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1 Introduction

Black holes in AdS space have been studied extensively since the development of the

AdS/CFT correspondence [1–3] but supersymmetric black holes in AdS spacetime have

proved to be rare finds. In four dimensional gauged supergravity coupled to nv vector

multiplets, the only analytic solutions of regular, static, supersymmetric black holes are

due to Cacciatori and Klemm (CK) [4] and preserve two real supercharges. These solutions

are found within the so-called STU supergravity model, which is standard nomenclature

for a model with nv = 3. In this work we use the tools of special geometry and the general

structure of the CK solution to find solutions within a particular infinite family of N = 2

gauged supergravity theories.

The Lagrangian of four dimensional N = 2 supergravity coupled to nv-vector mulit-

plets is governed by special Kähler geometry [5–7]. When this geometry is in turn derived

from a cubic prepotential

F = −dijkX
iXjXk

X0
(1.1)
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it is called very special Kähler geometry and this is focus of our work. Before gauging, such

supergravity theories can be obtained by dimensional reduction from N = 2 supergravity

in five dimensions [8].

There is an additional simplification we will employ which facilitates the calculations,

namely we require the scalar manifold, Mv, to be a homogeneous space. The central utility

of this assumption is that it ensures the existence of a constant tensor d̂ijk (see appendix B

for its definition and numerous identities which it satisfies). We will find that with this

assumption the supersymmetric black hole equations are solvable in quite some generality.

In fact the homogeneous, very special Kähler geometries have been classified some time ago

in the nice work by de Wit and Van Proeyen [9–11] and includes several infinite families

as well as certain sporadic geometries related to the dimensional reduction of the magical

supergravity theories in five dimensions.

The R-symmetry of four dimensional N = 2 supergravity is

SU(2)R × U(1)R (1.2)

and we are interested in gauging a U(1) subgroup embedded as

U(1)g ⊂ SU(2)R . (1.3)

This goes by the moniker FI-supergravity since the gauge couplings generate a potential

much like Fayet-Iliopoulos terms in field theory [12]. A useful feature of this abelian

gauging is that the scalar fields of the vector multiplets remain neutral under the gauged

U(1)g vector.1 The fermionic fields are minimally coupled and acquire a charge under the

gauge field so that in addition to the abelian charges of the black hole (pΛ , qΛ), there are

now additional parameters determining the theory, proportional to the gauging coupling g.

To provide a duality covariant treatment we will consider the general case where

the gauging is specified by a symplectic vector containing both electric and magnetic

parameters

GT =
(
gΛ, gΛ

)
. (1.4)

The supersymmetric Lagrangian for gauged N = 2 Supergravity has been constructed for

electric gauging [13], and it has been extended to magnetic gauging in the formalism of

conformal supergravity [14]. In order to have a standard Lagrangian formulation that in-

cludes magnetic gauging, under which the fermions will be minimally coupled, one must

also introduce auxiliary tensor fields. Our strategy is to work with a symplectic completion

of the BPS equations which results from electrically gauged models [15].2

Early work on supersymmetric black holes in AdS space were suggestive of a no-

go theorem prohibiting regular, half-BPS, asymptotically AdS4 black holes [17–19], for

example the black hole of [20] has a naked singularity. An early workaround was found

in [19] where it was found that one could analytically continue AdS-Schwarzchild and

construct a quarter-BPS solution of N = 2 gauged supergravity with constant scalar fields

1In addition, if hypermultiplets are present they remain decoupled.
2See also [16] where a similiar formalism has been used.
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with the proviso that the horizon is hyperbolic.3 Some time later, Cacciatori and Klemm [4]

successfullly demonstrated that by allowing for non-constant scalar fields, the solution

of [19] admits a vast generalization within the STU -model ofN = 2 FI-gauged supergravity

including solutions with spherical and flat hoirzons (see also [15, 21] for additional analysis

of these BPS black holes4). In a particular symplectic frame which will be elaborated on

below, the CK solutions have four magnetic charges for the four gauge fields and the BPS

Dirac quantization condition reduces this to three independent magnetic charges. The

absence of electric charges is ultimately tantamount to the absence of axions in the CK

solutions. The far-reaching work of Maldacena and Nunez [30] provides a framwork to

understand the M-theory embedding of the CK solutions.

The central result of our current work is to derive analytic solutions for quarter-BPS

black holes in AdS4 which generalize the CK solution from the STU-model to models

whose scalar manifold is a homogeneous very special Kähler manfold. Our new solutions

also have vanishing axions and, in the symplectic frame where the gaugings are electric,

the charges are all magnetic. A first step towards this result was the work [31] where these

models were studied and the general solution for supersymmetric horizon geometries of the

form AdS2 × Σg was found. That solution allows for generic gaugings and both electric

and magnetic charges, whereas the black hole solutions of the current work will be far

more restrictive. Regardless, the results of [31] constitute a solution to the IR boundary

conditions for our black holes. In the current work we also analyze the UV AdS4 boundary

conditions and find that they are equivalent to the supersymmetric attractor equations in

ungauged supergravity, before proceeding to solve for the entire black hole. A key step in

our argument is to show that for the static black hole ansatz, a solution with vanishing

axions puts strong constraints on the allowed gauging parameters.

