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Promotoren: Prof.dr. K.G.M. Moons

Prof.dr. E.W. Steyerberg

Co-promotoren: Dr. ir. H. Koffijberg

Dr. Y. Vergouwe

The studies in this thesis were funded by the Netherlands Scientific Organization (ZonMw 9120.8004,

918.10.615 and 916.11.126).

Additional financial support from stichting BAZIS for the publication of this thesis is gratefully

acknowledged.



Contents

I General Introduction 1

II Individual Participant Data Meta-Analysis 7

1 Individual participant data meta-analyses should not ignore clustering 9

2 Individual participant data meta-analysis for a binary outcome:

one-stage or two-stage? 25

3 A framework for developing, implementing and evaluating clinical prediction models

in an individual participant data meta-analysis 47

4 Individual Participant Data Meta-Analysis with systematically

missing predictors: an empirical example 81

III Aggregate Data Meta-Analysis 99

5 Incorporating published univariable associations in diagnostic and prognostic mod-

eling 101

6 Aggregating published prediction models with individual participant data: a com-

parison of different approaches 121

7 Meta-analysis and aggregation of multiple published prediction models 145

IV General Discussion 175

8 A framework to interpret external validation results of clinical prediction models 177

9 Perspectives for future research 193

i



CONTENTS

Appendix 197

Bibliography 201

Summary 222

Samenvatting 228

Publication List 234

Acknowledgements/Dankwoord 238

Curriculum Vitae 246

ii



Part I

General Introduction

1





Meta-analysis of clinical prediction models

“Whosoever desires constant success must change his conduct with the times.”

– Niccolo Machiavelli

D
uring the most recent decades, the impact of statistical modeling techniques on clinical

decision making has increased profoundly. The development of clinical prediction mod-

els deserves particular attention as it aims to facilitate medical decision making through

explicit modeling of uncertainty. Clinical prediction models are, for instance, commonly used to

estimate a disease’s or outcome’s presence (diagnosis) or future occurrence (prognosis) in an indi-

vidual before deciding further management. Typically, prediction models rely on several predictors.

These may range from individual characteristics, signs and symptoms, to results of more invasive or

costly measures such as imaging and biomarker test results. By relying on statistical methods and

empirical data, prediction models enhance the objectivity and transparency of medical decision

making. In addition, they may lead to improved patient care if their predictions are sufficiently

accurate and effectively applied by professionals, and if adequate decision thresholds have been

established.

The performance of prediction models increases as larger datasets are used during model devel-

opment and relevant predictors are included in the model. However, in medical research practical

constraints on time and cost typically do not permit all potential predictors in large numbers of

individuals to be collected for each (model development) study. As a consequence, many predic-

tion models are often developed from relatively small(er) datasets, relying on predictor selection

strategies which may compromise valid probability estimations. Indeed, there are many examples

of so developed prediction models that perform more poorly than anticipated when actually imple-

mented in other datasets or in routine care. Researchers then frequently responded by developing a

new prediction model in their own dataset, even when previous similar models are readily available

[132, 171, 239]. For example, there are over 60 published models aiming to predict outcome after

breast cancer [11], over 100 for predicting long-term outcome in neurotrauma patients [186], over

20 for identifying patients at risk of prolonged stay at the Intensive Care Unit [75] and over 20 for

predicting the risk of cardiovascular disease in patients with type 2 diabetes [269]. This practice of

continuously developing new duplicative models for the same outcome or target population based

on new, often small, datasets ignores the previously collected scientific evidence.

Meta-analysis has become a powerful tool to combine the results from different studies on a similar

topic [31, 70, 106, 109, 252]. This practice is now commonly applied in therapeutic intervention

research where effect estimates for a particular intervention from different studies are combined

and synthesized. The meta-analytical paradigm is also highly relevant to diagnostic and prognostic

prediction research, where aggregate data (AD) such as predictor-outcome associations and previ-
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General introduction

ously published prediction models are often available from the literature. Sometimes, raw data with

measurements on subject level can also be obtained from other research groups in the field, and is

commonly denoted as individual participant data (IPD). Meta-analytical methods may therefore

be considered to synthesize IPD and AD, and to derive more up-to-date and better generaliz-

able prediction models. Because meta-analysis generally involves data aggregation, it increases the

effective sample size during the prediction model’s development phase [278]. This, in turn, may im-

prove the identification of important predictors and the accuracy of estimated predictor-outcome

associations in future or other subjects. In short, meta-analytical approaches can considerably

increase the efficiency (and cost-effectiveness) of diagnostic and prognostic prediction modeling

research by making more effective use of available evidence.

We distinguish the following types of data when considering a meta-analysis in clinical prediction

research:

I IPD (individual participant data) is available from one or multiple studies.

I AD (aggregate data) is available from one or multiple studies and may consist of:

◦ univariable predictor-outcome associations

◦ previously published (multivariable) prediction models with the same predictors

◦ previously published (multivariable) prediction models with different predictors

I A combination of IPD and AD is available from one or multiple studies. Because IPD can

always be transformed into AD, this thesis does not evaluate how IPD and AD can directly be

combined (although such methods may further improve the synthesis process) [204, 207, 254].

OUTLINE OF THIS THESIS

The studies presented in this thesis seek to investigate some of these key issues.

Chapters 1–4 present several approaches for IPD meta-analysis (Section II). Chapter 1 assesses

the effect of ignoring clustering of participants within studies in an IPD-MA. Chapter 2 illustrates

how clusters can be retained during risk-factor or predictor finding studies by using a one-stage

or two-stage approach. One-stage methods use the IPD of each study and meta-analyze using the

exact binomial distribution, whereas two-stage methods first reduce evidence to the aggregated

level (e.g. odds ratios) and then meta-analyse assuming approximate normality. Subsequently,

Chapter 3 presents a framework for developing prediction models when IPD is available from

multiple studies. Finally, Chapter 4 describes how a prediction model can be developed in an IPD
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Meta-analysis of clinical prediction models

meta-analysis when some predictor variables have not been measured in each study. As a whole,

these chapters explore IPD meta-analysis techniques and how they may be best implemented.

Chapters 5–7 propose several approaches for developing a prediction model when AD is available

(Section III). Chapter 5 considers the situation in which the AD consists of univariate predictor-

outcome associations. Chapter 6 considers the situation in which the AD consists of previously

published prediction models with the same predictors. Finally, Chapter 7 considers the situa-

tion in which the AD consists of previously published prediction models with different predictors.

Together, these papers address AD meta-analysis techniques.

The General Discussion addresses some other issues in the performance of prediction models

and the extent to which validation studies may provide insight into their generalizability.

5



General introduction

6



Part II

Individual Participant Data
Meta-Analysis

7





1
Individual participant data meta-analyses should not ignore

clustering

Journal of Clinical Epidemiology 2013, 66(8): 865–873.

Ghada M. A. Abo-Zaid

BiWei Guo

Jon J. Deeks

Thomas P. A. Debray

Ewout W. Steyerberg

Karel G. M. Moons

Richard D. Riley

9



Abstract

Individual participant data (IPD) meta-analyses often analyse their IPD as if from a

single study. We compare this approach to analyses that rather account for clustering

of patients within studies by applying logistic regression models in real and simulated

examples. Results indicate that the estimated prognostic effect of age in patients with

traumatic brain injury is similar regardless of whether clustering is accounted for. How-

ever, a family history of thrombophilia is found to be a diagnostic marker of deep vein

thrombosis (odds ratio = 1.30, 95% CI: 1.00 to 1.70; p = 0.05) when clustering is

accounted for, but not when it is ignored (odds ratio = 1.06, 95% 0.83 to 1.37; p =

0.64). Similarly, the treatment effect of nicotine gum on smoking cessation is severely

attenuated when clustering is ignored (odds ratio = 1.40; 95% CI: 1.02 to 1.92) rather

than accounted for (odds ratio = 1.80; 95% CI: 1.29 to 2.52). Simulations show models

accounting for clustering perform consistently well, but downwardly biased effect esti-

mates and low coverage can occur when ignoring clustering. In conclusion, researchers

must routinely account for clustering in IPD meta-analyses, otherwise misleading effect

estimates and conclusions may arise.



Chapter 1

“The aim of science is not to open the door to infinite wisdom, but to set a limit to infinite
error.”

– Bertolt Brecht, Life of Galileo

I
ndividual Participant Data Meta-Analysis (IPD-MA) refers to when participant-level data

are obtained from multiple studies and then synthesised [203]. This contrasts the usual meta-

analysis approach, which obtains and then synthesises aggregate data (such as a treatment

effect estimates) extracted from study publication or study authors [235]. IPD offers many potential

advantages for the meta-analyst [203, 235, 236]; in particular it reduces reliance on the reporting

quality of individual studies as, with the raw data at hand, the meta-analyst can be more flexible

and consistent in their choice of analysis method, can estimate directly the effect estimates of

interest, and better account for study heterogeneity and subgroup effects.

Methods for IPD-MA use either a one-step or two-step approach [226]. In the two-step approach,

the Individual Participant Data (IPD) are first analysed separately in each study using an appro-

priate statistical method for the type of data being analysed. For example, to assess the association

between a continuous factor (e.g. age) and the odds of a binary outcome (e.g. death) a logistic

regression model might be fitted, to produce aggregate data for each study, such as the odds ratio

and its associated standard error; these are then synthesised in the second step using a suitable

model for meta-analysis of aggregate data, such as one weighting by the inverse of the variance

whilst assuming fixed or random effects across studies. In the one-step approach, the IPD from

all studies are modelled simultaneously; this again requires a model specific to the type of data

being synthesised, alongside appropriate specification of the meta-analysis assumptions (e.g. fixed

or random-effects across studies). Clustering of patients within studies can be accounted for by

stratifying the analysis by study (i.e. by estimating a separate intercept for each study) or by

assuming the study intercepts (baseline risk) are randomly drawn from some distribution.

Many existing articles discuss the implementation and merits of one-step and two-step IPD-MA

methods [115, 135, 200, 204, 264, 266, 288], and the methods often give very similar results [156,

181, 204]. For example for time-to-event data, Tudur Smith and Williamson [263] show through

simulation that when there is no heterogeneity in effect and the proportional hazards assumption

holds, a one-step stratified Cox model produces similar effect estimates to the two-step (inverse

variance weighted) approach. For continuous outcome data analysed using linear models, Olkin

and Sampson [181] and subsequently Matthew and Nordström [156, 157], show that the one-step

and two-step approaches provide identical results when estimating a treatment effect under certain

theoretical conditions, although when covariates are added differences may occur. Jones et al.

[135] consider longitudinal continuous outcome data and empirically show that the one-step and
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two-step approaches produce similar effect estimates, as long as correlations between time-points

are incorporated. For binary outcome data, there may be some advantage of a one-step approach

when the event risk or rate is low or the sample size is small; in contrast to the two-step approach,

the one-step approach allows the exact binomial distribution to be used and does not require

continuity corrections when zero events occur [98, 250].

However, potentially of more concern than the choice of one-step or two-step approach, is that there

is growing evidence that researchers undertake the one-step approach but ignore the clustering of

patients within studies, thereby treating the IPD as if it all came from one study. For example,

Simmonds et al. examined IPD-MA of randomised trials, and found that 3 of 14 using a one-step

approach ignored clustering [226]. Similarly, Abo-Zaid et al. examined IPD-MA of prognostic

factor studies, and found that 5 of 11 using a one-step approach did not state they accounted for

clustering [3].

Using real examples and through simulation, we therefore studied the potential impact of ignoring

clustering on IPD-MA results, and report our findings in this article. We focus on IPD-MA

aimed at quantifying whether a single (continuous or binary) factor or determinant of interest is

associated with (the odds of) a binary outcome. For example, one may wish to summarise the

outcome risk in a treatment group relative to the control group (i.e. estimate a treatment effect);

estimate whether a certain prognostic marker is associated with future event risk (i.e. estimate

a prognostic effect); or quantify whether the presence of a certain diagnostic test result increases

or decreases the probability of having a particular disease. These are common situations in the

(IPD) meta-analysis field. We first introduce three one-step and two-step models of interest, and

subsequently apply them to three real applications. Finally, we evaluate the performance of the

one-step methods is through simulation and conclude with discussion and recommendations.

ONE-STEP AND TWO-STEP
IPD-MA APPROACHES

Consider there are i = 1 to m independent studies that each assess the binary outcome of interest

for ni participants. Let yik be the outcome (1 = event, 0 = no event) of participant k in study i,

where k = 1 to ni, and let xik be a participant-level factor (covariate), which could be continuous

or binary. We term an “IPD study” one that provides yik and xik for the ni participants in the

study. Note that, for a binary factor, if the number of participants and events for each of the two

categories are known, then IPD for these two variables can simply be reconstructed by creating a

row for each participant and delegating them event responses and covariate status that collectively

mirror the observed frequencies.
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Given such IPD, there are a number of ways researchers could estimate the summary risk or odds

ratio across studies. We focus here on the use of a logistic regression framework, via either a

one-step approach ignoring clustering, a one-step approach accounting for clustering, or a two-step

approach, as now described.

Model (1): one-step ignoring clustering

With this method, the IPD from all studies are stacked and analysed together as if they were

a single study, thus the clustering of patients within different studies is ignored. The standard

logistic model can be written as:

yik ∼ Bernoulli (pik)

logit (pik) = α+ β′xik
(1.1)

The common α term for all studies shows that clustering is being ignored, and α can be interpreted

as the log-odds of the event for patients with xik equal to zero. The term β provides the log odds

ratio, comparing the odds of the event for two patients who differ in xik by one unit. Note that

β is also assumed common to all studies, and so we have a fixed effect meta-analysis here. We

consider a random effects approach and multivariable model extensions in our Discussion.

