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Abstract We address the interaction of ecological processes, such as consumer-
resource relationships and competition, and the epidemiology of infectious diseases
spreading in ecosystems. Modelling such interactions seems essential to understand
the dynamics of infectious agents in communities consisting of interacting host and
non-host species. We show how the usual epidemiological next-generation matrix
approach to characterize invasion into multi-host communities can be extended to
calculate R0, and how this relates to the ecological community matrix. We then present
two simple examples to illustrate this approach. The first of these is a model of the
rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively
matches the observed phenomena that occurred after the eradication of rinderpest
from the Serengeti ecosystem in the 1980s. The second example is a prey-predator
system, where both species are hosts of the same pathogen. It is shown that regions for
the parameter values exist where the two host species are only able to coexist when
the pathogen is present to mediate the ecological interaction.
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1 Introduction

Most studies where mathematical models have been used to describe the dynamics
of infectious disease have focused on interactions between one infectious agent and
one host species. Studies involving more species have usually been restricted to those
that are hosts of the same agent. Even if more species are involved, the interactions
between individuals in the models have been focussed on those where transmission of
the infectious agent could occur (which we will refer to as epidemiological interac-
tions). Ecological interactions within and between species, such as consumer-resource
relations (predator-prey and other feeding relations) and competition, were not tradi-
tionally explored in a systematic way when studying infection dynamics in a popula-
tion. In the last five years, however, this situation has been changing in the theoretical
literature. As more than 60% of newly emerging infections in humans originate from
wildlife (Jones et al. 2008; Taylor et al. 2001), it is important to understand how infec-
tious agents spread in wildlife communities, how they lead to changes in prevalence in
some species rather than others, and how they can ultimately lead to increased, or even
new, exposure to, and infections of, humans. Ecological field and experimental stud-
ies are starting to emerge that suggest infection dynamics in wildlife communities are
influenced by ecological interactions in fundamental ways. Indeed, interactions with
non-host species co-inhabiting the same ecosystems will influence infection dynamics
in those species that are hosts.

We give a few motivating examples from the recent ecological literature. We do
not claim to be exhaustive in coverage of the studies performed or the phenomena
observed in the field—many more examples exist.

– Predators can be infected by pathogens and/or parasites that they share with prey
via feeding, and the ecological interactions play a dominant role in determining
the population effects of the infectious agent(s). For example: plague outbreaks
(sudden epidemiological effect) and human hunting (gradual ecological effect)
caused a decline in prairie dog numbers, possibly leading to the extinction in the
wild of the black-footed ferret when this predator itself was experiencing canine
distemper virus outbreaks; and plague in both predator and prey impede current
reintroduction efforts (Matchett et al. 2010; Thorne and Williams 1988). Canine
distemper virus is suggested to have been aggravated in lions in the Serengeti
savannah ecosystem, in a cascade sparked by the drought-induced death of the
lions, prey, buffalo, with tick-transmitted Babesia parasites in buffalo jumping
species to lions (Munson et al. 2008).

– Manipulation of other species inhabiting the same ecosystem, whether host or non-
host, may change the prevalence of infectious agents in their main host species.
For example: the prevalence of Lyme borreliosis in mice reacts to a reduction in
abundance of non-competent species present in the same ecosystem that can act
as a buffer (Keesing et al. 2010). The prevalence of Sin Nombre virus changes
with ecosystem composition, including changes to non-host species (Dizney and
Ruedas 2009; Súzan et al. 2009). There are indications of an inverse relationship
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between prevalence in host species and biodiversity in the ecosystem in which
they live (Ostfeld et al. 2008), a dilution effect, but this is hotly debated (Randolph
and Dobson 2012), once more emphasizing the need for a theoretical exploration
of ecological and epidemiological interactions. Finally, Bartonella prevalence has
been observed to increase in wood mice after the introduction of bank voles to the
ecosystem (Telfer et al. 2005).

– The introduction or elimination of an infectious agent can lead to changes in
ecosystem composition and balance. For example: rinderpest probably played an
important role in regulating the Serengeti savannah ecosystem by limiting growth
of the wildebeest population. After its eradication, an ecosystem change was
observed in that tree cover in the Serengeti increased. This could be the result
of an ecological (trophic) cascade: wildebeest population size increased, leading
to increased consumption of grass, leading to reduced grass biomass and fewer
fires fueled by dry grass. Fewer fires meant more opportunity for tree seedlings
to mature (Holdo et al. 2009). Another example is the correlation of nematode
parasite burden in grouse with predation risk (Redpath et al. 2006).

