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In very recent experimental work, diffusive motion of individual particles in a dense columnar phase
of colloidal suspension of filamentous virus particles probed by means of fluorescence video mi-
croscopy [S. Naderi, E. Pouget, P. Ballesta, P. van der Schoot, M. P. Lettinga, and E. Grelet, Phys.
Rev. Lett. 111, 037801 (2013)]. Rare events were observed in which the minority fluorescently la-
beled particles engage in sudden, jump-like motion along the director. The jump length distribution
turned out to be biased towards a half and a full particle length. We suggest these events may be
indicative of two types of particle motion, one in which particles overtake other particles in the
same column and the other where a column re-equilibrates after a particle leaves a column either
to enter into another column or into a void defect on the lattice. Our Brownian dynamics simula-
tions of a quasi one-dimensional system of semi-flexible particles, subject to a Gaussian confinement
potentials mimicking the effects of the self-consistent molecular field in the columnar phase, sup-
port this idea. We find that the frequency of overtaking depends on the linear fraction of particles
and the steepness of the confining potential. The re-equilibration time of a column after a particle
is removed from it is much shorter than the self-diffusion timescale. For the case of large system
sizes and periodic boundary conditions, overtaking events do not present themselves as full-length
jumps. Only if the boundary conditions are reflecting and the system is sufficiently small, full length
jumps are observed in particle trajectories. The reason is that only then the amplitude of the back-
ground fluctuations is smaller than a particle length. Increasing the bending flexibility of the par-
ticles on the one hand enhances the ability of particles to overtake each other but on the other it
enhances fluctuations that wash out full jumps in particle trajectories. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4823736]

. INTRODUCTION

The complex phase behavior of suspensions of
anisotropic colloidal particles has been studied intensively
over the past few decades, experimentally, theoretically, and
by means of computer simulation.'”> Apart from the usual
isotropic phase also nematic, cholesteric, smectic, columnar,
and crystalline phases have been found in a wide variety of
colloidal system, including those based on inorganic rod-like
and plate-like particles, stiff polymers, elongated viruses,
and worm-like micelles.*® Particularly attractive from a
theoretical point of view are liquid crystalline dispersions
of virus particles, such as the rod-like tobacco mosaic virus
and the filamentous fd virus.!”-® The reason is that these
particles, unlike most other types of colloidal particle, are
very monodisperse in length and in width. (See however the
recent work of the group of Van Blaaderen on monodisperse
silica rods.”) This makes comparison with theory and simu-
lation a lot more straightforward than when the particles are
not monodisperse. By and large, experiment, simulation, and
theory agree, showing that the increasingly complex ordered
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phases that appear with increasing concentration of particles
is due to packing effects and driven by entropy rather than
enthalpy.'”

Whilst a lot is now understood of the equilibrium struc-
ture and properties of liquid crystal phases in colloidal dis-
persions, remarkably little is known about kinetic processes
that take place in them. It is not surprising, then, that over
the past few years more emphasis is being put on unraveling
kinetic processes in these highly congested phases.!' It has
emerged, for instance, that the diffusivity of rod-like parti-
cles along their main axis speeds up in the nematic phase as
compared to that in the isotropic phase.'? In the smectic-A
phase, diffusion along the rod axis seems to be dominated by
a kind of hopping-type layer-to-layer diffusion, dictated by
a combination of temporary caging of particles by their im-
mediate neighbors and the permanent self-consistent molecu-
lar field that they experience due to the presence of all other
particles.” 1314

Probing single particle dynamics in congested lig-
uid crystalline dispersions has been made possible by ad-
vances in experimental techniques such as fluorescence video
microscopy.'> Indeed, by fluorescently labeling a very small
portion of filamentous fd virus particles dispersed in water,

© 2013 AIP Publishing LLC


http://dx.doi.org/10.1063/1.4823736
http://dx.doi.org/10.1063/1.4823736
http://dx.doi.org/10.1063/1.4823736
mailto: m.s.naderi@tue.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4823736&domain=pdf&date_stamp=2013-10-03

134909-2 S. Naderi and P. van der Schoot

-0.25

-0.5

-0.75 L L L L L
0 500 1000 1500 2000 2500 3000

£(s)

FIG. 1. Displacement x of a fluorescently labeled fd virus particle along the
director in a columnar phase where concentration of fd virus particles is
¢ = 130 mg/ml at a pH = 8.2 and ionic strength of / = 20 mM. The dis-
placement is shown in unit of L the contour length of the fd virus particle and
time is in units of seconds. Notice the occurrence of “full” jumps and *“half”
jumps of a full and half particle length. A full length jump may consist of two
consecutive half jumps.>*

Lettinga, Grelet, and collaborators'®!” were able to probe

self-diffusion in nematic and smectic-A phases, and recently
also the columnar phase that appears to be hexatic rather
than hexagonal.'® By tracking individual particles they found
that the particles jump between neighboring smectic layers.'*
This type of inter-layer diffusion has also been hypothe-
sized to take place in smectic phases of thermotropic liquid
crystals.'® It has also been found in recent simulations of
perfectly parallel”® and freely rotating®’>> hard filamentous
particles.

Since the smectic phase has a layered structure, the find-
ing of the discrete jumps is not entirely surprising. Interest-
ingly, a similar kind of hopping-type diffusion along the main
axis of the particles has also been observed in the columnar
phase of fd virus particles, a phase in which the particles ex-
hibit no positional ordering in this direction.”? A typical trace
is shown in Fig. 1.2* The figure shows that almost all of the
time the tracked particle jitters around some equilibrium po-
sition, to jump to a new one a few times over the course
of the observations that lasted several hours. The first three
jumps measure about half a particle length (that we refer to as
“half jump”) and the fourth one a full particle length (a “full
jump”).

This kind of short-time rattling punctuated by long-time
jump events along the director of the columnar phase shows
that the diffusion of the particles must be of non-Gaussian na-
ture, similar to the diffusion of rod-like particles along the
rod axis in the smectic-A phase, which of course is rather
unexpected.' To investigate this, Belli et al.?> performed dy-
namical Monte Carlo simulations of a binary mixture of per-
fectly aligned hard spherocylinders. The binary mixture was
needed to suppress the smectic phase that for monodispersed
hard rigid spherocylinders is more stable than the colum-
nar phase. They found that exchange of particles between
columns corresponds to a hopping-type diffusion in a two di-
mensional lattice, as expected, but that the diffusion along
the columns remains classical, i.e., diffusive at short times,
subdiffusive at intermediate times, and diffusive again at long
times. The subdiffusive behavior at intermediate times is due
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to single-file diffusion; at long times it crosses over to simple
diffusion due to exchange of particles between the columns.