Model (2): one-step accounting for clustering

Here, the IPD from all studies are also stacked and analysed together, but the clustering of patients

within different studies is accounted for. The logistic model can be written as:

yik ∼ Bernoulli (pik)

logit (pik) = αi + β′xik
(1.2)

Now the intercept term is not fixed, and αi gives the log-odds of the event in study i for those

participants with xik equal to zero. The separate αi term for each study shows that clustering

per study is being accounted for at the baseline level, i.e. each study is allowed to have their own

baseline risk.

13



Chapter 1

Model (3): two-step approach

Here, the IPD of each study is analysed separately, and the log odds ratio estimates from each

study are then combined (averaged) in an inverse-variance weighted fixed effect meta-analysis, as

follows.

STEP 1 (each study separately):

yik ∼ Bernoulli(pik)

logit (pik) = αi + β′ixik
(1.3)

(1.4)

STEP 2 (meta-analysis of aggregate data):

β̂i = β + εi

εi ∼ N
(

0, var(β̂i)
) (1.5)

By first analysing each study separately, this approach automatically accounts for the clustering of

patients within studies. In the second step, the var(β̂i) estimates are assumed known, which is a

common assumption in the meta-analysis field, and the pooled prognostic effect estimate (β̂) will

be a weighted average of the β̂i s, with study weights equal to the inverse of var(β̂i).

The parameters in equations 1.1 and 1.2, and those in both steps of Model (3), can be estimated

using maximum likelihood estimation. Models (1), (2) and (3) Step 1 are using a logistic regression

model framework, available in most statistical software packages, and Model 3 Step 2 can be fitted

using standard meta-analysis modules, such as metan in STATA [231]. Note that, when xik is a

binary factor and the event risk is low and/or the sample size is small, some studies may have

zero events for one of the factor’s groups. The one-step approach accommodates such studies

automatically through their contribution to the likelihood. However, the two-step approach first

requires a so-called continuity correction (e.g. 0.5) to be added to all cells in such studies, in order

to estimate a sensible log odds ratios and its standard error. This is a clear limitation of the

two-step method and this issue has been well discussed in the literature [35], and is not the focus

of this article. We only consider examples without zero cells in this article.
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EMPIRICAL IPD META-ANALYSIS EXAMPLES

We now introduce three motivating IPD-MA examples to illustrate the potential similarities and

differences of the models in meta-analyses of diagnostic studies, prognostic studies, and (ran-

domised) therapeutic trials.

Mortality after traumatic brain injury

Hukkelhoven et al. [120] performed a meta-analysis of 14 prospective studies to assess the 6-month

mortality risk in patients with traumatic brain injury. Their key objective was to examine the

association between age and 6-month mortality risk. Biologically this relationship is plausible,

as the adult brain is hypothesised to have decreased capacity for repair as it ages [49], due to a

decreasing number of functioning neurons and a greater exposure to minor repetitive insults to the

brain as age increases. In their meta-analysis, IPD were available for four studies (totalling 2 659

patients), containing the 6-month mortality outcome (dead or alive) and age for each patient in

each study. This IPD is summarised in our e-Appendix [2].

Of interest is the odds ratio comparing the odds of death by 6 month for two patients aged 10 years

apart. Only a linear relationship with age was assumed. The results for each of models (1) to (3)

are shown in Table 1.1, and there are only small, unimportant statistical and clinical differences

between them. Age is identified to have a statistically significant (p < 0.001) association with

the odds of 6-month mortality in all models, and the odds ratio is 1.41 in the one-step model

ignoring clustering, and a slightly lower 1.37 in the two-step approach and one-step accounting

for clustering. The standard error of the log odds ratio estimate is almost identical, 0.030 in the

two-step and 0.029 in the others. There was no evidence of between-study heterogeneity in the

odds ratio (I2 = 0), suggesting the fixed effect modelling assumption was appropriate. Based

on this application alone, the observed findings might lead researchers to decide that it does not

matter whether clustering is accounted for.

Diagnosis of deep vein thrombosis

IPD are available from six studies of patients with suspected deep vein thrombosis (DVT) [17, 140,

232, 258, 261, 282], and of interest is whether a family history of thrombophilia (defined as yes

or no) is associated with the risk of truly having DVT. One might expect patients with a family

history of thrombophilia to be more likely to have a genuine DVT than those without. The studies

are summarised in Table A.1 in the Appendix, and contained a total of 4 599 patients of which
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909 (19.8%) truly have DVT [2]. The proportion of patients in each study with a family history

of thrombophilia ranged from 0.03 to 0.26.

As in the TBI example, there is no heterogeneity (I2 = 0%) and the two-step approach and the one-

step approach accounting for clustering obtain similar estimates, standard errors and confidence

intervals (Table 1.1); they estimate that the odds of DVT are about 1.3 times higher for patients

with a family history of thrombophilia, and the findings are (close to) statistically significant at

the 5% level (p = 0.038 or 0.053). However, the one-step approach ignoring clustering estimates a

much smaller odds ratio of 1.06, and there is now no statistically significant evidence that family

history is an important risk factor (p = 0.64); the standard error of is also smaller compared to the

other models. Thus, in this example the one-step approach ignoring clustering provides different

statistical and clinical conclusions than the other approaches.

Smoking cessation and use of nicotine gum

Rice and Stead [194] perform a meta-analysis of 51 randomised trials to examine whether the use of

nicotine gum increases the chances of stopping smoking. Altman and Deeks [13] used these trials to

show the impact on the estimated number needed to treat when clustering of studies was ignored.

We now extend this to consider the impact on the odds ratio. Specifically, for illustrative purposes

we consider a meta-analysis of just two of the trials (the same two used by Altman and Deeks),

which are summarised in our e-Appendix [2] and the results shown in Table 1.1 (I2 = 14.3%). As

in the DVT example, the one-step method ignoring clustering produces a smaller summary odds

ratio (1.48) that is much closer to 1 than the other methods, which rather give estimates around

1.8 with wider confidence intervals.

SIMULATION METHODS

The above examples illustrate that the decision to account for clustering in IPD meta-analysis is

potentially important. To look more generally at how ignoring clustering affects the statistical

properties of estimates, we now present a simulation study of models (1) and (2).

Simulation procedure

Full details of our simulation are provided in our e-Appendix [2]. Briefly, for multiple scenarios we

simulated IPD (i.e. patient outcomes and prognostic factor values) for meta-analyses based on m =

5 or 10 studies; small (30 to 100 patients) or larger study sizes (upto 1000 patients); a continuous

17
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or binary factor (xik); a binary outcome yik (1 = event, 0 = alive) where yik ∼ Bernoulli(pik) and

logit(pik) = αi + βxik ; the chosen parameters of αi ∼ N(α, σ2
α); and for binary factors a β of

either 0, 0.1, or 0.9 (relating to an odds ratio of 1, 1.1, and 2.45 respectively) and for continuous

factors a β of either 0 (no effect), 0.1 (small effect) or 0.3 (large effect).

All scenarios considered are listed in e-Appendix [2]. In each scenario, we generated 1 000 IPD-MA

datasets and then fitted Models (1) and (2) to each, and recorded β̂ and its standard error. Each

model’s performance was then examined by calculating the bias, mean-square error (MSE), mean

standard error and coverage for β̂.

Simulation results

The simulation results for scenarios with five studies and small samples sizes are summarised in

Table 1.2, Table 1.3 and e-Appendix [2]. The findings were very similar when the number of studies

was changed to 10, or when a larger sample size was allowed.

For both binary and continuous factors, when there was zero or small variation in baseline risk

(αi) the performance of the models was very similar. The bias in β̂ was close to zero, the MSE was

approximately the same, and the coverage was always close to 95%. When the variation in αi was

large (scenarios 13 to 18, 22 to 24), the one-step approach accounting for clustering continues to

perform consistently well with suitable bias and coverage. However, the one-step approach ignoring

clustering often performs poorly, with downward bias and low coverage especially when the true

effect size was large. For example, in scenario 13 (where the true β was 0.9), the one-step model

ignoring clustering has a large downward bias of -0.21 and a low coverage of 87.6%, reflecting a

small mean standard error. This scenario is illustrated in Figure 1.1, which shows the one-step

approach ignoring clustering produces smaller standard errors in each meta-analysis and generally

(though not always) smaller effect estimates than the one-step approach accounting for clustering.

Link to the applied examples

When the two-step approach was fitted to the TBI data, step one produced separate alpha estimates

in each study. The weighted average of these alphas was -2.1, and their between-study standard

deviation was 0.20. Thus the TBI data mirrors closely simulation scenario 19 (Table 1.2), where

alpha was -2.1, the standard deviation of alpha was 0.2, and the true effect was 0.3. In this scenario

there was no difference between models (1) and (2) in terms of bias, MSE and coverage, and so it

is unsurprising that the TBI application shows very similar model (1) and (2) results.
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Figure 1.1: Simulation results for scenario 13.

(a) Effect Estimates

(b) Standard error of effect estimates

Comparison of the 1 000 simulation results from the one-step accounting clustering versus the one-
step ignoring clustering for scenario 13 with 5 studies, small study sample sizes and a binary factor,
where the standard deviation of alpha was 1.5 (i.e. σα = 1.5), the true beta was 0.9 (i.e. β = 0.9),
and the prevalence was 0.2 (i.e. π = 0.2).
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In contrast to the TBI example, the DVT and smoking applications showed that ignoring clustering

produced a substantially smaller odds ratio estimate and a smaller standard error of β̂ than other

methods (Table 1.1). Variability in baseline risk with only a small number of studies is a potential

cause of these differences, and - in accordance with some of the simulation results in this situation

(e.g. Figure 1.1) - ignoring clustering appears to be producing estimates with a downward bias

and low coverage in these examples. Other mechanisms may also be causing differences to occur

in these examples, beyond those identified by our simulations, such as between-study variation in

the proportion of patients who are factor positive [13].

DISCUSSION

IPD-MA are increasingly used. Riley et al. [203] found 383 published in the medical literature

before March 2009, with an average of 49 published per year since 2005. In this article we have

examined the impact of ignoring clustering of patients within studies when analysing IPD of

multiple studies with binary outcomes, where an odds ratio is of interest. In some situations

statistical inferences do not alter whether clustering is accounted for, as seen in the TBI application.

However, there are situations when the approaches can differ substantially in their performance

and this can impact upon statistical and clinical inferences. This was seen in the DVT and smoking

examples, and in our simulations with large between-study variability in baseline risk.

There are two key recommendations from our work. The first is that it is inappropriate to simply

ignore the clustering of patients within studies and to analyse the IPD as if coming from a single

study. When there is large variability in baseline risk, the simulations show that this nave approach

leads to a downward bias, with small standard errors that produce a low coverage substantially

less than 95%; this problem appears to become worse as the true effect size increases. The DVT

example shows that ignoring clustering would lead to a potentially important diagnostic marker

for DVT being missed, whilst in the smoking example the effect of nicotine gum on smoking

cessation would have been severely underestimated. Other articles in non meta-analysis settings

have also identified the danger of ignoring clustering, such as in cluster randomised trials [29, 187]

and multicentre randomised trials [143]. Steyerberg et al. [240] show that in a logistic regression

analysis of a clinical trial with multiple strata, the odds ratio of 0.853 when ignoring clustering

is reduced to 0.820 when adjusting for strata, an increase of 25% on the logistic scale. Similarly,

Hernandez et al. [110] and Turner et al. [265] show that adjustment for prognostic covariates in

logistic regression increases power to detect a genuine effect. Statistically speaking, by ignoring

clustering one specifies a marginal model which assumes all studies have the same baseline risk,

but by accounting for clustering one specifies a conditional model that correctly conditions each
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patients response on the study there are in. For logistic models, Robinson and Jewell [209] have

shown that marginal models give potentially attenuated (biased) effect estimates and have lower

power to detect genuine effects than conditional models. For logistic regression, this phenomenon

is also known as non-collapsibility of the odds ratio , as conditional odds ratios are typically larger

than marginal odds ratios after conditioning on important covariates, with the increase becoming

higher as the true odds ratio increases and the number of included important covariates increases.

Gail et al. showed analytically and through simulation that Cox and exponential regression models

for survival data with censoring also produce downwardly biased treatment effect estimates when

important covariates are omitted, unless the true treatment effect is zero or close to zero. For linear

regression or generalised linear models with a log link (e.g. Poisson regression) the asymptotic

bias from omitting covariates is zero regardless of the true effect size ; yet, even for such models

the precision of effect estimates can still be severely affected by ignoring important covariates

(clustering) [209]. Statisticians thus may not be surprised by our findings, but we hope our findings

raise awareness to the IPD-MA community, many of whom currently ignore clustering [3, 226]. We

thus recommend researchers always account for clustering in their IPD-MA, and report how they

did so in any subsequent publication.

The second important finding is that the one-step model accounting for clustering performs con-

sistently well in all simulations considered, with bias close to zero and suitable coverage. Based on

this, we recommend this method be routinely chosen to analyse IPD with binary outcomes. The

two-step method will often give very similar results, as seen in the examples of previous sections.

However, the one-step approach models the exact binomial nature of the data directly [98, 250],

whilst the two-step approach produces log odds ratio estimates in the first step, which are then

assumed normally distributed in the second step. This additional normality assumption may be

inappropriate when the number of patients in studies is small and/or when the number of events

is small. For this reason the exact one-stage approach of model (1) is generally more suitable

for synthesising two by two tables. The Mantel-Haenszel method or Peto method have also been

suggested to overcome this issue [151, 295], but model (1) can more easily be extended to include

multiple factors and continuous variables, so is our preferred method. It can also be easily extended

to allow between-study heterogeneity in the effect of interest [250]. One could also allow a random-

effects distribution on the baseline risk, rather than estimating a separate αi for each study. This

requires an sadditional distributional assumption to be made for αi s, and for this reason we prefer

model (1) as described above. A distribution on the baseline risk is perhaps useful if the baseline

risk is itself of interest, but in our examples the focus was only on the effect of the included factor.

