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Graph coarsening and clustering on the GPU

B. O. Fagginger Auer and R. H. Bisseling

ABSTRACT. Agglomerative clustering is an effective greedy way to generate
graph clusterings of high modularity in a small amount of time. In an ef-
fort to use the power offered by multi-core CPU and GPU hardware to solve
the clustering problem, we introduce a fine-grained shared-memory parallel
graph coarsening algorithm and use this to implement a parallel agglomera-
tive clustering heuristic on both the CPU and the GPU. This heuristic is able
to generate clusterings in very little time: a modularity 0.996 clustering is
obtained from a street network graph with 14 million vertices and 17 million
edges in 4.6 seconds on the GPU.

1. Introduction

We present a fine-grained shared-memory parallel algorithm for graph coars-
ening and apply this algorithm in the context of graph clustering to obtain a fast
greedy heuristic for maximising modularity in weighted undirected graphs. This is
a follow-up to [8], which was concerned with generating weighted graph matchings
on the GPU, in an effort to use the parallel processing power offered by multi-core
CPUs and GPUs for discrete computing tasks, such as partitioning and clustering
of graphs and hypergraphs. Just as generating graph matchings, graph coarsening
is an essential aspect of both graph partitioning [4[912] and multi-level clustering
[22] and therefore forms a logical continuation of the research done in [8].

Our contribution is a parallel greedy clustering algorithm, that scales well with
the number of available processor cores, and generates clusterings of reasonable
quality in very little time. We have tested this algorithm, see Section Bl against a
large set of clustering problems, all part of the 10th DIMACS challenge on graph
partitioning and clustering [I], such that the performance of our algorithm can
directly be compared with the state-of-the-art clustering algorithms participating
in this challenge.

An undirected graph G is a pair (V, E), with vertices V, and edges E that are
of the form {u,v} for u,v € V with possibly u = v. Edges can be provided with
weights w : F — Ry, in which case we call G a weighted undirected graph. For
vertices v € V', we denote the set of all of v’s neighbours by

Vo i={ueV|{uv} e E}\{v}.
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224 B. O. FAGGINGER AUER AND R. H. BISSELING

A matching of G = (V, E) is a subset M C F of the edges of G, satisfying that any
two edges in the matching are disjoint. We call a matching M mazimal if there does
not exist a matching M’ of G with M C M’ and we call it perfect if 2| M| = |V|. If
G = (V, E,w) is weighted, then the weight of a matching M of G is defined as the
sum of the weights of all edges in the matching: w(M) := ) ., w(e). A matching
M of G which satisfies w(M) > w(M’) for every matching M’ of G is called a
mazximum-weight matching.

Clustering is concerned with partitioning the vertices of a given graph into sets
consisting of vertices related to each other, e.g. to isolate communities in graphs
representing large social networks [2,[14]. Formally, a clustering of an undirected
graph G is a collection C of subsets of V', where elements C' € C are called clusters,
that forms a partition of G’s vertices, i.e.

V= U C, as a disjoint union.
ceC
Note that the number of clusters is not fixed beforechand, and that there can be
a single large cluster, or as many clusters as there are vertices, or any number of
clusters in between. A quality measure for clusterings, modularity, was introduced
in [16], which we will use to judge the quality of the generated clusterings.
Let G = (V, E,w) be a weighted undirected graph. We define the weight ¢(v)
of a vertex v € V in terms of the weights of the edges incident to this vertex as
> w({u,v}) if {v,v} ¢ E,
{u,v}eE
(1.1) C(v) := S w{u,v}) +2w({v,v})  if {v, v} € E.
{u,v}€EE

uFv
Then, the modularity, cf. [1], of a clustering C of G is defined by

TR P ol > <<v>)2

(1.2) mod(C) := u,vecw - _ Cec \weC o
& i (5,0)

which is bounded by —% < mod(C) < 1, as we show in the appendix.

Finding a clustering C which maximises mod(C) is an NP-complete problem, i.e.
ascertaining whether there exists a clustering that has at least a fixed modularity
is strongly NP-complete [3, Theorem 4.4]. Hence, to find clusterings that have
maximum modularity in reasonable time, we need to resort to heuristic algorithms.
Many different clustering heuristics have been developed, for which we would like
to refer the reader to the overview in [19] Section 5] and the references contained
therein: there are heuristics based on spectral methods, maximum flow, graph
bisection, betweenness, Markov chains, and random walks. The clustering method
we present belongs to the category of greedy agglomerative heuristics [2L5LI5L17,
22|. Our overall approach is similar to the parallel clustering algorithm discussed
by Riedy et al. in [18] and a detailed comparison is included in Section

2. Clustering

We will now rewrite (L2)) to a more convenient form. Let C' € C be a cluster
and define the weight of a cluster as ((C) := Y .~ ((v), the set of all internal edges
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GRAPH COARSENING AND CLUSTERING ON THE GPU 225

as int(C) = {{u,v} € E | u,v € C}, the set of all external edges as ext(C) :=
{{u,v} € E|u € C,v ¢ C}, and for another cluster C’ € C, the set of all cut edges
between C' and C’ as cut(C,C’) := {{u,v} € E | u € C,v € C'}. Let furthermore
Q=) . cpw(e) be the sum of all edge weights.

