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Abstract The replicator equation for a two person symmetric game, which has an
interval of the real line as strategy space, is extended with a mutation term. Assuming
that the distribution of the strategies has a continuous density, a partial differential
equation for this density is derived. The equation is analysed for two examples. A
connection is made with Adaptive Dynamics.
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1 Introduction

The use of continuous strategy sets in replicator dynamics introduces two new prob-
lems, compared to the situation where the set of strategies is finite. First, there are dif-
ferent notions of ’nearness’ possible, associated with the strong and the weak topol-
ogy, respectively. The salient difference between these topologies is illustrated by the
following property. Let S be the set of strategies and let δx with x∈ S denote the Dirac
distribution concentrated on {x}. In the strong topology, the distance between δx and
δy is equal to 2, if x 6= y. In the weak topology, the distance between δx and δy is
small, if |x− y| is small. The choice of a particular topology has implications for the
concept of evolutionary stability.
The other problem is that it has not been possible to actually solve the replicator
equation in the case of continuous strategy sets, except for the case that S = R and
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the assumption that the initial distribution is Gaussian. It was shown in Oechssler and
Riedel (2002) that the distribution then retains this shape during the evolution in time
and the replicator equation reduces to a coupled set of ordinary differential equations
for the mean and the variance of the distribution.
The impossibility of solving the replicator equation for more general initial distribu-
tions makes it difficult to establish dynamical stability criteria for equilibrium strate-
gies of the underlying game. In the case of a finite set of strategies, we have the
concept of an Evolutionary Stable Strategy (ESS) of a game. ESS is a static con-
cept, computable from the knowledge of the payoff function, but it is tied to dynamic
stability through the theorem that an ESS of a symmetric game is an asymptotically
Lyapunov stable equilibrium of the corresponding replicator equation. The definition
of an ESS can be generalized to games with a continuous strategy set, but it has been
shown that the ESS condition is no longer sufficient for a strategy to be a Lyapunov
stable solution of the replicator equation. Various stronger static stability concepts
have been introduced, which have fairly complicated interrelations, see Oechssler
and Riedel (2002) and Cressman (2005).
In this paper we derive a version of the replicator equation which has the property that
it can be analysed fairly deeply and can easily be solved numerically. In particular,
we can find exact expressions in the limit that time goes to infinity, in the case of two
important examples.
The equation we start with is the replicator equation with a mutation-term, which was
introduced in Bomze and Bürger (1996). We then restrict the allowed distributions to
those which have a (twice continuously differentiable) density function with full sup-
port on S. The natural topology in this case is the strong topology, which implies that
the space of densities we will be working with is a subset of L1(S). We then make
some, not too demanding, assumptions on the mutation kernel and apply an approxi-
mation method which is familiar from statistical physics. This then leads to a partial
differential equation with boundary conditions for the density of the distribution. The
equation is nonlinear and has non-local terms, .
This equation clearly does not allow for singular distributions such as δx as a solution,
so we will not be able to make stability statements directly about δx. However, we
will quite often find that solutions converge to a Gaussian centered at some x ∈ S and
with width going to zero as the size of the mutation term goes to zero.

The equation is analyzed in two cases. The first one corresponds to S = R and the
payoff function

f (x,y) =−x2 +2axy ,

with a ∈ R. In section 3 we will show that for any initial condition, the solution will
converge to a Gaussian with width ε , where ε2 is the size of the mutation term. The
mean m of this Gaussian converges to m = 0 if and only if a < 1. If a > 1 then m
diverges to infinity.
In the second example, S = R and

f (x,y) =−x2 + x2y2 .
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We will show in Section 4 that, also in this case, all initial distributions eventually
tend to a Gaussian shape. However, the mean of this Gaussian always converges to
m = 0, but now it is the width of the distribution that shows interesting dynamics.
Depending on the initial condition, this width will either converge to ε or diverge to
infinity.
In section 5 we conclude with some remarks about the connection between the results
derived in these examples and local stability criteria. Also, we will consider how this
version of the replicator equation relates to Adaptive Dynamics.

2 Derivation of the equation

The two-player game under consideration is symmetric and is defined through the
payoff function f (x,y). The domain of this function is S×S, where S⊂R is a closed
interval. We allow S = R.
Let B be the Borel σ -algebra on S and ∆(S) be the subset of probability measures
of the measure space (S,B). The state of the game at time t is defined by the dis-
tribution of the strategies in the population, given by P(t) ∈ ∆(S). If A ∈ B, then

P(t)(A) =
∫

A
P(t)(dx) is the fraction of players in the population who play a strategy

x ∈ A at time t.