Note that it is not possible to predict the direction of bias induced by ignoring clustering in any

single example. For example, our simulations with large variability in baseline risk show that

ignoring clustering leads to a downward bias on average, but Figure 1.1 highlights that in a sole
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application the actual estimates when ignoring clustering may occasionally be larger than when

accounting for clustering. Indeed, the TBI application had a slightly higher odds ratio when

ignoring clustering. Our simulations are also limited to particular choices of parameter values and,

like all simulation studies, other permutations of values and alternative scenarios In particular,

between-study variation in prevalence of the binary factor and/or between-study heterogeneity in

effect may reveal different findings.

None of our binary factor examples or simulations contained studies with zero events in a particular

group, as this issue has been examined before [35] and been shown to induce bias in the two-step

approach as, unlike the one-step approach, it requires a continuity correction to be added. Our

simulations and examples also did not consider between-study heterogeneity in effects, but our

recommendations are likely to generalise to this setting also [51, 98]. We also recognise that IPD

meta-analyses are not without limitations. Some covariates may not be available for all IPD studies

[78], and IPD may not be available from all studies requested [7]. In this situation novel methods

may be required to synthesise the IPD effectively [207].

In conclusion, we have shown that researchers synthesising IPD from multiple studies should ac-

count for the clustering of patients within different studies. Lumping the IPD into a single dataset

and naively analysing as if from a single study can produce misleading effects estimates and clinical

conclusions, and the correct approach is a one-step or a two-step IPD-MA that correctly accounts

for clustering.
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Abstract

A fundamental aspect of epidemiological studies concerns the estimation of factor-

outcome associations to identify risk factors, prognostic factors and potential causal

factors. Because reliable estimates for these associations are important, there is a

growing interest in methods for combining the results from multiple studies in individ-

ual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity

across studies, various random-effects meta-analysis models are possible that employ

a one-stage or two-stage method. These are generally thought to produce similar re-

sults, but empirical comparisons are few. We describe and compare several one- and

two-stage random-effects IPD-MA methods for estimating factor-outcome associations

from multiple risk-factor or predictor finding studies with a binary outcome. One-stage

methods use the IPD of each study and meta-analyse using the exact binomial distri-

bution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds

ratios) and then meta-analyse assuming approximate normality. We compare the meth-

ods in an empirical dataset for unadjusted and adjusted risk-factor estimates. Results

indicate that though often similar, on occasion the one stage and two-stage methods

provide different parameter estimates and different conclusions. For example, the effect

of erythema and its statistical significance was different for a one-stage (OR = 1.35,

p = 0.03) and univariate two-stage (OR = 1.55, p = 0.12) method. Estimation issues

can also arise: two-stage models suffer unstable estimates when zero cell counts oc-

cur and one-stage models do not always converge. We conclude that when planning an

IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage

or two-stage method should be prespecified in the protocol as occasionally they lead to

different conclusions about which factors are associated with outcome. Though both

approaches can suffer from estimation challenges, we recommend employing the one-

stage method, as it uses a more exact statistical approach and accounts for parameter

correlation.



Chapter 2

“A process cannot be understood by stopping it. Understanding must move with the flow
of the process, must join it and flow with it.”

– Frank Herbert, Dune

A
fundamental aspect of epidemiological studies concerns the estimation of associations

between independent variables (factors) and dependent variables (outcomes). Outcomes

may include such as disease onset, disease presence (diagnosis), disease progression (prog-

nosis), and death. Independent variables may include potential causal factors to unravel the

pathophysiology or causal pathway of the outcome under study, but also non-causal predictors

or risk-indicators of the outcome to enhance timely detection or prediction of the outcome, per-

haps as part of a risk prediction model [97, 171, 219]. Studies that aim to explore which causal

factors or predictors – often out of a number of candidate factors – are independently associ-

ated with a particular outcome have been referred to as risk factor or predictor finding studies

[34, 36, 42, 108, 171, 201]. Reliable estimates of such factor-outcome associations are essential,

certainly when they are meant to be causal, to properly guide public health initiatives and clin-

ical practice for informing diagnosis and prognosis. As such, primary studies to identify causal

factors or predictors are abundant in the medical literature. For example, in patients with neu-

roblastoma, a review identified 260 primary studies evaluating one or more novel tumour markers

for their association with outcome [142, 199, 201]. When reviewing such evidence across multiple

studies, the estimated factor-outcome associations across studies may be inconsistent and even

contradictory [196, 225, 227]. This emphasizes the need for appropriate methods for meta-analysis

and evidence synthesis in this area, in order to summarise the factor-outcome associations in the

current evidence-base [3, 10, 14, 61, 109, 205, 218, 219], as commonly applied in intervention re-

search [70, 111, 165, 179, 226]. However, due to numerous problems of published primary studies

investigating factor-outcome associations, especially publication bias and selective reporting, meta-

analyses based on published results are notoriously prone to bias [142, 201]. Problems with such

aggregate data also arise in clinical research when differential treatment effects by patient charac-

teristics are of concern [117]. Thus there is increasing interest in obtaining individual participant

data (IPD) from these studies to facilitate a more reliable meta-analysis.

When IPD are available, meta-analysis is usually performed using a two-stage approach [226].

Each study is summarized by its factor-outcome association estimate and variance in the first

stage, and these aggregate data (AD) are then appropriately combined across studies in the second

stage. In this manner, a summary effect size, such as the odds or hazard ratio, is produced for

each factor-outcome association of interest [69] whilst potentially accounting for between-study

heterogeneity (e.g. due to different participant characteristics, methods of measurements, and

undergone treatments) [2, 3, 33, 40, 95, 106, 114, 121, 196, 202]. An alternative method for IPD
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meta-analysis (IPD-MA) is a one-stage approach which synthesises the IPD from all studies in a

single step, whilst accounting for clustering of patients within studies [68, 157, 233]. Assuming the

sufficient AD are obtained from each study for the two-stage method, it is widely believed that

one-stage and two-stage methods lead to similar conclusions [135, 156, 181]; however, empirical

comparisons are relatively few. Indeed, because the design and implementation of one-stage and

two-stage random-effects models may substantially differ, it is important to ascertain whether the

choice of method can influence the final conclusions about whether a factor has a (statistically)

significant association with the outcome.

In a recent empirical evaluation using a meta-analysis of 24 randomised trials of antiplatelets to

prevent preeclampsia, Stewart et al. [233] conclude that ‘two-stage and one-stage approaches to

analysis produce similar results’ and ‘where an IPD review evaluates effectiveness based on sufficient

data from randomised controlled trials, one-stage statistical analyses may not add much value to

simpler two-stage approaches’. It is important to consider if this recommendation is valid in other

empirical examples, and if it translates to epidemiological studies. In particular, epidemiological

studies of factor-outcome associations may be affected by several covariates, namely confounders (in

causal factor studies) or other predictors (in predictor finding studies) [33, 129, 279]. This situation

may also arise in clinical trials when interactions occur between treatment effects and covariates,

or when adjustment is needed for prognostic factors that are unbalanced between groups. Thus

the random-effects framework needs to accommodate these covariates during modeling in order to

estimate factor-outcome associations after adjusting for other factors. Factors that are strongly

associated with the outcome might retain their association even when adjusting for other variables.

However, there has again been little comparison of one-stage and two-stage IPD-MA methods when

adjustment is required [78, 243].

The aim of this article is to describe and empirically evaluate possible one-stage and two-stage

IPD-MA models for synthesizing (causal or predictive) factor-outcome association estimates across

multiple studies where a continuous or binary factor is of interest in relation to a binary outcome.

It is therefore similar in spirit to a recent description of methods for meta-analysis of time-to-event

outcomes [257]. The methods are compared using an empirical example, to illustrate their advan-

tages, differences and accessibility. Our methods all assume that between-study heterogeneity in

baseline risk and factor-outcome associations exists, as it likely in practice, and so we only consider

random-effects IPD-MA models. We examine different assumptions concerning the random effects,

and consider how the models can be extended to adjust for other factors. Hereto, we describe two

two-stage and three one-stage models for estimating unadjusted and adjusted factors. We finish

by depicting some estimation procedures and approximations, and conclude with discussion and

recommendations.
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MOTIVATING EXAMPLE

Deep Vein Thrombosis (DVT) is a blood clot that forms in a vein in the body (usually in the lower

leg or thigh). A (part of such) clot can break off and be carried through the bloodstream to the

lungs and there cause a blockage (pulmonary embolism), preventing oxygenation of the blood and

potentially causing death. The diagnosis DVT presence or absence can (ultimately) be made using

repeated leg ultrasound, which requires patient referral and is to some extent burdening and time

and money consuming. Hence, it is desirable to predict the presence or absence of DVT without

having to refer patients for more cumbersome testing, by rather using easy to obtain predictors

from their patient history, physical examination and simple blood assays. For this reason, in

patients with a suspected DVT various studies aimed at estimating which factors – out of a range

of candidate factors – are indeed associated with the presence or absence of DVT; in other words,

which factors are useful diagnostic predictors of the probability that a patient truly has DVT.

A previous systematic review collected the IPD of patients with a suspected DVT from 13 studies

(n = 10 002), and this IPD contains information about the patients’ history, physical examination

and results from a biomarker test (Table 2.1, Table 2.2 and Table A.1 in the Appendix) [67, 84].

In this article, we use these data to illustrate the described meta-analysis methods for identifying

important risk factors. We assume random effects for factor-outcome associations as the presence

of heterogeneity between studies is expected due to differences in locale, setting and time. Detailed

information about the included studies and predictors is available in the e-Appendix (Table S1 and

Table S2).

METHODS

This section describes the framework for random-effects IPD-MA modeling of risk factor (predictor

finding) studies with a binary outcome. Hereto, it identifies two sources of data: IPD and AD.

IPD is represented by patient-level factor values (covariates) and outcomes, whereas AD consists

of study-level summaries such as the estimated log odds ratios and corresponding standard errors

for the factor-outcome associations reported [203]. We describe two-stage and then one-stage IPD-

MA approaches [204] and describe how to account for differences in baseline risk across studies

(clustering). Further, we show how to extend these methods to adjust for known risk factors, and

evaluate some important estimation difficulties that arise when relatively few data are available.

The DVT data is used to illustrate the methods and to identify some important differences.
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Two-stage IPD methods

First stage

In a two-stage method, the IPD are first analyzed separately in each study using an appropriate

statistical method for binary outcome data. For example, consider where a single risk factor is of

interest, then the logistic regression model is:

yi ∼ Bernoulli (pi)

logit (pi) = α+ βxi
(Model \1)

with unknown parameters α (intercept) and β (slope representing the association between factor

x and binary outcome y). The logit outcome probability for subject i, pi, is then a linear function

of the factor xi. The resulting estimates from study j are denoted as α̂j (intercept) and β̂j (log

odds ratio). Consequently, the first step yields the intercept and the factor-outcome association

estimates, and their associated within-study covariance matrix (containing the variance of the

intercept var(α̂j) and each association var(β̂j), as well as their respective covariances cov(α̂j , β̂j))

for each individual study. By utilising all the model parameter estimates, their variances and their

correlation (covariance), the original IPD is reduced to AD for each study [195, 197]. If IPD are

not available, such AD may alternatively be sought from study publications or study authors.In

the second stage, this AD from each study are synthesized using a suitable model for meta-analysis

of AD [121, 129, 130], with potential options as follows.

Second Stage

Option 1. Full (bivariate) meta-analysis AD model The AD are combined by a bivari-

ate random-effects model that simultaneously synthesises the factor-outcome association (beta)

estimates and the baseline risk (intercept) estimates whilst accounting for their correlation. The

model assumes that the true underlying effect of the jth study (asymptotically) arises from a mul-

tivariate normal (MVN) distribution [271], and incorporates within- and between-study covariance.

Specifically, the model fits the following marginal distributions:

[
α̂j

β̂j

]
∼ MVN

([
α

β

]
,

[
τ2α ταβ

ταβ τ2β

]
+

[
var(α̂j) cov(α̂j , β̂j)

cov(α̂j , β̂j) var(β̂j)

])
(Model 1)
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with unknown parameters α, β, τα, τβ and ταβ. Here, α and β represent the average baseline

risk and factor-outcome association across studies, respectively, τα and τβ describe their respective

degree of heterogeneity between studies, and ταβ their between-study covariance.

Option 2. Traditional (univariate) meta-analysis AD model Most researchers ig-

nore within-study and between-study covariances in parameter estimates and thus assume that

cov(αj , βj) and ταβ equal 0 [195]. Essentially, this reduces Model 1 to a univariate meta-analysis

of the factor-outcome association, and is similar to the commonly applied DerSimonian and Laird’s

classical random-effects meta-analysis model [70, 128], where:

β̂j ∼ N
(
β, τ2β + var(β̂j)

)
(Model 2)

with unknown parameters β and τβ. This model no longer synthesises the baseline risk across

studies, and just pools the factor-outcome associations.

One-stage methods

In a one-stage method, the IPD from all studies are modeled simultaneously whilst accounting for

the clustering of subjects within studies. The one-stage IPD-MA framework is a (multilevel) logistic

regression model with random effects. Different specifications are possible, as now described.

