration to patients seropositive for the human immunodeficiency virus. J Clin Pharmacol 1993; 33: 912-7
- 130. Kerr B, Yuen G, Daniels R, et al. Strategic approach to nelfinavir mesylate (NFV) drug interactions involving CYP3A metabolism [abstract 429]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
- 131. Lee CA, Liang B-H, Wu EY, et al. Prediction of nelfinavir mesylate (VIRACEPT) clinical drug interactions based on in vitro human P450 metabolism studies [abstract 523]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
- 132. Lamson M, Robinson P, Gigliotti M, et al. The pharmacokinetic (PK) interactions of nevirapine (NVP) and ketoconazole (Keto) [abstract 12218]. 12th World AIDS Conference; 1998 Jun 29-Jul 3; Geneva
- 133. Khaliq Y, Gallicano K, Venance S, et al. Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2000; 68: 637-46
- 134. Schutz M, Nangah S, Merry C. The effect of gastric proton pump inhibitors on delavirdine absorption: four case reports [abstract 1.15]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2-4; Noordwijk, The Netherlands
- Caparros-Lefebvre D, Lannuzel A, Tiberghien F, et al. Protease inhibitors enhance levodopa effects in Parkinson's disease [letter]. Mov Disord 1999; 14: 535
- Nerad JL, Kessler HA. Hypercholesterolemia in a health care worker receiving thyroxine after postexposure prophylaxis for human immunodeficiency virus infection. Clin Infect Dis 2001; 32: 1635-6
- Tseng A, Fletcher D. Interaction between ritonavir and levothyroxine. AIDS 1998; 12: 2235-6
- Tayrouz Y, Ganssmann B, Ding R, et al. Ritonavir increases loperamide plasma concentrations without evidence for Pglycoprotein involvement. Clin Pharmacol Ther 2001; 70: 405-14
- Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51: 591-600
- 140. Piscitelli SC, Rock Kress D, Bertz RJ, et al. The effect of ritonavir on the pharmacokinetics of meperidine and normeperidine. Pharmacotherapy 2000; 20: 549-53
- 141. Hendrix C, Wakeford J, Wire MB, et al. Pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of methadone (MD) enantiomers following co-administration with amprenavir (APV) in opioid-dependent subjects [abstract]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17-20; Toronto (ON)
- 142. Bart P-A, Rizzardi PG, Gallant S, et al. Methadone concentrations are decreased by the administration of abacavir plus amprenavir. Ther Drug Monit 2001; 23: 553-5
- McCance-Katz EF, Rainey PM, Jatlow P, et al. Methadone effects on zidovudine disposition (AIDS Clinical Trials Group 262). J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18: 435-43