It seems essential therefore that one should explore ecological interactions in epi-
demiological models for infectious agents in multi-species systems. In the litera-
ture there has been substantial attention to simple predator-prey type models with
a pathogen or parasite infecting either the prey, the predator, or both; with the infec-
tious agents affecting notably survival and/or reproduction of their host. Depending
on the modelling choices made, infectious agents have been shown to be able to both
stabilize and destabilize predator-prey interactions, as well as having regulatory and
other conservation consequences and effects on the spatial patterning of populations
(Chattopadhyay and Arino 1999; Fenton and Rands 2006; Han et al. 2001; Han and
Pugliese 2009; Haque and Venturino 2006; Hilker et al. 2007, 2009; Hilker and Mal-
chow 2006; Hsieh and Hsiao 2008; Kacha et al. 2009; Malchow et al. 2005; Morozov
2011; Sieber et al. 2007; Siekmann et al. 2010; Venturino 1994, 1995, 2002). In an
early contribution, Hadeler and Freedman analysed a predator-prey model with an
infectious agent infecting both trophic levels, but without transmission within the lev-
els. One could think of one species acting as intermediate host for a helminth parasite
that is modelled as being indirectly transmitted. The model showed that the parasite
could mediate coexistence of the prey and predator (Hadeler and Freedman 1989), as
in our later example (Sect. 4). Venturino, who was one of the first to recognize the
importance of this area of study, started a wave of attention by analysing various vari-
ants of Lotka-Volterra systems with infection (Venturino 1994). Beltrami and Carroll,
at about the same time, used a simple model of a phytoplankton species (resource) and
its grazer, with a virus infecting the resource and prohibiting infected phytoplankton
cells from reproducing, to show that an infectious agent can be a strong regulator of
population size (Beltrami and Carroll 1994). Several recent papers, notably by Hilker
and co-workers (Hilker and Schmitz 2008; Oliveira and Hilker 2010) and by Ven-
turino, Malkow and co-workers (Malchow et al. 2008), have provided overviews of
the various studies since that pioneering work, and highlighted the differences between
the models and their conclusions for epidemiological and ecological dynamics. It is
not our aim here to review these results, or to address issues such as density vs

123



1048 M. G. Roberts, J. A. P. Heesterbeek

frequency dependence in transmission, type of density dependence in growth, type
of functional response of the resource, routes of transmission and effects of infection
on hosts, course of infection in individual hosts (for example, infection life long or
temporary, immunity life long or temporary, etc.), and the effects of heterogeneity in
the host (for this see Malchow et al. 2008 and the references cited therein).

Most studies in the theoretical literature concentrate on an example model to derive
analytical results for a particular case. There is a lack of more systematic approaches
and general tools specific to eco-epidemiology. There have certainly been studies
to address these issues conceptually (Hatcher et al. 2006), or to provide particular
tools, for example concerning bifurcation patterns near R0 = 1 (Boldin 2006). In
this paper, we contribute to a systematic approach by concentrating on the problem of
invasion of an infectious agent. We demonstrate that at the infection-free steady state,
the Jacobian matrix of a multi-host system described by ordinary differential equa-
tions is partitioned into ecological and epidemiological sub-matrices, and we provide
an interpretation of these sub-matrices. Steady states may be unstable to ecological
interactions, and/or unstable to invasion by a pathogen. We distinguish the ecological
and epidemiological stability of steady states. We explore how the framework of the
next generation matrix (NGM), introduced to characterize invasion of a susceptible
population of species interacting epidemiologically by an infectious agent (Diekmann
et al. 2010), can be extended to characterize invasion of a susceptible ecosystem of
species, interacting both ecologically and epidemiologically. It is our aim to highlight
how the next generation approach can be extended to this interaction between ecology
and epidemiology, for which Ovide Arino may have been the first to coin the term
eco-epidemiology (Chattopadhyay and Arino 1999; Malchow et al. 2008).

2 A model for an infectious disease on a food web

Consider n species interacting in a food web. Let the population size of species i
be Ni , in an appropriate unit (population density, number of animals, biomass, etc.).
Assume that the species have density-dependent per capita birth and death rates νi (Ni )

and μi (Ni ) respectively. Hence, species i can sustain itself independently of all the
other species if νi (0) > μi (0). Let those species that are consumers of species i have
indices contained in the set Pi , and those species that are consumed by species i
have indices contained in the set Qi . For simplicity of exposition we exclude canni-
balism: i /∈ Pi ∪ Qi ; and assume that if species i consumes species j , then species
j does not consume species i : Pi ∩ Qi = ∅. Both restrictions could be relaxed if
necessary.

Suppose that species i is consumed by species j , at a rate φi j N j , and species
j consequently increases its birth rate by e jiφ j i Ni (note φ j i = φi j ). Hence e ji is
a measure of the efficiency of conversion of biomass of species i into biomass of
species j . We obtain the equations

dNi

dt
= νi (Ni )Ni − μi (Ni )Ni − Ni

∑

j∈Pi

φi j N j + Ni

∑

k∈Qi

eikφik Nk
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for i = 1 . . . n. A steady state solution of the differential equation is
{

N̄i
}
, where

either N̄i = 0 or

μi (N̄i ) − νi (N̄i ) =
∑

j∈Pi

φi j N̄ j −
∑

k∈Qi

eikφik N̄k

There are usually multiple steady states. The stability of each steady state may be
deduced from the eigenvalues of the Jacobian matrix, C

({
N̄i

})
, which has diagonal

elements

Cii = [
(νi − μi ) N̄i

]′ −
∑

j∈Pi

φi j N̄ j +
∑

k∈Qi

eikφik N̄k

where
[
νi N̄i

]′
means the function νi (Ni )Ni differentiated with respect to Ni , and

the result evaluated at Ni = N̄i . If N̄i = 0 then Cii simplifies to νi (0) − μi (0) −∑
j∈Pi

φi j N̄ j + ∑
k∈Qi

eikφik N̄k . The off-diagonal elements are Ci j = −φi j Ni for
j ∈ Pi , Cik = eikφik Ni for k ∈ Qi , and Ci� = 0 for � /∈ Pi ∪ Qi .