Option 1. Fully (bivariate) random-effects one-stage model Here, as in Model 1,

random effects are specified for both the intercept and the slope, and their between-study covariance

is modelled

yij ∼ Bernoulli (pij)

logit (pij) = αj + βjxij[
αj

βj

]
∼ MVN

([
α

β

]
,

[
τ2α ταβ

ταβ τ2β

]) (Model 3)

where i indicates observations at the individual level and j again represents the study level. Note

that αj and βj are not explicitly estimated (in contrast to Model 1, where it represents the AD

from the individual studies) but follow from the unknown parameters α, β, τα, τβ and ταβ. These

parameters have the same interpretation as those from Model 1.
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Option 2. Reduced random-effects one-stage model In a reduced one-stage model,

independent random effects are assumed for the intercept and slope in order to avoid estimating

the between-study covariance, which can often be problematic:

yij ∼ Bernoulli (pij)

logit (pij) = αj + βjxij[
αj

βj

]
∼ MVN

([
α

β

]
,

[
τ2α 0

0 τ2β

]) (Model 4)

Option 3. Stratified one-stage model Finally, it is possible to reduce the number of

assumptions by estimating a stratified one-stage model. This model no longer estimates an un-

derlying average for the intercepts but rather estimates a separate intercept for each study. Thus

the between-study normality assumption for the intercept term is no longer required for αj , and

there is no need to estimate a between-study covariance term. However, heterogeneity in the the

factor-outcome association is still modelled using a random effect:

yij ∼ Bernoulli (pij)

logit (pij) =

M∑
m=1

(αmIm=j) + βjxij

βj ∼ N
(
β, τ2β

)
(Model 5)

where the indicator term Im=j indicates that a separate intercept should be estimated for each

study j = 1, . . . ,M . Similar to Model 3 and Model 4, βj is not explicitly estimated but follows

from the unknown parameters α1, . . . , αM , β and τβ.

Extending the one-stage and two-stage models to examine multiple risk
factors

Previously, we described models for summarizing unadjusted factor-outcome associations. Al-

though these models are fairly straightforward to implement, it is well known that factor-outcome

associations are often influenced by extraneous variables rendering exposure groups incomparable.

This situation may, for instance, arise when associations are estimated from cohort and cross-

sectional studies (prognostic research) or treatment-by-patient-characteristic interactions occur
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(intervention research). In addition, several authors have recommended that each factor should be

studied for their incremental (causal or predictive) value beyond established risk factors [118, 166].

This raises the need for multivariable analyses, where the factor-outcome association under investi-

gation is adjusted for potential confounders or other known predictors. Consequently, the methods

from previous section performing a univariate (or bivariate) meta-analysis need to be extended to

perform a (multivariate) meta-analysis where the factor-outcome associations (and intercept) are

adjusted for K additional factors.

Extended two-stage models

For the two-stage method, multivariable logistic regression models are estimated in each study:

yi ∼ Bernoulli (pi)

logit (pi) = α+ βxi +

K∑
k=1

θkzik
(Model \2)

which yields an intercept α̂j , a risk factor-outcome association β̂j , confounder-outcome associations

θ̂j1, . . . , θ̂jK and a within-study covariance matrix Σ̂j for each study. A summary estimate for the

regression coefficients and model intercept can be obtained by extending the bivariate random-

effects model from Model 1 into a multivariate generalization [66, 129, 130, 158].



α̂j

β̂j

θ̂j1
...

θ̂jK


∼ MVN





α

β

θ1
...

θK


,



τ2α ταβ ταθ1
. . . ταθK

ταβ τ2β τβθ1 . . . τβθK

ταθ1
τβθ1

τ2θ1
. . . τθ1θK

...
...

...
. . .

...

ταθK
τβθK

τθ1θK
. . . τ2θK


+ Σ̂j


(Model A)

Usually researchers assume zero within-study and between-study correlation, and so perform a

separate univariate meta-analysis to each factor-outcome and confounder-outcome association sep-

arately; that is Model 2 is fitted for each of the log odds ratio terms separately (Model B).
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Extended one-stage models

The fully random-effects one-stage model with multiple risk factors is specified as follows:

yij ∼ Bernoulli (pij)

logit (pij) = αj + βjxij +

K∑
k=1

(θjzij)k

αj

βj

θj1
...

θjK


∼ MVN





α

β

θ1
...

θK


,



τ2α ταβ ταθ1
. . . ταθK

ταβ τ2β τβθ1 . . . τβθK

ταθ1
τβθ1

τ2θ1
. . . τθ1θK

...
...

...
. . .

...

ταθK
τβθK

τθ1θK
. . . τ2θK





(Model C)

Alternatively, a reduced one-stage model can be estimated by assuming independent random effects

for α, β, θ1, . . . , θK , i.e. the off-diagonal terms in Model C are set to 0 (Model D).

Finally, it is possible to reduce the number of random effects by stratifying the intercepts and/or

predictors for which a summary estimate is not of interest. For example, one-stage stratified model

that estimates a separate intercept for each study can be achieved as follows:

yij ∼ Bernoulli (pij)

logit (pij) =

M∑
m=1

(αmIm=j) + βjxij +

K∑
k=1

(θjzij)k
βj

θj1
...

θjK

 ∼ MVN




β

θ1
...

θK

 ,

τ2β τβθ1

. . . τβθK

τβθ1 τ2θ1
. . . τθ1θK

...
...

. . .
...

τβθK
τθ1θK

. . . τ2θK




(Model E)

Stratification on all confounders may, however, not always be feasible due to sample size constraints.

For this reason, we generally recommend to model separate intercept terms and to assume ran-

dom effects for all predictor effects (and hence reduce model complexity by introducing additional

assumptions). The underlying rationale is that accurate estimates for confounding parameters

are usually not required. Although this simplification may introduce bias in all parameter esti-

mates, baseline risks are likely most affected because they capture all unexplained variation. A
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non-parametric modeling approach for the intercept terms may thus better accommodate model

misspecification.

Estimation procedures and approximations

In the two-stage methods, the first stage model (logistic regression in each study) is estimated

using maximum likelihood (ML). In the second stage, the AD meta-analysis models are estimated

using, for example, methods of moment (MOM) or restricted maximum likelihood (REML) [50,

70, 100, 128, 130]. This can be implemented in numerous software, with packages such as lme4

and mvmeta in R, Proc Mixed in SAS and mvmeta in STATA. However, difficulties may arise in

the first or second stage estimation. For risk factors that are binary, if zero cell counts occur in

some of the included studies (e.g. when all patients with the risk factor presence also have the

outcome), the likelihood function may not converge or converges in an unstable factor-outcome

association. This problem is also known as (partial) separation [9, 145], and can be overcome by

penalization [79, 103, 107, 141, 250] or adding a continuity correction [35, 255]. A second problem

may arise when the number of included studies is small as estimation of between-study covariance

may become problematic [129, 130, 198].

One-stage methods involve the estimation of a mixed effects (multilevel) model which is often high

dimensional [250]. For this reason, numerical integration is often achieved through approximate

methods such as adaptive Gauss-Hermite Quadrature [95, 177, 189, 191]. Although estimation

becomes more precise as the number of quadrature points increases, it often gives rise to compu-

tational difficulties and convergence problems [146]. Furthermore, it has been demonstrated that

the one-stage method may yield (downwardly) biased variance parameters when studies are small

or limited in number [20, 41, 95, 150]. The one-stage method may also produce downwardly biased

coefficient estimates when an incorrect model is specified, for instance when random effects are

wrongly assumed [72]. This may increase type-II errors. Although these issues could be reduced

by penalization, there is a lack of REML procedures due to the computational difficulty of the

second-order Laplace approximation [150].

CASE STUDIES

In this section, we illustrate the benefits, limitations and differences of one-stage and two-stage

methods in the DVT data. For all case studies, in the two-stage models we used MLE in the first

stage and MLE, REML or MOM in the second stage. For the one-stage models we used adaptive

Gauss-Hermite Quadrature with 1 (Laplacian approximation) and 5 quadrature points
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In the first case study, we performed meta-analyses to estimate the unadjusted factor-outcome

association for 16 risk factors using each of the models described above, and we examined the ob-

tained log odds ratio (β), standard error (S.E.), between-study variability (τβ) and between-study

correlation (ραβ). The models considered are: full bivariate two-stage meta-analysis (Model \1 +

Model 1), traditional univariate two-stage meta-analysis (Model \1 +Model 2), fully random-effects

one-stage meta-analysis (Model 3), reduced random-effects one-stage meta-analysis (Model 4) and

stratified one-stage meta-analysis (Model 5). For two-stage methods, we penalized the likelihood

using Jeffreys invariant prior in datasets with (partial) separation in order to stabilize study-specific

estimates [79, 107].

In the second case study, we performed meta-analyses to investigate the risk factor ddimd, adjusted

for 3 covariates (malign, surg and calfdif3 ). Hereto, we estimated the following models: extended

full two-stage model (Model \2 + Model A), extended reduced two-stage model (Model \2 + Model

B), extended full one-stage model (Model C), extended reduced one-stage model (Model D) and

extended stratified one-stage model (Model E).

For all models, we calculated p-values (with α = 0.05) and corresponding 95% confidence intervals

for the estimated odds ratios, according to:

β̂ ± zα
√

SE(β̂)2

where zα is the 0.975 percentile of the standardized normal distribution. Finally, we calculated

95% prediction intervals to indicate a range for the predicted odds ratio in a new study [114, 202].

Assuming the random effects are normally distributed with between-study standard deviation,

then an approximate 95% prediction interval for the factor-outcome association in an unspecified

study can be obtained as:

β̂ ± tαM−2
√
τ̂2β + SE(β̂)2

where β̂ is the estimate of the average factor-outcome association across studies, and tαM−2 is the

0.975 percentile of the Student’s t distribution with M − 2 degrees of freedom, where M is the

number of studies in the meta-analysis.

All models were implemented in R 2.15.1 using Linux Mint 14 Nadia (MATE 64-bit) and incor-

porated the packages lme4 (v0.999999-0), mvmeta (v0.3.4), logistf (v1.10) and metamisc (v0.0.4).

Additional source code is available in the e-Appendix (supporting information files S1).
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RESULTS

One-stage versus two-stage methods

Results in Table 2.3, Table 2.4 and Table S3 indicate that one- and two-stage methods often yield

similar estimates for pooled factor-outcome associations, but importantly not always. For example,

for the factor par we found an odds ratio of 1.45 (Model 1 using MLE) versus 1.32 (Model 5

using MLE). Occasionally, differences led to the one-stage and two-stage models disagreeing upon

statistical significance (e.g. eryt). These differences mainly occurred when relatively few data were

available per study (coag and par), or relatively few studies were at hand (eryt and ddim). For

instance, the OR of eryt was 1.52 (95% CI: 0.93 to 2.47) for the univariate two-stage approach (using

DerSimonian and Laird’s MOM estimator), versus 1.35 (95% CI 1.03 to 1.77) for the stratified one-

stage approach. Furthermore, one-stage and two-stage methods tend to provide different estimates

for standard errors and between-study heterogeneity parameters, leading to different prediction

intervals. For instance, the prediction interval for the odds ratio of ddimd ranged from 8.65 to

36.20 (Model 2 using MLE), versus 14.24 to 24.17 (Model 5 using MLE). Although usually they give

similar results, the univariate two-stage method (Model 2) sometimes obtains different conclusions

to the bivariate two-stage method (Model 1). For instance, for eryt we respectively found an odds

ratio of 1.55 (p = 0.115) versus 1.38 (p = 0.043) when REML was used as estimation procedure.

Finally, the bivariate two-stage method (Model 1) often gives more similar results to the one-stage

method. For the factor eryt, we found OR = 1.37 with p = 0.036 using Model 1 (bivariate two-stage

model), versus OR = 1.37 with p = 0.037 for Model 3 (bivariate one-stage model), OR = 1.39

with p = 0.046 for Model 4 (reduced one-stage model) and OR = 1.35 with p = 0.029 for Model 5

(stratified one-stage model). These estimates were all somewhat different to the results for Model 2

(univariate two-stage MoM) where OR = 1.52 with p = 0.094.

Estimation of correlation between random effects

As previously described, only the full one- and two-stage models (Model 1 & Model 3) estimate a

parameter for the correlation between random effects. Results in Table 2.5 and 2.6 demonstrate

that these models often yield correlation estimates that are close to +1 or -1, particularly when

insufficient data are available and MLE is used. If correlations between random effects are assumed

zero (Model 2 & Model 4), we noticed that parameter estimates may considerably change and

thereby affect the calculation of p-values and prediction intervals. A good example is the unadjusted

factor coag, where the prediction interval for the OR ranged from 0.62 to 2.47 (Model 1 with MLE)

versus 0.75 to 2.23 (Model 2 with MLE), and the corresponding p-value decreased from 0.172 to

39



Chapter 2

T
ab

le
2.3:

E
stim

a
ted

u
n

ad
ju

sted
fa

cto
r-o

u
tco

m
e

a
sso

cia
tio

n
s

fo
r

d
d
im

d
in

th
e

D
V

T
case

stu
d

y.

M
o
d

el
E

stim
a
tion

β
S

.E
.