So, no evidence of a hopping-type diffusion along the
main axis of symmetry was found in these simulations. The
reason for this is unclear but may be due to factors including a
lacking particle flexibility, monodispersity, chirality, and soft
particle-particle interactions. Due to the poly-domain struc-
ture of the columnar phase of fd virus,'® where domains range
in size from ten to a hundred particle lengths, boundary con-
ditions should in addition become an important factor. Typ-
ically, in simulations the boundary conditions of choice are
periodic ones, as in fact was in the case of the work of Belli
and co-workers.?® In the present work, we show by means of
Brownian dynamics simulations on a quasi one-dimensional
toy model mimicking the diffusive behavior of rod-like parti-
cles in a single column in a hexatic phase, that a plausible ex-
planation of the full jumps may be particle overtaking events
within the columns. These events can only be observed if the
inherent fluctuations associated with the in-line diffusion in
the columns are sufficiently suppressed. This requires small
system sizes and reflecting boundary conditions. We put for-
ward that the observed full jumps are in essence a result of the
poly-domain structure of the columnar phase.

The half jumps we hypothesize to be due to particles
moving out of a column either to a neighboring column or
to a defect, leading to very fast relaxation of the remaining of
the particles in that column due to the large pressure. In our
simulations, we test this by removing a single particle from
the column and following the trajectories of the neighboring
particles. The time dependence of the re-equilibration that we
find agrees well with a simple estimate based on equating the
in-line pressure (a force) to the friction a particle experiences.
We find that the timescale associated with the re-equilibration
is very short on the time scale of the short-time self-diffusivity
of the particles, in agreement with observations on fd virus.?3

The structure of the remainder of this paper is as follows.
In Sec. II we first describe the simulation model and the way
that we analyze the simulation data. In the model we focus
attention on diffusive processes in a single column subject to
a Gaussian confining potential. The confining potential mim-
ics the effect of the self-consistent molecular field imposed
by particles in the other columns. In Sec. III we discuss our
simulation results for the mean-square displacement of rigid
rod-like particles. In Sec. IV we present our simulation re-
sults for correlation functions as a function of the strength of
the confining potential and the linear fraction of the particles
that we model as strings of beads. Section V discusses the re-
laxation of the particles in a column following the removal of
a single particle from it, again as a function of linear density
in the limit of strong confinement. Next, in Sec. VI, we in-
vestigate the impact of bending flexibility in particular on the
mean-square displacements and the Van Hove correlators of
the particles. We end the paper with a discussion and conclu-
sions in Sec. VIL

Il. MODEL AND SIMULATIONS

We perform Brownian dynamics simulations on systems
containing N elongated particles, each consisting of a linear
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array of n = 5 beads. Within each chain-like particle, adjacent
beads are bound to each other via a harmonic bond potential
of the form Up,na(r) = ky(r — 1;)?, and each three neighbor-
ing beads are linked by a harmonic bending potential Up,,q(6)
= k(0 — m)?*, where r is the distance between the centers
of mass of pairs of bead, [, = 1.2¢ is the equilibrium bond
length with o the size (diameter) of the beads and 6 the angle
formed by the two bonds that connect the three beads to each
other. Furthermore, &, and k, are the strengths of the bond
and bend potentials, respectively. In all our simulations, we
choose a large value for the strength of the bond potential,
k, = 50 kgT/o?, to ensure an essentially fixed bond length
during the simulations. The relation between k, and the per-
sistence length L, of each particle is L, = 2 kalplkpT,*>? at
least in the limit where n — oo and kblg /kgT > 1, where
kgT is the thermal energy with kp Boltzmann’s constant and
T is the absolute temperature. In our simulations we focus
attention on ratios L/L, = 0.066—4 of the contour length
L = (n— 1) x [, of our particles in the stiff bond limit that we
are considering and persistence length of the particles L,. This
allows us to investigate the effect of particle flexibility on the
kinetics.

All beads that are not direct neighbors in a chain inter-
act with each other through the repulsive part of a shifted
Lennard-Jones potential,

ay2 _ey6 41y ifp < 2%

Uy () = de((2) =)+ 1fr_2]o7 "
ifr > 260
where € = kgT is the strength of the interaction potential,
which in our simulations is equal to the thermal energy kT,
and r is again the center-to-center distance between the beads.
This potential mimics the soft electrostatic repulsion that acts
between the charge-stabilized fd virus particles.'®??

In order to mimic the self-consistent molecular field in
the columnar phase, a harmonic external potential is applied
to all beads,

Uit = ket (0 + 2%, 2)

where k., is the strength of confining potential and y and z are
the Cartesian coordinates perpendicular to the main axis (the x
axis) of the confining potential (see Fig. 2). Note that this ex-
ternal potential influences the apparent flexibility of particles
and introduces another length scale other than the persistence
length, related to the strength of the confining potential and
the persistence length.?®

The strength of the confining potential must somehow
be linked to the concentration of the particles in the colum-
nar phase. In principle, the relation between k,,, and particle
density (or packing fraction) can be estimated, e.g., from the
simulation results of Belli and co-workers.”> This is possi-
ble because the radial density distribution, the distribution of
particles in the direction perpendicular to the director of the
particles, is proportional to the Boltzmann factor of the self-
consistent molecular field.'® Ignoring the fact that the simula-
tions involve binary mixtures of long and short spherocylin-
ders with aspect ratios L/A = 2.1 and 1.0, where L and A
are the length and diameter of a cylindrical body capped by
two hemispheres with diameter A, Belli et al. found that for
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FIG. 2. (a) Schematic representation of a particle in a hexagonal columnar
phase. (b) Each particle in our simulations consists of five beads connected by
strong harmonic springs as well as harmonic bending potentials between pairs
of bonds. An external harmonic confining potential is applied to all beads
mimicking the self-consistent molecular field that particles in a column of
the columnar phase experience due to presence of particles in other columns.
(c) Snapshot of a simulation with N = 5 particles, linear fraction of particles
¥ = 0.8, and the strength of the confining potential k., = 7 kp Tio?.