Let the food web be infected by a pathogen, with prevalence Ii/Ni in species i
and frequency-dependent within-species transmission. Suppose that if species i is
consumed by species j , then the rate of consumption φi j is multiplied by pi j if the
consumer is infected, and qi j if the resource is infected. Suppose also that infected
members of species i have a death rate increased by αi . The equations become

dNi

dt
= νi (Ni )Ni − μi (Ni )Ni − αi Ii −

∑

j∈Pi

φi j
(
Si + qi j Ii

) (
S j + pi j I j

)

+
∑

k∈Qi

eikφik (Si + pki Ii ) (Sk + qki Ik)

where Ni = Si + Ii . In addition to within-species transmission, assume that all species
contribute to a pool of environmental contamination when infected, and that they may
also be infected from this pool. Assume also that a susceptible consumer may be
infected by its resource during the act of consumption. The equations for the infected
species population are

dIi

dt
= βi

Si Ii

Ni
− μi (Ni )Ii − αi Ii − Ii

∑

j∈Pi

φi j qi j
(
S j + pi j I j

)

+Si

∑

k∈Qi

cikφik Ik + κi Si

n∑

�=1

r� I�

The first summation is the loss of type Ii due to consumption by other species, the
second is the production of type Ii due to hosts of type Si being infected during
consumption, and the third is the infection of Si through environmental contamination.
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The Jacobian matrix is constructed from the diagonal components

∂

∂ Ii

(
dIi

dt

)
= βi

Si − Ii

Ni
− μi (Ni ) − αi −

∑

j∈Pi

φi j qi j
(
S j + pi j I j

) + riκi (Si − Ii )

and the off-diagonal components

∂

∂ I j

(
dIi

dt

)∣∣∣∣
j∈Pi

= Iiφi j qi j
(
1 − pi j

) + κi Si r j

∂

∂ Ik

(
dIi

dt

)∣∣∣∣
k∈Qi

= Si cikφik + κi Si rk

∂

∂ I�

(
dIi

dt

)∣∣∣∣
�/∈Pi ∪Qi

= r�κi Si

The Jacobian matrix of the system at an infection-free steady state is therefore a 2n×2n
matrix of the form

J =
(

C D
0 H

)
(1)

where H = T+Σ corresponds to the Jacobian matrix for the infection dynamics. The
transmission matrix T has components

Ti j =

⎧
⎪⎪⎨

⎪⎪⎩

βi + riκi Ni : i = j
r jκi Ni : j ∈ Pi

ci jφi j Ni + r jκi Ni : j ∈ Qi

riκi Ni : otherwise

The transition matrix Σ is diagonal, with entries

	i i = −μi (Ni ) − αi −
∑

j∈Pi

φi j qi j N j

We can say some more about the meaning of the different matrices constituting J.
First, the element Ji j of J represent the sensitivity of the i th variable to changes in the
j th variable, i.e. the elements of J describe the influence of the different variables on
each other. Secondly, we have from an epidemiological point of view, chosen to phrase
the exposition in terms of susceptible and infectious individuals only. Of course, there
are several additional infected states (such as a latency state) and uninfected states
(such as recovered and immune states) possible, in which individuals may behave
differently from an epidemiological and ecological point of view. We ignore these in
our exposition, in the interest of simplicity. In general one could set up the analysis with
n species and with m infected states for individuals of these species, where m may be
smaller than n (for example if not all species in the ecosystem are hosts of the infectious
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agent), or larger than n (for example when there are additional relevant infection-
related states for certain species beyond the infectious state). For our exposition we
have chosen n = m.

Suppose we first regard the infection-free steady state as the basis of constructing
J, as described above. In that case, the eigenvalue problem decouples, i.e., the char-
acteristic equation splits in a product of the characteristic equations for C and H. The
matrices C and H are necessarily square. Matrix C has dimension n × n, and H has
dimension n × n (but in general m × m). Matrix C describes the influence of any
species on other species in their common ecosystem in terms of their total popula-
tion sizes Ni , i = 1, . . . , n, evaluated at the infection-free steady state. Therefore,
C is the community matrix (McCann 2012), determining the ecological stability of
the infection-free steady state, i.e., stability against perturbation in a subset of the Ni ,
measured by whether the spectral bound s(C) < 0. Matrix H describes the influence
of any infected state on other infected states. It is the Jacobian matrix of the infection
sub-system, evaluated at the steady state for which it was constructed. Therefore, H is
directly related to the so-called next-generation matrix with large domain in epidemic
theory (introduced in Diekmann et al. 2010) KL = −TΣ−1. The epidemiological
stability of the infection-free steady state is governed by whether the spectral bound
s(H) < 0, or alternatively whether the spectral radius ρ(KL) < 1 (see Diekmann et al.
2010). For other steady states, for example the endemic state with infection persisting
in some or all of its host species, the eigenvalue problem does not decouple because
the matrix in the bottom left corner (zero in the previous case) then contains non-zero
elements. We will discuss an example in Sect. 4. For ‘completeness’ we note that for
the cases studied in this paper, the matrix KL coincides with the next-generation matrix
K because the infected states coincide with the states-at-infection (Diekmann et al.
2010). In general, however, there will be more infected states than states-at-infection,
and the matrix H will be related to KL . The spectral radii of KL and K are equal, but
the matrices are different in general (Diekmann et al. 2010).