There are two factors driving the evolution of P(t): selection and mutation. The selec-
tion terms describes the standard assumption of replicator dynamics, namely that the
fraction of strategies that have a higher payoff compared to the average payoff will
increase in the population, at the expense of strategies that do worse than average.
Assume the distribution of strategies is given by P ∈ ∆(S). The expected payoff of a
strategy Q ∈ ∆(S) against this population is defined as:

π(Q,P) =
∫

S

∫
S

f (x,y)Q(dx)P(dy) . (1)

In particular, the expected payoff of a pure strategy x ∈ S against the population dis-
tribution P is given by

π(x,P)≡ π(δx,P) =
∫

S

∫
S

f (x,y)δx(dx)P(dy) =
∫

S
f (x,y)P(dy) . (2)

We define the average payoff of the distribution P ∈ ∆(S) as

π(P) = π(P,P) . (3)

The relative fitness of strategy x ∈ S, against the population distribution P is defined
as:

φ(x,P) = π(x,P)−π(P) . (4)

Agents sometimes spontaneously change their strategy, by mistake or as a type of

experimentation. We assume that the probabilty that an agent mutates during a certain
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time interval is the same for all agents. Let µ> 0 and µdt be the probability that an
agent using strategy x ∈ S mutates during a short time interval dt. Let m(y,x) be the
probability distribution of this mutated strategy, i.e. if A∈B then the probability that

strategy x mutates to a strategy in A is
∫

A
m(y,x)λ (dy), with λ the Lebesgue-measure

on S.
An important assumption in the following is that m(y,x) > 0 for all (x,y) ∈ S× S.
This implies that all strategies have a positive probability to arise from a mutation,
and in fact every strategy will be present in the population for all t > 0.
For a given distribution P(t) of the strategies at time t, and A ∈B, the change per
unit time of the fraction of strategies in A, due to mutations, is given by:

µ

(∫
A

∫
S

m(y,x)P(t)(dx)λ (dy)−
∫

A

∫
S

m(x,y)λ (dx)P(t)(dy)
)
. (5)

Combining (4) and (5), and suppressing in the notation the t-dependence of P(t),
leads to the mutation-selection equation introduced by Bürger and Bomze (1996):

d
dt

P(A) =
∫

A
φ(x,P)P(dx)+µ

(∫
A

∫
S

m(y,x)P(dx)λ (dy)−
∫

A

∫
S

m(x,y)λ (dx)P(dy)
)
.

(6)

The differential equation (6) is defined on the Banach-space M = (M(S,B), ||.||1).
Here, M(S,B) is the vectorspace of all signed measures on (S,B) and ||.||1 is the
variational norm on M(S,B) given by:

||Q||1 = sup
f∈F
|
∫

S
f (x)Q(dx)|.

The supremum is taken over the set F of all measurable functions f : S→ R with
supx∈S | f (x)| ≤ 1.
The variational norm induces the strong topology. In this topology ||δx− δy|| = 2 if
x 6= y, so even though the strategies x and y can be very close, the corresponding
monomorphic distributions are not. An alternative measure of closeness is the Pro-
horov metric, which induces the weak topology and is used in Oechssler and Riedel
(2002) and Cressman and Hofbauer (2005).

Some important properties of M , equation (6) and its solution P(t) are:

– For probability measures with a continuous density w.r.t. the Lebesgue mea-
sure, the variational norm is equivalent to the L1 norm (see Oechssler and Riedel
(2001)). This means that two of these measures are close in the variational norm
if and only if their densities are close in the L1 norm.

– If the payoff function f (x,y) is bounded, then equation (6) has a unique solution,
defined for all t > 0. (see Bürger and Bomze (1996))

– If P(0)(S) = 1, then P(t)(S) = 1 for all t > 0, as is easily checked.
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2.1 Assumption and approximation

Assume that the measure P has a density w.r.t the Lebesgue measure for all t ≥ 0. We
write:

P(t)(dx) = ρ(x, t)dx .

We will, moreover, assume that ρ(x, t) is twice continuously differentiable with re-
spect to x. Using the fact that

π(x,P) =
∫

S
f (x,y)ρ(y, t)dy

the equation (6) now reduces to:

∂

∂ t
ρ(x, t) =

(∫
S

f (x,y)ρ(y, t)dy−
∫

S

∫
S

f (x,y)ρ(y, t)ρ(x, t)dydx
)

ρ(x, t)+

µ

(∫
S

m(x,y)ρ(y, t)dy−ρ(x, t)
∫

S
m(y,x)dy

)
. (7)

To simplify (7) further, we will use an approximation that is standard in deriving the
Fokker-Planck equation from the master equation in statistical physics (see van Kam-
pen (1975)), and was already used by Kimura (1965) in a context similar to ours.
For the moment we will take S = R. The probability distribution of the strategies
y ∈ S that arise as a mutation from a strategy x ∈ S is assumed to be of the form
m(y,x) = m̃(|y− x|,x). The distribution m̃(z,x) is symmetric in z, is rapidly decreas-

ing as z→±∞ and has variation
∫

∞

−∞

z2m̃i(z,x)dz=σ
2(x). The higher order moments

of m̃(z,x) are at least of O(σ4(x)). A typical form for the mutation kernel is the Gaus-
sian:

m(y,x) =
1√

2πσ(x)
e−(x−y)2/2σ2(x) ,

where σ(x) is small. We can then write:∫
∞

∞

m(y,x)ρ(y, t)dy =
∫

∞

∞

m̃(y− x,x)ρ(y, t)dy =
∫

∞

∞

m̃(z,x)ρ(z+ x, t)dz

=
∫

∞

∞

m̃(z,x)(ρ(x, t)+
∂

∂x
ρ(x, t)z+

1
2

∂ 2

∂x2 ρ(x, t)z2 + . . .)dz

= ρ(x, t)+
1
2

σ
2(x)

∂ 2

∂x2 ρ(x, t)+O(σ4(x)) (8)