With these definitions, we can reformulate ([2)) as (see the appendix):

1
(2.1) mod(C):m g O)@2a-¢)—-20 E w(cut(C,C"))
ceC Cc’ec
C'ZC

This way of looking at the modularity is useful for reformulating the agglomerative
heuristic in terms of graph coarsening, as we will see in Section 2.1

For this purpose, we also need to determine what effect the merging of two
clusters has on the clustering’s modularity. Let C be a clustering and C,C’ € C. If
we merge C' and C” into one cluster CUC”, then the clustering C’ := (C\{C,C'})U
{C U’} we obtain, has modularity (see the appendix)

(2.2) mod(C') = mod(C) + (2Qw(cut(C ) = ¢(0) ((C’)),

1
202
and the new cluster has weight

(2.3) (Cuc)=> ¢+ > ¢lv) =¢(C)+ ().

vel vel’

2.1. Agglomerative heuristic. Equations (Z1)), (Z2)), and (23] suggest an
agglomerative heuristic to generate a clustering [I5[18][22]. Let G = (V, E,w, () be
a weighted undirected graph, provided with edge weights w and vertex weights ( as
defined by (L), for which we want to calculate a clustering C of high modularity.

We start out with a clustering where each vertex of the original graph is a
separate cluster, and then progressively merge these clusters to increase the modu-
larity of the clustering. This process is illustrated in Figure [[l The decision which
pairs of clusters to merge is based on (22): we generate a weighted matching in
the graph with all the current clusters as vertices and the sets {C,C"} for which
cut(C,C") # () as edges. The weight of such an edge {C, C'} is then given by ([2.2)),
such that a maximum-weight matching will result in pairwise mergings of clusters
for which the increase of the modularity is maximal.

We do this formally by, starting with G, constructing a sequence of weighted
graphs G = (Vi E', w' (%) with surjective maps 7 : V¢ — Vitl

G = ¢ 5 ¢ Lo
These graphs G correspond to clusterings C? of G in the following way:
C={{veV|(@ 1 o om)(v)=u} | ueV}, i=0,1,2,...

Each vertex of the graph G’ will correspond to precisely one cluster in C’: all
vertices of G that were merged together into a single vertex in G via 7°, ..., 771,
are considered as a single cluster. (In particular for G° = G each vertex of the
original graph is a separate cluster.)

From (Z3]) we know that weights ((-) of merged clusters should be summed,
while for calculating the modularity, ([27I)), and the change in modularity due to
merging, (2.2]), we only need the total edge weight w(cut(-,-)) of the collection of

edges between two clusters, not of individual edges. Hence, when merging two
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226 B. O. FAGGINGER AUER AND R. H. BISSELING

(a) G° (b) G

(d) G*¢ (e) G332 (f) Best clustering (G2').

FI1GURE 1. Clustering of netherlands into 506 clusters with mod-
ularity 0.995.

clusters, we can safely merge the edges in G* that are mapped to a single edge in
G by 7, provided we sum their edge weights. This means that the merging
of clusters in G* to obtain G**! corresponds precisely to coarsening the graph
G' to G**1. Furthermore, weighted matching in the graph of all current clusters
corresponds to a weighted matching in G* where we consider edges {u,v'} € E* to
have weight 2 Qw®({u,v'}) — ¢*(u*) ¢*(v') during matching. This entire procedure
is outlined in Algorithm [l where we use a map g : V' — N to indicate matchings
M C E by letting pu(u) = p(v) < {u,v} € M for vertices u,v € V.

3. Coarsening

Graph coarsening is the merging of vertices in a graph to obtain a coarser
version of the graph. Doing this recursively, we obtain a sequence of increasingly
coarser approximations of the original graph. Such a multilevel view of the graph
is useful for graph partitioning [4L9L12], but can also be used for clustering [22].

Let G = (V, E,w,() be an undirected graph with edge weights w and vertex
weights . A coarsening of G is a map m : V. — V' together with a graph G’ =
(V',E',w', (") satisfying the following properties:

(1) =(V) =V’
(2) 7(E) = {{m(u),7(v)} | {u,v} € E} = F',
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GRAPH COARSENING AND CLUSTERING ON THE GPU 227

Algorithm 1 Agglomerative clustering heuristic for a weighted undirected graph
G = (V,E,w,() with ¢ given by (II]). Produces a clustering C of G.

mod”*" « —oo
. GO = (VO,EO,WO,CO) — @G
140
CO« {{v} |veV}
: while |V’ > 1 do
if mod(G,C?) > mod"*" then
mod”** «— mod(G,C?)
Cbest — C’L
u < match_clusters(G?)
(7%, G*Y) « coarsen(G?, )
CHle{{veV | (rlo--on)(v) =u} | ueVitt}
1 1+1
: return CPest

© PN DGR W

e e
P A s

(3) for v € V',
(3.1) dW)y= Y <),

(4) and for ¢ € E’,
(3.2) W) = Z w({u,v}).

{u,v}eE
{m(u),m(v)}=e’

Let p: V — N be a map indicating the desired coarsening, such that vertices
u and v should be merged into a single vertex precisely when p(u) = p(v). Then
we call a coarsening m compatible with u if for all u,v € V it holds that 7 (u) = 7(v)
if and only if u(u) = p(v). The task of the coarsening algorithm is, given G and p,
to generate a graph coarsening w, G’ that is compatible with pu.

As noted at the end of Section [Z.1] the map p can correspond to a matching M,
by letting pu(u) = p(v) if and only if the edge {u,v} € M. This ensures that we do
not coarsen the graph too aggressively, only permitting a vertex to be merged with
at most one other vertex during coarsening. Such a coarsening approach is also
used in hypergraph partitioning [20]. For our coarsening algorithm, however, it is
not required that p is derived from a matching: any map p: V' — N is permitted.

3.1. Star-like graphs. The reason for permitting a general p (i.e. where
more than two vertices are contracted to a single vertex during coarsening), instead
of a map p arising from graph matchings is that the recursive coarsening process
can get stuck on star-like graphs [6] Section 4.3].