volume fractions n = 0.535, 0.563, and 0.580, the strength
of the external potential applied to each rod is 30.9 (25.6),
55.6 (44.5), and 69.3 (56.5) kzT/A? for the longer (shorter)
rods, respectively.”” Here the external potential applies to
rods, not segments. To obtain the strength of the external po-
tential that is applied to beads, we divide these values by
the number of beads in each particle, which in our simula-
tions is n = 5. This gives us for the strength of the con-
fining potential applied on each bead k., = 6.2, 11.1, and
13.9 kgT/o? for the three concentrations quoted. Note that
in obtaining these values we ignored the fact that the as-
pect ratio of particles in these simulations is different from
those in ours. In our simulations, we mostly apply smaller
values for the strength of the external potential in the range
kexs =2.0-3.0kgT /o2, This helps us observe the overtaking
events more often and to obtain better statistics. For the spe-
cial case where we focus on single-file diffusion, in which
mutual passage of particles is not allowed, much larger val-
ues of the confining potential strength are used, k., = 5.0—
20.0 kgT/o2. This ensures that overtaking events do not occur
during these simulations.

We used LAMMPS molecular dynamics package®® for
all our simulations. To implement the external potential of
Eq. (2), we add a custom potential to the LAMMPS code. Our
simulations are performed with a time step of 5 x 1073 #*,
where ¢* is the unit of time, set by the self-diffusion constant
of a single bead D, = o%/t*. The self-diffusion constant of
an elongated particle made up of n beads reads D = D,/n, at
least in the free-draining limit in which we are operating.’!
Initially, at time ¢ = 0, the particles are positioned equidis-
tantly on a line with a given linear fraction ¥. To avoid a
bias of our simulation results towards the initial state, we dis-
card the first 1.0¢* of the simulation data. This is sufficient
because in most of our simulations the linear fraction is close
to unity, which means that the internal pressure is high and
the system reaches equilibrium very quickly. To investigate
the effect of the boundaries on the dynamics of the particles
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periodic and reflecting boundary conditions are applied in the
direction of the main axis of the confining potential. Reflect-
ing boundary conditions are imposed by putting two fixed
walls at x = —0.50 and x = A + 0.50, where A is the
length of the simulation box along the main axis (the x axis).
These walls interact with beads through the repulsive part of
a shifted Lennard-Jones potential,
o2 (o6 4 1y <9t

Uwall(AX)z 46((AX) (AX) +4) lfo_le s

if Ax > 2s0
3)

where Ax is the shortest distance between the center of a bead
and the wall.

We analyze the structure and diffusion of the particles in
the quasi one-dimensional system by calculating the mean-
square displacement of the particles w(¢), the self-part of the
Van Hove correlation function G,,3? the pair correlation func-
tion g,,%* and the trajectory of particles for different values
of (i) the linear fraction , (ii) the strength of the external
potential k., and (iii) the bending flexibility k,. In order to
quantitatively investigate the hopping-type diffusion of parti-
cles in our simulations, the probability of finding a particle at
a distance x after an interval of time ¢ from its position along
the main axis of the confining potential at time #, = 0,%

1 N
Golx, 1) = <Z 8Lx + x;(0) — x,-(r)]>, )

i=l1

which is the self part of Van Hove function, where N is the
number of particles, x;(f) is the position of the ith particle at
time #, and the angular brackets mean ensemble average. For
particles diffusing in a dilute gas, where the particles do not
interact with each other, G; is a Gaussian function of the co-
ordinate x.**> As the concentration of particles increases and
particle-particle interactions become important, the self part
of Van Hove function starts to deviate from a Gaussian.** This
is because at high packing fractions the motion of particles is
affected by the presence of neighboring particles (due to the
caging effect) and this induces dynamical heterogeneities in
the system.'3

In systems where particles need to overcome a high free
energy barrier to diffuse around, e.g., due to the presence of a
self-consistent molecular field such as in the case of a smec-
tic phase,'® the motion of the particles is a combination of
rattling- and hopping-type diffusion. This means that parti-
cles are mostly rattling around minimum energy positions and
after some time they hop to another one. For the case that par-
ticles hop with a certain hopping length, the self part of the
Van Hove function is not a Gaussian function and peaks ap-
pear for certain values of x that are multiples of the hopping
length35 (see also below).

The dynamics of particles in a congested system is ar-
guably directly connected to its local (microscopic) struc-
ture. For instance, the hopping-type diffusion observed in the
smectic-A phase is due to periodic particle density variations
along the director. Therefore, the study of the structural func-
tions such as particle density and pair correlation function
helps us understand the dynamics. The particle density is a
measure of the density variations in a system and the pair cor-
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relation function is a measure of the density variations as a
function of the distance from a particle. In one dimension, the
single-particle density may be written,>®

N
n(x) = <Z 8lx — x,~1>, )
i=1

where the angular brackets imply an ensemble average and
4(x) is the Dirac delta function. For homogeneous and trans-
lationally invariant one-dimensional systems the pair correla-
tion function is given by,*

N
g(x) = % < > Sl +x — xj]>, (6)
J#i=1
where A is the length of the system, and N > 1 is the total
number of particles.

It can be shown that the single-particle density near a re-
flecting boundary behaves like the pair correlation function of
the same system in the bulk, i.e., away from the boundaries.’’
So, conversely, the structure of a system near the boundaries
can be deduced from the pair correlation function, which for
a one-dimensional system of hard rods with linear fraction ¥
reads’®

1 [} X 1// k(%_k)k—l
— -~ Ye(X_k
§2(%) w; (L )(1—¢> k —1)!
X exp [——1 I_p]/f(% — k)] , (7

where x is the center-to-center distance between particles, L
is the particle length, and ®(x) is the Heaviside step func-
tion with ®(x) = 0 or 1 for x < 0 or x > 0, respectively. In
our simulations, Eq. (7) should apply to the situations of ex-
treme confinement where particles cannot overtake. When the
strength of the confining potential, k., is not large enough to
prevent particles from overtaking each other, deviations from
this relation are expected.