Our paper is organised as follows. In section 2 we review some basic facts about N = 2

gauged supergravity in the formalism of [15], the black hole ansatz and the resulting BPS

equations. In section 3 we solve the UV boundary conditions, providing the explicit solution

for AdS4 vacuum in N = 2 FI-gauged supergravity. In section 4 we perform our central

calculation: we present an analytic solution for axion-free black holes in models whose

scalar manifold is a homogeneous very special Kähler geometry. Section 5 contains some

comments about the IR boundary conditions and regularity of the solutions.

2 Generalities of 1

4
-BPS static black holes in AdS4

The Lagrangian of N = 2 gauged supergravity coupled to nv vector multiplets is

S4d =

∫
d4x

√−g
(
1

2
R− gī∂µz

i∂µz̄ ̄ + IΛΣFΛ
µνF

Σµν +
1

2
√−gRΛΣǫ

µνρσFΛ
µνF

Σ
ρσ − Vg

)
.

(2.1)

3This can then be quotiented by a discrete group to give a Riemann surface of genus g > 1.
4Further work has been done extending these solutions to non-BPS and non-extremal black holes [22–27].

There has also been recent work on supersymmetric AdS4 black holes with hypermultiplets [28, 29] where

the resulting solutions are numerical.
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We will work in the symplectically covariant formulation of [15] which, for the black hole

ansatz we use, provides a covariant form of the BPS equations. Our spacetime ansatz is

that of a static black hole with constant curvature horizon:

ds24 = −e2Udt2 + e−2Udr2 + e2(V−U)dΣ2
g , (2.2)

where dΣg is the uniform metric on Σg = {S2, T 2,H2/Γ} of curvature κ = {1, 0,−1}
respectively.5 The gauge fields are chosen such that

pΛ =
1

vol(Σg)

∫

Σg

FΛ , qΛ =
1

vol(Σg)

∫

Σg

GΛ (2.3)

where

GΛ =
δL4d

δFΛ
= RΛΣF

Σ − IΛΣ ∗ FΣ (2.4)

is the dual field strength and vol(Σg) is the volume of Σg. In fact the BPS equations are

independent of the precise profiles for the gauge fields, they depend only on the charges

(pΛ, qΛ). For a static and spherically symmetric configuration the metric and the scalar

fields depend only on the radial co-ordinate zi = zi(r). We will restrict to this assumptions

throughout the paper.

As mentioned in the introduction the gauging is parametrized by a symplectic vector

G, corresponding to the gravitino charge under the U(1) field of the gauging. Thus, one

can organize the data into a pair of symplectic vectors:

Q =

(
pΛ

qΛ

)
, G =

(
gΛ

gΛ

)
. (2.5)

In our notation, the symplectic section over the scalar manifold Mv is denoted6 V :

V =

(
LΛ

MΛ

)
= eK/2

(
XΛ

FΛ

)
(2.6)

and we have used the symplectic inner product between two vectors A = (AΛ, AΛ) and

B = (BΛ, BΛ)

〈A,B〉 ≡ ATΩB = BΛAΛ −AΛBΛ (2.7)

to produce the invariants

Z = 〈Q,V〉 , L = 〈G,V〉 , Zi = 〈Q, DiV〉 , Li = 〈G, DiV〉 . (2.8)

The BPS equations for preservation of at least two supercharges were derived in [4]

for electric gaugings and [15] for general dyonic gaugings. We use the results of [15] which

5The discrete group Γ is a Fuchsian group and its precise form does not alter this local analysis.
6We use the notation and conventions of [12] as much as possible, apart from the signature of space-time

which we take to be mostly plus.
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were found by reducing (2.1) to one dimension and re-writing the resulting action as a sum

of squares. One then arrives at the BPS equations in the form:

2e2V ∂r

[
Im

(
e−iψe−UV

)]
= 8e2(V−U)Re(e−iψL)Re(e−iψV)−Q− e2(V−U)ΩMG , (2.9)

∂r(e
V ) = 2eV−U Im(e−iψL) , (2.10)

ψ′ = −Ar − 2e−URe(e−iψL) . (2.11)

Notice that ψ, the phase of the Killing spinor, appears explicitly in the equations. The

connection Aµ is given by

Aµ = Im
(
∂µz

i∂iK
)

(2.12)

and the matrix M is defined in (A.10). When M is contracted with the symplectic form

Ω it gives a complex structure on the Sp(2nv + 2,R) bundle over Mv:

ΩMV = −iV , ΩM(DiV) = iDiV . (2.13)

While (2.9) may seem cumbersome, it is just a repackaging of the first order equations for

the scalar fields zi and the metric function eU . This repackaging is useful since much like

the ungauged N = 2 supersymmetric black holes [32, 33], the analytic black hole solutions

are particularly simple when expressed in terms of this data. By re-deriving a version

of these equations in a frame with electric gaugings using the formulae of [12] one can

establish that the resulting black holes preserve two out of eight real supercharges along

the flow and four at the horizon.