In Figure we see a star graph in which a maximum matching is indicated.
Coarsening this graph by merging the two matched vertices will yield a graph with
only one vertex less. In general, with a k-pointed star, coarsening by matching will
reduce the total number of vertices from &+ 1 to k, requiring k coarsening steps to
reduce the star to a single vertex. This is slow compared to a graph for which we can
find a perfect matching at each step of the coarsening, where the total number of
vertices is halved at each step and we require only log, k coarsening steps to reduce
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228 B. O. FAGGINGER AUER AND R. H. BISSELING

(b) (d)
FIGURE 2. Merging vertices in star-like graphs: by matching in
(a), by merging vertices with the same neighbours in (b), and by
merging more than two vertices in (c). In (d) we see a star-like
graph with a centre clique of 3 vertices and 4 satellites.

the graph to a single vertex. Hence, star graphs increase the number of coarsening
iterations at line Bl of Algorithm [I] we need to perform, which increases running
time and has an adverse effect on parallelisation, because of the few matches that
can actually be made in each iteration.

A way to remedy this problem is to identify vertices with the same neighbours
and match these pairwise, see Figure [7,10]. When maximising clustering
modularity however, this is not a good idea: for clusters C,C" € C without any
edges between them, cut(C, C’) = (), merging C' and C” will change the modularity
by 50k (C)((C) < 0.

Because of this, we will use the strategy from Figure and merge multiple
outlying vertices, referred to as satellites from now on, to the centre of the star
simultaneously. To do so, however, we need to be able to identify star centres and
satellites in the graph.

As the defining characteristic of the centre of a star is its high degree, we will
use the vertex degrees to measure to what extent a vertex is a centre or a satellite.
We propose, for vertices v € V, to let

_ deg(v)?
(3.3) ep(v) o= <.

uevV,
be the centre potential of v. Here, the degree of a vertex v € V is defined as
deg(v) := |V,|. Note that for satellites the centre potential will be small, because a
satellite’s degree is low, while the centre to which it is connected has a high degree.
On the other hand, a star centre will have a high centre potential because of its
high degree. Let us make this a little more precise.

For a regular graph where deg(v) = k for all v € V, the centre potential will
equal cp(v) = k?/k%? = 1 for all vertices v € V. Now consider a star-like graph,
consisting of a clique of [ vertices in the centre which are surrounded by k satellites
that are connected to every vertex in the clique, but not to other satellites (Figure
2(d)|has I = 3 and k = 4), with 0 < I < k. In such a graph, deg(v) = [ for satellites
v and deg(u) =1 — 1+ k for vertices u in the centre clique. Hence, for satellites v

I? < ! 1
Il—=14+Fk) —1—1+1+1 2

cp(v) =
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GRAPH COARSENING AND CLUSTERING ON THE GPU 229

while for centre vertices u

(1—1+k)? k-1 4
= =1+——_|>:2.
W) =g asi Rl LT 211 7 | =3

If we fix [ > 0 and let the number of satellites k& — co, we see that

cp(v) = 0 and cp(u) — oo.

Hence, the centre potential seems to be a good indicator for determining
whether vertices v are satellites, cp(v) < %, or centres, cp(v) > %.

In Algorithm [ we will therefore, after line[d use cp(v) to identify all satellites
in the graph and merge these with the neighbouring non-satellite vertex that will
yield the highest increase of modularity as indicated by (2.2). This will both provide
greedy modularity maximisation, and stop star-like graphs from slowing down the
algorithm.

4. Parallel implementation

In this section, we will demonstrate how the different parts of the clustering
algorithm can be implemented in a style that is suitable for the GPU.

To make the description of the algorithm more explicit, we will need to deviate
from some of the graph definitions of the introduction. First of all, we consider
arrays in memory as ordered lists, and suppose that the vertices of the graph
G = (V,E,w,() to be coarsened are given by V = (1,2,...,|V|). We index such
lists with parentheses, e.g. V(2) = 2, and denote their length by |V|. Instead of
storing the edges E and edge weights w of a graph explicitly, we will store for each
vertex v € V the set of all its neighbours V,,, and include the edge weights w in this
list. We will refer to these sets as extended neighbour lists and denote them by V*
forveV.

Let us consider a small example: a graph with 3 vertices and edges {1,2}
and {1,3} with edge weights w({1,2}) = 4 and w({1,3}) = 5. Then, for the
parallel coarsening algorithm we consider this graph as V' = (1,2, 3), together with
V¥ =((2,4), (3,5)) (since there are two edges originating from vertex 1, one going
to vertex 2, and one going to vertex 3), V' = ((1,4)) (as w({1,2}) = 4), and
Ve = ((1,5)) (as w({1,3}) = 5).

In memory, such neighbour lists are stored as an array of indices and weights
(in the small example, ((2,4),(3,5),(1,4),(1,5))), with for each vertex a range in
this array (in the small example range (1,2) for vertex 1, (3,3) for 2, and (4,4)
for 3). Note that we can extract all edges together with their weights w directly
from the extended neighbour lists. Hence, (V, E,w,() and (V,{V¥ | v € V'},() are
equivalent descriptions of G.

We will now discuss the parallel coarsening algorithm described by Algorithm
@l in which the parallel_* functions are slight adaptations of those available in
the Thrust template library [1I]. The for ...parallel do construct indicates a
for-loop of which each iteration can be executed in parallel, independent of all other
iterations.

We start with an undirected weighted graph G with vertices V = (1,2, ..., |V]),
vertex weights ¢, and edges E with edge weights w encoded in the extended neigh-
bour lists as discussed above. A given map p : V — N indicates which vertices
should be merged to form the coarse graph.
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230 B. O. FAGGINGER AUER AND R. H. BISSELING

Algorithm 2 Parallel coarsening algorithm on the GPU. Given a graph G with
V=(1,2,...,]V|) and amap p : V — N, this algorithm creates a graph coarsening
m, G' compatible with p.