τ
β

ρ
α
β

O
R

9
5
%

C
I

95%
P

I
p

-valu
e

\
1 +

1
M

L
E

2
.7

6
0.1

5
0
.3

0
0
.5

2
1
5
.8

6
1
1
.7

3
to

2
1
.45

6.98
to

36.06
<

0.001
\
1 +

1
R

E
M

L
2.78

0.17
0
.3

3
0
.2

8
1
6
.1

0
1
1
.6

4
to

2
2
.27

6.48
to

40.00
<

0.001
\
1 +

2
M

L
E

2.87
0.15

0
.2

5
1
7
.6

9
1
3
.1

5
to

2
3
.80

8.65
to

36.20
<

0.001
\
1 +

2
R

E
M

L
2.89

0.17
0
.3

1
1
7
.9

7
1
2
.8

8
to

2
5
.06

7.49
to

47.04
<

0.001
\
1 +

2
M

O
M

2.89
0.17

0
.3

2
1
7
.9

8
1
2
.8

7
to

2
5
.13

7.43
to

43.54
<

0.001
3

M
L

E
1
Q

P
2.87

0.15
0
.2

8
0
.0

7
1
7
.7

0
1
3
.1

4
to

2
3
.86

8.08
to

38.78
<

0.001
3

M
L

E
5
Q

P
2.85

0.14
0
.2

5
0
.5

8
1
7
.3

5
1
3
.1

5
to

2
2
.89

8.62
to

34.91
<

0.001
4

M
L

E
1
Q

P
2.88

0.15
0
.2

9
1
7
.7

9
1
3
.1

5
to

2
4
.07

8.00
to

39.56
<

0.001
4

M
L

E
5
Q

P
2.85

0.19
0
.4

1
1
7
.3

7
1
2
.0

6
to

2
5
.01

5.74
to

52.55
<

0.001
5

M
L

E
1
Q

P
2.92

0.11
0
.0

0
1
8
.5

5
1
5
.0

1
to

2
2
.93

14.24
to

24.17
<

0.001
5

M
L

E
5
Q

P
2.92

0.11
0
.0

0
1
8
.4

6
1
4
.9

4
to

2
2
.81

14.17
to

24.04
<

0.001

N
o
te

th
at

th
e

IP
D

from
8

stu
d

ies
w

ere
ava

ila
b

le
for

estim
a
tio

n
.

S
ta

tistica
l

sig
n

ifi
ca

n
ce

(p
-valu

e),
95%

con
fi

d
en

ce
in

tervals
(95%

C
I)

an
d

95%
p

red
ictio

n
in

terva
ls

(9
5%

P
I)

a
re

given
for

th
e

o
d

d
s

ra
tio

(O
R

).

40



Chapter 2

T
ab

le
2.

4:
E

st
im

at
ed

u
n

ad
ju

st
ed

fa
ct

o
r-

o
u

tc
o
m

e
a
ss

o
ci

a
ti

o
n

s
fo

r
pa

r
in

th
e

D
V

T
ca

se
st

u
d

y.

M
o
d

el
E

st
im

at
io

n
β

S
.E

.
τ β

ρ
α
β

O
R

9
5
%

C
I

9
5
%

P
I

p
-v

a
lu

e

\ 1
+

1
M

L
E

0.
37

0
.1

4
0
.2

6
-0

.4
7

1
.4

5
1
.1

1
to

1
.9

0
0
.7

6
to

2
.7

5
0
.0

0
7

\ 1
+

1
R

E
M

L
0.

38
0
.1

4
0
.2

9
-0

.4
5

1
.4

6
1
.1

0
to

1
.9

3
0
.7

1
to

2
.9

8
0
.0

0
9

\ 1
+

2
M

L
E

0.
33

0
.1

3
0
.2

3
1
.3

8
1
.0

6
to

1
.8

0
0
.7

6
to

2
.5

1
0
.0

1
6

\ 1
+

2
R

E
M

L
0.

33
0
.1

4
0
.2

7
1
.3

9
1
.0

5
to

1
.8

4
0
.7

1
to

2
.7

3
0
.0

2
0

\ 1
+

2
M

O
M

0.
33

0
.1

3
0
.2

4
1
.3

8
1
.0

6
to

1
.8

0
0
.7

6
to

2
.5

2
0
.0

1
6

3
M

L
E

1Q
P

0.
32

0
.1

3
0
.2

3
-0

.3
7

1
.3

8
1
.0

7
to

1
.7

9
0
.7

7
to

2
.4

8
0
.0

1
3

3
M

L
E

5Q
P

4
M

L
E

1Q
P

0.
29

0
.1

3
0
.2

1
1
.3

3
1
.0

3
to

1
.7

1
0
.7

8
to

2
.2

7
0
.0

2
6

4
M

L
E

5Q
P

5
M

L
E

1Q
P

0.
28

0
.1

3
0
.1

9
1
.3

2
1
.0

3
to

1
.7

0
0
.7

9
to

2
.2

1
0
.0

2
6

5
M

L
E

5Q
P

N
ot

e
th

at
th

e
IP

D
fr

om
13

st
u

d
ie

s
w

er
e

av
ai

la
b

le
fo

r
es

ti
m

a
ti

o
n

.
S

ta
ti

st
ic

a
l

si
g
n
ifi

ca
n

ce
(p

-v
a
lu

e)
,

9
5
%

co
n

fi
d

en
ce

in
te

rv
a
ls

(9
5
%

C
I)

an
d

95
%

p
re

d
ic

ti
on

in
te

rv
al

s
(9

5%
P

I)
ar

e
gi

v
en

fo
r

th
e

o
d

d
s

ra
ti

o
(O

R
).

F
o
r

so
m

e
o
n

e-
st

a
g
e

m
o
d

el
s,

es
ti

m
a
te

s
co

u
ld

n
o
t

b
e

o
b

ta
in

ed
b

ec
au

se
th

e
ad

ap
ti

v
e

G
au

ss
-H

er
m

it
e

ap
p

ro
x
im

at
io

n
d

id
n

o
t

co
n
ve

rg
e.

41



Chapter 2

T
ab

le
2
.5

:
E

stim
a
ted

u
n

ad
ju

sted
fa

cto
r-o

u
tco

m
e

a
sso

cia
tio

n
s

fo
r

eryt
in

th
e

D
V

T
case

stu
d

y.

M
o
d

el
E

stim
atio

n
β

S
.E

.
τ
β

ρ
α
β

O
R

9
5
%

C
I

95%
P

I
p

-valu
e

\
1 +

1
M

L
E

0
.32

0.1
5

0
.1

0
1
.0

0
1
.3

7
1
.0

2
to

1
.84

0.13
to

13.97
0.036

\
1 +

1
R

E
M

L
0
.32

0.1
6

0
.1

3
1
.0

0
1
.3

8
1
.0

1
to

1
.87

0.10
to

18
.23

0.043
\
1 +

2
M

L
E

0
.30

0.1
4

0
.0

0
1
.3

5
1
.0

3
to

1
.77

0.23
to

7.87
0.030

\
1 +

2
R

E
M

L
0
.44

0.2
8

0
.3

9
1
.5

5
0
.9

0
to

2
.66

0.00
to

664.30
0.115

\
1 +

2
M

O
M

0
.42

0.2
5

0
.3

3
1
.5

2
0
.9

3
to

2
.47

0.01
to

303.63
0.094

3
M

L
E

1Q
P

0
.31

0.1
5

0
.1

0
1
.0

0
1
.3

7
1
.0

2
to

1
.83

0.14
to

13.02
0.037

3
M

L
E

5Q
P

0
.31

0.1
5

0
.1

0
1
.0

0
1
.3

7
1
.0

2
to

1
.83

0.14
to

13.04
0.037

4
M

L
E

1Q
P

0
.33

0.1
7

0
.1

4
1
.3

9
1
.0

1
to

1
.92

0.09
to

22.31
0.04

6
4

M
L

E
5Q

P
0
.33

0.1
7

0
.1

4
1
.3

9
1
.0

1
to

1
.93

0.09
to

22.62
0.04

6
5

M
L

E
1Q

P
0
.30

0.1
4

0
.0

0
1
.3

5
1
.0

3
to

1
.77

0.23
to

7.80
0.02

9
5

M
L

E
5Q

P
0
.30

0.1
4

0
.0

0
1
.3

5
1
.0

3
to

1
.77

0.23
to

7.80
0.02

9

N
o
te

th
at

th
e

IP
D

from
3

stu
d

ies
w

ere
ava

ila
b

le
for

estim
a
tio

n
.

S
ta

tistica
l

sig
n

ifi
ca

n
ce

(p
-valu

e),
95%

con
fi

d
en

ce
in

tervals
(95%

C
I)

an
d

95%
p

red
ictio

n
in

terva
ls

(9
5%

P
I)

a
re

given
for

th
e

o
d

d
s

ra
tio

(O
R

).

42



Chapter 2

T
ab

le
2.

6:
E

st
im

at
ed

u
n

ad
ju

st
ed

fa
ct

o
r-

o
u

tc
o
m

e
a
ss

o
ci

a
ti

o
n

s
fo

r
oa

ch
st

in
th

e
D

V
T

ca
se

st
u

d
y.

M
o
d

el
E

st
im

at
io

n
β

S
.E

.
τ β

ρ
α
β

O
R

9
5
%

C
I

9
5
%

P
I

p
-v

a
lu

e

\ 1
+

1
M

L
E

0.
10

0
.1

8
0
.2

0
-1

.0
0

1
.1

1
0
.7

8
to

1
.5

7
0
.3

5
to

3
.5

2
0
.5

7
4

\ 1
+

1
R

E
M

L
0.

10
0
.1

9
0
.2

3
-1

.0
0

1
.1

0
0
.7

6
to

1
.6

0
0
.3

1
to

3
.9

7
0
.5

9
5

\ 1
+

2
M

L
E

-0
.0

2
0
.1

5
0
.0

0
0
.9

8
0
.7

3
to

1
.3

1
0
.5

2
to

1
.8

6
0
.8

9
8

\ 1
+

2
R

E
M

L
-0

.0
2

0
.1

5
0
.0

0
0
.9

8
0
.7

3
to

1
.3

1
0
.5

2
to

1
.8

6
0
.8

9
8

\ 1
+

2
M

O
M

-0
.0

2
0
.1

5
0
.0

0
0
.9

8
0
.7

3
to

1
.3

1
0
.5

2
to

1
.8

6
0
.8

9
8

3
M

L
E

1Q
P

0.
08

0
.1

7
0
.1

8
-1

.0
0

1
.0

9
0
.7

7
to

1
.5

3
0
.3

7
to

3
.2

2
0
.6

2
9

3
M

L
E

5Q
P

4
M

L
E

1Q
P

-0
.0

3
0
.1

5
0
.0

0
0
.9

8
0
.7

3
to

1
.3

1
0
.5

1
to

1
.8

5
0
.8

6
6

4
M

L
E

5Q
P

5
M

L
E

1Q
P

-0
.0

3
0
.1

5
0
.0

0
0
.9

7
0
.7

2
to

1
.3

0
0
.5

1
to

1
.8

4
0
.8

3
0

5
M

L
E

5Q
P

N
ot

e
th

at
th

e
IP

D
fr

om
4

st
u
d

ie
s

w
er

e
av

ai
la

b
le

fo
r

es
ti

m
a
ti

o
n

,
a
n

d
th

a
t

ze
ro

-c
el

ls
o
cc

u
rr

ed
in

tw
o

st
u

d
ie

s.
S

ta
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

(p
-

va
lu

e)
,

95
%

co
n

fi
d

en
ce

in
te

rv
al

s
(9

5%
C

I)
an

d
95

%
p

re
d

ic
ti

o
n

in
te

rv
a
ls

(9
5
%

P
I)

a
re

g
iv

en
fo

r
th

e
o
d

d
s

ra
ti

o
(O

R
).

F
o
r

so
m

e
o
n

e-
st

a
g
e

m
o
d

el
s,

es
ti

m
at

es
co

u
ld

n
ot

b
e

ob
ta

in
ed

b
ec

au
se

th
e

a
d

a
p

ti
ve

G
a
u

ss
-H

er
m

it
e

a
p

p
ro

x
im

a
ti

o
n

d
id

n
o
t

co
n
ve

rg
e.

43



Chapter 2

0.078. Similar findings were obtained for the adjusted analyses (Table 2.7). Finally, results indicate

that the estimated correlation between random effects tends to be less extreme when REML is

used (Table 2.3). The factor surg is a good example, as ραβ decreased from -0.90 (MLE) to -0.65

(REML).

Estimation of stratified models

It is possible to avoid estimating correlation between random effects without assuming indepen-

dence by using a stratified one-stage model, for example where a separate intercept is estimated for

each study (Model 5) and, in the adjusted analyses, where predictors not of key interest are also

stratified. Results indicate that the estimation of a separate intercept for each study (Model 5)

tends to decrease the standard errors and between-study heterogeneity of factor-outcome associa-

tions (unless between-study correlations are +1 or -1). This, in turn, resulted in smaller prediction

intervals for estimated odds ratios. For instance, the prediction interval for the unadjusted OR of

ddimd ranged from 8.08 to 38.78 (Model 3), versus 14.24 to 24.17 (Model 5).

Estimation of one-stage models

One-stage models were estimated with 1 and 5 quadrature points, and sometimes suffered from

convergence problems (e.g. par and coag in Table 2.3 where positive indefiniteness occurred when

5 quadrature points were used). Possibly, these problems are related to poor model specification.

Parameter estimates were similar for 1 and 5 quadrature points in the unadjusted analyses, however,

some small differences occurred in the adjusted analyses (e.g. ddimd in Table 2.7).

DISCUSSION

We have described several random-effects IPD-MA models that implement a one-stage or two-stage

method, where one desires to evaluate a potential causal (risk) factor or predictor of outcome. We

detailed how they can be estimated and also extended to adjust for other factors. Despite the

conventional belief that one-stage and two-stage methods yield similar conclusions [2, 157, 233],

our empirical investigation shows that this is not always the case. Specifically, we found that

different estimates for pooled effects, standard errors, between-study heterogeneity and correlation

between random effects can result from choosing a different method (one-stage or two-stage),

choosing a different estimation procedure (MLE, REML, MOM, number of quadrature points) and

choosing a different model specification (independent random effects, joint random effects, stratified
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Table 2.7: Estimated adjusted factor-outcome associations in the DVT case study

Risk factor Model Estimation β S.E.(β) τβ OR p-value

ddimd ( 10 )

\2+A MLE 2.62 0.18 0.40 13.67 < 0.001
\2+A REML 2.64 0.20 0.44 13.80 < 0.001
\2+B MLE 2.67 0.15 0.25 14.48 < 0.001
\2+B REML 2.69 0.17 0.33 14.75 < 0.001

C MLE 1QP 2.70 0.18 0.39 14.81 < 0.001
C MLE 5QP 2.70 0.18 0.40 14.83 < 0.001
D MLE 1QP 2.67 0.16 0.33 14.42 < 0.001
D MLE 5QP 2.69 0.14 0.22 14.74 < 0.001
E MLE 1QP 2.72 0.11 0.00 15.25 < 0.001
E MLE 5QP 2.72 0.11 0.00 15.25 < 0.001

Factor-outcome associations are adjusted for malign, surg and calfdif3.

estimation). Although these differences were usually not substantial, in the DVT example they

lead to discrepancies concerning the statistical significance of age, duration of symptoms, family

history of thrombofilia, presence of erythema, presence of paresis and (dichotomized) D-dimer

value.