Notice that (2.11) is the equation for the phase ψ of the supersymmetry parameter.

This is not a new degree of freedom and in fact one can show [15] that this is given

algebraically by the phase of a superpotential W = eUe−iψ(Z− ie2(V−U)L), or equivalently

e2iψ =
Z − ie2(V−U)L
Z + ie2(V−U)L . (2.14)

Using this definition the flow equation (2.11) follows from (2.9) and (2.10). Since the

gravitino is charged, there is a Dirac quantization condition

〈G,Q〉 ∈ Z (2.15)

and the supersymmetry conditions fix this integer to be the curvature of the horizon:

〈G,Q〉 = −κ . (2.16)

It is interesting to note that (2.16) is the only place where the curvature of the horizon ge-

ometry appears. Pragmatically this means that solutions are independent of the curvature

of Σg but the regularity conditions do depend on κ.

The single center, static black holes we consider in this work interpolate between AdS4
at large r and AdS2 × Σg at some finite positive r = rh. The metric functions for these

spaces are

AdS4 : eU =
r

R
, eV =

r2

R
, (2.17)

AdS2 × Σg : eU =
r

R2
, eV =

rR2

R1
, (2.18)
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where R is the curvature radius of AdS4, and R1, R2 are the curvature radii of Σg and

AdS2 respectively; the scalar fields and the phase ψ are constant. We leave the analysis of

the AdS4 solutions as a function of the gauging parameters to the next section.

The spectrum of horizon geometries (2.18) as a function of both the gaugings (gΛ, gΛ)

and charges (pΛ, qΛ) was solved in [31].

3 UV boundary conditions from very special geometry

In this section we solve the BPS equations (2.9) and (2.10) for AdS4 geometries (2.17). We

look for a supersymmetric vacuum AdS4 with constant scalars in absence of gauge fields,

so the constraint (2.16) does not have to be imposed. The equations for the vacuum iden-

tify the subspace of gauging parameters which support black hole solutions with vanishing

axions.

3.1 General AdS4 solutions

We first analyze the boundary conditions in the UV, and we obtain the exact solution to

the BPS equations. For AdS4, the metric functions are given by (2.17), the scalars and the

phase ψ are constant and the charges are zero:

z = x0 + iy0 , ψ = ψ0 , Q = 0 . (3.1)

With this ansatz, the equations give

G = −2Im
[
LV

]
(3.2)

L = ReL+ iImL =
i

R
eiψ0 (3.3)

These equations are in fact identical to the attractor equations for solutions of the form

AdS2×S2 in ungauged N = 2 supergravity [34] with the obvious replacement of the gauging

parameters G with charges Q.

When Mv is a very special geometry, these equations are quite tractable and have

been analyzed in [35]. In special coordinates (3.2) amounts to

g0 = 2eK/2 ImL , (3.4)

g0 = g0dijk(x
ixjxk − 3xiyjyk) + 2ReL eK/2dijk(y

iyjyk − 3yixjxk) , (3.5)

gi = g0xi − 2eK/2ReL yi , (3.6)

gi = 3g0dijk(y
jyk − xjxk) + 12ReL eK/2dijkx

jyk (3.7)

and the solution requires inverting these and expressing the scalars (xi, yi) and (ReL, ImL)
in terms of the gaugings (gΛ, gΛ).

– 6 –
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If one makes the assumption that g0 = 0 the general solution is quite straightforward

to obtain:

1

R2
=

√
−4dgg0 +

1

3
(d−1

g )ijgigj (3.8)

xi = −1

6
(d−1

g )ijgj , (3.9)

yi =
gi

2dg

1

R2
, (3.10)

ReL =
ǫ

R
, (3.11)

ImL = 0 , (3.12)

ψ0 = −ǫπ
2
. (3.13)

In the above equations dg denotes the contraction of the d-tensor with the gauging param-

eters (as defined in eq. A.6 of appendix A) and ǫ = ±1 is a conventional sign, consequence

of the identity (2.14) which defines the phase ψ up to a factor of π.

Up to obtaining an expression for d−1
g , which is always well defined for homogeneous

scalar manifolds, this comprises an explicit solution.