1 pV

2: (p, u) < parallel_sort_by _key(p, 1)

3: u + parallel_adjacent_not_equal(u)

4: 7~! < parallel_copy_index_if nonzero(.)
5 Vi« (1,2,..., |77 1))

6: append(n L, |V|+1)

7: u < parallel_inclusive_scan(pu)

8: 7 < parallel_scatter(p, 1)

9: for v € V' parallel do {Sum vertex weights.}
10: ¢'(v)«0

11: fori=7n"1(v)ton (v +1)—1do

2 W) e ) + o)

13: for v’ € V' parallel do {Copy neighbours.}
14 VA 0

15: fori=7"1(v)ton (v +1)—1do

16: for (u,w) € Vi, do

17: append (V%' (n(u),w))

18: for v’ € V' parallel do {Compress neighbours.}
19: "'« compress_neighbours(V/")

Algorithm [ starts by creating an ordered list p of all the vertices V', and sorting
p according to p. The function parallel_sort_by_key(a, b) sorts b in increasing or-
der and applies the same sorting permutation to a, and does so in parallel. Consider
for example a graph with 12 vertices and a given u:

pl1 |2 {3 |4 |5 |6 |7 |8 |9 [10]|11 |12
w19 |12 |3 (219 |9 (222 |3 |3 (2 |4

Then applying parallel_sort_by_key will yield

pl2 |8 |11 |3 |9 |10 |12|1 |5 |6 |4 |7
w2 (2 12 (3 |3 (3 (4 |9 (9 |9 |22]22

We then apply the function parallel_adjacent_not_equal(a) which sets a(1) to 1,
and for 1 <4 < |a| sets a(?) to 1 if a(i) # a(i — 1) and to 0 otherwise. This yields

pl2 |8 |11 |3 |9 |10 |12 |1 |5 |6 |4 |7
wl{1l |0 |0 (1 j0 (O |1 |1 |0 |O (1 |O

Now we know where each group of vertices of G that needs to be merged together
starts. We will store these numbers in the ‘inverse’ of the projection map =, such
that we know, for each coarse vertex v/, what vertices v in the original graph are
coarsened to v’. The function parallel copy_index_if nonzero(a) picks out the
indices 1 < i < |a| for which a(i) # 0 and stores these consecutively in a list, 71
in this case, in parallel.

p 2 8 11 |3 9 10 |12 |1 5 6 4 7

p |1 ]Jo o o [t |1 Jo Jo |1 |oO
111 |4 [7 [8 |11

—
o
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GRAPH COARSENING AND CLUSTERING ON THE GPU 231

This gives us the number of vertices in the coarse graph as |77 ! = 5, so V' =
(1,2,..., |77 ). To make sure we get a valid range for the last vertex in G’, at line
Blwe append |V|+1 to m7~1. Now, we want to create the map 7 : V' — V’ relating the
vertices of our original graph to the vertices of the coarse graph. We do this by re-
enumerating p using an inclusive scan. The function parallel_inclusive_scan(a)
keeps a running sum s, initialised as 0, and updates for 1 < ¢ < |a| the value
s+ s+ a(i), storing a(i) < s.

p 2 8 1113 |9 10 | 12 4 |7

" 1 1 1 2 2 2 3 4 4 4 5 5

1|1 4 7 |8 11 | 13

From these lists, we can see that vertices 3,9,10 € V are mapped to the vertex
2 € V' (so, we should have 7(3) = 7(9) = n(10) = 2), and from 2 € V' we can
recover 3,9, 10 € V by looking at values of p in the range 7~ 1(2),..., 77 1(2+1) 1.
From the construction of p and p we know that we should have that w(p(i)) = p(7)
for our map 7 : V — V'. Note that p(i) is the original vertex in V and pu(¢) is the
current vertex in V/. Hence, we use the ¢ = parallel_scatter(a, b) function, which
sets c(a(i)) < b(3) for 1 <4 < |a| = |b] in parallel, to obtain 7. Now we know both
how to go from the original to the coarse graph (7), and from the coarse to the
original graph (7~! and p). This permits us to construct the extended neighbour
lists of the coarse graph.

Let us look at this from the perspective of a single vertex v’ € V' in the coarse
graph. All vertices v in the fine graph that are mapped to v’ by 7 are given by
p(r (")), ..., p(m7 (v + 1) — 1). All vertex weights (line @) ¢(v) of these v are
summed to satisfy (BI]). By considering all extended neighbour lists V¥ (line [[3),
we can construct the extended neighbour list v’i’J/ of v/. Every element in the
neighbour list is a pair (u,w) € V. In the coarse graph, 7(u) will be a neighbour
of v/ in G’, so we add (7(u),w) to the extended neighbour list V%" of v’

After copying all the neighbours, we compress the neighbour lists of each vertex
in the coarse graph by first sorting elements (u/,w) € V¥ of the extended neighbour
list by «/, and then merging ranges ((u/,wy), (u/,ws), . .., (u/,wi)) in V" to a single
element (u/,w; + wy + ... + wi) with compress_neighbours. This ensures that

we satisty (B2)).
Afterwards, we have V/, {Vv’f"/ | v" € V'}, and (', together with a map 7 : V —
V' compatible with the given pu.

—_
(@3
D

4.1. Parallelisation of the remainder of Algorithm[il Now that we know
how to coarsen the graph in parallel in Algorithm [ by using Algorithm 2] we will
also look at parallelising the other parts of the algorithm. We generate matchings
& on the GPU using the algorithm from [8], where we perform weighted matching
with edge weight 2 Qw({u,v}) — ((u) ((v) (cf. 22)), for each edge {u,v} € E.

Satellites can be marked and merged in parallel as described by Algorithm 3]
where the matching algorithm indicates that a vertex has not been matched to any
other vertex by using a special value for y, such that the validity of [~ ({u(v)})| =
1 can be checked very quickly. Note that in this case the gain of merging a satellite
with a non-satellite as described by (Z2)) is only an approximation, since we can
merge several satellites simultaneously in parallel.