The other two matrices constituting J are also square in our set up above, but will
in general not be square. Their elements affect the ecological and epidemiological
stability of the system as a whole whenever the matrix in the lower left corner is
different from the 0-matrix. From an interpretation point of view, the elements of
matrix D describe the additional influence of the infected states on the ecology of all
species, expressed as their influence on the total population sizes Ni of all species.
One should, on the one hand, view individuals of a species i in an infected state as
similar to other individuals of species i , in their normal ecological interactions with
others (of their own species and of any other species they are related to in the food
web). These effects are incorporated in C, where the infected individuals simply count
as part of the total population size of species i . On the other hand, the fact that these
particular individuals are in addition in an infected state can lead to additional effects
on their own species’ population size, and the population sizes of others, for example
via changed feeding behavior or changes in reproductive ability. These influences in
the total population size are measured by the elements of D. The elements of the
matrix in the lower left corner (zero in the exposition above), describe the additional
ecological influence of the total population sizes of all species on the individuals in
infected states. The influence of the infected part of the total population size, the
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epidemiological interaction, is incorporated in H. The matrix in the lower left corner
describes the additional effects of ecological interactions, for example changed density
dependence acting on individuals in infected states.

3 A resource - consumer/pathogen system

This first example is motivated by the former rinderpest, wildebeest and grass inter-
action in the Serengeti. Rinderpest was a viral disease of ruminants with devastating
consequences for cattle. In 2011 it became the second pathogen to be declared erad-
icated worldwide, after human smallpox in 1980. Intensive vaccination campaigns
were aimed at domesticated ruminants that could seed outbreaks in wild animal pop-
ulations, and led to eradication of the virus from wild animal populations, including
wildebeest. It has been suggested (Holdo et al. 2009) that one side effect of the eradica-
tion of rinderpest in the Serengeti has been that fires have decreased in frequency, with
increased survival of tree seedlings, due to the reduction in grass in the ecosystem. A
possible reason for the latter is that the wildebeest population has grown explosively
in the years following the eradication of rinderpest. This suggests that the virus had
a strong regulatory effect on the wildebeest population, leading to a steady state with
low levels of wildebeest and high levels of grass. Lifting the regulatory effect has
allowed the wildebeest population to equilibrate at a new, higher level (see Fig. 4 in
Holdo et al. 2009), with a concomitantly reduced level of grass.

Here, we designate wildebeest as the consumer and grass as its main resource.
We have the following assumptions. The consumer population has density-dependent
births; the consumer not only eats the resource but has an alternative source of lesser
preference. The resource (grass) is assumed to show logistic growth. There is no
infection in the resource. For simplicity we ignore a latency phase and assume that
infected individuals are infectious for life, i.e. no exposed E or recovered R classes.

If there is no infection present, the equations are

dN1

dt
= μ1 N1

(
1 − N1

K

)
− φN1 N2

dN2

dt
= ν(N2)N2 + eφN1 N2 − μ2 N2

The function ν(N2) describes the density dependence in consumer births, for the
numerical examples we use ν(N2) = ρe−k N2 .

The steady state solutions are

1. The trivial steady state, N1 = N2 = 0 is unstable.
2. The resource-only steady state, N1 = K , N2 = 0, is unstable if ν(0) > μ2 which

we assume from now on.
3. The consumer-only steady state, N1 = 0, N2 = N̂2, where ν(N̂2) = μ2, is stable

if φ N̂2 > μ1.
4. The coexistent steady state, N1 = N̄1 = K

(
1 − φ N̄2/μ1

)
, N2 = N̄2, solves

ν(N̄2) = μ2 − eφK
(
1 − φ N̄2/μ1

)
, and is stable whenever it exists. By existence

we mean that the steady state values of N1 and N2 are positive. When this is true
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0 < N̄1 < K and N̂2 < N̄2 < μ1/φ, hence the steady state
(

0, N̂2

)
is unstable

whenever the steady state
(
N̄1, N̄2

)
exists.

When there is infection present, the system becomes:

dN1

dt
= μ1 N1

(
1 − N1

K

)
− φN1 (S2 + pI2)

dN2

dt
= ν(N2)N2 + eφN1 (S2 + pI2) − μ2 N2 − α I2 (2)

dI2

dt
= β

S2 I2

N2
− (μ2 + α) I2

The Jacobian at any infection-free state (N1, N2, 0) simplifies to

⎛

⎝
−μ1

N1
K −φN1 φ(1 − p)N1

eφN2 N2ν
′ (N2) −eφ (1 − p) N1 − α

0 0 β − μ2 − α

⎞

⎠

The upper left 2 × 2 sub-matrix is the Jacobian matrix of the infection-free steady
state, containing ecological interactions only. It determines the ecological stability
of the steady state. The lower right 1 × 1 sub-matrix determines the stability of the
infection-free steady state to invasion by the infectious agent. The steady state is epi-
demiologically unstable if R0 = β/ (μ2 + α) > 1. The upper right 1 × 2 sub-matrix
describes the effect of infected consumers on the consumer and resource population
sizes. Therefore the structure of the Jacobian matrix decouples the eigenvalue prob-
lem for ecological stability from the problem for epidemiological stability. As shown
above, the coexistent steady state

(
N̄1, N̄2

)
of the ecological system is stable whenever

it exists. Therefore a pathogen-free steady state solution
(
N̄1, N̄2, 0

)
of the system,

when it exists, is stable for R0 < 1 (no invasion possible), and unstable for R0 > 1.
For this example, we are interested to see if we can start from a stable steady state

with infection,
(
N∗

1 , N∗
2 , I ∗

2

)
, destabilize it by reducing R0 from greater than 1 to less

than 1, after which the system settles in a new stable steady state
(
N̄1, N̄2, 0

)
, with the

population size of the consumer increased, and that of the resource decreased, com-
pared to the steady state situation with infection present in the consumer population.