Thus, importantly the choice of IPD-MA method may actually influence the conclusions about

which factors are thought to be risk factors. This makes it desirable to pre-specify in a study

protocol what meta-analysis method will be used, to avoid unjustified post-hoc analyses being

performed to achieve statistical significance. We generally recommend that the one-stage method

should be used. This method models the exact binomial distribution of the data in each study, and

does not require a continuity correction when (partial) separation occurs [9, 79, 107, 145, 250]. The

one-stage method may therefore produce more reliable results than the two-stage method when

few studies or few subjects per study are available, as the two-stage method incorrectly assumes

asymptotic normality (for the log odds ratio estimates from each study) in such scenarios [250].

The one-stage method further facilitates the adjustment for other factors, which is particularly

important in non-randomised settings. In addition, one-stage models are more flexible, for example

making the implementation of non-linear associations and interactions straightforward [28, 226,

233–236]. Finally, stratification in one-stage models avoids the need for estimating correlations

between random effects. One can simply estimate study-specific intercepts and slopes and place

the random effect only on the factor of interest.

Although we focused on IPD-MA of prognostic factors in this article, the two-stage methods can

also be applied when only AD data is available for the included studies. These methods are usually

preferred because sharing of IPD is often unfeasible due to, for instance, confidentiality agreements.
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Results from our empirical example demonstrate that the full two-stage model, which when pooling

the AD accounts for heterogeneity of baseline risk and risk factors, and their within-study and

between-study correlation, tends to yield most consistent results with the one-stage models. The

full two-stage method is a bivariate meta-analysis, which by additionally using the correlation

between parameter estimates, is known to have benefits over a univariate me-analysis [129]. The

methods presented here could further be extended using methods allowing for the combination of

IPD with AD [204, 208, 254]. Potential limitations such as missing data in a subset of studies

could be overcome using imputation methods that account for clustering. A Bayesian approach

would be the most promising, as it would permit specification of the imputation model alongside

the one-stage model, resolving several estimation limitations of the current approaches [43, 114,

253]. Furthermore, Bayesian approaches facilitate sensitivity analyses through adjusting prior

specification, and permit the the robustness of fitted models to be evaluated. This is particularly

useful when few studies are available and estimated parameters of one- and two-stage models

may be severely biased due to estimation difficulties. Future research is needed to evaluate the

performance of the described methods, and to compare their accuracy and coverage with Bayesian

alternatives.

In summary, the choice of one-stage or two-stage method for performing a random-effects IPD-MA

may influence the statistical identification of risk factors (predictors) for a binary outcome. When

the number of studies in the meta-analysis are large and the number of events in each study are not

few, we agree with Stewart et al [233] that a two-stage method will usually suffice. However, we

generally recommend that a one-stage IPD-MA method is used as this models the exact binomial

distribution, accounts for within-study parameter correlation, offers more flexibility in the model

specification and avoids continuity corrections. It is therefore particularly preferable when few

studies or few events in some studies are available.
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Abstract

The use of individual participant data (IPD) from multiple studies is an increasingly

popular approach when developing a multivariable risk prediction model. Correspond-

ing datasets, however, typically differ in important aspects, such as baseline risk. This

has driven the adoption of meta-analytical approaches for appropriately dealing with

heterogeneity between study populations. Although these approaches provide an av-

eraged prediction model across all studies, little guidance exists about how to apply

or validate this model to new individuals or study populations outside the derivation

data. We consider several approaches to develop a multivariable logistic regression

model from an IPD meta-analysis (IPD-MA) with potential between-study heterogene-

ity. We also propose strategies for choosing a valid model intercept for when the model

is to be validated or applied to new individuals or study populations. These strategies

can be implemented by the IPD-MA developers or future model validators. Finally,

we show how model generalizability can be evaluated when external validation data

are lacking using internal-external cross-validation, and extend our framework to count

and time-to-event data. In an empirical evaluation, our results show how stratified es-

timation allows study-specific model intercepts which can then inform the intercept to

be used when applying the model in practice, even to a population not represented by

included studies. In summary, our framework allows the development (through strati-

fied estimation), implementation in new individuals (through focused intercept choice)

and evaluation (through internal-external validation) of a single, integrated prediction

model from an IPD-MA in order to achieve improved model performance and general-

izability.



Chapter 3

“The shoe that fits one person pinches another; there is no recipe for living that suits all
cases.”

– Carl Gustav Jung

C
linical prediction models are an increasingly important tool in evidence-based medical

decision making [5, 170, 192]. They aim to accurately predict an individual’s risk of

disease being present (diagnostic prediction model) or occurring in the future (prognostic

prediction model), to thereby inform clinical and therapeutic decisions, facilitate healthcare and

public health policies, and aid patient counseling [56, 182, 192, 222, 289]. An example is the

diagnostic model develop by Oudega et al.[182], which aims to predict the presence of deep-vein

thrombosis in patients suspected of deep-vein thrombosis at primary care. Such prediction models

are typically derived from a single dataset including individual participant data (IPD), in which the

association between the presence or occurrence of the outcome of interest and a set of predictors

(covariates) is estimated [5, 213, 237]. During the past decades, prediction research has become

more popular and international collaboration has become more commonplace. This has led to an

increased sharing of IPD and subsequently exposed the need for IPD meta-analysis (IPD-MA) to

appropriately synthesize these data to develop (and validate) a single prediction model [203, 207].

Examples of IPD meta-analyses that have led (or will lead) to the development and validation of

risk prediction models are abound in the literature [188, 215, 222, 248].

Prediction models resulting from IPD-MA are appealing as they may be seen to be more gener-

alizable as compared to using IPD from just a single study population; the inclusion of multiple

studies addresses a wider range of study populations and increases the variation in the character-

istics of the included participants. However, by simply combining IPD to produce a prediction

model averaged across all study populations, researchers might actually obfuscate the extent to

which the individual studies were comparable, and can mask how the model performs in each

study population separately. For example, when study differences in model parameter estimates

cannot be explained by sampling variability solely, i.e. heterogeneity is present, resulting models

may not generalize well and perform poorly when applied in new individuals. One of the key

expressions of this heterogeneity is differences in the baseline risks, i.e. outcome prevalences (for

diagnostic models) or incidences (for prognostic models), or in the predictor-outcome associations

[124, 125, 169]. Potential causes of such heterogeneity in otherwise related study populations

are differences in study design, inclusion and exclusion criteria, disease severity and interventions

undergone [96, 279].

When an IPD-MA aimed at developing ‘an average’ prediction model does not appropriately han-

dle potential heterogeneity, resulting prediction models may yield systematically biased predictions
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when validated or applied in new individuals or study populations. This, in turn, renders their clin-

ical usefulness obsolete [133, 169]. Consequently, the implementation of random effects modeling

that effectively account for heterogeneity across the included studies seems highly recommended

[93, 202, 203]. This approach, however, also complicates external validation and implementation

of the resulting prediction model, as parameters (such as intercept and predictor-outcome associ-

ations) are allowed to take different values for each included study [8, 66]. This then raises the

question about which parameters should be used when the prediction model is validated or applied

in new individuals or study populations that were not considered during its derivation; researchers

hardly address this difficulty. Furthermore, an IPD-MA may not always improve the generalizabil-

ity of clinical prediction models, as it is possible that study populations differ too much to usefully

combine them; focusing on an average model across all study populations is thus misleading [202].

A framework is therefore needed that supports both the identification of the extent to which ag-

gregation of IPD is justifiable and the optimal approach to achieve this aggregation. In addition,

this framework should guide subsequent researchers and potential users how to validate or apply

the model to new individuals.

Royston et al. proposed a framework to construct and validate a prognostic survival model from an

IPD-MA [215]. This framework adopts an “internal-external cross-validation” (IECV) approach

to evaluate whether derived models have good prognostic separation in independent studies, and

whether the baseline survival distribution is heterogeneous across studies. Afterwards, a single final

model is derived from all available IPD using flexible parametric proportional hazards modeling

techniques. Although this framework appears to be a useful strategy for accounting and adjusting

for heterogeneity in an IPD meta-analysis aimed at developing a single, average prediction model,

it has not yet been widely implemented. In addition, the suggested framework pools the baseline

hazard distribution functions, which may not be justified when heterogeneity is largely present.

Finally, it remains unclear how the framework should be applied when models aim to predict binary

outcomes, using multivariable logistic regression, rather than time to event.

Here, we propose several approaches to account and adjust for heterogeneity in an IPD-MA that

aims to develop a novel prediction model for a binary outcome, and allow it to be externally

validated or applied in new individuals. We begin by considering a range of strategies for developing

a model when the included studies may have different outcome frequencies (baseline risks), that

potentially require different intercepts in the model. We then describe how to apply the fitted model

to a new study population by obtaining an appropriate intercept for this new study population,

even when its baseline risk is unknown. In this manner, we aim to facilitate its implementation or

external validation when baseline risks are heterogeneous across studies. We demonstrate that only

limited information about the new study population is sufficient to adjust the derived prediction

model and facilitate reliable predictions [133, 239, 270]. Furthermore, we extend the “internal-
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external cross-validation” approach proposed by Royston et al. [215] to evaluate the generalizability

of derived prediction models in other study populations. This approach can also be used to identify

which combination of studies yield consistent prediction models, and which studies may present

problematic sources of evidence and may need to be excluded for the model development. Finally,

we extend the framework to count and time-to-event data prediction models, and illustrate the

approaches using a diagnostic modeling IPD-MA on the prediction of the presence of Deep Vein

Thrombosis.

METHODS

This section describes our framework to develop a prediction model from an IPD-MA with a

binary outcome, and optimally adjust its intercept to a new study population. This framework is

summarized in Figure 3.1, and we now explain each step in detail. We begin by assuming that

the included studies have similar predictor-outcome associations, but may have a heterogeneous

outcome frequency or baseline risk. Consequently, three important steps can be distinguished:

(1) estimation of predictor-outcome associations from the available studies whilst accounting for

heterogeneity in baseline risks, (2) estimation of an appropriate model intercept when the model is

to be implemented or validated in a new study population outside the IPD meta-analysis, and (3)

evaluating the generalizability of the resulting model. This last step iteratively assesses the extent

to which estimations of the predictor-outcome associations and model intercept from a subset of

the available studies yield accurate model predictions in the remaining IPD.

Finally, the value of the framework in the presence of additional heterogeneity in the predictor-

outcome associations is considered in Case Study 2.

Step 1: Estimation of predictor-outcome associations

This first step estimates the predictor-outcome associations across the available IPDs in the IPD-

MA dataset, and considers several approaches to account for differences in baseline risk. For sake

of simplicity, we assume that a pre-selection (based on e.g. prior knowledge or clinical expertise)

of the candidate predictors has been done and that their specification (e.g. linear or non-linear

forms in case of continuous predictors) in the model is predefined. We refer the reader to other

sources that discuss the selection and specification of predictor variables [101, 237], and note that

it is possible to evaluate different choices of model specification by assessing its performance in a

validation sample. We consider the situation in which IPD from j = 1, . . . ,M studies are available.

The data from each study is described by K independent predictors, a dichotomous outcome y, and
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contains Nj subjects. Let Xij denote a 1×K vector with the predictors for subject i = 1, . . . , Nj

in study j. Three possible logistic regression modeling approaches in this situation are stacking,

random intercept effects, and stratification.

Stacking

A first, potentially naive approach may assume that all IPD were collected from a single and

homogeneous population. This approach ignores the clustering of participants within different

studies, and merges all their data into one dataset by means of stacking:

yi ∼ Bernoulli (πi)

logit (πi) = α+ β′Xi

(3.1)

The common intercept α and predictor-outcome associations β (representing a 1 ×K vector) for

all studies shows that clustering is being ignored. This type of meta-analysis is hard to justify

when study populations have different outcome incidence or prevalence, as then the baseline risk

is different for each study. It is known that ignoring such heterogeneity in baseline risk can induce

bias in predictor-outcome associations [2].

Random effects modeling of the intercept

If heterogeneity in an IPD-MA only occurs in the baseline risk, it is possible to account for these

differences using a random-effects logistic regression model. This approach estimates a weighted

average model intercept by assuming random effects for the model intercepts across the included

studies in the IPD meta-analysis [32, 230, 262]. To this purpose, it allows a separate intercept

for each study and estimates the distribution of this intercept across studies. Here, we assume

a normal distribution which leads to an estimated mean (i.e. the average study intercept), α,

and variance (i.e. the between-study heterogeneity in intercept), τ2α. The corrseponding logistic

regression model consists of K + 2 parameters, and is specified as follows:

yij ∼ Bernoulli (πij)

logit (πij) = aj + β′Xij

aj ∼ N
(
α, τ2α

) (3.2)
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By assuming random effects it becomes possible to model heterogeneity in baseline risk with

relatively few parameters. Unfortuntely, it is often difficult to evaluate whether the corresponding

assumptions are justifiable, particularly when a small number of studies are available in the IPD-

MA. Although it is possible to relax the required assumptions by adopting a Bayesian perspective

using vague priors, such strategy requires advanced statistical expertise and specialised software

packages which may not always be available [144].