lll. RIGID RODS: MEAN-SQUARE DISPLACEMENT

For a finite-size, truly one-dimensional system in which
mutual overtaking of particles is not allowed, three diffusion
regimes characterize the mean-square displacement w(z).*
The first regime corresponds to the short-time Fickian diffu-
sion regime, where a test particle does not feel the presence of
the other particle. In the second regime, called the single-file
diffusion (SFD) regime, diffusion of particles is suppressed
by the others and the mean-square displacement exhibits sub-
diffusive behavior. At times ¢ >> ty, where ty is a crossover
time that depends on the system size A and the linear fraction
of particles v, the mean-square displacement, which is also a
measure of fluctuations in the position of particles, reaches
either a plateau value (for the case of reflecting boundary
conditions)**? or a Fickian diffusive regime in which the en-
tire system diffuses, that is, its center of mass (for the case
of periodic boundary conditions).** Our simulation results for
the case of highly confined rigid particles (with L/L, = 0.067)
are shown in Fig. 3 for systems of N = 5 particles with pe-
riodic and reflecting boundary conditions. For the latter, the
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FIG. 3. Dimensionless mean-square displacement, w(r)/L?, as a function of
dimensionless time, #/¢*, for a system of N = 5 particles with reflecting (red
plus signs) or periodic (green crosses) boundary conditions, in a cylindrically
symmetric harmonic confining potential. Here, L is the contour length of par-
ticles consisting each of five beads of diameter o, and #* is the simulation time
unit #* = o2/D;, where Dy, is the self-diffusion constant of a single bead. The
linear fraction of particles in our quasi one-dimensional system is ¥ = 0.6
and the strength of the Gaussian confining potential is k.,; = 7 kp T/o2, where
kpT is the thermal energy. Lines indicate the three diffusion regimes where
in the first regime, at short times, particles do not feel each other’s presence
and w(?) o t. In the second regime, the motion of particles is affected by the
fact that they cannot pass each other, giving a subdiffusive w(r) oc t'/2 typi-
cal of single-file diffusion,*! while in the third regime w(t) reaches a plateau
value (for the case of reflecting boundaries) or the entire system collectively
moves as a single free particle and again w(¢) o ¢ (for the case of periodic
boundaries).

fluctuations in the position of particles is suppressed at long
times by the small system size and boundary effects. This is
because the maximum available “volume” for particles to dif-
fuse is limited by the system size.

For an infinitely large system of identical particles with
arbitrary interaction potential and finite-range correlation
length between particles, the third regime disappears because
the maximum free space available for particles is in principle
infinitely large. The mean-square displacement in the second
regime follows the expression w(t) = 2Ft'/?, where F is the
single-file diffusion mobility, given by*

F=1/pyDSO0)/7, ®

with D the self-diffusion constant, p the particle number den-
sity, and S(0) the structure factor, S(g), at the wave vec-
tor ¢ = 0. For a one-dimensional Tonks gas this gives
F =[L(1 — v)/v¥1s/D/7, where L is the particle length and
¥ = pL is the linear fraction of particles.*' The crossover
time tsrp from the first to the second regime is given by fsrp
= [L(1/¢y — 1)]1*/2D. Our simulations confirm this. Shown in
Fig. 4 is the single-file mobility as a function of linear fraction
Y for simulations with a large value for the strength of confin-
ing potential k,,, = 10 kgT/o2. For this value of the confining
potential the particles do not overtake each other during the
simulations and our system behaves like a one-dimensional
gas.

By decreasing the strength of confining potential, the
constraint that does not allow particles to overtake each other
is relaxed and a crossover in the mean-square displacement
from subdiffusive scaling (in the SFD regime) to a diffusive
one (Fickian regime) occurs for long times.** The crossover
time is related to an overtaking time 7o that measures the
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FIG. 4. Single-file diffusion mobility F as a function of linear fraction
Y. Circles are obtained from the simulations where particles are strongly
confined to a line by a confining potential with harmonic spring con-
stant k., = 10 kpT/o?, obtained by fitting mean-square displacement to
w(t) = 2Dt/(1 4+ (D/F)t'/?), where D is the single-particle diffusion
constant.*> Squares are resulted from the same simulations by calculating
the structure factor and substituting it in Eq. (8). The solid line is a theoret-
ical prediction valid for a truly one-dimensional hard-rod fluids.*' It is due
to finite size of our systems that the simulation results obtained from Eq. (8)
slightly underestimate the theoretical prediction.

average time for two particles to overtake each other.* In
our model, this overtaking time depends on the strength of
the confining potential and the linear fraction of particles.
We come back to this below. For an infinitely large sys-
tem and fp > tspp the SFD regime is reached by the col-
lection of particles between overtaking events, and the av-
erage mean-square displacement of the particles scales as
w(tp) ~ F t(l)/ 245 Therefore, the average overtaking length,
that is, the average displacement of a particle after an over-
taking event, »/w(?p), in this case is not necessarily a multiple
of the particle length and can be any number depending on F
and 7¢.

This contrasts with the experimental observations on fd
virus particles in the columnar phase that discrete jump events
are found in the trajectory of particles.?? This is an indica-
tion that the poly-domain structure of the columnar phase and
the finite size of the columns might play an important role
in the dynamics of particles in this phase. The domain size in
the columnar phase can be roughly estimated from the optical
texture of this phase by polarizing microscopy. The estimated
size of each domain is about 10—-100 wm, which is about
10—100 times the fd virus particle length (0.88 y4m).'8

Here, we argue how the column size could affect the par-
ticle dynamics. As mentioned earlier, for small system sizes
the fluctuation in the position of particles (the square root
of the mean-square displacement) reaches a plateau value,
see Fig. 3. For sufficiently small system sizes with reflect-
ing boundary conditions and sufficiently large linear fractions,
these fluctuations are actually much smaller than the particle
size. In this case, the average overtaking length approximately
equals a particle length because in an overtaking event parti-
cles that are rattling around their initial positions suddenly
exchange positions.