In Algorithm [ (line [[I]), we can also keep track of clusters in parallel. We
create a clustering map x : V — N that indicates the cluster index of each
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232 B. O. FAGGINGER AUER AND R. H. BISSELING

Algorithm 3 Algorithm for marking and merging unmatched satellites in a given
graph G = (V, E,w, (), extending a map p: V — N.

1: for v € V parallel do {Mark unmatched satellites.}

2. if [p ' ({p(v)})| =1 and cp(v) < § then
3: o(v) + true
4: else
5: o(v) « false
6: for v € V parallel do {Merge unmatched satellites.}
7. if o(v) then
8: uPest < oo
9: wbest « —o0
10: for u eV, do
11: w4+ 2Qw({u,v}) — {(u) ((v)
12: if w > wP** and not o(u) then
13: wPest
14: uPest
15: if uPet £ 0o then
16: pu(v) = p(ubet)
vertex of the original graph, such that for ¢ = 0,1,..., our clustering will be

C'={{v eV |k (v) =k} | ke N} (i.e. vertices u and v belong to the same
cluster precisely when x‘(u) = k%(v)). Initially we assign all vertices to a differ-
ent cluster by letting x°(v) < v for all v € V. After coarsening, the clustering is
updated at line [l by setting x**1(v) < 7%(k%(v)). We do this in parallel using
¢ « parallel_gather(a, b), which sets ¢(i) < b(a(i)) for 1 <i < |a| = |¢|.

Note that unlike [I7[22], we do not employ a local refinement strategy such as
Kernighan-Lin [13] to improve the quality of the obtained clustering from Algo-
rithm [T because such an algorithm does not lend itself well to parallelisation. This
is primarily caused by the fact that exchanging a single vertex between two clusters
changes the total weight of both clusters, leading to a change in the modularity gain
of all vertices in both the clusters. A parallel implementation of the Kernighan—Lin
algorithm for clustering is therefore even more difficult than for graph partitioning
[9112], where exchanging vertices only affects the vertex’s neighbours. Remedying
this is an interesting avenue for further research.

To improve the performance of Algorithm [l further, we make use of two addi-
tional observations. We found during our clustering experiments that the modular-
ity would first increase as the coarsening progressed and then would decrease after
a peak value was obtained, as is also visible in [16] Figures 6 and 9]. Hence, we
stop Algorithm [ after the current modularity drops below 95% (to permit small
fluctuations) of the highest modularity encountered thus far.

The second optimisation makes use of the fact that we do not perform un-
coarsening steps in Algorithm [I] (although with the data generated by Algorithm
this is certainly possible), which makes it unnecessary to store the entire hierarchy
G°, G', G?, ...in memory. Therefore, we only store two graphs, G and G*, and
coarsen G° to G as before, but then we coarsen G' to G°, instead of a new graph
G?, and alternate between G° and G' as we coarsen the graph further.
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5. Results

Algorithm [l was implemented using NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) language together with the Thrust template library [1I] on
the GPU and using Intel’s Threading Building Blocks (TBB) library on the CPU.
The experiments were performed on a computer equipped with two quad-core 2.4
GHz Intel Xeon E5620 processors with hyperthreading (we use 16 threads), 24 GiB
RAM, and an NVIDIA Tesla C2075 with 5375 MiB global memory. All source
code for the algorithms, together with the scripts required to generate the bench-
mark data, has been released under the GNU General Public Licence and are freely
available from https://github. com/BasFaggingerAuer/Multicore-Clustering.
It is important to note that the clustering times listed in Table [ 2] and Figure
Bl do include data transfer times from CPU to GPU, but not data transfer from
hard disk to CPU memory. On average, 5.5% of the total running time is spent on
CPU-GPU data transfer. The recorded time and modularity are averaged over 16
runs, because of the use of random numbers in the matching algorithm [8]. These
are generated using the TEA-4 algorithm [21] to improve performance.

The modularity of the clusterings generated by the CPU implementation is
generally a little higher (e.g. eu-2005) than those generated by the GPU. The dif-
ference between both algorithms is caused by the matching stage of Algorithm
[ For the GPU implementation, we always generate a maximal matching to
coarsen the graph as much as possible, even if including some edges {u,v} €
E for which 2Quw({u,v}) — {(u)((v) < 0 will decrease the modularity. This
yields a fast algorithm, but has an adverse effect on the obtained modularity.
For the CPU implementation, we only include edges {u,v} € E which satisfy
2Qw({u,v})—C¢(u) ((v) > 0 in the matching, such that the modularity can only be
increased by each matching stage. This yields higher modularity clusterings, but
will slow down the algorithm if only a few modularity-increasing edges are available
(if there are none, we perform a single matching round where we consider all edges).

Comparing Table [[l with modularities from [I7, Table 1] for karate (0.412),
jazz (0.444), email (0.572), and PGPgiantcompo (0.880), we see that Algorithm
[ generates clusterings of lesser modularity. We attribute this to the absence of a
local refinement strategy in Algorithm [I as noted in Section Il The modularity
of the clusterings of irregular graphs from the kronecker/ categories is an order of
magnitude smaller than those of graphs from other categories. We are uncertain
about what causes this behaviour.