Substituting (8) in (7) and neglecting the higher order terms, we find the equation that
is referred to in the title of this paper:

∂

∂ t
ρ(x, t) =

(∫
S

f (x,y)ρ(y, t)dy−
∫

S

∫
S

f (x,y)ρ(y, t)ρ(x, t)dydx
)

ρ(x, t)+

1
2

µσ
2(x)

∂ 2

∂x2 ρ(x, t) . (9)
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In the case that S is a finite interval, the mutation term near the boundaries of S needs
to be adapted, so that no mutations outside S are possible. This is a technically cum-
bersome operation, which can be solved by keeping the equation (9), but supplying it
with reflecting, or Neumann, boundary conditions:

∂

∂x
ρ(x, t)|∂S = 0 . (10)

2.2 Existence and properties of the solution

The equation (9) is a nonlinear, non-local, reaction diffusion equation. The function
space we will be working on is that of twice continuously differentiable densities
ρ(x), such that ρ , ρx and ρxx are all in L1(S) and satisfying the Neumann boundary
conditions (10).

From (9) and (10), we recover the important property that if
∫

S
ρ(x,0)dx = 1, then∫

S
ρ(x, t)dx = 1 (11)

for all t > 0, as is easily checked.
It follows from standard positivity results for parabolic equations that if the initial
value ρ0(x) > 0 for all x ∈ S, then ρ(x, t) > 0 for all t ≥ 0. We will from now on
always assume that ρ(x, t) > 0, for all x ∈ S and t ≥ 0. Thus, the support of the
measure P corresponding to ρ is the full strategy set S.
If S is compact, then existence of ρ(x, t) in the above mentioned function space can
be proved for all t ≥ 0. This follows from the fact that if f (x,y) is bounded on S×S,
the reaction term is clearly continuous in ρ and bounded:

|
∫

S
f (x,y)ρ(y, t)dy−

∫
S

∫
S

f (x,y)ρ(y, t)ρ(x, t)dydx| ≤∫
S
| f (x,y)|ρ(y, t)dy+

∫
S

∫
S
| f (x,y)|ρ(y, t)ρ(x, t)dydx≤

max(x,y)∈S×S| f (x,y)|
(∫

S
ρ(y, t)dy+

∫
S

∫
S

ρ(y, t)ρ(x, t)dydx
)
= 2max(x,y)∈S×S(| f (x,y)|) ,

where we have used (11) and the positivity of ρ . Comparison theorems for parabolic
equations (Pao (1992)) complete the proof.
In the case that S = R, a solution can not be guaranteed for all time, as follows from
the following example adapted from Cressman and Hofbauer (2005). Let f (x,y) = x2

and 1
2 µσ2(x) = ε2 be constant. Then equation (9) becomes:

∂

∂ t
ρ(x) =

(
x2−

∫
R

x2
ρ(x, t)dx

)
ρ(x, t)+ ε

2 ∂ 2

∂x2 ρ(x) .

It can be checked that ρ(x, t) = 1√
2πV (t)

e−
(x−m(t))2

2V (t) is a solution of the above equation,

if V (t) and m(t) satisfy the diferential equations:

V ′ = 2(V 2 + ε
2) , m′ = 2mV .



An effective replicator equation for games with a continuous strategy set 7

The solution V (t) will ”blow up” in finite time, for every initial value V (0). Note that
the corresponding ρ(x, t) will ”flatten out” in that time.
In the examples considered below, S = R. However, existence of solutions for all
times will be shown by construction.

3 Application to a quadratic payoff function

We will take S = R and consider the payoff function

f (x,y) =−x2 +2axy ,

with a ∈ R. The symmetric game corresponding to this payoff function has, for all
a ∈ R, a unique, strict, Nash equilibrium in pure strategies, namely x = 0.

Using the fact that
∫

S
ρ(x, t)dx = 1, we find that

∫
S

f (x,y)ρ(y, t)dy−
∫

S

∫
S

f (x,y)ρ(y, t)ρ(x, t)dydx=−x2+2axx(t)+x2(t)−2ax2(t) ,

with

xn(t) =
∫

∞

−∞

xn
ρ(x, t)dx .

The dependence of xn on t will often be suppressed in the notation. We will assume
that µσ2(x) = ε2 is independent of x and small. Equation (9) then becomes:

ρt =
(
−x2 +2axx+ x2−2ax2

)
ρ + ε

2
ρxx . (12)

In addition to this equation, we have an initial condition

ρ(x,0) = ρ0(x) , (13)

such that ρ0(x) > 0,
∫

S
ρ0(x)dx = 1 and ρ0(x) twice continuously differentiable on

R. As shown in the previous section, these conditions imply that
∫

S
ρ(x, t)dx = 1,

ρ(x, t) > 0 and ρ(x, t) twice continuously differentiable for all t > 0. This in turn
implies that ρ(x, t) ∈ L1(R) and ρ(x, t) ∈ L2(R).