From the set of equations (Eq. 2), it follows that a steady state solution with con-
sumer, resource and pathogen present satisfies

S∗
2 = N∗

2

R0
I ∗
2 = N∗

2 − S∗
2

N∗
1 = K

(
1 − φ

(
S∗

2 + pI ∗
2

)

μ1

)
= K

(
1 − φr

μ1
N∗

2

)
(3)

ν(N∗
2 ) = μ2 − eφN∗

1 + θ
I ∗
2

N∗
2
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where R0 > 1, θ = α + eφ (1 − p) N∗
1 and r = p + (1 − p) /R0 < 1. When

N∗
1 = 0, the set of equations (Eq. 3), has a solution

(
0, N̂∗

2 , Î ∗
2

)
whenever ν(N̂∗

2 ) =
(μ2 + α) (1 − α/β) has a positive solution. That is, whenever

ν(0) > (μ2 + α)

(
1 − α

β

)
= μ2 + α

(
1 − 1

R0

)
> lim

N→∞ ν(N )

This represents a steady state with consumer and pathogen but no resource. Recall the
assumption that the consumer has an alternative resource.

When N∗
1 
= 0 the steady state value of N∗

2 is the unique solution of

ν(N∗
2 ) = (μ2 + α)

(
1 − α

β

)
− eKφr

(
1 − φr

μ1
N∗

2

)

which exists when

ν(0) > (μ2 + α)

(
1 − α

β

)
− eKφr

= μ2 + α

(
1 − 1

R0

)
− eKφ

(
p + 1 − p

R0

)
> ν

(
μ1

φr

)

The Jacobian matrix at either of these steady states
(
N∗

1 , N∗
2 , I ∗

2

)
simplifies to

J =

⎛

⎜⎜⎜⎝

−μ1 N∗
1 /K −φN∗

1 φ (1 − p) N∗
1

eφ
(
S∗

2 + pI ∗
2

)
ν′(N∗

2 )N∗
2 + θ I ∗

2 /N∗
2 −θ

0 β I ∗2
2 /N∗2

2 −β I ∗
2 /N∗

2

⎞

⎟⎟⎟⎠

For the steady state
(

0, N̂∗
2 , Î ∗

2

)
, the first row of the matrix then consists entirely of

zeros. Hence stability is determined by the 2 × 2 matrix

⎛

⎝
ν′(N̂∗

2 )N̂∗
2 + α Î ∗

2 /N̂∗
2 −α

β Î ∗2
2 /N̂∗2

2 −β Î ∗
2 N̂∗

2

⎞

⎠

which has negative trace and positive determinant. Hence, the steady state
(

0, N̂∗
2 , Î ∗

2

)

is stable whenever it exists.
Numerical results suggest that the endemic state

(
N∗

1 , N∗
2 , I ∗

2

)
is stable when it

exists. A summary of these results is shown in Fig. 1. It can be seen that for R0 < 1 one

of two pathogen-free steady states is attained, the consumer-only state
(

0, N̂2, 0
)

, or

the coexistent state
(
N̄1, N̄2, 0

)
. These states lose ecological stability at the horizontal

line, which is the critical value of φ, and lose epidemiological stability at the vertical
line R0 = 1. When the consumer-only steady state loses epidemiological stability,
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Fig. 1 Regions in the (R0, φ) plane showing where different steady states of the resource/consumer/

pathogen model exist and are stable. The regions labelled are:
(

0, N̂2

)
and

(
N̄1, N̄2

)
, where the pathogen

is absent; and the endemic state
(
N∗

1 , N∗
2 , I∗

2
)
. For more details see text. In the upper shaded region the

steady state
(

0, N̂∗
2 , Î∗

2

)
exists and is stable, in the lower shaded region the pathogen drives the consumer

population to extinction. Parameter values are for illustration only: α = 0.2, μ1 = 0.1, μ2 = 0.2,
ρ = 0.25, β = R0 (μ2 + α) in units (time)−1; K = 3, (biomass); k = 0.6694, (biomass)−1; φ in units
(biomass)−1 (time)−1; p = 0.5, e = 1.08 dimensionless

the steady state
(

0, N̂∗
2 , Î ∗

2

)
is attained. This state (the upper shaded wedge in Fig. 1)

loses epidemiological stability at its right-hand boundary, to the resource, consumer,
pathogen steady state

(
N∗

1 , N∗
2 , I ∗

2

)
. It can also be seen in Fig. 1 that for high values

of R0 and low values of the feeding rate φ it is possible that the pathogen drives the
consumer to extinction.

Figure 2 shows putative bifurcation diagrams for this system. In Fig. 2a it is seen
that at higher values of R0 the resource biomass approaches the carrying capacity
in the absence of consumers, K . As the value of R0 decreases, so does the biomass
N∗

1 . In Fig. 2b the increase in consumer density as R0 decreases is confirmed. This
result illustrates how eradicating an infectious disease from a consumer population can
increase population density, which at the same time reduces the biomass of a resource.
For R0 < 1 the resource and consumer coexist in a sustainable equilibrium.