With g0 6= 0 the general solution requires solving the set of nv real, quadratic equations

∆i = dijkỹ
j ỹk (3.14)

where
∆i = 3dijkg

jgk + g0gi , ỹi =
√
12|L|eK/2yi . (3.15)

The general solution to (3.14) is not known and, since they are real equations, they are

not in general guaranteed to have real solutions. If we assume Mv to be a homogeneous

space in addition to a very special Kähler geometry, then we can solve (3.14) using the

constant tensor

d̂ijk =
gilgjmgkndlmn

d2y
(3.16)

and the corresponding identities detailed in appendix B. The solution to (3.4)–(3.7) is then

given by

1

R2
=

√
I4(gΛ, gΛ) (3.17)

ReL =
2I2(gΛ, gΛ)I4(gΛ, gΛ)1/4√
I4(gΛ, gΛ) + 4I2(gΛ, gΛ)2

(3.18)

ImL =

[
I4(gΛ, gΛ)

]3/4
√
I4(gΛ, gΛ) + 4I2(gΛ, gΛ)2

(3.19)

yi =
3

32

1

(g0)2
I4(gΛ, gΛ)1/2

I4(gΛ, gΛ) + 4I2(gΛ, gΛ)2
d̂ijk∆j∆k (3.20)

xi =
gi

g0
+

3

16

I2(gΛ, gΛ)
(g0)2

d̂ijk∆j∆k

I4(gΛ, gΛ) + 4I2(gΛ, gΛ)2
(3.21)
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where we have used the identity

d̂∆ = 16(g0)2
[
I4(gΛ, gΛ) + 4I2(gΛ, gΛ)2

]
(3.22)

and the invariants (I2, I4) are defined in (B.11) and (B.12). Note that even though we

derived (3.17)–(3.21) assuming g0 6= 0, they have a smooth g0 → 0 limit which agrees

with (3.8)–(3.13).

3.2 AdS4 Solutions with vanishing axions

The black holes we will study in this paper have vanishing axions, thus we first focus our

analysis on AdS4 solutions with imaginary scalar fields. These will serve as the asymptotic

UV boundary conditions for the black hole solutions.

At spatial infinity the vacuum is parametrized by the gauging constants, namely the

2nv + 2 entries of the vector G = (gΛ, gΛ), since the gauge fields fall-off at infinity. In

addition, the requirement of vanishing axions are nv constraints xi = 0 which, from (3.4)–

(3.7), can be written in the form

dggi = −3g0g
0 dg,i . (3.23)

In conclusion, we expect that the general space of zero-axion AdS4 solutions is nv + 2

dimensional. Assuming g0 6= 0 the explicit solution is given by

yi = −
√
−g0
dg
gi , ReL =

√
2(−g0dg)1/4 , ImL =

√
2g0g

0

(−g0dg)1/4
. (3.24)

The co-dimension one subspace with (g0, gi) = (0, 0) will be the focus of our work in the

next section.

4 Black holes from very special geometry

In this section we solve for supersymmetric black holes with vanishing axions. We restrict

to black holes with g0 = gi = 0. We first demonstrate that for this class of black holes

the phase ψ is constant. We then proceed to make an ansatz for the scalar fields and the

metric, that will allow us to solve the BPS equations analytically. To describe our ansatz

we first fix the Kähler gauge by choosing special coordinates

XΛ =

(
1

zi

)
, (4.1)

where zi = xi + iyi. Having done this, we assume that the axions vanish

xi = 0 . (4.2)

Note that since we have fixed that Kähler gauge, we cannot shift ψ.

– 8 –
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4.1 Constant ψ

We now explore which configurations of gauge couplings result in a constant supersymmetry

phase when the axions are set to zero. Combining (3.3) with (2.11) we see that

ψ′|∞ = 0 . (4.3)

We then proceed by induction in order of derivatives on ψ.

The condition xi = 0 implies that Ar is zero along the whole flow but this is not

enough to show that ψ is constant. In order to ensure that, we need to assume one of the

two configurations7

1. g0 = gi = 0 , (4.4)

2. g0 = gi = 0 . (4.5)

For the case (4.4), then, (2.11) reduces to

ψ′ = −2e−U(r)L(r) cos(ψ(r)) . (4.6)

Since the differential equation is of the form

ψ(r)′ = a(r) cosψ(r)

ψ(r → ∞)′ = 0 , (4.7)

every n-th derivative of ψ depends only on terms which are

• terms proportional to cosψ(r), which vanishes at infinity since ψ∞ = ±π/2,

• terms containing derivatives of ψ(r) up to the order n − 1, which vanish at infinity

by assumption.

This means that all derivatives calculated at infinity are zero, and thus the phase ψ is

constant throughout the entire spacetime. The latter case of (4.5) goes through similarly

but with Re(L) = 0 throughout.

This does not exhaust the possible black holes with vanishing axions in these models

since the UV asymptotics given by (4.4) and (4.5) are co-dimension one in the space defined

by (3.23). In simple examples we have found that in the UV we can use a duality trans-

formation to generate a general AdS4 solution satisfying (3.23) from one satisfying (3.23)

and (4.4) but such a transformation does generate axions in the bulk of the flow. It would

be interesting to solidify these observations and determine unambiguously whether or not

vanishing axions implies a constant spinor for this entire class of black holes.