3.1 The Wei-Norman method

Although equation (12) is nonlinear and contains non-local terms, it can be solved
explicitly. This is done by exploiting its linear appearance. We first assume that x and
x2 are given functions of t. Equation (12) then becomes a linear equation with time-
dependent coefficients. We note that (12) bears some resemblance to the equation for
the quantum-mechanical harmonic oscillator. For these types of equations, solution
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methods have been devised, notably the Wei-Norman method. Using this method,
equation (12) is solved yielding the solution

ρ(x, t;x,x2) . (14)

Solving the two equations

x(t) =
∫

∞

−∞

xρ(x, t;x,x2)dx , x2(t) =
∫

∞

−∞

x2
ρ(x, t;x,x2)dx

for (x,x2) gives a unique solution, which can be substituted in (14) to give the solu-
tion of (12). In fact, we will only need the equation for x.

We recall some facts about Lie algebras, which play a role in the Wei-Norman method.
A finite, real Lie algebra L is a vector space over the reals, spanned by a finite
number of elements {X1, . . . ,Xn}. This vector space is equipped with a Lie bracket
[ , ] : L ×L →L . This bracket is bi-linear, and satisfies [X ,X ] = 0, for all X ∈L
and Jacobi’s identity [X , [Y,Z]]+ [Z, [X ,Y ]]+ [Y, [Z,X ]] = 0, for all X ,Y,Z ∈L .
In our case, the elements of L are linear operators on L2(R) and the bracket is de-
fined as [X ,Y ] = XY −Y X .
Define [L ,L ] = {[X ,Y ] |X ,Y ∈L }. A Lie algebra L is called solvable if the series
L , [L ,L ], [[L ,L ], [L ,L ]], . . . eventually terminates in 0.

Theorem 1 Let L be a finite, solvable, real Lie algebra, generated by {X1, . . . ,Xn}.
The solution to the initial value problem

dU
dt

=

(
n

∑
i=1

ai(t)Xi

)
U , U(0) =U0

can be written in the form

U(t) = exp(g1(t)X1)exp(g2(t)X2) . . .exp(gn(t)Xn)U0 .

Moreover, the functions gi(t) can be found as solutions of ordinary differential equa-
tions involving the coefficients ai(t).

Proof See Wei and Norman (1964).

To apply this theorem to (12), we first introduce the scalings x = εξ , t = ετ and

ρ(x, t) = (
1
ε
)ρ̂(x/ε, t/ε), and find

x(t) =
∫

∞

∞

xρ(x, t)dx = (1/ε)
∫

∞

∞

x ρ̂(x/ε, t/ε)dx = ε

∫
∞

∞

ξ ρ̂(ξ ,τ)dξ = εξ (τ) ,

and similarly

x2(t) = ε
2
ξ (τ) ,

∫
∞

∞

ρ̂(ξ ,τ)dξ = 1 .
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Substituting, equation (12) becomes independent of ε:

ρ̂τ =
(
−ξ

2 +2aξ ξ +ξ 2−2aξ
2)

ρ̂ + ρ̂ξ ξ . (15)

We can write equation (15) in the form

ρ̂τ =
(

Z +0.Y +2aξ X +(ξ 2−2aξ
2−1)I

)
ρ̂ , (16)

where for f ∈ L2(R):

Z f =
(

d2

dξ 2 −ξ
2 +1

)
f

Y f =
d

dξ
f

X f = ξ f

I f = f .

The elements of {X ,Y,Z, I} are the generators of a Lie algebra with the following
commutation relations:

[Z,X ] = 2Y , [Z,Y ] = 2X , [Y,X ] = I , (17)

and [A, I] = 0 for all A ∈ {X ,Y,Z, I}.
It is easy to check that this Lie-algebra is solvable, so that the theorem can be applied.
We write the solution of the initial value problem (15) in the form:

ρ̂(ξ ,τ) = egI(τ)IegX (τ)X egY (τ)Y egZ(τ)Z ρ̂0(ξ ) , (18)

where

ρ̂0(ξ ) = ερ0(εξ ) ,

the rescaled initial value. The order of the operators could have been chosen differ-
ently, but the sequel will show that the form (18) is very practical.
To derive the differential equations for the functions gi(τ), we will repeatedly use the
formula:

eλABe−λA = B+λ [A,B]+
λ 2

2!
[A, [A,B]]+

λ 3

3!
[A, [A, [A,B]]]+ . . . , (19)

where A and B are elements of a Lie-algebra and λ ∈ C. As a special case we note
that:

eλAA = AeλA ,

for all A in the Lie algebra. In our case, the series on the right side of (19) always
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terminates, which makes it possible to write for any A,B ∈ {Z,Y,X , I}:

eλAB = L(Z,Y,X , I)eλA ,

where L(Z,Y,X , I) is some linear expression in its arguments.
Differentiating (18) with respect to τ yields:

ρ̂τ =
(
g′II egI IegX X egY Y egZZ +g′X egI IX egX X egY Y egZZ +g′Y egI IegX XY egY Y egZZ

+g′ZegI IegX X egY Y Z egZZ)
ρ̂0(ξ ) , (20)

where g′i =
d

dτ
gi(τ).

Using (19) and the commutation relations, we find:

egX XY = (Y −gX I)egX X

egY Y Z =
(
Z−2gY X−g2

Y I
)

egY Y

egX X Z =
(
Z−2gXY +g2

X I
)

egX X .