- 144. Rainey PM, Friedland G, McCance-Katz EF, et al. Interaction of methadone with didanosine and stavudine. J Acquir Immune Defic Syndr 2000; 24: 241-8
- 145. Marzolini C, Troillet N, Telenti A, et al. Efavirenz decreases methadone blood concentrations. AIDS 2000; 14: 1291-2
- 146. Pinzani V, Faucherre V, Peyriere H, et al. Methadone withdrawal symptoms with nevirapine and efavirenz. Ann Pharmacother 2000; 34: 405-7
- 147. Clarke SM, Mulcahy FM, Tjia J, et al. The pharmacokinetics of methadone in HIV-positive patients receiving the non-nucleoside reverse transcriptase inhibitor efavirenz. Br J Clin Pharmacol 2001; 51: 213-7
- Beauverie P, Taburet A-M, Dessalles M-C, et al. Therapeutic drug monitoring of methadone in HIV-infected patients receiving protease inhibitors. AIDS 1998; 12: 2510-1
- 149. Hsyu PH, Lillibridge JH, Maroldo L, et al. Pharmacokinetic (PK) and pharmacodynamic (PD) interactions between nelfinavir and methadone [abstract 87]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 31-Feb 2; San Francisco (CA)
- 150. Smith PF, Booker BM, Difrancesco R, et al. Effect of methadone or LAAM on the pharmacokinetics of nelfinavir and M8 [abstract A-491]. 41th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Dec 16-19; Toronto (ON)
- 151. Altice FL, Friedland GH, Cooney EL. Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone. AIDS 1999; 13: 957-62
- Heelon MW, Meade LB. Methadone withdrawal when starting an antiretroviral regimen including nevirapine. Pharmacotherapy 1999; 19: 471-2
- 153. Otero M-J, Euertes A, Sánchez R, et al. Nevirapine-induced withdrawal symptoms in HIV patients on methadone maintenance programme: an alert. AIDS 1999; 13: 1004-5
- 154. Hsu A, Grannemann GR, Carothers L, et al. Ritonavir does not increase methadone exposure in healthy volunteers [abstract 342]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-5; Chicago (IL)
- Geletko SM, Erickson AD. Decreased methadone effect after ritonavir initiation. Pharmacotherapy 2000; 20: 93-4
- 156. Gerber JG, Rosenkranz S, Segal Y, et al. Effect of ritonavir/saquinavir on stereoselective pharmacokinetics of methadone: results of AIDS Clinical Trials Group (ACTG) 401. J Acquir Immune Defic Syndr 2001; 27: 153-60
- 157. Henry JA, Hill IR. Fatal interaction between ritonavir and MDMA. Lancet 1998; 352: 1751-2
- Hales G, Roth N, Smith D. Possible fatal interaction between protease inhibitors and methamphetamine [letter]. Antivir Ther 2000; 5: 19
- 159. Gastaldo JM, Neidig JL, Para MF, et al. The clinical significance of the drug interaction between protease inhibitors and midazolam. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 422]; 2000 Sep 17-20; Toronto (ON)
- 160. Merry C, Mulcahy F, Barry M, et al. Saquinavir interaction with midazolam: pharmacokinetic considerations when prescribing protease inhibitors for patients with HIV disease. AIDS 1997; 11: 268-9
- 161. Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33-9
- 162. Elliott AJ, Russo J, Bergam K, et al. Antidepressant efficacy in HIV-seropositive outpatients with major depressive dis-

order: an open trial of nefazodone. JClin Psychiatry 1999; 60: 226-31

- 163. Penzak SR, Lawhorn WD, Hon YY, et al. Influence of ritonavir and CYP1A2 genotype on olanzapine disposition in healthy subjects. 41th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract A-493]. 2001 Dec 16-19; Toronto (ON)
- 164. Burger DM, Hugen PWH, Kroon FP, et al. Pharmacokinetic interaction between the proton pump inhibitor omeprazole and the HIV protease inhibitor indinavir. AIDS 1998; 12: 2080-2
- 165. Hugen PWH, Burger DM, ter Hofstede HJM, et al. Concomitant use of indinavir and omeprazole: risk of antiretroviral subtherapy. 4th International Congress on Drug Therapy in HIV Infection [abstract P46]; 1998; Glasgow
- 166. Joshi AS, Fiske WD, Benedek IH, et al. Lack of a pharmacokinetic interaction between efavirenz (DMP 266) and ethinyl estradiol in healthy female volunteers. 5th Conference on Retroviruses and Opportunistic Infections [abstract 348]; 1998 Feb 1-5; Chicago (IL)
- 167. Bertz R, Hsu A, Lam W, et al. Pharmacokinetic interactions between lopinavir/ritonavir (ABT-378r) and other non-HIV drugs. 5th International Congress on Drug Therapy in HIV Infection; [abstract P291]; 2000 Oct 22-26; Glasgow
- 168. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46: 111-6
- 169. Mildvan D, Yarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 2002; 29: 471-7
- Mole L, Israelski D, Bubp J, et al. Pharmacokinetics of zidovudine alone and in combination with oxazepam in the HIV infected patient. J Acquir Immune Defic Syndr Hum Retrovirol 1993; 6: 56-60
- 171. Nannan Panday VR, Hoetelmans RMW, Heeswijk RPG van, et al. Paclitaxel in the treatment of human immunodeficiency virus 1-associated Kaposi s sarcoma: drug-drug interactions with protease inhibitors and a nonnucleoside reverse transcriptase inhibitor: a case report study. Cancer Chemother Pharmacol 1999; 43: 516-9
- 172. Schwartz JD, Howard W, Scadden DT. Potential interaction of antiretroviral therapy with paclitaxel in patients with AIDSrelated Kaposi s sarcoma. AIDS 1999; 13: 283-4
- 173. Shelton MJ, Cloen D, Becker M, et al. Evaluation of the pharmacokinetic (PK) interaction between phenytoin (Phen) and nelfinavir (NFV) in healthy volunteers at steady state. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 426]. 2000 Sep 17-20; Toronto (ON)
- 174. Honda M, Yasuoka A, Aoki M, et al. A generalized seizure following initiation of nelfinavir in a patient with human immunodeficiency virus type 1 infection, suspected due to interaction between nelfinavir and phenytoin. Intern Med 1999; 38: 302-3
- Kornhauser DM, Hendrix CW, Nerhood LJ, et al. Probenecid and zidovudine metabolism. Lancet 1989; II: 473-5
- 176. Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res 1990; 7: 411-7
- 177. Miranda P de, Good SS, Yarchoan R, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 1989; 46: 494-500