Algorithm [Mis fast: for the road_central graph with 14 million vertices and 17
million edges, the GPU generates a clustering with modularity 0.996 in 4.6 seconds,
while for uk-2002, with 19 million vertices and 262 million edges, the CPU generates
a clustering with modularity 0.974 in 30 seconds. In particular, for clustering of
nearly regular graphs (i.e. where the ratio (max,cy deg(v))/(min,cy deg(v)) is
small) such as street networks, the high bandwidth of the GPU enables us to find
high-quality clusterings in very little time (Table 2). Furthermore, Figure
suggests that in practice, Algorithm [ scales linearly with the number of edges of
the graph, while Figure shows that the parallel performance of the algorithm
scales reasonably with the number of available cores, increasingly so as the size
of the graph increases. Note that with dual quad-core processors, we have eight
physical cores available, which explains the smaller increase in performance when
the number of threads is extended beyond eight via hyperthreading.
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FIGURE 3. In (a), we show the clustering time required by Al-
gorithm [ for graphs from the 10th DIMACS challenge [I] test
set (categories clustering/, streets/, coauthor/, kronecker/,
matrix/, random/, delaunay/, walshaw/, dyn-frames/, and
redistrict/), for both the CUDA and TBB implementations.
For large graphs, clustering time scales almost linearly with the
number of edges. In (b), we show the parallel scaling of the TBB
implementation of Algorithm [ as a function of the number of
threads, normalised to the time required by a single-threaded run
for graphs rgg n 2 k_sO with 2% vertices, from the random/ cate-
gory. We compare this to ideal, linear, scaling. The test system
has 8 cores and up to 16 threads with hyperthreading.

From Figure[3(a)] we see that while the GPU performs well for large, |E| > 106,
nearly regular graphs, the CPU handles small and irregular graphs better. This
can be explained by the GPU setup time that becomes dominant for small graphs,
and by the fact that for large irregular graphs, vertices with a higher-than-average
degree keep one of the threads occupied, while the threads treating the other, low-
degree, vertices are already done, leading to a low GPU occupancy (i.e. where
only a single of the 32 threads in a warp is still doing actual work). On the CPU,
varying vertex degrees are a much smaller problem because threads are not launched
in warps: they can immediately start working on a new vertex, without having to
wait for other threads to finish. This results in better performance for the CPU on
irregular graphs.

The most costly per-vertex operation is compress_neighbours, used during
coarsening. We therefore expect the GPU to spend more time, for irregular graphs,
on coarsening than on matching. For the regular graph asia (GPU 3.4x faster),
the GPU (CPU) spends 68% (52%) of the total time on matching and 16% (41%) on
coarsening. For the irregular graph eu-2005 (CPU 4.7x faster), the GPU (CPU)
spends 29% (39%) on matching and 70% (57%) on coarsening, so coarsening indeed
becomes the bottleneck for the GPU when the graph is irregular.

The effectiveness of merging unmatched satellites can also be illustrated using
these graphs: for asia the number of coarsenings performed in Algorithm [ is
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TABLE 1. For graphs G = (V, E), this table lists the average mod-
ularities mods 2, (I2), of clusterings of G generated in an average
time of ¢; o seconds by the CUDA; and TBB, implementations of
Algorithm [[I The ‘%;’ column indicates the percentage of time
spent on CPU-GPU data transfer. Results are averaged over 16
runs. A ‘-’ indicates that the test system ran out of memory in one
of the runs. This table lists graphs from the clustering/ category
of the 10th DIMACS challenge [1].

G V| |E| | mod; t1 | %1 | modsy to

karate 34 7810.363 | 0.020 | 13| 0.387 | 0.004
dolphins 62 159 | 0.453 | 0.027| 7| 0.485| 0.007
chesapeake 39 170 0.186 | 0.024 | 70.220 | 0.005
lesmis 7 2541 0.444 1 0.023 | 81 0.528 | 0.006
adjnoun 112 42510.24710.032| 5 0.253 | 0.009
polbooks 105 4411 0.437(0.034| 6] 0.472| 0.008
football 115 613 0.412 1 0.033| 51 0.455 | 0.009
c...metabolic 453 2,025 0.374 1 0.055| 3]0.394| 0.013
celegansneural 297 2,148 1 0.390 | 0.055| 3|0.441| 0.011
jazz 198 2,74210.314 1 0.048 | 4] 0.372| 0.010
netscience 1,589 2,742 0.948 | 0.060 | 4] 0.955 | 0.040
email 1,133 5,451 0.440 | 0.078 | 21 0.479| 0.021
power 4,941 6,594 | 0.918 | 0.066 | 3] 0.925| 0.033
hep-th 8,361 15,751 0.795 1 0.093 | 2] 0.809 | 0.070
polblogs 1,490 16,715{0.330 | 0.129 | 1] 0.396 | 0.039
PGPgiantcompo 10,680 24,316 | 0.809 | 0.095| 3|0.842| 0.040
cond-mat 16,726 47,594 1 0.788 | 0.122| 2| 0.798 | 0.083
as-22july06 22,963 48,436 | 0.607 | 0.184 | 1|0.629 | 0.036
cond-mat-2003 31,163 120,029 | 0.674 | 0.195| 2] 0.690 | 0.103
astro-ph 16,706 121,251 | 0.588 | 0.219| 1] 0.611 | 0.085
cond-mat-2005 40,421 175,691 | 0.624 | 0.248 | 2] 0.639 | 0.113
pr...Attachment 100,000 499,985 | 0.214 | 1.177| 0] 0.216 | 0.217
smallworld 100,000 499,998 | 0.636 | 0.468 | 2| 0.663 | 0.175
Gn_pin_pout 100,000 501,198 | 0.241 | 0.851 | 1]0.246 | 0.231
caida...Level 192,244 609,066 | 0.768 | 0.506 | 2]0.791 | 0.198
cnr-2000 325,557 | 2,738,969 | 0.828 | 2.075| 1]0.904 | 0.342
in-2004 1,382,908 | 13,591,473 | 0.946 | 4.403 | 3]0.974 | 1.722
eu-2005 862,664 | 16,138,468 | 0.816 | 8.874| 1|0.890 | 1.854
road_central 14,081,816 | 16,933,413 | 0.996 | 4.562 | 11| 0.996 | 13.058
road_usa 23,947,347 | 28,854,312 - - -10.997 | 20.227
uk-2002 18,520,486 | 261,787,258 | - - -10.974 | 29.958

reduced from 47 to 37 (1.1x speedup), while for eu-2005 it is reduced from 10,343
to 25 (55x speedup), with similar modularities. This explains the good speedup of
our algorithm over [18] in Table [B] for eu-2005, while we do not obtain a speedup

for belgium.