Substituting these expressions in (20) and collecting the coefficients, we find:

ρ̂τ =
(
g′II +g′X X +g′Y (Y −gX I)+g′Z(Z−2gXY +g2

X I−2gY X−g2
yI)
)
ρ̂

=
(
g′ZZ +(g′Y −2gX g′Z)Y +(g′X −2gY g′Z)X +(g′I−g′Y gX +(g2

X −g2
Y )g
′
Z)I
)
ρ̂ .
(21)

Comparing (21) with (16) yields the system of equations:

g′Z = 1
g′Y −2gX g′Z = 0

g′X −2gY g′Z = 2aξ

g′I−g′Y gX +(g2
X −g2

Y )g
′
Z = ξ 2−2aξ

2−1 , (22)

with intial conditions gI(0) = gX (0) = gY (0) = gZ(0) = 0. We will ignore the last
equation, since in the expression

ρ̂ = egI IegX X egY Y egZZ
ρ̂0(ξ )

the factor egI I is simply a normalization term, which can also be calculated from the
condition

∫
R ρ̂(ξ , t)dξ = 1.

The other three equations can be easily integrated and we find in particular that

gZ(τ) = τ .

For gX (τ) and gY (τ) we can find explicit expressions which involve ξ , however their
exact form is not relevant for what follows.
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3.2 Solution for large values of τ

Consider first the result of the operator egZ(τ)Z acting on an initial function ρ̂0(ξ ). Let

esZ
ρ̂0(ξ ) = f (ξ ,s) ,

(with s ∈ R) then f (ξ ,s) is the solution of the partial differential equation

∂ f
∂ s

= Z f = (−ξ
2 +1) f +

∂ 2 f
∂ξ 2 , f (ξ ,0) = ρ̂0(ξ ) . (23)

It is well known that the eigenfunctions of Z are the Hermite functions {φn(ξ )} ,
n = 0,1, . . ., with corresponding eigenvalues λn =−2n. The Hermite functions form
an orthonormal base of L2(R), with

φ0(ξ ) = (2π)−1/4e−ξ 2/2

Since ρ̂0(ξ ) ∈ L2(R), we can write

ρ̂0(ξ ) =
n=∞

∑
n=0

anφn(ξ ) , an =
∫
R

φn(ξ )ρ̂0(ξ )dξ .

We note that a0 > 0, because φ0(ξ )ρ̂0(ξ )> 0. The solution of (23) can now be written
as:

esZ
ρ̂0(ξ ) = f (ξ ,s) =

n=∞

∑
n=0

e−2nsanφn(ξ ) . (24)

From this expression, it follows that:

lim
s→∞
||esZ

ρ̂0(ξ )−a0φ0(ξ )||2 = 0 .

In other words, whatever the initial distribution ρ̂0(ξ ), the expression esZ ρ̂0(ξ ) as s
goes to infinity, will tend to a normal distribution (multiplied by a positive factor),
with mean equal to zero and variance equal to one.
The action of the operator esY on functions g ∈ L2(R) is that of the shift operator:(

esY g
)
(ξ ) =

(
es d

dx g
)
(x) = g(ξ + s) ,

for all s ∈ R.
Finally, esX acts as a simple multiplication:(

esX g
)
(ξ ) = esξ g(ξ ) .

We are now in a position to write down, for every given ξ (τ) and initial function
ρ̂0(ξ ), the solution ρ̂(ξ ,τ;ξ ) of (15). Using this solution, we could then solve the
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Fig. 1 Initial condition for equation (15) is a sum of Gaussians, both with variance σ2 = 0.49, centered at
x =−7.9 and x = 8.0.

equation

ξ (τ) =
∫
R

ξ ρ̂(ξ ,τ;ξ )dξ ,

which would give a complete solution of the initial problem (12). Deriving an explicit
expression for ξ for a general initial distribution ρ̂0(ξ ) is, however, not possible. This
is not a major problem, as the early development of the distribution is less interesting
and can, for a specific initial distribution, be found numerically. What is much more
important is the eventual fate of the solution. As it happens, the asymptotic behaviour
of the solution for large τ can be found, and it is independent of the initial distribution.

We approximate ρ̂(ξ ,τ) for large τ as follows:

ρ̂(ξ ,τ) = egI(τ)IegX (τ)X egY (τ)Y egZ(τ)Z ρ̂0(ξ )

= n(τ)egX (τ)X egY (τ)Y eτZ
ρ̂0(ξ )

≈ n(τ)egX (τ)X egY (τ)Y e−ξ 2/2

= n(τ)egX (τ)ξ e−(ξ+gY (τ))
2/2 = n(τ)e−(ξ−gX (τ)+gY (τ))

2/2 , (25)

where n(τ) is the aforementioned normalisation factor, which, with some abuse of
notation, has absorbed all τ-dependent terms in each step of the derivation.
This approximation is a Gaussian, with variance = 1 and mean x = gX (τ)−gY (τ)).
Using (22), we then have

dx
dτ

= g′X (τ)−g′Y (τ) =−2(gX (τ)−gY (τ))+2ax(τ) = (−2+2a)x , (26)

with solution

x = e2(a−1)τ .
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Fig. 2 Short-time evolution of initial condition of Figure 1. a = 0.9.

Fig. 3 Long-time evolution of initial condition of Figure 1. a = 0.9.