- Petty BG, Kornhauser DM, Lietman PS. Zidovudine with probenecid: a warning. Lancet 1990; 335: 1044-5
- Massarella JW, Nazareno LA, Passe S, et al. The effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1996; 13: 449-52
- Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919-25
- 181. Knupp CA, Graziano FM, Dixon RM, et al. Pharmacokineticinteraction study of didanosine and ranitidine in patients seropositive for human immunodeficiency virus. Antimicrob Agents Chemother 1992; 36: 2075-9
- 182. Sim SM, Hoggard PG, Sales SD, et al. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retroviruses 1998; 14: 1661-7
- Kakuda TN, Brinkman K, Salmon-Céron D, et al. Mitochondrial toxic effects and ribavirin. Lancet 2001; 357: 1802-4
- Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502-8
- 185. Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res 1997; 35: 53-63
- 186. Cox SR, Herman BD, Batts DH, et al. Delavirdine (D) and rifabutin (R): pharmacokinetic (PK) evaluation in HIV-1 patients with concentration-targeting of delavirdine. 5th Conference on Retroviruses and Opportunistic Infections [abstract 344]; 1998 Feb 1-5; Chicago (IL)
- 187. Kuper JJ, D Aprile M. Drug-drug interactions of clinical significance in the treatment of patients with Mycobacterium avium complex disease. Clin Pharmacokinet 2000; 39: 203-14
- 188. Hamzeh F, Benson C, Gerber J, et al. Steady-state pharmacokinetic (PK) interaction of modified-dose indinavir (IDV) and rifabutin (RBT). Second International Workshop on Clinical Pharmacology [abstract 1.4]; 2001 Apr 2-4; Noordwijk, The Netherlands
- 189. Cato III A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63: 414-21
- 190. Gallicano K, Khaliq Y, Carignan G, et al. A pharmacokinetic study of intermittent rifabutin dosing with a combination of ritonavir and saquinavir in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2001; 70: 149-58
- 191. Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999; 48: 168-79
- Burger DM, Meenhorst PL, Koks CHW, et al. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993; 37: 1426-31
- 193. Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544-53
- 194. Benedek I, Joshi A, Fiske WD, et al. Pharmacokinetic interaction between efavirenz (EFV) and rifampin (RIF) in healthy volunteers. 12th World AIDS Conference [abstract 42280]; 1998 Jun 29-Jul 3; Geneva
- 195. Lopez-Cortes LF, Ruiz R, Viciana P, et al. Pharmacokinetic interactions between rifampin and efavirenz in patients with tuberculosis and HIV infection. 8th Conference on Retroviruses and Opportunistic Infections [abstract 32]; 2001 Feb 4-8; Chicago (IL)