We conclude that this simple model is able to capture the processes essential to
explain the observed dynamics in the Serengeti and reported in Holdo et al. (2009),
moving from a situation with R0 > 1 to the current situation with R0 < 1. The
data presented in Holdo et al. (2009)—Fig. 4, show a wildebeest population of around
200,000 animals in the ecosystem before 1960. An exponential increase in numbers
started with the fast decline of rinderpest prevalence from about 80 % before 1960
to close to 0 % around 1965, leading to equilibration around a new steady state of
about 1,200,000 animals in 1980. This steady state has been more or less maintained
since then. Of course, the actual ecological system is much more complicated, and
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Fig. 2 Steady state values of
a the resource biomass and b the
consumer population density as
functions of the basic
reproduction number rate R0. In
a N̄1 and N∗

1 represent steady
states of resource biomass in the
presence of consumer only, and
in the presence of consumer and
pathogen respectively. In b N̄2
and N∗

2 are the corresponding
values for the consumer
population, I∗

2 is the steady state
of the infected consumer
population, and N̂2 is the steady
state of the consumer population
in the absence of resource and
pathogen. For more details see
text. Parameter values are for
illustration only: α = 0.2, μ1 =
0.1, μ2 = 0.2, ρ = 0.25 in
units (time)−1;
K = 3, (biomass);
k = 0.6694, (biomass)−1;
φ = 0.0667
(biomass)−1 (time)−1; p = 0.5,
e = 1.08 dimensionless

the change in R0 is simply a metaphor for a change in the wildebeest-rinderpest
interaction that reduced the potential for wildebeest to become infected, but the basic
dynamics are represented. Moreover, one can see from Fig. 1 that it is indeed the
interplay between the strength of ecological interaction, here represented by feeding
rate φ, and the strength of epidemiological interaction, here represented by the basic
reproduction number R0, that determines the dynamics and stability of the ecosystem
consumer/resource/infectious agent.

4 A prey–predator–pathogen system

We now turn to a slightly more complicated example, where both the consumer and the
resource are hosts to the infectious agent. As a biological motivation, think of a system
with a predator (for example lions) and a resource (for example buffalo), sharing a
pathogen (for example the bovine tuberculosis bacterium) that can be transmitted both
within species or between species. Another example would be lions with zebra and
anthrax, a pathogen that can also be transmitted via the environment (Getz 2011). Simi-
lar examples have previously been studied (Chattopadhyay and Arino 1999; Venturino
1994, 1995, 2002).
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Assume that the prey and predator have density-dependent birth rates. The predator
not only eats the prey but has an alternative source of food. If there is no infection
present, the equations are

dN1

dt
= ν1(N1)N1 − μ1 N1 − φN1 N2

dN2

dt
= ν2(N2)N2 + eφN1 N2 − μ2 N2

In the explicit calculations we assume νi (Ni ) = ρi e−ki Ni . There are four steady
state solutions: the trivial steady state, prey only, predator only and coexistence. The
Jacobian matrix is

C =
(

[ν1 N1]′ − μ1 − φN2 −φN1
eφN2 [ν2 N2]′ + eφN1 − μ2

)
(4)

Hence

1. The trivial steady state, N1 = N2 = 0 is stable if ν1(0) < μ1 and ν2(0) < μ2.
2. The prey-only steady state, N1 = N̂1, N2 = 0, where ν1(N̂1) = μ1, is stable if

ν2(0) + eφ N̂1 < μ2.
3. The predator-only steady state, N1 = 0, N2 = N̂2, where ν2(N̂2) = μ2, is stable

if ν1(0) < μ1 + φ N̂2.
4. The coexistent steady state, N1 = N̄1, N2 = N̄2, solves ν1(N̄1) = μ1 + φ N̄2 and

ν2(N̄2) = μ2 − eφ N̄1, and is stable whenever it exists.

In the above statements, stability refers to ecological stability. We now investigate
the epidemiological stability of the system to the introduction of a pathogen that infects
prey and predator. The infection routes are within species: prey to prey and predator to
predator; prey to predator through feeding; and prey and predator to prey through the
environment. We assume SIS infection dynamics in both hosts. Infected prey could
be easier to catch (q > 1), or repulsive to the predator (q < 1). Infectious predators
could be less likely to catch prey (p < 1). Substitute N1 = S1 + I1 and N2 = S2 + I2.
The equations are:

dN1

dt
= ν1(N1)N1 − μ1 N1 − α1 I1 − φ (S1 + q I1) (S2 + pI2)

dN2

dt
= ν2(N2)N2 + eφ (S1 + q I1) (S2 + pI2) − μ2 N2 − α2 I2 (5)

dI1

dt
= β1

S1 I1

N1
− (μ1 + α1) I1 − φq I1 (S2 + pI2) + κS1 (I1 + r I2)

dI2

dt
= cqφ I1S2 + β2

S2 I2

N2
− (μ2 + α2) I2

Similar systems have previously been studied, see for example Hadeler and Freedman
(1989) and Hsieh and Hsiao (2008).
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The Jacobian matrix at any disease-free state S1 = N1, S2 = N2, I1 = I2 = 0,

with (N1, N2) =
(

N̂1, 0
)

,
(

0, N̂2

)
or

(
N̄1, N̄2

)
, is of the form shown in Eq. 1. The

upper left 2 × 2 submatrix C is the Jacobian matrix of the infection-free system, as in
Eq. 4. It determines the ecological stability of the steady state. The lower right 2 × 2
submatrix H = T+Σ determines the stability of the infection-free system to invasion
by an infectious agent, that is the epidemiological stability. The matrix T contains the
transmission terms, and Σ contains the transition terms.