Stratified estimation of the intercept

Given these aforementioned limitations, it may sometimes be inappropriate to estimate an average

intercept across all studies. For this reason, we propose estimating a stratified intercept for each

study when relatively few IPD studies are at hand. This implies that a separate intercept αj is

estimated for each study, and an underlying distribution of random intercept effects is no longer

assumed.

yij ∼ Bernoulli (πij)

logit (πij) =

M∑
m=1

(αmIm=j) + β′Xij

(3.3)

where I represents an indicator variable that equals 1 when m = j and 0 otherwise. By using

an indicator variable to estimate a separate intercept for each study, the normality assumption

from expression 3.2 is avoided, and an overall estimate for the model intercept as in the random

effects approach is no longer estimated. Unfortunately, this also implies that the resulting model

focuses on the studies at hand, and the choice of intercept when validating or applying the final

model to new individuals (outside the IPD-MA) is not immediately obvious. How to deal with

this is further addressed in step 2. It should further be noted that stratification may result into

estimation difficulties when some studies have few or no events, and now involves M +K instead

of K + 2 (random effects modelling) or K + 1 (stacking) unknown parameters. For this reason,

stratification may not be feasible when many studies with relatively few participants are at hand.

Step 2: Choosing an appropriate model intercept when implementing the
model to new individuals

Although all methods in step 1 yield a unique choice of predictor-outcome associations, the presence

of heterogeneity in baseline risk across the study populations of the IPD-MA may induce a set of
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different model intercepts. For example, the β estimates from the prediction model in expression

3.3 need to be combined with an intercept that is appropriate for the study population in which

one wants to validate or apply the IPD model. It may be clear that the presence of heterogeneity in

baseline risk complicates the implementation of a prediction model in individuals outside the IPD-

MA. Although model developers could report a unique summary intercept in such scenarios (see

Average Intercept), an alternative strategy is to allow future model implementors or validators

to obtain an intercept that is optimal for their specific study population. In this section, we

describe three methods for obtaining such an intercept with minimal information about the new

individuals or study population. Two of these strategies solely require baseline descriptives about

the study population (see Intercept Selection and Intercept estimation from outcome prevalences),

whereas the third method ensures intercept optimality by re-estimating the intercept using IPD

(see Intercept estimation from new IPD). All methods can be implemented without the original

participant data, as long as some basic information about these data is reported. Summarized,

this second step aims to facilitate future validations and applications of the final IPD model

by presenting several strategies for obtaining a unique model intercept when baseline risks are

heterogeneous across the included study populations.

Average Intercept

A straightforward approach for obtaining an appropriate model intercept may use the estimated

(weighted) average from the IPD-MA, as captured by α in the stacking or random effects ap-

proaches described above. This approach was proposed by Royston et al., who pool the baseline

hazard distribution functions of the studies in an IPD-MA for deriving a prognostic model [215].

Although α is unavailable in the stratified approach, an estimate can be obtained by pooling the

individual intercepts aj estimates using a fixed or random effects meta-analysis as necessary. A

major advantage of an average intercept based on all included studies is that it can directly be

used as approximation of baseline risk in a new study population with unknown outcome incidence

or prevalence. Unfortunately, this uncertainty about the new study population implies that the

resulting average estimate may be very different to the actual intercept in a single population,

especially when outcome incidences or prevalences do differ across patient populations, which is

often the case in practice. This error in the intercept may then lead to poor predictive accuracy

when the model is applied.

54



Chapter 3

Intercept Selection

To avoid using an average model intercept, an alternative approach is to simply select an estimated

intercept from one of the IPD studies that is most similar to the new study population. This

intercept can be directly obtained from aj (random effects approach) or αj (stratified approach).

Although we believe that this comparison should be guided by clinical expertise, it is possible

to rely on a purely statistical approach. This approach could, for instance, evaluate similarity

by comparing the outcome frequency of each derivation IPD with the new population where the

model is to be applied. This approach is taken by Steyerberg et al. who develop a risk prediction

model across multiple studies, and then when validating the model, they use the intercept taken

from just one of the included studies, as this study had an outcome prevalence most similar to

that found in clinical settings [248]. Alternatively, one could identify the closest matching IPD

study by evaluating differences in baseline characteristics between the new study population and

the IPD studies by comparing observed means (e.g. mean age) and proportions (e.g. % male)

for each included study. Evidently, these strategies require the IPD-MA developers to report the

estimated intercepts of each study population, as well as their corresponding outcome frequency or

baseline characteristics. Although information about a population’s outcome frequency or baseline

characteristics is typically available when the model is to be externally validated in that population

(as this process typically entails the collection of IPD), it may be missing when a model is to be

implemented in a new population. In these scenarios, researchers could revert back to using the

weighted average intercept from the random effects or stratified model [215], given that these

estimates are reported.

Intercept estimation from outcome prevalences

It is also possible to calculate an estimate of the model intercept for a particular population using

the outcome incidence or prevalence (proportion of patients developing the outcome) prevnew when

known in that population. Estimates of these proportions may be obtainable from (a systematic

review of) the medical literature or experts in the field, and can be translated into a model intercept

by applying the logit transformation:

α̂ = ln

(
prevnew

1− prevnew

)
(3.4)

However, implementation of the resulting α̂ as the intercept when applying the prediction model

is only justified when the included variables in the prediction are mean-centered for each included

study, where the mean of dichotomous predictors (e.g. sex: male=1, female=0) corresponds to their
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prevalence (e.g. the proportion who are male). The underlying reason is that prevnew represents

the predicted outcome risk of a random individual in the new population. If the variables in

each study IPD are not mean-centered, the intercept term of their linear predictor represents a

specific subgroup of individuals (such as gender=female or age=0). Mean-centering of predictor

variables ensures that β′X = 0 on average, and thus that α represents the outcome logit risk

for a random individual in the population. Although this particular individual may not exist (as

individuals cannot have a mean gender between 0 and 1), it reflects the average study participant

and therefore remains representative on the population level from which prevnew is derived. Note

that because a mean-centered prediction model has population-specific predictor means in the

linear predictor, it can only be implemented in a new study population when the mean predictor

values are also available for that population. That is, in the new population one needs to apply

the prediction model as specified by:

πi = logit−1
(
α̂+ β̂′ (Xi −X

))
(3.5)

where the beta estimates are taken from the developed prediction model in step 1 (e.g. stratified

or random-effects above) and the alpha term is from equation 3.4.

Intercept estimation from new IPD

Finally, at the time of wishing to apply the prediction model to a new study population, IPD may

additionally be available from this population of interest, and these data may serve for updating

or re-estimating the model intercept using methods previously described [133, 169, 237, 259]. This

can generally be achieved by setting the linear predictor β̂′X as offset and re-estimating the

corresponding intercept. For the centered approach, the mean predictor values can directly be

obtained from this new IPD, and the corresponding offset is given as β̂′(X−X), where β̂ is taken

from the developed prediction model in step 1.

Step 3: Model evaluation using internal-external cross validation

In the previous sections we described the first two steps necessary for estimating and implementing a

prediction model so that it can be considered for external validation and application in routine care.

Although external validation has been proposed as the ultimate solution for evaluating a model’s

generalizability, corresponding IPDs are often lacking and their collection typically requires a lot

of effort. Consequently, some form of internal validation seems desirable to guarantee that the
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derived model is accurate enough to be clinically useful. Specifically, the strategies for obtaining

accurate predictor-outcome associations (step 1) and an appropriate model intercept (step 2) should

lead to consistent and discriminative model predictions. Because it is possible that the IPD-MA

model developers cannot present a unique model intercept due to heterogeneity in baseline risk, it

would also be useful for them to investigate whether future model implementors or validators can

obtain an accurate model intercept from the available evidence. Consequently, this third step is an

extended form of internal model validation to evaluate its performance and generalizability when

external validation data are lacking [15, 16, 169, 170, 249]. One option is to develop the model in

steps 1 and 2 using just a subset of IPD studies, and keep others aside for validation. However,

we consider it is important to both maximize the data available for the model development and

also the model validation. In this section, we thus adapt the “internal-external cross-validation”

(IECV) technique originally proposed by Royston et al. [215]. This technique iteratively uses M−1

studies from the available IPD-MA to develop a prediction model and the remaining study for its

validation. In this manner, M scenarios are available to investigate consistent model performance

when applied in another study population that was not included during its development. We

propose the following stages in the IECV technique:

1. Select the IPD of M − 1 studies from the meta-analysis. These data will serve as derivation

data, whereas the IPD of the remaining study will serve as validation data (i.e. sample where

the model is to be implemented and externally validated)

2. Estimate the predictor-outcome associations in the derivation data using one of the ap-

proaches described in step 1.

3. Choose a model intercept that is appropriate for the validation sample, using one of the

approaches described in step 2. Here, the validation data may be used to borrow (limited)

information about the new study population, such as the outcome prevalence or predictor

mean values.

4. Combine the estimated predictor-outcome associations (from 2) and chosen model intercept

(from 3) into a single model, and apply this model in the validation data.

5. Use the validation study to evaluate the performance of the derived prediction model (from

4).

6. Repeat 1–5 for each permutation of M − 1 derivation studies.

We focus on statistical criteria to assess model performance in the validation sample, and explicitly

distinguish between discrimination and calibration [58, 249]. Whereas the former reflects the ability
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to distinguish high-risk subjects from low-risk subjects, the latter indicates the extent to which

the predicted outcome probabilities and actual probabilities agree.

An overall indication of model calibration is reflected by the ratio of predicted (expected) to

observed outcomes, denoted by E/O. This ratio should ideally be 1, and deviations above (or

below) this value indicate that the model intercept is too high (or too low). We also measure

the calibration slope in the validation sample, boverall, to evaluate whether the average strength

of the predictor-outcome associations is similar in these data [60, 160, 237]. A poor calibration

slope (boverall 6= 1) usually reflects overfitting of the model in the derivation sample, but may also

indicate heterogeneity of predictor-outcome associations between the derivation and validation

sample. However, because the calibration slope is an overall measure of fit, it may not reveal all

potential pitfalls. For this reason, it may be more useful to directly compare estimated predictor-

outcome associations in the derivation and validation sample. Visual inspection of the calibration

plot may further reveal how the quality of predicted risks is affected [229, 237]. This plot indicates

how predicted risks diverge from observed outcomes in different deciles of predicted risks, and

shows perfect predictions when the calibration curve goes through the origin and has a slope of

45◦.

Finally, we assess to what extent the model is able to distinguish between patients with the outcome

and patients without the outcome by means of the area under the ROC curve (AUC), also known as

the C statistic [102]. This score ranges from 0.5 (no discrimination) to 1.0 (perfect discrimination).

Additional insight into discrimination can be achieved through Hedges’ g statistic or the overlap

coefficient [211].

Results from the IECV technique can be interpreted as follows. In general, if the derived models

(that is, the M models produced by omitting each IPD study in turn) all validate well across

the considered permutations, all datasets can then be combined and used to develop the final

prediction model. If some of the derived models do not calibrate well in the validation sample,

the IECV indicates that generalizability of any model across all M studies is not guaranteed. In

those scenarios, to identify the cause of the problem it is useful to examine the consistency of

estimated predictor-outcome associations and model intercepts (or visually inspect the calibration

plot) across the M studies, as follows.

If the E/O ratio considerably differs from 1 or calibration curves do not coincide with the reference

line in many validation samples, this may suggest that the strategy chosen for obtaining a model

intercept in the new study population (step 2) does not perform well. It may then be preferable to

collect IPD from the new study population in order to obtain a more study-specific model intercept.

Conversely, when predictor-outcome associations substantially differ between the derivation and
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validation sample, approaches to overcome heterogeneity in baseline risk no longer perform well

and the model’s generalizability may suffer. This is because the model intercept encapsulates

all sources of unexplained risk, and not only difference in the incidence of the outcome. It may

therefore be affected in unpredictable ways when baseline risk or predictor-outcome associations

are heterogeneous. This, in turn, implies that derivation of prediction models from an IPD meta-

analysis may not be feasible when predictor-outcome associations are known to be heterogeneous.

This pitfall is also reflected by calibration curves that are not straight or have a slope different

from 45◦, and could be further examined by measuring or testing the amount of heterogeneity

[70, 113, 217]. Although the inclusion of additional covariates, non-linear associations or interaction

terms may reduce heterogeneity, such an approach inevitably increases the risk of overfitting.

Where heterogeneity in predictor effects cannot be reduced and the IECV approach shows poor

model performance and generalizability, it should signal to the researcher that a single prediction

model that applies to all study populations is unlikely to be possible using the predictors available.

In those scenarios, other predictor variables should be considered, or some studies could be excluded

and the model built on a more homogeneous set. Then researchers need to clearly report which

studies (populations) were excluded, and note that the developed model is unlikely to generalize

to them.

Finally, evaluation of the AUC may further help to identify whether accurate predictions also lead

to good discrimination. After all, accurate predictions may not be very useful if they are similar

regardless of the developed outcome. This is particularly the case for diagnostic models, where

the ultimate goal is to accurately classify subjects into their true disease states [58]. Although the

AUC should ideally be 1, there are no specific guidelines about acceptable performance thresholds

as these differ according to the considered prediction task.