To illustrate the importance of system size, trajectories of
particles in a large system with periodic boundary conditions
and a small system with reflecting boundary conditions are
shown in Fig. 5. The latter is similar to the experimental traces
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FIG. 5. Position, x, of particles normalized to their contour length, L, as a
function of dimensionless time #/* (a) small system for which background
fluctuations in the position of particles, w(z), is suppressed by the system size
(N = 10 particles) and reflecting boundary conditions. (b) Large system with
N = 200 particles and periodic boundary conditions. In both simulations, the
strength of the confining potential is k. = 3 kzT/o? and the linear fraction
of particles is ¢ = 0.9.

shown in Fig. 1. This rattling- and hopping-type motion is
also reminiscent of the diffusion of particles along the director
in a smectic-A phase where particles hop between smectic
layers. This type of motion in the smectic-A phase leads to
appearance of peaks in the self part of the Van Hove function.
So, we would expect to see peaks in the self part of the Van
Hove function G, for the case of a small system with reflecting
boundary conditions, at least for confining potentials that are
not so steep that overtaking events do not occur.

IV. RIGID RODS: CORRELATION FUNCTIONS

In order to test the idea that in small systems the Van
Hove function G, exhibits correlation peaks, we calculated G,
for systems with periodic and reflecting boundary conditions.
As expected, for the case of a small system with reflecting
boundary conditions, peaks appear on multiples of the par-
ticle length; see Fig. 6(a). For the case of a relatively large
system (N = 200) with periodic boundary conditions, where
the effect of overtaking events on the trajectories is washed
out by the fluctuations, no peaks appear on multiples of the
particle length in the self part of the Van Hove function (see
Fig. 6(b)). In this case, G is a superposition of Gaussian func-
tions corresponding to the short-, intermediate-, and long-time
diffusion of particles. The time scales involved are the (short-
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FIG. 6. The self part of the Van Hove function G as a function of the
scaled coordinate x/L along the main axis of the system after time intervals
t =25007*, 50007%, and 100007*. (a) N = 10 particles and reflecting boundary
conditions. (b) N = 200 particles and periodic boundary conditions. Here, the
linear fraction of particles is ¥ = 0.9, the strength of the confining potential
is ke = 3 kgT/o? and L is the particle length.

J. Chem. Phys. 139, 134909 (2013)

0.1

0.01

0.001

= 0.0001
le-05

1e-06

19_07 1 1 1 1 1 1 1

xz/L

FIG. 7. Self part of the Van Hove function G as a function of the dimension-
less displacement x/L for a system of N = 200 particles with linear density
¥ = 0.9 and subject to a harmonic confining potential k., = 3 kgT/o? after
a time interval t = 2500¢*. Periodic boundary conditions are applied in this
simulation. L is the length of a particle. The black solid line is a Gaussian
fit to data points around the origin (x2/L? < 5) which refers to SFD and the
green dashed line is a Gaussian fit to the tail of the distribution (25 < x?/L?
< 64).

time) self-diffusion, (intermediate-time) single-file diffusion,
and (long-time) hopping-type diffusion time scales.

The effect of these different time scales on G, can be seen
in Fig. 7 where two Gaussian functions are fitted to the head
and the tail of the Van Hove function G,. These two functions
correspond to the intermediate and long time scales. The one
corresponding to the short time scales cannot be calculated
from this figure because there are not enough data points at
the head of the G; the frequency at which data are recorded is
not high enough. Our results are similar to what Belli et al.?
find for the longitudinal component of the self part of the
Van Hove function of a columnar phase of bidisperse paral-
lel spherocylinders with periodic boundary conditions. (Note
that the mechanism of hopping-type diffusion along the main
axis is slightly different from ours since in their simulations
inter-column jumps occur.) Therefore, it may well be so that
it is because of the periodic boundary conditions that Belli
et al. do not find rattling- and hopping-type diffusion along
the director in their simulations.

The effect of boundary conditions becomes more impor-
tant when the system gets smaller. This can be understood
by considering the fact that for a small system the fraction
of particles that feel the presence of the boundaries increases.
Shown in Fig. 8(a) is the self part of the Van Hove function
G for simulations with reflecting boundary conditions and
three system sizes (N = 5, 10, and 50). For the smaller sys-
tems there is a peak in the G; for a displacement x/L = 1.
For the system with N = 50 particles this peak is washed out
because there are many particles in the middle of the system
of which the motion is not affected by the boundaries. This
shows that there must be a certain system size at which most
of the particles do not feel the presence of the boundaries.
This certain system size depends on the linear fraction of par-
ticles because the spatial correlation length is determined by
the linear fraction. The effect of linear fraction on the self part
of the Van Hove function for a system of N = 10 particles is
shown in Fig. 8(b). As the linear fraction increases the peak
located at displacement x/L = 1 becomes more prominent,
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FIG. 8. Self part of the Van Hove function G;(x) as a function of dimension-
less displacement x/L for time r = 5000¢* obtained from simulations in which
the strength of the confining potential is ke = 2 kpT/o? and the boundary
conditions are reflecting. (a) Result for three system sizes with N = 5, 10,
and 50 particles and a fixed linear fraction of particles ¢ = 0.9. (b) Result
for three values of linear fraction ¥ = 0.8, 0.9, and 0.95 with the number of
particles fixed to N = 10.

which means that more particles are making jumps that are
not washed out by the fluctuations. This is not surprising be-
cause, as mentioned earlier, by increasing the linear fraction
the spatial correlation length increases and this means that the
motion of more particles is affected by the boundaries.

To better understand this we can calculate other struc-
tural descriptions such as the particle density and pair cor-
relation functions. As mentioned earlier, the behavior of the
particle density function near a reflecting boundary is propor-
tional to that of the pair correlation function of the same sys-
tem in the bulk (see Fig. 9). The pair correlation function for
a one-dimensional system of hard rods with linear fraction ¥
is given by Eq. (7). This pair correlation function is an oscil-
lating function of the center-to-center distance between parti-
cles, x, with a decaying envelope the decay length of which