7In both these configurations one can use a duality transformation to set the remaining gauge couplings

equal in magnitude, for example in the STU-model to the frame with g0 = −g
i = g which has an M-theory

lift. We find it simpler to refrain from making this transformation as it allows us to more easily maintain

covariant formulae.

– 9 –
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4.2 The ansatz

With a constant phase ψ, the BPS equations (2.9) and (2.10) simplify to

2e2V ∂r

[
Im

(
e−iψ0e−ULΛ

)]
= −pΛ + e2(V−U)IΛΣgΣ , (4.8)

2e2V ∂r

[
Im

(
e−iψ0e−UMΛ

)]
= −qΛ − e2(V−U)IΛΣgΣ , (4.9)

∂r(e
V ) = 2eV−U

(
g0L

0 − giMi

)
. (4.10)

Despite the fact that in the UV we could solve the full g0 = 0 solution space in all generality,

to proceed further with the black hole solution we make the simplifying assumption that

Mv is a homogeneous space. So we assume that (4.4) holds and then continue by solving

for (L0,Mi), we find the equations (4.8)–(4.10) become

2eV ∂r
(
L̃0

)
− 2∂r(e

V )L̃0 = −p0 − 8g0(L̃
0)2 (4.11)

2eV ∂r
(
M̃i

)
− 2∂r(e

V )M̃i = −qi −
[9
4
dijkd̂

klmM̃lM̃m − 8M̃iM̃j

]
gj (4.12)

∂r(e
V ) = 2

[
g0L̃

0 − giM̃i

]
, (4.13)

where we have defined the rescaled sections

L̃Λ = eV−ULΛ , M̃Λ = eV−UMΛ (4.14)

and have used the following data (valid for xi = 0)

LΛ = eK/2

(
1

iyi

)
, MΛ = eK/2

(
−idy
3dy,i

)
, (4.15)

ΩM =

(
0 −I−1

I 0

)
, IΛΣ = −dy

(
1 0

0 4gij

)
, (4.16)

dygij = − 9

16
dijkd̂

klmMlMm + 2MiMj . (4.17)

Due to our assumption that g0 = 0, we see that Re(e−iψL) = 0 and, from (2.11), that

ψ = ψ0 = −π/2 is constant throughout the flow. Another consequence of constant ψ and

xi = 0 is that from (4.8) and (4.9) it follows that pi = q0 = 0.

The scalar fields and the warp factor eU can be expressed as functions of eV , L̃0, M̃i, ψ0:

yi =
3

8
d̂ijkMjMk , (4.18)

1 = L0d̂ijkMiMjMk , (4.19)

which gives

yi =
3

8

d̂ijkM̃jM̃k√
L̃0d̂lmpM̃lM̃mM̃p

, (4.20)

e4U =
e4V

L̃0d̂ijkM̃iM̃jM̃k

. (4.21)

Thus, once we find the set of functions (eV , L̃0, M̃i, ψ0) which solve (4.11)–(4.13), the black

hole solution is fully determined. We proceed to do that in the next section.

– 10 –



J
H
E
P
0
4
(
2
0
1
4
)
1
7
3

4.3 The solution

Taking the solution of [4] as inspiration, we make the ansatz

eV =
r2

R
− v0 , (4.22)

L̃0 = α0r + β0 , (4.23)

M̃i = αir + βi . (4.24)

This is a rather enlightened ansatz which is difficult to motivate in advance. In principle

the UV boundary conditions fix (R,α0, αi) while the IR ones fix (v0, β
0, βi). The flow

equations will then highly constrain the system and the fact that a BPS solution of such

simpler form exists, as we will show in this section, is a nontrivial result of yet unexplained

origin.

From (4.13) we get

2

R
= 2α0g0 − 2αig

i (4.25)

0 = g0β
0 − giβi (4.26)

We find from (4.11)

2α0

R
− 4α0

R
= −8g0(α

0)2 (4.27)

− 4

R
β0 = −16g0α

0β0 (4.28)

−2v0α
0 = −p0 − 8g0(β

0)2 (4.29)

and we immediately see that

α0 =
1

4g0R
(4.30)

β0 =
ǫ0
g0

√
1

8

( v0
2R

− g0p0
)

(4.31)

where ǫ0 = ±1.

Then from (4.12) we get

−2αi

R
= −

[9
4
dijkd̂

klmgjαlαm − 8αiαjg
j
]

(4.32)

− 4

R
βi = −

[9
2
dijkd̂

klmgjαlβm − 8(αiβj + βiαj)g
j
]

(4.33)

−2v0αi = −qi −
[9
4
dijkd̂

klmgjβlβm − 8βiβjg
j
]

(4.34)

and from (4.32) we find that

αi = − 3

4Rdg
dijkg

jgk ⇒ αig
i = − 3

4R
, (4.35)
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which agrees with the UV analysis in section 3. We can immediately see that (4.25)

is satisfied and with some effort (using identities in appendix B) one can also compute

that (4.33) is automatically satisfied.