In the remainder of this section, we will compare our method to the existing
clustering heuristic developed by Riedy et al. [18]. We use the same global greedy
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TABLE 2. Continuation of Table [It remaining graphs of the DI-
MACS clustering challenge instances. From top to bottom, we list
graphs from the streets/, coauthor/, kronecker/, numerical/,
matrix/, walshaw/, and random/ categories.
G V] |E| | mod, t1 | %1 | mods ty
luxembourg 114,599 119,666 | 0.986 | 0.125| 6| 0.987| 0.138
belgium 1,441,295 1,549,970 | 0.992 | 0.440| 10| 0.993 | 1.106
netherlands 2,216,688 2,441,238 1 0.994 | 0.615| 13| 0.995| 1.716
italy 6,686,493 7,013,978 | 0.997 | 1.539| 13| 0.997 | 5.256
great-britain 7,733,822 8,156,517 0.997 | 1.793| 13| 0.997 | 5.995
germany 11,548,845 | 12,369,181 | 0.997 | 2.818| 14| 0.997 | 9.572
asia 11,950,757 | 12,711,603 | 0.998 | 2.693 | 15| 0.998 | 9.325
europe 50,912,018 | 54,054,660 - -.- -10.999 | 45.205
coA...Citeseer 227,320 814,134 | 0.837 | 0.420| 3|0.848 | 0.225
coA...DBLP 299,067 977,676 | 0.748 | 0.592| 30.761| 0.279
cit...Citeseer 268,495 1,156,647 | 0.643 | 0.894| 2(0.682| 0.315
coP...DBLP 540,486 | 15,245,729 | 0.640 | 6.427| 1| 0.666 | 2.277
coP...Citeseer 434,102 | 16,036,720 | 0.746 | 6.490 | 2|0.774| 2.272
kron...lognl8 262,144 | 10,582,686 | 0.025 | 13.598 | 0 0.025 | 2.315
kron...lognl9 524,288 | 21,780,787 0.023 | 28.752| 0 0.023 | 5.007
kron...logn20 1,048,576 | 44,619,402 - - -10.022 | 10.878
kron...logn21 2,097,152 | 91,040,932 - - -10.020 | 23.792
3338P 3,712,815 | 11,108,633 | 0.983 | 2.712| 7|0.984| 4.117
ldoor 952,203 | 22,785,136 | 0.945 | 6.717| 2| 0.950 | 2.956
audikwl 943,695 | 38,354,076 - -.- -10.857 | 4.878
cagelb 5,154,859 | 47,022,346 - -.- -10.682 | 13.758
memplus 17,758 54,196 | 0.635 | 0.160| 1]0.652 | 0.043
rggmn 2 20_s0 1,048,576 6,891,620 | 0.974 | 1.614| 5|0.977| 1.383
rggmn 2.21_s0 2,097,152 | 14,487,995 | 0.978 | 3.346| 40.980| 2.760
rggn 2 22 s0 4,194,304 | 30,359,198 - -.- -10.983 | 5.799
rggn 2 23_s0 8,388,608 | 63,501,393 - -.- 0.986 | 12.035
rggn 2 24 s0 16,777,216 | 132,557,200 - -.- -10.988 | 25.139

matching and coarsening scheme (Algorithm [I) to obtain clusters as [18]. How-
ever, our algorithm is different in the following respects. Stopping criterion: in
[18] clusters are only merged if this results in an increase in modularity and if no
such merges exist, the algorithm is terminated. We permit merges that decrease
modularity to avoid getting stuck in a local maximum and continue coarsening as
long as the modularity is within 95% of the highest encountered modularity so far.
Matching: in [18] a %—approximation algorithm is used to generate matchings, while
we use the randomised matching algorithm from [8]. Coarsening: in addition to
merging matched edges, we propose a centre potential to treat star-like subgraphs
efficiently, which is not done in [18]. Data storage: [18] uses a clever bucketing
approach to only store each edge once as a triplet, while we use adjacency lists
(Section M), thus storing every edge twice. A direct comparison of the performance
of the DIMACS versions of both algorithms is given in TableBl We outperform the
algorithm from [18] in terms of quality. A fair comparison of computation times is

Licensed to Penn St Univ, University Park. Prepared on Mon Jul 8 20:46:56 EDT 2013 for download from IP 130.203.136.75.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



GRAPH COARSENING AND CLUSTERING ON THE GPU 237

TABLE 3. Comparison between Algorithm [I] and the algorithm
from [18], using raw, single-run results for large graphs from the
10th DIMACS modularity Pareto benchmark, http://www.cc.
gatech.edu/dimacs10/results/. Here, 1 and -9 refer to our
CUDA and TBB implementations, while -0 and -x refer to the
OpenMP and Cray XMT implementations of the algorithm from
[18]. Timings have been recorded on different test systems.