o) T T T T
4 F
—~ 3
=
Q27
1k
0

x/L

FIG. 9. Green circles: pair correlation function g»(x) as a function of di-
mensionless displacement x/L of particles in a quasi one-dimensional system
with N = 50 particles, linear fraction of ¥ = 0.8, strength of the confining
potential of k., = 20 kgT/o2, and periodic boundary conditions. L is the
particle length. Red squares: the linear particle density n(x) relative to the av-
erage value N/X near the walls for a system with N = 50 particles, ¢ = 0.8,
kew = 20 kpT/o?, and reflecting boundary condition. A is the system length.
The black solid line is the theoretical prediction for the pair correlation func-
tion of a truly one-dimensional system of hard rods (see Eq. (7)). The dis-
placement x is either the center-to-center distance between two particles (for
the case of the pair correlation functions) or the distance from center of
a particle to one of the reflecting boundaries (for the case of the particle
density).
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depends on the linear fraction . At low linear fractions, this
function decays very rapidly and it has only one peak, but as
the linear fraction increases, more peaks appear near x = (0
(i.e., near the walls in the case of a system with reflecting
boundaries) meaning that the position of particles is more re-
stricted close to the reference particle (or close to the walls).
As mentioned in the Introduction, Eq. (7) is valid for a truly
one-dimensional system but for a system where the strength
of the confining potential k., is not sufficiently large to pre-
vent particles from overtaking, the pair correlation function
deviates from Eq. (7). In our simulations this deviation is not
large because k., is relatively large and the overtaking events
occur rarely, therefore the periodic structure near the bound-
aries survives.

This periodic structure is reminiscent of the periodic
structure of the smectic phase and induces a smectic-like
molecular background field on the particles. The effect of this
molecular field on the motion of particles is important when
the system is sufficiently small so that the decay length of the
pair correlation function is comparable with the system size,
in particular if the confinement is not infinite and the particles
are able to overtake each other. Therefore, in order to sensibly
analyze the dynamics of particles of very dense phases such as
the columnar phase with a poly-domain structure in terms of
bulk dynamics, care needs to be taken to make certain that the
size of the domains is much larger than the spatial correlation
length.

V. HALF JUMPS

In Secs. III and IV we have shown that a possible expla-
nation of the full jumps observed in the columnar phase of
fd virus particles may be due to particle overtaking events.?
Also, we found that the effect of system size and boundary
is important because these effects may suppress fluctuations
in the motion of particles and lead to formation of quasi peri-
odic free energy barriers near the boundaries. By overcoming
these free energy barriers particles can overtake each other
and make full jumps. In this section, we test our hypothesis
for the half jumps presented in the Introduction. According
to this hypothesis, the half jumps occur due to particles mov-
ing out of a column to a neighboring column or to a defect.
This leads to a very fast relaxation of the remaining particles
in that column because of the large pressure in it if the linear
densities are large.

Here, we test our hypothesis by removing a single parti-
cle from the system at time 7, and following the trajectory of
the neighboring particles at time ¢ > #,. Removing a particle
from the system creates a gap that the two neighbors of the re-
moved particle will fill. The distance between the two neigh-
boring particles is measured in our simulations as a function
of time. For each set of parameters, we perform 100 simula-
tions with different random generator seeds to have sufficient
statistics to find the average distance between the two neigh-
bors at times ¢ > ¢,. We find that after removal of the particle,
the two neighbors start to move towards each other and the
distance between the particles decreases exponentially until
they reach an equilibrium distance after a certain amount of
time (see also the supplementary material).*® Just after the
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FIG. 10. The characteristic half-jump time 7. (discussed in the main
text) as a function of the linear packing fraction . The data points
are calculated from simulations with a strong confining potential,
kext = 10 kgT/o2. The number of particles and their bending flexibilities are
N =200 and k, = 30 kpT, respectively. The black solid line is the theoretical
prediction, Eq. (10).47

particle is removed, the distance between the two neighbors
is roughly twice the particle length but after a while it reaches
an equilibrium value, which is, at high enough linear frac-
tions, about the particle length. This shows that, on average,
each neighbor moves a distance, which is equal to half a par-
ticle length.

From the exponential decay of the average distance be-
tween the two particles, d,,.(¢), one can calculate the average
time after which the two particles fill the gap. This is also an
interesting quantity because the time-scale of the half-jumps
seen in the experiments is exceedingly short compared to the
diffusion time-scale.?® By fitting an exponential function of
the form d,.(t) = do exp(—t/7.) + d.q4 to our simulation data
for each value of the linear fraction, we obtain the character-
istic time (7.) that is a measure of the time to fill the gap (see
Fig. 10). It scales as (1 — )/

In order to understand this, we derive a relation between
7. and ¥ by using the relation between the internal pressure of
a Tonks gas and the linear fraction.*’ If a particle is removed
from the system, the two neighboring particles are pushed to-
wards each other by the remaining particles due to the in-line
pressure. The force that drives the two neighbors to move to-
wards each other is related to the internal pressure of a Tonks
gas, given by*

o

prl =10 ©)
where 8 = 1/kgT, I1 is the internal pressure of the Tonks gas,
and p is the number density p = /L with L being the particle
length. Recall that our particles behave like a Tonks gas for
large values of the confining potential. Since the system is
presumed to be in the overdamped regime, the driving force
is equal to the frictional force and this gives IT = y v, where
y is the friction constant and v is the velocity of the particles.
The length x that a particle travels after a certain amount of
time ¢ is given by x = vt, by replacing x with L and 7 with 7,
and substituting v from the above equations, we have

.= L*By(1/y — 1) =1p(1/¢ — 1), (10)
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where 7 = L*/D is the single-particle diffusion time. This
equation shows that the process of filling the gap at high lin-
ear fractions happens much faster than the single particle dif-
fusion in particular if ¥ — 1. In Fig. 10, a double logarithmic
plot of 7. as a function of 1/yy — 1 is shown. The solid line
in this graph comes from the above theory, Eq. (10), which is
in good agreement with the simulation results. Note that there
are no adjustable parameters.

VI. EFFECT OF BENDING FLEXIBILITY

In Secs. II-V we have discussed the influence of the
system size and boundaries on the dynamics of particles. We
found that the formation of quasi-periodic structures near the
boundaries induced by the presence of the hard walls leads
to the appearance of peaks in the Van Hove function. These
peaks become sharper with increasing linear fraction. This
means that at higher linear fractions more overtaking events
take place that are not washed out by the background fluc-
tuations. Another factor that can affect the overtaking events
and the sharpness of the peaks in the Van Hove function is the
bending flexibility of particles. The reason why bending flexi-
bility is interesting for us is that fd virus is a semi-flexible par-
ticle and that this can affect the structure of the phases formed
by these particles as well as the dynamics of particles in these
phases.*

In order to study the effect of bending flexibility on the
dynamics of particles, we performed simulations with differ-
ent values of the strength of the particle bending flexibility
and measured the self part of the Van Hove function. Shown
in Fig. 11(a) is the self part of the Van Hove function after
a time interval r = 5000¢* for three values of the strength of
the bending flexibility corresponding to values of L/Lp = 4.0,
1.0, and 0.5 with increasing bending stiffness. For the case
of the most flexible particles (L/Lp = 4.0), no peak appears
for x = L, which means that background fluctuations are not
small enough causing the overtaking events to be washed out
by these fluctuations. The reason why fluctuations are bigger
than for the case of stiff particles is that flexible particles can
make use of their bending flexibility to reduce the internal
pressure by partially lying on top of each other; this decreases
the effective linear fraction and increases the magnitude of
fluctuations.