T =
(

β1 + κ N1 rκ N1
cφq N2 β2

)
Σ = −

(
μ1 + α1 0

0 μ2 + α2

)

The next-generation matrix is

K = −TΣ−1 =

⎛

⎜⎜⎜⎝

β1 + κ N1

μ1 + α1 + φq N2

rκ N1

μ2 + α2

cφq N2

μ1 + α1 + φq N2

β2

μ2 + α2

⎞

⎟⎟⎟⎠ (6)

and the steady state is epidemiologically unstable if R0 = ρ(K) > 1. If the two
species exist in isolation of each other, then their basic reproduction numbers are the
eigenvalues of K when φ = 0. Hence we write

R1
0 = β1 + κ N̂1

μ1 + α1
) R2

0 = β2

μ2 + α2

4.1 Steady states with one species present

We have seen that, in the absence of infection, the system has three non-trivial steady
states, one each with a single species present, and a coexistent state. The ecological
parameters of the system determine which state is realized and stable. We now consider
the two possible steady states with a single species and infection present, and their
stability.

4.1.1 Prey and pathogen only

The steady state solves I ∗
1 = F1(N∗

1 )N∗
1 = F2(N∗

1 )N∗
1 , where F1(N∗

1 ) = (
ν1(N∗

1 ) −
μ1

)
/α1 and F2(N∗

1 ) = 1 − (μ1 + α1) /
(
β1 + κ N∗

1

)
with N2 = I2 = 0. As F1(N ) is

a non-increasing function with F1(N̂1) = 0, then for this state to exist it is necessary
that R1

0 > 1 and F1(0) > F2(0). We then have a solution with 0 < I ∗
1 < N∗

1 < N̂1.
If F1(0) < F2(0) then the pathogen is sufficiently virulent to drive the prey species to
extinction. If the equations in Eq. 5 are reordered, swapping the second and third, the
structure of the Jacobian at this steady state becomes

123



The NGM and R0 in ecological epidemiology 1059

J =
(

H D
0 C

)

The matrices that determine the stability of the steady state are then, after a little
simplification

H =
(

N∗
1 ν′

1(N∗
1 ) + α1 I ∗

1 /N∗
1 −α1

κ I ∗
1 −β1 I ∗

1 /N∗
1

)

and

C =
(

ν2(0) + eφ
(
S∗

1 + q I ∗
1

) − μ2 −eφ (1 − p)
(
S∗

1 + q I ∗
1

) − α2
cqφ I ∗

1 β2 − μ2 − α2

)

The matrix H controls the epidemiological stability of the system to the pathogen. It
is always stable if β1 > α1, which follows from R1

0 > 1. The matrix C reflects the
ecological stability of the system. That is, how it may be affected by introduction of
the predator.

4.1.2 Predator and pathogen only

The steady state solves

I ∗
2

N∗
2

= ν2(N∗
2 ) − μ2

α2
= 1 − μ2 + α2

β2
= 1 − 1

R2
0

with N1 = I1 = 0. Arguing as above, existence of this state requires R2
0 > 1

and (ν2(0) − μ2) /α2 > 1 − 1/R2
0, and leads to 0 < I ∗

2 < N∗
2 < N̂2. If

(ν2(0) − μ2) /α2 < 1 − 1/R2
0 then the increased death rate from the pathogen is

sufficient to drive the predator species to extinction. The Jacobian matrix at this steady
state has the structure shown in Eq. 1. The eigenvalues of the Jacobian matrix are the
eigenvalues of the matrices

C =
(

ν1(0) − μ1 − φ
(
S∗

2 + pI ∗
2

) −α1 − φq
(
S∗

2 + pI ∗
2

)

rκ I ∗
2 β1 − μ1 − α1 − φq

(
S∗

2 + pI ∗
2

)
)

and

H =
(

N∗
2 ν2(N∗

2 )′ + α2 I ∗
2 /N∗

2 −α2
0 −β2 I ∗

2 /N∗
2

)

which again determine ecological and epidemiological stability respectively.
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Fig. 3 Regions in the
(
R2

0, φ
)

plane showing where different steady states of the prey/predator/pathogen

model exist and are stable. The regions labelled are:
(

0, N̂2

)
and

(
N̄1, N̄2

)
, where the pathogen is absent;

and the endemic states
(
0, N∗

2 , 0, I∗
2
)

where predator and pathogen are present, and
(
N∗∗

1 , N∗∗
2 , I∗∗

1 , I∗∗
2

)

where prey, predator and pathogen are present. For more details see text. Parameter values are for illustration
only: α1 = 0.02, α2 = 0.2, β1 = 0.209, β2 = 0.6, μ1 = 0.2, μ2 = 0.1, ρ1 = ρ2 = 0.25 in units
[time]−1; k1 = 0.0744, k2 = 2.7489, [biomass]−1; κ = 0.1 [biomass]−1 [time]−1; p = 0.5, q = r =
1, e = 2.6185, c = 0.1 dimensionless