It now remains to use (4.26) and (4.34) to solve for (v0, βi). This is (nv +1)-equations

for (nv + 1)-parameters and should thus admit a solution. From (4.34) we obtain an

expression for βi:

−4

9
(d−1

g )ijqj −
2v0
3Rdg

gi = d̂ilmβlβm − 32

9
(d−1

g )ijβjβkg
k (4.36)

Now using d̂ijk we have an explicit expression for d−1
g

(d−1
g )ij =

1

dg

[27
16
d̂ijkdg,k − 3gigj

]
(4.37)

and (4.36) becomes

−4

9
(d−1

g )ijqj −
2v0
3Rdg

gi = d̂ilm
[
βl −

3

dg
dg,lβjg

j
][
βm − 3

dg
dg,mβjg

j
]
− 32

3dg
gi(βig

i)2 .

(4.38)

By using (4.26) and (4.31) we know that

βig
i = ǫ0

√
1

8

( v0
2R

− g0p0
)

(4.39)

and thus we can define an object Πi which depends only on G and Q:

Πi = − 3

4dg
d̂ijkdg,kqj + gi

4

3dg
(qmg

m − g0p
0) (4.40)

so that (4.38) becomes a familiar type of equation (see eq. (B.8))

Πi = d̂ilm
[
βl −

3

dg
dg,lβig

i
][
βm − 3

dg
dg,mβig

i
]
. (4.41)

This can be solved explicitly yielding an expression for βi in terms of v0 along with the

charges and gaugings:

βi = ǫ

√
27

64

dijkΠ
jΠk

√
dΠ

+
3βjg

j

dg
dg,i , (4.42)

where again ǫ = ±1. It remains to solve for v0, which is done as follows. Contracting (4.42)

with gi gives

βig
i = − ǫ

2

√
27

64

dijkg
iΠjΠk

√
dΠ

(4.43)

which when combined with (4.39) gives the solution for v0 purely in terms of the charges

and gaugings:

v0 = 2R
[
g0p

0 +
27(dijkg

iΠjΠk)2

32dΠ

]
(4.44)
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so that

βi = ǫ

√
27

64 dΠ

[
dijkΠ

jΠk − 3

2dg
dg,idlmng

lΠmΠn
]

(4.45)

and

ǫ = −ǫ0 . (4.46)

4.4 Constant scalar flows

We conclude this analysis by writing out the universal black hole with constant scalar fields.

This is well known to require a hyperbolic horizon [15, 19] and we confirm that result here.

When one further restricts the BPS flow equations to constant scalars, one obtains

β0 = 0 ⇒ v0 = 2Rg0p
0 , (4.47)

βi = 0 ⇒ Πi = 0 , (4.48)

and the constraint Πi = 0 gives

qi = −3g0p
0

dg
dg,i . (4.49)

Contracting with gi and using (2.16) gives

giqi = −3g0p
0 ⇒ κ = −4g0p

0 , (4.50)

which must be positive by (4.47) and therefore these solutions require

κ = −1 ⇒ Σg = H
2/Γ . (4.51)

4.5 Summary of the solution

It may provide some clarity to summarize the entire solution in one place. The rescaled

sections (L̃0, M̃i) are given by (4.23) and (4.24) in terms of (α0, β0, αi, βi) which in turn are

given in (4.30), (4.31), (4.35), (4.45). The metric function eV is given by (4.22) and (4.44).

To obtain the scalar fields yi and the metric function eU one uses (4.21) and (4.20).

If one chooses nv = 3, d123 = 1
6 and d̂123 = 32

3 (and symmetric permutations) one

obtains the so-called STU-model, the model employed in [4]. If in addition one sets

g0 = −gi = g (4.52)

the AdS4 black holes of the STU-model can be embedded into M-theory compactified on

S7 [20, 36, 37]. For more general very special Kähler manifolds which are homogeneous

spaces, one can find the explicit form of the corresponding dijk-tensor in section 5 of [10].

The embedding of these models into M-theory or string theory remains an important

oustanding problem.
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4.6 Rotation to electric gaugings

If the reader is for whatever reason uncomfortable with the use of magnetic gauging pa-

rameters, one can rotate the solutions of this paper to a frame where the gaugings are

electric. Precisely, one finds that from the prepotential (A.1) and the gauging parameters

(g0, g
i) one can rotate to a new symplectic frame using

S =

(
A B

C D

)
, A = D = diag{1, 0, . . . , 0} , B = −C = diag{0, 1 . . . , 1} (4.53)

to find a new prepotential

F̃ = −i
√

1

16

√
X̃0d̂ijk(δilX̃ l)(δjmX̃m)(δknX̃n) (4.54)

with new gaugings

g̃i = −gi , g̃0 = g0 . (4.55)

The space-time metric and scalar fields remain invariant under this symplectic transfor-

mation. For the STU model this frame has F̃ = −2i
√
X̃0X̃1X̃2X̃3 and this is the frame

which is used to embed the STU model into the de Wit-Nicolai theory [38] and thus into

M-theory.