As the bending stiffness is increased, partially lying on
each other costs more energy for particles and therefore it
is not energetically favorable to reduce the internal pressure
by doing that. This is why we see shoulders appearing on
x = L in the G,(x) for increasing particle stiffness. So, the
transition point from where there is no peak on the self part of
the Van Hove function to where peaks appear in this function
is determined by the energy cost for particles lying on each
other. This energy cost does not only depend on the bending
flexibility but also on the strength of the external potential.

In order to investigate the effect of the strength of the
external potential k., on the overtaking events we performed
simulations with different values of k,,, while keeping bend-
ing flexibility fixed k, = 6 kpT corresponding to L/Lp = 1/3,
which is close to that of wild-type fd virus and is much larger
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FIG. 11. Self part of the Van Hove function Gg(x, + = 5000¢*) as a function of the dimensionless displacement x/L obtained from simulations with N
= 10 number of particles and linear fraction of ¢ = 0.95. (a) Result for three values of bending flexibility k, = 0.5 kgT (corresponding to a length to
persistent length ratio of L/Lp = 4), k, = 2 kgT (L/Lp = 1), and k, = 4 kgT (L/Lp = 0.5) with a fixed value for the strength of the confining potential
kext = 2 kgT/o2. (b) Simulation results for three values of the strength of the confining potential k.,; = 1 kgTIo2, key = 2 kpTlo?, and ke = 4 kgT/o? with a
fixed value of the bending flexibility k, = 6 kgT (L/Lp = 1/3). Vertical axis is rescaled to get the same value at x/L = 0.

than L/Lp = 0.067 discussed in Secs. III-V. From these sim-
ulations we obtained the self part of the Van Hove func-
tion after the time interval of = 5000¢*. As can be seen in
Fig. 11(b) for the smallest value of k., no peak appears for
x = L. This is again because particles are able to partially
lie on top of each other and reduce the internal pressure of
the system by rotating away from the center of the column
giving rise to a lower effective packing fraction. This again
enhances background fluctuations that wash out the effect of
overtaking events. For the slightly larger value of the strength
of the external potential k., = 2 kgT/o? a shoulder appears
on x = L but at k., = 4 kgT/o? the shoulder disappears again.
This is because in this case the external potential is too strong
so almost no overtaking event occurs within the time interval
t = 50007

VIl. CONCLUSION

In recent experiments on rare sudden jump-like motion of
particles along the director was observed with a jump length
distribution that biased toward a half or a full particle length.?
We put forward that these events may represent two types of
particle motion, one in which particles overtake each other in
the same column and the other where particles in a column
re-equilibrate after a particle leaves the column.

To test this, we performed Brownian dynamics simula-
tions of a quasi-one dimensional system of flexible, semi-
flexible, or rigid particles to which a Gaussian confinement
potential is applied. This potential mimics the effects of the
self-consistent molecular field in the columnar phase. Our
simulation results show that it is only in sufficiently small
systems with reflecting boundary conditions and sufficiently
large linear fractions that overtaking events present them-
selves as full jumps. This is mainly because in such systems
the background fluctuations in the motion of particles are sup-
pressed by the reflecting boundaries and small system size.

We also find that by increasing the linear fraction of par-
ticles or decreasing the system size the peaks in the self part
of the Van Hove function become sharper, which means that
the frequency of overtaking events not washed out by the
background fluctuations increases. Moreover, we find a re-

lation between time scale of the re-equilibration of a col-
umn after removing a particle from it and the self-diffusion
time scale. This relation describes the results of our simula-
tions accurately, confirming that at high linear fractions the
re-equilibration process is much faster than the self-diffusion
time scale.

We also considered the effect of particle bending flexibil-
ity on the overtaking events. We find that for flexible particles
the background fluctuations are bigger and the effect of over-
taking events is washed out by these fluctuations. As the flex-
ibility decreases the amplitude of these fluctuations becomes
smaller and overtaking events present themselves again as full
jumps.

ACKNOWLEDGMENTS

The authors would like to thank S. Belli for providing the
strength of the confining potential obtained from their simula-
tions and Professor R. van Roij for the argument that explains
the dependence of the time to fill a gap in a Tonks gas to the
linear fraction of particles. We are grateful to E. Grelet and
P. Lettinga for the trace of fd virus particles in the columnar
phase. The work of S.N. forms part of the research program
of the Dutch Polymer Institute (DPI, Project No. 698).

1Z. Dogic and S. Fraden, Curr. Opin. Colloid Interface Sci. 11, 47 (2006).

2D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985).

3D. Frenkel, H. N. W. Lekkerkerker, and A. Stroobants, Nature (London)
332, 822 (1983).

4W. M. Gelbart, A. Ben-Shaul, and D. Roux, Micelles, Membranes, Mi-
croemulsions, and Monolayers (Springer, New York, 1994).

5L. Morales-Anda, H. H. Wensink, A. Galindo, and A. Gil-Villegas, J.
Chem. Phys. 136, 034901 (2012).

OF. M. van der Kooij and H. N. W. Lekkerkerker, J. Phys. Chem. B 102,
7829 (1998).

7M. Baus, L. Rull, and J. P. Rykaert, Observation, Prediction and Simula-
tion of Phase Transitions in Complex Fluids (Kluwer Academic Publishers,
Dordrecht, 1995).

87. Dogic and S. Fraden, Phys. Rev. Lett. 78, 2417 (1997).

9A. Kuijk, A. van Blaaderen, and A. Imhof, J. Am. Chem. Soc. 133, 2346
(2011).

10, Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).

113, K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science,
Amsterdam, 1996).

12M. Lettinga, E. Barry, and Z. Dogic, Europhys. Lett. 71, 692 (2005).


http://dx.doi.org/10.1016/j.cocis.2005.10.004
http://dx.doi.org/10.1080/00268978500101971
http://dx.doi.org/10.1038/332822a0
http://dx.doi.org/10.1063/1.3673877
http://dx.doi.org/10.1063/1.3673877
http://dx.doi.org/10.1021/jp981534d
http://dx.doi.org/10.1103/PhysRevLett.78.2417
http://dx.doi.org/10.1021/ja109524h
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1209/epl/i2005-10127-x

134909-10  S. Naderi and P. van der Schoot

13M. Bier, R. van Roij, M. Dijkstra, and P. van der Schoot, Phys. Rev. Lett.
101, 215901 (2008).

g, Grelet, M. P. Lettinga, M. Bier, R. van Roij, and P. van der Schoot, J.
Phys.: Condens. Matter 20, 494213 (2008).

157, Kas, H. Strey, and E. Sackmann, Nature (London) 368, 226 (1994).

16M. Lettinga and E. Grelet, Phys. Rev. Lett. 99, 197802 (2007).

17E, Pouget, E. Grelet, and M. P. Lettinga, Phys. Rev. E 84, 041704 (2011).

18E. Grelet, Phys. Rev. Lett. 100, 168301 (2008).

195 Dvinskikh, I. Furé, H. Zimmermann, and A. Maliniak, Phys. Rev. E 65,
061701 (2002).

20R. Matena, M. Dijkstra, and A. Patti, Phys. Rev. E 81, 021704 (2010).

2L A, Patti, D. El Masri, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 103,
248304 (2009).

22A, Patti, D. El Masri, R. van Roij, and M. Dijkstra, J. Chem. Phys. 132,
224907 (2010).

23S. Naderi, E. Pouget, P. Ballesta, P. van der Schoot, M. P. Lettinga, and E.
Grelet, Phys. Rev. Lett. 111, 037801 (2013).

24Data are kindly provided by E. Grelet (CRPP, Bordeaux) and M. P. Lettinga
(FZ Jiilich) (unpublished).

23S, Belli, A. Patti, R. van Roij, and M. Dijkstra, . Chem. Phys. 133, 154514
(2010).

26 A. Khokhlov and A. Semenov, Physica A 108, 546 (1981).

27A. Khokhlov and A. Semenov, Physica A 112, 605 (1982).

28T, Odijk, Macromolecules 16, 1340 (1983).

2Data are kindly provided by S. Belli (Utrecht University).

J. Chem. Phys. 139, 134909 (2013)

303, Plimpton, J. Comput. Phys. 117, 1 (1995).

3IM. Doi and S. Edwards, The Theory of Polymer Dynamics (Oxford
University Press, USA, 1988), Vol. 73.

32L. Van Hove, Phys. Rev. 95, 249 (1954).

33). Hansen and 1. McDonald, Theory of Simple Liquids (Academic Press,
2006).

34W. Kegel and A. van Blaaderen, Science 287, 290 (2000).

35J, Barrat and J. Roux, J. Non-Cryst. Solids 131-133, 255 (1991).

36B. Laird, J. McCoy, and A. Haymet, J. Chem. Phys. 87, 5449 (1987).

313. Percus, Phys. Rev. Lett. 8, 462 (1962).

387 Salsburg, R. Zwanzig, and J. Kirkwood, J. Chem. Phys. 21, 1098 (1953).

39H. van Beijeren, K. Kehr, and R. Kutner, Phys. Rev. B 28, 5711 (1983).

40L. Lizana and T. Ambjornsson, Phys. Rev. Lett. 100, 200601 (2008).

41D, Levitt, I. Stat. Phys. 7, 329 (1973).

“2M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003).

43B. Lin, M. Meron, B. Cui, S. Rice, and H. Diamant, Phys. Rev. Lett. 94,
216001 (2005).

4R. Kutner, H. Van Beijeren, and K. Kehr, Phys. Rev. B 30, 4382 (1984).

45K. Mon and J. Percus, J. Chem. Phys. 117, 2289 (2002).

46See supplementary material at http:/dx.doi.org/10.1063/1.4823736 for the
average distance between neighbors of a removed particle as a function of
time.

47R. van Roij, personal communication (2010).

481, Tonks, Phys. Rev. 50, 955 (1936).

49P. van der Schoot, J. Phys. II France 6, 1557 (1996).


http://dx.doi.org/10.1103/PhysRevLett.101.215901
http://dx.doi.org/10.1088/0953-8984/20/49/494213
http://dx.doi.org/10.1088/0953-8984/20/49/494213
http://dx.doi.org/10.1038/368226a0
http://dx.doi.org/10.1103/PhysRevLett.99.197802
http://dx.doi.org/10.1103/PhysRevE.84.041704
http://dx.doi.org/10.1103/PhysRevLett.100.168301
http://dx.doi.org/10.1103/PhysRevE.65.061701
http://dx.doi.org/10.1103/PhysRevE.81.021704
http://dx.doi.org/10.1103/PhysRevLett.103.248304
http://dx.doi.org/10.1063/1.3432864
http://dx.doi.org/10.1103/PhysRevLett.111.037801
http://dx.doi.org/10.1063/1.3505150
http://dx.doi.org/10.1016/0378-4371(81)90148-5
http://dx.doi.org/10.1016/0378-4371(82)90199-6
http://dx.doi.org/10.1021/ma00242a015
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1016/0022-3093(91)90313-U
http://dx.doi.org/10.1063/1.453663
http://dx.doi.org/10.1103/PhysRevLett.8.462
http://dx.doi.org/10.1063/1.1699116
http://dx.doi.org/10.1103/PhysRevB.28.5711
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1007/BF01014908
http://dx.doi.org/10.1103/PhysRevLett.90.180602
http://dx.doi.org/10.1103/PhysRevLett.94.216001
http://dx.doi.org/10.1103/PhysRevB.30.4382
http://dx.doi.org/10.1063/1.1490337
http://dx.doi.org/10.1063/1.4823736
http://dx.doi.org/10.1103/PhysRev.50.955
http://dx.doi.org/10.1051/jp2:1996147