G mod; t1 | mods ts | modp to modx tx

caida...Level | 0.764 | 0.531|0.792 | 0.185| 0.540 0.188 | 0.540 3.764
in-2004 0.955 | 4.554|0.976 | 1.887 | 0.475 | 55.986 | 0.488 294.420
eu-2005 0.829 | 9.072]0.886 | 1.981| 0.420 | 90.012| 0.425 | 1074.488
uk-2002 - -.- 0.974 | 31.121 | 0.473 | 181.346 | 0.478 772.359
uk-2007-05 - - - -.- 0.476 | 496.390 | 0.480 | 36229.531
belgium.osm 0.992 | 0.447]0.993 | 1.187| 0.660 0.562 | 0.643 10.571
coP...DBLP 0.641 | 6.612| 0.668 | 2.367 | 0.496 1.545 | 0.501 9.492
kron...logn20 | 0.021 | 59.144 | 0.022 | 13.897 | 0.001 | 538.060 | 0.001 | 8657.181
333SP 0.983 | 2.712|0.985 | 4.321| 0.515 1.822 | 0.512 27.790
ldoor 0.944 | 6.799 | 0.950 | 3.071| 0.542 1.348 | 0.611 10.510
audikwl 0.847 | 15.341 | 0.858 | 5.180 | 0.560 1.635 | 0.558 9.957
cagelb 0.640 | 32.804 | 0.677 | 14.308 | 0.513 4.846 | 0.512 48.747
memplus 0.635| 0.175|0.654 | 0.038 | 0.519 0.034 | 0.520 0.903
rggn 217 s0 |0.958| 0.247|0.963 | 0.174 | 0.619 0.102 | 0.619 1.949

hard because of the different test systems that have been used: we (¢; and t9) used
two quad-core 2.4 GHz Intel Xeon E5620 processors with a Tesla C2050, while the
algorithm from [18] used four ten-core 2.4 GHz Intel Xeon E7-8870 processors (to)
and a Cray XMT2 (tx).

6. Conclusion

In this paper we have presented a fine-grained shared-memory parallel algo-
rithm for graph coarsening, Algorithm [ suitable for both multi-core CPUs and
GPUs. Through a greedy agglomerative clustering heuristic, Algorithm [l we try
to find graph clusterings of high modularity to measure the performance of this
coarsening method. Our parallel clustering algorithm scales well for large graphs
if the number of threads is increased, Figure and can generate clusterings of
reasonable quality in very little time, requiring 4.6 seconds to generate a modularity
0.996 clustering of a graph with 14 million vertices and 17 million edges.

An interesting direction for future research would be the development of a
local refinement method for clustering that scales well with the number of available
processing cores, and can be implemented efficiently on GPUs. This would greatly
benefit the quality of the generated clusterings.

7. Appendix

7.1. Reformulating modularity. Our first observation is that for every clus-
ter C € C, by (LI):
(7.1) ¢(C) = 2w(int(C)) + w(ext(C)).
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Now we rewrite (L2]) using the definitions we gave before:

> w(int(C)) 3 ¢(C)?
mod(C) = SE€ cec

Q 42
= 1z O (49u(int(C) —¢(CP)
ceC
@ 1 L .
= (10 [0 jutenien] - ccr).

Therefore, we arrive at the following expression,

(7.2) mod(C) = ﬁ 3 (((O) 20— ¢(0) -2 Qw(ext(C’))).

ceC
As
ext(C) = {{uv} € E|ueCuv¢Ct= ] cut(C,C),

as a disjoint union, we find (2.I]).

7.2. Merging clusters. Let C,C’ € C be a pair of different clusters, set
C”" = CuUC and let C' := (C\ {C,C"}) U {C"} be the clustering obtained by
merging C' and C’.
Then ((C") = ¢(C) + ¢(C") by 23). Furthermore, as cut(C,C") = ext(C) N
ext(C"), we have that
(7.3) w(ext(C”)) = w(ext(C)) + w(ext(C)) — 2w(cut(C,C")).
Using this, together with (Z.2]), we find that
402(mod(C") — mod(C)) = —¢(C) (292 — ¢(C)) + 2 Quw(ext(C))
—C(C) (22 =¢(C") +2Quw(ext(C))
+¢(C") (29 -¢(C")) = 2Qu(ext(C"))

D _c(0) (20— ¢(0)) + 2Qw(ext(C))

—¢(C") (22— ¢(C") + 2Quw(ext(C))

+(¢(C) +¢(CM) (22— (C(C) +¢(C7))

=20 [w(ext(C)) + w(ext(C”)) — 2w(cut(C, C"))]
=4Quw(cut(C,C")) —2¢(C) ¢(C").

So merging clusters C' and C’ from C to obtain a clustering C’, leads to a change
in modularity given by (2.2]).

7.3. Proof of the modularity bounds. Here, we contribute a generalisation
of [3] Lemma 3.1] (where the bounds are established for unweighted graphs) to the
weighted case. Let G = (V, E,w) be a weighted graph and C a clustering of G, we
will show that

—% <mod(C) < 1.
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From (L2)),
> 2 w({uv}) > w({u,v})

cecC {u,v}ECE {u,'u}E‘/E
mod(C) < — %€ A |
> wle) > wle) ’

eelE eck

which shows one of the inequalities. For the other inequality, note that for every
C € C we have 0 < w(int(C)) < Q — w(ext(C)), and therefore

mod(C) = 107 3 (106(mt(C)) - ¢(C)?)

cecC
= ﬁ Z (4Qw(int(0)) —4w(int(C))? — 4w(int(C)) w(ext(C))
cec
- w(ext(C))Q)
- 41—2 > (4w(int(€)) [2 - wlext(C)) - w(int(€))] - w(ext(C))?)
ceC
> 4% > (O—w(ext(C))2> =y ( wlext(C >)

ceC ceC

Enumerate C = {C4,...,Cx} and define x; := % for 1 < i < k to obtain
a vector z € R¥. Note that 0 < z; < 3 (as 0 < w(ext(C;)) < Q) for 1 <
1 < k, and because every external edge connects precisely two clusters, we have

Zf L w(ext(C;)) <29, so Z _,x; < 1. By the above, we know that
mod(C) > — |3,
hence we need to find an upper bound on H:c|| for z € [0, 3] satisfying Zz

1
2,2, )H2—§,so mod(C) >
The proof is completed by noting that for a single cluster, mod({V'}) =

1. For all £ > 2, this upper bound equals || (%

o
v

|
N[= |
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