- 197. Bergshoeff AS, Wolfs TFW, Geelen SPM, et al. Favourable nelfinavir pharmacokinetics (PK) during rifampin use by coadministration of ritonavir-case report. Second International Workshop on Clinical Pharmacology [abstract 1.13]; 2001 Apr 2-4; Noordwijk, The Netherlands
- 198. Robinson P, Lamson M, Gigliotti M, et al. Pharmacokinetic (PK) interaction between nevirapine (NVP) and rifampin (RMP). 12th World AIDS Conference [abstract 60623]; 1998 Jun 29-Jul 3; Geneva
- Dean GL, Back DJ, De Ruiter A. Effect of tuberculosis therapy on nevirapine trough plasma concentrations. AIDS 1999; 13: 2489-90
- Moreno S, Podzamcer D, Blázquez R, et al. Treatment of tuberculosis in HIV-infected patients: safety and antiretroviral efficacy of the concomitant use of ritonavir and rifampin. AIDS 2001; 15: 1185-7
- Veldkamp AI, Hoetelmans RMW, Beijnen JH, et al. Ritonavir enables combined therapy with rifampin and saquinavir [letter]. Clin Infect Dis 1999; 29: 1586
- 202. Lee SI, Klesmer J, Hirsch BE. Neuroleptic malignant syndrome associated with use of risperidone, ritonavir, and indinavir: a case report. Psychosomatics 2000; 41: 453-4
- 203. Murphy R, Katlama C, Bonmarchand M, et al. Roxithromycin pharmacodynamic interaction and effect on nelfinavir-based antiretroviral therapy. 8th European Conference on Clinic Aspects and Treatment of HIV-Infection [abstract 251]; 2001 Oct 28-31; Athens
- Merry C, Barry MG, Ryan M, et al. Interaction of sildenafil and indinavir when co-administered to HIV-positive patients. AIDS 1999; 13: S101-7
- Hall MCS, Ahmad S. Interaction between sildenafil and HIV-1 combination therapy. Lancet 1999; 353: 2071-2
- Muirhead GJ, Wulff MB, Fielding A, et al. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br J Clin Pharmacol 2000; 50: 99-107
- 207. Martin CM, Hoffman V, Berggren RE. Rhabdomyolysis in a patient receiving simvastatin concurrently with highly active antiretroviral therapy. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 1297]; 2000 Sep 17-20; Toronto (ON)
- Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John's wort. Lancet 2000; 355: 547-8
- de Maat MMR, Hoetelmans RMW, Mathôt RAA, et al. Drug interaction between St Johns wort and nevirapine. AIDS 2001; 15: 420-1
- 210. Schvarcz R, Rudbeck G, Söderdahl G, et al. Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C (HCV). Transplantation 1999; 69: 2194-5
- 211. Sheikh AM, Wolf DC, Lebovics E, et al. Concomitant human immunodeficiency virus protease inhibitor therapy markedly reduces tacrolimus metabolism and increases blood levels. Transplantation 1999; 68: 307-9
- 212. Hsu A, Granneman GR, Witt G, et al. Assessment of multiple doses of ritonavir on the pharmacokinetics of theophylline. 11th International Conference on AIDS [abstract Mo.B.1200]; 1996 Jul 7-12; Vancouver (BC)
- 213. Zalma A, Moltke LL von, Granda BW, et al. In vitro metabolism of trazodone by CYP3A: Inhibition by ketoconazole and human immunodeficiency viral protease inhibitors. Biol Psychiatry 2000; 47: 655-61