From this expression we see that, asymptotically for τ → ∞, the solution of (12)
shows one of two possible behaviours. If a < 1, the solution converges to a Gaussian
with width equal to one, and a mean that converges exponentially to zero. If a > 1,
the solution still converges to a Gaussian with width one, but now the mean grows
unboundedly.
In terms of the original variable, for a < 1 the distribution ρ(x, t) converges to a
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Fig. 4 Long-time evolution of initial condition of Figure 1. a = 1.1.

Fig. 5 Initial condition for equation (15) is a sum of Gaussians, both with variance σ2 = 0.49, centered at
x =−1.9 and x = 2.0.

normal distribution centered at x = 0 and a width of ε , for all initial distributions.
This convergence happens on a time scale of 1/ε . For a > 1 the distribution does not
converge.

3.3 Numerical simulations

The figures 1 through 6 were made by discretizing the x-variable on the interval
[−20,20] in N = 150 points, yielding N functions xi(t), i = 1, . . . ,N. In the equation
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Fig. 6 Long-time evolution of initial condition of Figure 5. a = 1.5.

(9), the second derivative was replaced by the standard approximation and integration
by a simple summation. The resulting system of ordinary differential equations for
xi(t) was then solved, using Mathematica routines. Although this is a very unsophis-
ticated method, the results agree completely with the analysis of the previous section.
In the Figures 1 and 2 we have taken a = 0.9 and as initial condition a sum of two
sharp peaks, with equal mass and width and almost symmetrically placed. In Figure
2, the evolution is shown on a short time-scale. Initially, the two peaks co-exist until
at about t = 0.05 the peak at x = 8 collapses and all the mass of the distribution be-
comes concentrated near the peak at x =−7.9. On this time scale, the location of the
peaks has hardly moved. In Figure 3 the further evolution is shown. After the collapse
of the right peak, the now single-peaked distribution takes on a Gaussian shape and
the mean of this distribution moves towards x = 0. Convergence to the steady state,
approximated by (25) is virtually complete at about t = 15.
In Figure 4 we have taken the same initial condition as in Figure 1, but now with
a = 1.1. We see that it is now the left peak which collapses after a short period. The
surviving peak at the right again assumes a Gaussian shape and starts to move to-
wards infinity, as predicted by equation (26).
Figure 5 shows an initial condition which is again the sum of two peaks, but now
close together. Figure 6 shows that these peaks first merge to one peak, centered at
approximately x = 0, then this peak starts to move away from this position, because
a = 1.5 > 1.
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4 Payoff function with fourth order term

We now apply the method of the previous section to the payoff function

f (x,y) =−x2 + x2y2 ,

and the strategy set S = R. Substituting this function in (9) and using the scalings

x = εξ , t = ετ and ρ(x, t) = (
1
ε
)ρ̂(x/ε, t/ε), we find

ρ̂τ =
(
−ξ

2(1− ε
2
ξ 2)+ξ 2(1− ε

2
ξ 2)
)

ρ̂ + ρ̂ξ ξ . (27)

We can write equation (27) in the form

ρ̂τ =
(

Z +0.V + ε
2
ξ 2W +(ξ 2− ε

2
ξ 22
−1)I

)
ρ̂ , (28)

where for f ∈ L2(R):

Z f =
(

d2

dξ 2 −ξ
2 +1

)
f

V f = ξ
d

dξ
f

W f = ξ
2 f

I f = f .

The operator V was chosen to make {Z,V,W, I} a closed Lie-algebra. The commuta-
tion relations are:

[Z,W ] = 4V +2I , [Z,V ] = 2Z +4W −2I , [W,V ] =−2W , (29)

and [A, I] = 0 for all A ∈ {X ,Y,Z, I}.
This Lie-algebra is not solvable, and the series on the rightside of (19) does not ter-
minate for all elements of the algebra. However, it is still possible to sum the series,
as we shall show later. Because of this, we believe that the conclusion of the theorem
of Wei and Norman still holds, although the condition of solvability is not met.
Assume therefore that the solution of (28) has the form

ρ̂(ξ ,τ) = egI(τ)IegV (τ)V egW (τ)W egZ(τ)Z ρ̂0(ξ ) . (30)

To find the equations for gV , gW and gZ , we differentiate (30) with respect to τ:

ρ̂τ =
(
g′II egI IegV V egW W egZZ +g′V egI IV egV V egW W egZZ +g′W egI IegV VW egW W egZZ

+g′ZegI IegV V egW W Z egZZ)
ρ̂0(ξ ) . (31)

It is fairly straightforward to derive that:

egV VW = e2gV WegV V

egW W Z =
(
Z−gW (2I +4V )+4g2

WW
)

egW W .
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Define [V,Z](n) = [V, [V,Z](n−1)] for n≥ 1 and [V,Z](0) = Z. Then

egV V Ze−gV V =
∞

∑
n=0

gn
V

n!
[V,Z](n) (32)

After calculation of a few iterations, it becomes clear that:

[V,Z](n) = an[V,Z]+bnW , a1 = 1 , b1 = 0 (33)

Using the commutation rules we find the recursions:

an =−2an−1 bn = 2bn−1−2(−2)n ,

with solutions:

an = (−2)(n−1) , bn =−(2n +(−2)n) (34)