5 AdS2 × Σg: IR boundary conditions

We now make some brief statements about regularity of our solutions. To map out the

subspace of regular solutions from section 4, one needs to ensure that the scalar fields do

not vanish before the horizon is reached:

rh > ri , rh > r0 , (5.1)

where

rh =
√
v0R , r0 = −β

0

α0
, ri = −β

i

αi
. (5.2)

From rh > r0 we get √
v0R > −ǫ0

√
v0R− g0p0 , (5.3)

which is satisfied automatically if ǫ0 = 1 whereas if ǫ0 = −1 it requires g0p
0 > 0. More

generally rh > ri is a rather complicated expression which puts bounds on the allowed

charges. It is difficult to analyze in complete generality but manageable in any given

example.

Assuming that these conditions are satisfied we can use the results of [31] to analyze

regular horizon geometries. Consider a black hole configuration with charges (p0, qi) and

gauging parameters (gi, g0), in homogeneous d-geometries. The attractor equations give an

expression of the horizon radius in terms of the charges and the d-tensor as derived in [31],
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which reads

R4
2 =

−a4 ±
√
a24 − 4a0a8
2a8

(5.4)

a0 = − 1

16
p0d̂ijkqiqjqk

a4 =
9

16
dg,id̂

ilmqlqm − (p0g0 + giqi)
2

a8 = 4g0dg = (ℓAdS)
−4 > 0

p0g0 − qig
i = 1 . (5.5)

Still, a necessary condition for the existence of the horizon is that R2
2 > 0. Notice that the

sign of g0 is chosen accordingly to the condition that a8 > 0. If we use the last constraint

on the charges, we can write

−4a0a8 = dg d̂q(1 + qig
i) ,

a4 =
9

16
dg,id̂

i
q − (1 + 2qig

i)2 . (5.6)

Notice that if −4a0a8 > 0 there is always a choice of sign in (5.4) for which the radius

is positive. But the sign of −4a0a8 can be driven to positive or negative by the choice of

charges qi. In that case, whatever the sign of a4, there will always be a solution of the

attractor equations for which the radius is positive. Indeed, let us consider a rescaling of

all the q’s charges of the solution by a factor α ≷ 0. This leads to

(−4a0a8)α = α3dg d̂q(1 + αqig
i) ,

(a4)α = α2 9

16
dg,i d̂

i
g − (1 + 2αgiq

i)2 . (5.7)

Independently on what is the sign of (a4)α, then, we can chose a small enough α ∈ R for

which 1 + αqig
i > 0. Then, depending on the sign of d̂q, we can fix the sign of (−4a0a8)α

to be positive by requiring α ≶ 0. This is enough to ensure that there is a root in the

attractor equation corresponding to a positive R4
2.

6 Conclusions

In this work we have studied four dimensional N = 2 FI-gauged supergravity theories

where the scalar manifold is a homogeneous very special Kähler geometry. In these models

we have found quarter-BPS black hole solutions with vanishing axions and constant phase

ψ.

There are numerous interesting and outstanding questions regarding this variety of

AdS black holes. In the work [31] models with arbitrary gauging parameters and arbitrary

dyonic charges were considered. It was found that that solution space of supersymmetric

horizon geometries has real dimension 2nv; there are 2nv + 2 charges and two constraints.

It seems to be a well posed and reasonable open problem to solve for the most general

quarter-BPS black hole in these theories with complex scalar fields . This would answer
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in the affirmative or otherwise whether every supersymmetric horizon geometry can be

completed to a UV AdS4 solution. This is very difficult to attack numerically but should

one obtain the general analytic result, it would seem to be a reasonable question.

A key step in pursuing such an objective is a better understanding of black holes where

the phase of the supersymmetry parameter is non-constant. In the current work we have

only found black holes with constant phase but the full space of static BPS, AdS4 black

holes will surely include those with non-constant spinors. This could be quite challenging

since, for example, all known solutions with hypermultiplets have non-trivial axions; there

are certain solutions with constant phase ψ [28, 29], while the general solution has varying

ψ [29] and in the latter case the analysis is significantly more complicated. We have argued

that all black holes with trivial axions will satisfy either (4.4) or (4.5) and thus have

constant ψ, but have not found a proof of this statement.

A more modest objective could hopefully be realized using just the results of the current

work. That is to determine whether every horizon geometry from [31] with vanishing axions

and which satisfies (4.4) arises as the IR of the black holes in section 4.