4.2 Coexistent steady states—prey, predator and pathogen present

Numerical results confirm that for a region of parameter space the prey, predator
and pathogen species coexist. The steady state values may be computed numerically,
and confirmed by solving the differential equations over time and finding limiting
values of the state variables. Figure 3 shows an example of the results plotted as
regions in the

(R2
0, φ

)
plane where different steady states exist and are stable. If

R2
0 < 1, for values of the feeding rate φ above a critical value, only the preda-

tor population exists. The prey is driven to extinction. For lower values of φ both
prey and predator species exist, but in the absence of pathogen. However, recall
that R0 = ρ(K), the largest eigenvalue of the next-generation matrix. It can be
seen from Eq. 6 that the leading diagonal element of K increases as φ decreases,
and the trailing diagonal is R2

0. With the example parameters presented in Fig. 3,
β1/ (μ1 + α1) = 0.95. The steady state value N̄1 is large for small φ, hence for suffi-
ciently low values of φ, R0 > 1 even though R2

0 < 1 and the pathogen invades both
species.

Another consequence of the results is shown in Fig. 4, where we illustrate a
potential effect of the rate at which the predator consumes the prey on the coex-
istence of the system, and how the presence of the pathogen may mediate this.
In Fig. 4a, horizontal broken lines show prey steady states, all in the absence of
predators. The values are N̂1 > N∗

1 > I ∗
1 . Also shown in Fig. 4a are the corre-

sponding prey steady states in the presence of predators, N̄1 (no pathogen present)
and

(
N∗∗

1 , I ∗∗
1

)
, the steady state with pathogen. It can be seen in Fig. 4a that for
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Fig. 4 Steady state values of
a the prey population and b the
predator population as functions
of the consumption rate φ. In a
N̂1, N̄1, N∗

1 and N∗∗
1 represent

steady states of prey in the
absence of predator and
pathogen, in the presence of
predator only, in the presence of
pathogen only, in the presence of
predator and pathogen
respectively. I∗

1 and I∗∗
1 are the

corresponding steady state
values of the infected prey
population. In b N̂2, N̄2, N∗∗

2
and I∗∗

2 are the corresponding
values for the predator
population. For more details see
text. Parameter values are for
illustration only: α1 = 0.02,
α2 = 0.2, β1 = 0.209,
β2 = 0.6, μ1 = 0.2, μ2 = 0.1,
ρ1 = ρ2 = 0.25 in units
[time]−1; k1 = 0.0744,
k2 = 2.7489, [biomass]−1;
κ = 0.1 [biomass]−1 [time]−1;
p = 0.5, q = r = 1,
e = 2.6185, c = 0.1
dimensionless

φ > φcrit the prey species cannot coexist with the predator, in the absence of
the pathogen. The consumption rate is sufficiently high that the prey species is
driven to extinction. If however, the pathogen is present, then all three species
can coexist. This is because infection with the pathogen increases mortality in the
predator population, reducing the population size and hence its impact on the prey
population.

The effect of varying consumption rate on the predator population is shown in
Fig. 4B. For φ < φcrit coexistence of predator and prey

(
N2 = N̄2

)
, or of predator, prey

and pathogen
(
N2 = N∗∗

2 , I2 = I ∗∗
2

)
, is possible. However, for φ > φcrit coexistence

of predator and prey is only possible in the presence of the pathogen.

5 Discussion

We have shown how one can characterize the invasion of in infectious agent into an
ecosystem, and highlighted how this relates to stability analysis in both ecology and
epidemiology. To do this we have extended the next-generation matrix approach to
the basic reproduction number R0, as described in Diekmann et al. (2010). From a
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mathematical point of view, it will be interesting to derive new results concerning the
interplay between ecological and epidemiological stability in the future.

Both of the example systems presented in Sects. 3 and 4, as well as the more gen-
eral consumer-resource system in Sect. 2, reinforce a view that has been explored in
many examples in the theoretical literature (see Sect. 1): ecological interactions not
necessarily related to transmission events between a susceptible and an infectious indi-
vidual, can strongly influence the dynamics of the infectious agent in the multi-species
community to which the hosts belong. For our understanding of phenomena observed
in real ecosystems and the interpretation of field data, either related to infectious dis-
ease prevalence in key species, or the composition, topology, balance and stability of
ecosystems and food webs, it seems that such eco-epidemiological models could play
an important role as additional tools of analysis. Clearly, much more work is needed,
not only in relation to data, numerical exploration and biological inference, but also in
generating tools for the mathematical analysis of these models. In addition, concep-
tual innovations are needed when thinking about incorporating various transmission
routes and ecological relations between species into models; for example, contrasting
various ways of exploring the transmission of infection via feeding, depending on the
way energy or biomass flow is accounted for.

We believe that eco-epidemiological modeling, ultimately integrating ecosystem
theory with epidemic theory, is an important challenge for theoretical biology and
mathematics. The reason why such a theory can be fruitfully developed and explored
now is that its development is best guided by field and experimental observations.
Such results have been emerging only in recent years and are expected to become a
major new branch of ecology in the future, with a widespread awareness that for an
understanding of infectious diseases in natural populations, and perhaps even for an
understanding of ecosystem dynamics itself, we need to consider multi-host/multi-
agent systems (Lafferty et al. 2006, 2008; Telfer et al. 2010).
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