Substituting (34) and (33) in (32) leads, after some manipulation, to

egV V Z = (e−2gV Z−2sinh(2gV )W − e−2gV I)egV V

We can now calculate:

egV V egW W Z egZZ = egV V (Z−gW (2I +4V )+4g2
WW )egW W egZZ =

(e−2gV Z−2sinh(2gV )W − e−2gV I−2gW I−4gWV +4g2
W e2gV W )egV V egW W egZZ

After substitution and collecting terms, we find that

ρ̂τ =
(
(g′I−2g′ZgW )I +(g′V −4g′ZgW )V+

(g′W e2gV +g′Z(−2sinh(2gV )+4g2
W e2gV ))W +g′Ze−2gV Z)

)
ρ̂ . (35)

Comparing the terms of (31) and (35), we find the set of differential equations

e−2gV g′Z = 1
g′V −4gW g′Z = 0

e2gV g′W +(−2sinh(2gV )+4g2
W e2gV )g′Z = ε

2
ξ 2 . (36)

As in the previous section, we ignore the equation for gI .
The equation for gZ cannot be solved directly. However, if we assume that gV (τ) >
α for some α ∈ R and for all τ > 0, then e2gV (τ) > eα > 0 and therefore gZ(τ) =∫

τ

0 e2gV (τ
′)dτ ′ is an increasing function such that limτ→∞ gZ(τ) = ∞. We will show

later that the assumption gV (τ)> α for all τ > 0 is justified.
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4.1 Solution for large τ

From (24) it follows that

lim
τ→∞

egZ(τ)Z ρ̂0(ξ ,τ) = lim
τ→∞

n=∞

∑
n=0

e−2ngZ(τ)anφn(ξ ) = a0φ0(ξ ) ,

where convergence is in the L2 norm. We will take this multiple of a Gaussian of
variance one and mean zero as the approximation of egZ(τ)Z ρ̂0(ξ ,τ) for large τ .
The operator V is the generator of scalings, as follows from the fact that eλV f (x) :=
g(x,λ ) is the solution of

∂

∂λ
g(x,λ ) =V g(x,λ ) = x

∂

∂x
g(x,λ ) , g(x,0) = f (x)

It is easily checked that g(x,λ ) = f (eλ x) is the solution of the above equation. There-
fore, egV V φ0(ξ ) = φ0(egV ξ ), a Gaussian with mean zero, but width now stretched by
a factor egV .
Finally, egW W is simply a multiplication by egW ξ 2

.
Combining these elements we have that for large τ , an approximation is given by

ρ̂(ξ ,τ) = n(τ)egV (τ)V egW (τ)W egZ(τ)Z ρ̂0(ξ )≈ n(τ)egV (τ)V e(gW− 1
2 )ξ

2

= n(τ)e−
1
2 (1−2gW )e2gV ξ 2

.

In other words, for every initial condition, the solution converges to a Gaussian with
mean equal to zero, but with variance

σ
2 = (1−2gW )−1e−2gV (37)

This approximation closes the set of differential equations (36), since for large τ we
know that ξ 2 can be approximated by σ2. This then yields an autonomous set of
ordinary differential equations, which should be studied for large values of τ .
However, we are mainly interested in the evolution of σ2, for which it is possible to
derive a simple equation. For this, σ2 is substituted for ξ 2 in (36), yielding:

e2gV g′W = ε
2
σ

2−1+(1−4g2
W )e4gV .

Then:

d
dτ

σ = (1−2gW )−3/2g′W e−gV − (1−2gW )−1/2e−gV g′V = σ((1−2gW )−1g′w−g′V )

= σ(σ2e2gV g′W −g′V ) = σ(σ2(ε2
σ

2−1+(1−4g2
W )e4gV )−4gW e2gV )

= σ(σ2(ε2
σ

2−1+2σ
−2e2gV −σ

−4)−2(e2gV −σ
−2))

= ε
2
σ

5−σ
3−σ

−1 +2σ
−1 = ε

2
σ

5−σ
3 +σ

−1 .

Or, in terms of σ2:
1
2

d
dτ

σ
2 = ε

2(σ2)3− (σ2)2 +1 . (38)
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This equation has two fixed points, which for small ε have the form:

σ
2
a = 1+

1
2

ε
2 +O(ε4) σ

2
r =

1
ε2 +O(1)

The fixed point σ2
A is an attractor for equation (38) which attracts all solutions with

0 < σ2(0)< σ2
r , while σ2

R is a repellor and all solutions with σ2(0)> σ2
r diverge to

infinity.

Additional evidence for the correctness of the above analysis comes from the fact that

ρ̂(ξ , t) =
1√

2πα(t)
e
− ξ 2

2α2(t) ,

is a solution of (27) and the equation for α2 is exactly equal to the equation (38), with
σ2 replaced by α2.

In terms of the original variables x and t, all solutions of the unscaled equation for
ρ(x, t) converge to a Gaussian shape with mean zero. The variance either converges
to a fixed point of O(ε2), or it diverges to infinity. We will denote the distribution
corresponding to σ2

a as ρ(x). The equation has another stationary solution, namely
a Gaussian with mean zero and variance close to one, which corresponds with σ2

r .
This stationary solution is unstable, since any Gaussian with mean zero and variance
slightly different from σ2

r will not remain close to this solution.