At least to these humble authors, the origin of the ansatz (4.22)–(4.24) and the ansatz

in [4] appears fairly mysterious. We have shown that such assumption allows for solutions

to be found but we would certainly be comforted to have a deeper understanding of why

it works. It is natural to speculate that a dimensional reduction to three dimensions [39]

could aid this understanding, since such a reduction clarifies various issues for ungauged

supergravity black holes [40]. Another challenging approach would be to explicitly integrate

the BPS equations rather than making the ansatz (4.22)–(4.24).

Hopefully these results will be a few steps along the road to a complete solution of

supersymmetric static black holes in four dimensional gauged supergravity.
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A Special geometry conventions

We include in this section standard results in order to make our conventions clear, with

particular attention to numerical factors.

The prepotential we consider is

F = −dijk
XiXjXk

X0
(A.1)

and we use special coordinates

XΛ =

(
1

zi

)
, zi = xi + iyi . (A.2)
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From this we obtain that the dual sections FΛ = ∂ΛF are

FΛ =

(
dijkz

izjzk

−3dz,i

)
(A.3)

and the Kähler potential is

e−K = 8dijky
iyjyk (A.4)

so that the moduli space is constrained by yi > 0, i = 1, 2, 3. The symplectic form is

given by

Ω =

(
0 −11

11 0

)
. (A.5)

We use the following shorthand for contraction with the symmetric tensors dijk and

d̂ijk of any component gi and g
i taken from the matter couplings in any symplectic vector

(g0, gi, g0, gi):

dg = dijkg
igjgk , dg,i = dijkg

jgk , dg,ij = dijkg
k ,

d̂g = d̂ijkgigjgk , d̂ig = d̂ijkgjgk , d̂ijg = d̂ijkgk . (A.6)

For homogeneous spaces the matrix dg,ij is invertible. The results of this paper do not

need the explicit form of its inverse: we simply write (d−1
g )ij for the matrix that satisfies

(d−1
g )ijdg,jk = δik . (A.7)

The metric on Mv is given by

gij = −3

2

dy,ij
dy

+
9

4

dy,idy,j
d2y

(A.8)

and its inverse by

gij = −2

3
dy(d

−1
y )ij + 2yiyj . (A.9)

The following matrix is used in the presentation of the BPS equations

M =

(
1 −R
0 1

)
.

(
I 0

0 I−1

)
.

(
1 0

−R 1

)
=

(
A B

C D

)
(A.10)

with

A = I +RI−1R , D = I−1 , B = CT = −RI−1 (A.11)

and where

NΛΣ = RΛΣ + i IΛΣ (A.12)

is the symplectic matrix such that

MΛ = NΛΣL
Σ . (A.13)

In addition (R, I) give the vector kinetic and topological terms in the Lagrangian (2.1).

One can quite easily check that M satisfies the identity

ΩMV = −iV . (A.14)
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B Homogeneous very special Kähler spaces

For a homogeneous very special Kähler geometry we have the constant tensor

d̂ijk =
gilgjmgkndlmn

d2y
(B.1)

which satisfies the relations

d̂ijkdj(lmdnp)k =
64

27
δi(ldmnp) , (B.2)

dijkd̂
j(lmd̂np)k =

64

27
δ
(l
i d̂

mnp) . (B.3)

One can re-write (B.2) and (B.3) in an equivalent manner

d̂ijkdjl(mdnp)k =
16

27

[
δildmnp + 3δi(mdnp)l

]
, (B.4)

dijkd
jl(mdnp)k =

16

27

[
δlid̂

mnp + 3δ
(m
i d̂np)l

]
, (B.5)

and easily check that both sides are symmetric in all four indices (lmnp). This allows one

to easily establish the veracity of the following expressions

(d−1
g )ij =

1

dg

[27
16
d̂ijkdg,k − 3gigj

]
, (B.6)

(d̂−1
g )ij =

1

d̂g

[27
16
dijkd̂

k
g − 3gigj

]
(B.7)

which are used several times in this article. Using this we can solve the following equation

which often appears in our work

F i = d̂ijkGjGk ⇒ Gi = ±
√

27

64

dijkF
jF k

√
dF

, (B.8)

Gi = dijkF
jF k ⇒ F i = ±

√
27

64

d̂ijkGjGk√
d̂G

. (B.9)

One can also use d̂ijk to express the complex scalar fields in terms of the sections

zi =
3

8

dy
dz
d̂ijkMjMk (B.10)

The quadratic and quartic invariants are given by

I2(aΛ, bΛ) = −dijka
iajak

a0
− 1

2
aΛbΛ (B.11)

I4(aΛ, bΛ) = −
(
aΛbΛ

)2
+

1

16
a0d̂ijkbibjbk − 4b0dijka

iajak +
9

16
dijkd̂

ilmajakblbm .(B.12)
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