- 214. Lee BL, Safrin S, Makrides V, et al. Zidovudine, trimethoprim, and dapsone pharmacokinetic interactions in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1996; 40: 1231-6
- Adkins JC, Peters DH, Faulds D. Zalcitabine: an update of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in the management of HIV infection. Drugs 1997; 53: 1054-80
- Moore KHP, Yuen GJ, Raasch RH, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 1996; 59: 550-8
- Hudson M, Nash C. Effect of trimethoprim on lamivudine bioavailability [letter]. JAMA 1996; 276: 1140
- Katlama C. Effect of trimethoprim on lamivudine bioavailability [letter]. JAMA 1996; 276: 1140
- 219. Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of trimethoprim/sulphamethoxazole. 11th International Conference on AIDS [abstract Mo.B.1197]; 1996 Jul 7-12; Vancouver (BC)
- 220. Lertora JJL, Rege AB, Greenspan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1994; 56: 272-8
- 221. Cozza KL, Swanton EJ, Humphreys CW. Hepatotoxicity with combination of valproic acid, ritonavir, and nevirapine: a case report. Psychosomatics 2000; 41: 452-3
- 222. Gatti G, Alessandrini A, Camera M, et al. Influence of indinavir and ritonavir on warfarin anticoagulant activity. AIDS 1998; 12: 825-6
- 223. Dionisio D, Mininni S, Bartolozzi D, et al. Need for increased dose of warfarin in HIV patients taking nevirapine. AIDS 2001; 15: 277-8
- 224. Knoell KR, Young TM, Cousins ES. Potential interaction involving warfarin and ritonavir. Ann Pharmacother 1998; 32: 1299-302
- Newshan G, Tsang P. Ritonavir and warfarin interaction. AIDS 1999; 13: 1788-9
- Darlington MR. Hypoprothrombinemia during concomitant therapy with warfarin and saquinavir [letter]. Ann Pharmacother 1997; 31: 647
- 227. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 2000; 24: 129-36
- 228. Rang HP, Dale MM. Absorption, distribution and fate of drugs. In: Rang HP, Dale MM, editors. Pharmacology. 2nd ed. Edinburgh: Churchill Livingstone, 1991: 72-109
- Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41-57
- 230. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: stud-

ies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414-23

- 231. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289-94
- Malingré MM, Beijnen JH, Schellens JHM. Oral delivery of taxanes. Invest New Drugs 2001; 19: 155-62
- 233. Zhang Y, Benet LZ. The gut as a barrier to drug metabolism: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40: 159-68
- 234. Hennessy M, Kelleher D, Spiers JP, et al. St Johns Wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol 2002; 53: 75-82
- 235. Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359: 30-6
- 236. Sansom LN, Evans AM. What is the true significance of plasma protein binding displacement interactions? Drug Saf 1995; 12: 227-33
- Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol 1996; 23: 986-9
- Prins JM, Büller HR, Kuijper EJ, et al. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341: 335-9
- 239. Lori F, Malykh AG, Foli A, et al. Combination of a drug targeting the cell with a drug targeting the virus controls human immunodeficiency virus type 1 resistance. AIDS Res Hum Retroviruses 1997; 13: 1403-9
- 240. Zala C, Salomon H, Ochoa C, et al. Higher rate of toxicity with no increased efficacy when hydroxyurea is added to a regimen of stavudine plus didanosine and nevirapine in primary HIV infection. J Acquir Immune Defic Syndr 2002; 29: 368-73
- 241. Havlir DV, Gilbert PB, Bennett K, et al. Effects of treatment intensification with hydroxyurea in HIV-infected patients with virologic suppression. AIDS 2001; 15: 1379-88
- 242. Squires KE. Oral ganciclovir for cytomegalovirus retinitis in patients with AIDS: results of two randomized studies. AIDS 1996; 10 Suppl. 4: S13-8
- 243. Slain D, Pakyz A, Israel DS, et al. Variability in activity of hepatic CYP3A4 in patients infected with HIV. Pharmacotherapy 2000; 20: 898-907
- 244. Lee BL, Wong D, Benowitz NL, et al. Altered patterns of drug metabolism in patients with acquired immunodeficiency syndrome. Clin Pharmacol Ther 1993; 53: 529-35

Correspondence and offprints: Dr *Monique M.R. de Maat*, Department of Pharmacy & Pharmacology, Slotervaart Hospital, Louwesweg 6, Amsterdam, 1066 EC, The Netherlands.

E-mail: apmod@slz.nl