It would be tempting from the above to conclude that ρ(x) is a stable solution of
(27). This is, however, not the case, as follows from the following counterexample
which is adapted from Oechssler and Riedel (2002). Consider an initial condition

ρ0(x) = (1−ν)p0(x)+ν pa(x) ,

with p0(x) and pa(x) Gaussians centered at x = 0 and x = a > 0, respectively, both
with variance equal to ε2 and ν > 0 small. It is clear that for a large enough compared
to ε , ||ρ0−ρ||1 = O(ν), so the measures corresponding to ρ0(x) and ρ(x) are close
in the variational norm. The unscaled version of equation (27) is

ρ̂t = (−x2 + x2)(1− x2)ρ + ε
2
ρxx . (39)

At t = 0, we have x2→ νa2 as ε→ 0. Therefore, for ε sufficiently small, at x = a and

t = 0 the term (−x2 + x2)(1− x2)≈ (1−ν)(νa2−1)a2 > 0 if a2 >
1
ν

. Because ε is

small, the influence of the term ε2ρxx can be ignored initially, so ρ(a, t) will initially
increase, thereby increasing ||ρ0− ρ||1. In graphical terms, the mass at x = a will
increase, at the expense of the mass at x = 0. Therefore, ρ(x) is not stable.
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5 Conclusion

In this paper, we have derived a partial differential equation which approximates the
replicator equation with mutations of Bomze and Bürger (1998) for symmetric games
with a one-dimensional continuous strategy set S. We showed for two examples that
the asymptotic behaviour for large time of the solution can be given, for all initial
conditions.
This approach has a price and a reward. The price is that we assume that the measures
describing the distribution of strategies have a continuous density and a full support.
This makes it impossible to consider distributions such as δx, where the whole popu-
lation plays the same strategy x ∈ S. Under our assumption, all strategies will always
be present in the population, although some only in minute fractions. Questions about
the dynamical stability of such distributions can therefore not be asked in this set-up,
let alone answered.
The reward is that the dynamics of the replicator equation can be studied explicitly,
both analytically and numerically. For the example S = R and

f (x,y) =−x2 +2axy

we find convergence to a Gaussian with mean zero and variance of order ε2, where ε2

is the size of the mutation term (the product of the frequency of mutations and their
average size), if and only if a < 1. For a > 1 the solution converges to a Gaussian
whose mean then diverges to infinity. For a< 1 we therefore have a globally attracting
solution, which converges weakly to δ0 as ε → 0. In the case of this payoff function,
x = 0 is a Continuously Stable Strategy (CSS) also only if a < 1, see Oechssler and
Riedel (2002). We have therefore established a partial dynamical foundation for the
CSS for quadratic payoff functions. It is only partial because of the limitations on the
perturbations that are considered.
There are interesting connections to Adaptive Dynamics (AD) (see Diekmann 2004)
here. In it’s simplest form, AD studies the evolution of one trait, modelled by a real
parameter. AD assumes that the population is monomorphic in the trait space and
the location of the resident trait evolves according to the canonical equation. This
equation reflects the idea that some mutants with traits close to that of the resident
can invade the population and replace the resident. The change is such that (local)
increase in fitness is optimal. In our context, the fitness of a mutant with trait x against
a resident with trait y is exactly the payoff function f (x,y), and the canonical equation
has the form:

d
dt

x(t) = µ
∂

∂x′
f (x′,x)|x′=x .

where x(t) is the trait of the resident and µ > 0 is a constant reflecting various prop-
erties of the mutation process.
Replicator dynamics, at least for the case of a one-dimensional traits (or strategies)
can be seen as similar to AD, however without the assumption of monomorphism,
see Cressman and Hofbauer (2005). The results of this paper show that, for f (x,y) =
−x2 + 2axy, the assumption that the population is monomorphic can be said to be
satisfied. Independent of initial condition, the solution of the replicator equation (9)
will converge to a Gaussian with width ε . This can be interpreted as a practically
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monomorphic population, as ε is assumed to be small. Moreover, the equation for
the mean of the distribution (26) is the same as the canonical equation. From this it
follows that the steady state Gaussian centered around x = 0 is stable if and only if
the solution x = 0 of the canonical equation is stable, which is the CSS condition.

The analysis of the examples in this paper depends heavily on the fact that we took
S = R. It is not easily adapted to the case where S is bounded. Nevertheless, we be-
lieve that in the example f (x,y) =−x2 +2axy, the results carry over to the bounded
case. This is supported by the numerical results, which for obvious reasons were done
with a bounded strategy set. The only difference is that, where in the case S = R so-
lutions can diverge to infinity when a > 1, for bounded S the solution will converge
to a distribution concentrated on an ε neighbourhood of the right boundary of S.
For the example f (x,y) =−x2 + x2y2, there may be a qualitative difference between
the bounded and the unbounded case. In particular, the statement that the steady state
distribution centered near x = 0 is not Lyapunov stable, even though x = 0 satisfies
the CSS condition for this function, relies on a counterexample that only works for
S = R. It may well be that for bounded S, we still have the equivalence of Lyapunov
stability of a distribution near a Nash equilibrium x̄ and the CSS condition for x̄.
Future work on equation (9) may include answering the above questions for bounded
strategy sets. Also, the work of Champagnat et. al. (2006) shows that it may be pos-
sible to base the approximation of the mutation term by the Laplacian on a more
rigorous base, starting from individual stochastic processes.
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