It should be noted that results from the IECV are only useful if sufficient data are available on

individual participant and study level. Specifically, if some studies in the IPD meta-analysis contain

very few patients, performance statistics may become unreliable and corresponding confidence

intervals may substantially inflate. Although there are some guidelines for sample size requirements

in external validation studies (Vergouwe et al proposed a rule of thumb to use a minimum of 100

events and 100 nonevents), there is no clear threshold for which reliable performance statistics can

be achieved [238, 276]. Similarly, if few studies are available in the IPD meta-analysis, little insight

into model generalizability can be gained by applying the IECV technique, and identification of

variation in baseline risk becomes difficult. For this reason, we recommend the inclusion of at least

4 or 5 studies in the development of a meta-analytical prediction model that have a reasonably

large sample size and number of events.
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Furthermore, it is important to realize that implementing this proposed framework requires careful

planning and consideration beforehand. Assessing the performance and heterogeneity measures

obtained from this process is subjective and requires in-depth knowledge of the clinical research

problem. Devoid of this context, the statistical measures we present here have no direct relation

to the impact a model is likely to have in routine care. For this reason, we recommend that

desired performance characteristics are predefined (e.g. what minimal AUC is required? Is there

a particular range of predicted probabilities for which good calibration is required?) [88, 192, 249]

and evaluated alongside the consequences that would result from implementing the model in routine

care [275, 277]. Furthermore, the research question needs careful thought and reporting in terms of

which primary studies need to be included in the meta-analysis. In this regard, potential sources

of heterogeneity should be investigated by using knowledge in the subject area or performing

descriptive analyses on the key characteristics of the available studies. Then, researchers may

decide which factors could contribute to heterogeneity, and whether aggregation remains justified

or if study exclusion is necessary. Finally, characteristics of included and excluded studies should

be adequately reported such that the final model can successfully be implemented and validated

in routine care.

In summary, when developing a risk prediction model using IPD from multiple studies with binary

outcomes, researchers have three main options for model development (stacked, random-effects on

intercept, and stratified intercept) and must decide how to designate an intercept value when the

model is applied to new individuals. The IECV is a framework for evaluating this entire strategy

and the performance and generalizability of the model it produces. Evidence that the model does

not generalize (validate) consistently across allM studies signals that researchers should re-evaluate

their strategy, and aim to reduce any heterogeneity in predictor-outcome associations and improve

the reliability of their chosen intercept.

EXTENSION TO COUNT AND TIME-TO-EVENT DATA

Although we described how our framework can be implemented for a prediction model using binary

outcome data, it is fairly straightforward to extend this framework to other outcome data types.

For instance, count data can be modelled using a Poisson model, where expression 3.1 becomes:

yi ∼ Poisson (λi)

ln (λi) = α+ β′Xi

(3.6)
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In this expression, α represents the log of the baseline rate, and can be modelled using random

effects or stratified estimation similar to expression 3.2 and 3.3. This model can further be extended

to estimate proportional hazards (PH) models when time-to-event data are available such that each

patient can have a different length of follow-up [38, 48, 61, 148]:

yi ∼ Poisson (λi)

ln (λi) = ln(ti) + α+ β′Xi

(3.7)

where ln(ti) is a standardizing offset term for subject i with exposure time ti. Note that this model

assumes that the baseline hazard (i.e. the hazard when all covariates are zero) is a constant over

the whole time period. Although it is possible to relax this assumption by adopting a Cox PH

model (which still assumes proportional hazards at all times) [215], there are several limitations

to this approach. Most importantly, Cox PH models have an unspecified baseline hazard which

hampers prediction of survival times [210, 212, 270]. For this reason, PH models that make specific

assumptions about the baseline hazard distribution are sometimes preferred. The conditional

hazard function of PH models can be generalized as follows [26]:

h(t|Xi) = g (a, t) eβ
′Xi (3.8)

where g(· ) is a function known up to a multidimensional parameter a. The exponential distribution

is a common example and assumes a constant hazard over time, i.e. g(· ) = λ. Here, a random

baseline hazard effect can be modelled as follows:

h(t|Xij) = ζjλe
β′Xij

ζj ∼ Γ (1, θ0)
(3.9)

This expression is similar to the Gamma frailty model [89], where the ζj are study effects distributed

as independent and identically distributed gamma random variables with mean 1 and variance θ0.

The variance parameter is interpretable as a measure of the heterogeneity across studies in baseline

risk. When θ0 is small, then values of ζ are closely concentrated around 1 and the study effects are

small. If θ0 is large, then values of ζ are more dispersed, inducing greater heterogeneity in the study

specific baseline hazards ζjλ. The study-specific baseline hazards are all proportional to λ. Other,

more advanced distributions are the Weibull distribution, where g(· ) = λγtγ−1, or the Gompertz
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distribution, where g(· ) = λeαt. Heterogeneity in baseline hazards could be introduced here in a

similar manner by adding a study effect ζj , or by estimating a stratified baseline hazard g(· ) for

each study. An appropriate baseline hazard could then be selected from existing studies in the

meta-analysis using the incidence in the new study population. Note that the baseline hazard could

also be modelled using restricted cubic splines within a flexible parametric framework [214, 215].

Finally, it is important to acknowledge that estimation issues may further be complicated if the

studies in the IPD-MA are subject to different censoring mechanisms.

CASE STUDIES

To demonstrate the potential value of aforementioned approaches for model development, intercept

choice, and IECV, we now consider three scenarios that use the IPD of 12 studies conducted for

diagnosing Deep Vein Thrombosis (DVT) in patients with a suspected DVT. The scenarios differ

in the predictor variables they consider. In the first example, the modeled predictor-outcome

associations are homogeneous across all studies, in the second they are strongly heterogeneous,

and in the third they are weakly heterogeneous. In all scenarios the baseline risk is heterogeneous

across the 12 included studies of the IPD meta-analysis. The studies are summarized in Table 3.1,

and contained a total of 10 014 patients of which 1 897 (18.9%) truly have DVT. The corresponding

IPD were collected between 1994 and 2007 in the United States of America, Sweden, Canada and

the Netherlands (Table A.1 in the Appendix).

In each scenario we apply the three aforementioned steps. In step 1, we consider the stacking,

random-effects, and stratified approaches for estimation of the predictor-outcome associations.

Then, in step 2, for choosing the intercept for use in a new population following the stacking and

random effects approach, the estimated average intercept α was used as final choice (see Average

Intercept). For the stratified approach, three different strategies were evaluated: intercept selec-

tion based on the outcome proportion in the new study population, intercept selection based on

similarities of baseline descriptives, and intercept estimation based on the outcome proportion ob-

served in the IPD of the new study population. Finally, in step 3, we used the IECV approach for

assessing the extent to which the described approaches yield generalizable prediction models. We

evaluated whether model performance remained consistent in each validation study by measuring

the statistics proposed in step 3 (proportion of predicted and observed outcomes, average percent-

age bias of the predictor-outcome associations and the area under the ROC curve) and visually

inspecting the calibration plots.

All analyses were performed on a Linux system (kernel 3.2.0) with R version 2.15.2 (R Foundation

for Statistical Computing, Vienna, Austria) using the lme4 library. The corresponding source code
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Figure 3.1: Recommended steps for developing, implementing, and evaluating a risk prediction
model in an IPD meta-analysis

1. Development
Use stratified estimation model and check for heterogeneity in baseline risk and predictor-outcome
associations using multivariate meta-analysis and estimating τβ values. Of those variables with
predictive importance, consider prioritizing those with homogeneous associations across studies.

2. Implementation in new population

(a) If IPD are available from the new population, use these data to estimate the model intercept
to be used alongside the predictor-outcome associations from the developed model; or

(b) If the outcome prevalence and mean predictor values from the new population are known,
calculate intercept for this population using eq. 3.4; or

(c) If the outcome prevalence from the new population is known, then identify a study with a
similar outcome prevalence in the meta-analysis, and use the estimated intercept from that
study; or

(d) If no information from the new population is available, use the average intercept from the
stratified or random effects model

3. Evaluation of the model

(a) Use the IECV approach to evaluate the performance of the developed model in the remaining
validation study for each permutation of M − 1 derivation studies.

(b) Calculate E/O statistic, calibration slope and area under the ROC curve. Ideally all these
values should be close to 1. Consider producing calibration plot for each study to examine
consistency of E/O values across the range of predicted probabilities.

4. Completion or Updating

(a) If the performance is consistently good in all studies from the IECV, produce a final fitted model
using the IPD from all studies and report the strategy researchers should take for choosing an
appropriate model intercept when applying the model; or

(b) If the performance is not consistently good in all studies from the IECV and there is het-
erogeneity in baseline risk and/or predictor effects, consider a different strategy for modeling
the intercept and try to reduce heterogeneity in predictor-outcome associations. Alternatively,
identify subset of studies where the model performance is consistently good, but summarize
those populations for which the model performs poorly.
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is available on request.

Case Study 1: Homogeneous predictor-outcome associations

In this first scenario, we derive a prediction model by only including predictor-outcome associations

that are (nearly) homogeneous in the IPD meta-analysis. In this manner, we ensure validity of

the fixed effects assumption for the predictor effects of the proposed methods described in section

3. Just two variables, sex and surg, are included and to check the homogeneity assumption, we

performed a multivariate meta-analysis allowing full random effects on the intercept and both

predictor-outcome associations considered [129]. The corresponding model is specified as follows

and was estimated using all 12 studies:

yij ∼ Bernoulli (πij)

logit (πij) = [a]j + [bsex]j [Xsex]ij + [bsurg]j [Xsurg]ij
a

bsex

bsurg


j

∼ MVN




α

βsex

βsurg

 ,


τ2α ταβsex
ταβsurg

ταβsex τ2βsex
τβsexβsurg

ταβsurg
τβsexβsurg

τ2βsurg




(3.10)

Here, we found that α̂ = −1.80 (τ̂α = 0.47 with a 95% CI of 0.42 - 0.55), β̂sex = 0.47 (τ̂βsex = 0.03

with a 95% CI of 0.01 - 0.29) and β̂surg = 0.67 (τ̂βsurg
= 0.05 with a 95% CI of 0.03 - 0.52). Because

the between-study variability (τ̂β) in the predictor-outcome associations for sex and surg appears

negligible, we considered that assuming homogeneity was sensible and so used these predictors to

derive a novel prediction model according to the approaches described in section 3. Results from

the IECV are presented in Table ??, for each of the stacking, random-effects on intercept, and

stratified intercept approaches.

Consistency of estimated predictor-outcome associations

All approaches yielded similar and consistent predictor-outcome associations (estimates not shown)

in the IECV. Particularly, we found that their average strength was reasonable (0.80 < boverall <

1.20) in 8 of the 12 validation samples (Table ??), which indicates that the modelled predictor-

outcome associations were often comparable across studies. Accurate estimates of predictor-

outcome associations could, however, not always be established in the validation studies. For

instance, the predictor-outcome association for sex (β̂sex,der = 0.49) was unstable in study 3

(β̂sex,val = −0.24 with S.E. = 0.46) and in study 8 (β̂sex,val = 0.16 with S.E. = 0.26). It remains
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unclear whether the resulting discrepancy in predictor-outcome associations is due to heterogeneity

or small effective sample size, but the latter is plausible given the small estimated heterogeneity

for sex from the multivariate meta-analysis.

Quality of estimated model intercepts

Our results demonstrate that the derived prediction models do not validate well when using in-

tercepts for a new population obtained through averaging individual intercepts of an IPD meta-

analysis (i.e. through either the stacking or random effects approach). Particularly, these intercepts

give an unequal proportion of predicted and observed outcomes, and considerably overestimate

(E/O ≥ 1.2 in 4 of the 12 validation samples) or underestimate (E/O ≤ 0.8 in 3 of the 12 val-

idation samples) the outcome presence. Similar results were obtained when using the stratified

approach and selecting the intercept from a study with similar baseline descriptives of the new

study population (i.e. matching the summary baseline characteristics from the validation study

data to an IPD study used in model development, and using the latter’s estimated intercept). The

calibration improved greatly when the stratified approach was used and the chosen intercept was

selected from an included study that had a similar observed outcome incidence (Table 3.2 and

3.3). For example, when study 1 was used as the validation data, the E/O statistic was 1.42 when

using the weighted average intercept from random-effects model 3.3, but was 1.03 when using the

intercept estimate for the study with the most similar incidence. However, even this approach

does not guarantee good agreement between predicted and observed outcomes. Poor calibration

may, for instance, arise when there are no studies with a similar outcome proportion or incidence

available. This situation arose when study 2 (outcome incidence of 39% in the validation study

versus 24% in the included study with the most similar incidence) or study 7 (outcome incidence

of 8% versus 13%) were used as validation data in the IECV approach. In these validation studies,

the outcome presence was considerably underestimated (E/O = 0.615 for study 2) and overesti-

mated (E/O = 1.6 for study 7). Optimal agreement between predicted and observed outcomes

was achieved when the intercept was estimated from the outcome proportion in the IPD for the

new population by mean-centering the included predictor variables (cfr. Intercept estimation from

outcome prevalences). Here, the E/O statistic is always close to 1, ranging between 1.00 and 1.03.

Quality of model predictions

Visual inspection of the calibration plots (Figure A.1. in the e-appendix) demonstrates that the

stratified approach yields prediction models with superior calibration over the entire range of

predicted probabilities when the final intercept is estimated from the outcome prevalence observed
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in the new study population. Particularly, the calibration curve in these plots coincides with the

45◦ reference line, reflecting that predicted and actual probabilities agree for individual patients

in the validation studies. Confidence intervals of the calibration curves are inflated for study 3

and 8, where the least data was available. Calibration curves for other approaches were similar

(results not included), with curves shifted upwards and downwards according to underestimation

(E/O < 1) and overestimation (E/O > 1) respectively of the outcome presence. Evaluation of

the area under the ROC curve indicates that all approaches yielded prediction models with very

similar discriminative ability. This statistic ranged from 0.55 to 0.65 across the different validation

studies, suggesting that the predictors sex and surg poorly distinguish between patients with and

without DVT. For instance, the interquartile ranges of predicted probabilities in validation study

3 ranged from 14 - 22 % and 13 - 19 % for cases and non-cases, respectively. In conclusion, model

predictions appear to be well calibrated, but are not very informative as they are similar for cases

and non-cases.

General Conclusions

For homogeneous predictor-outcome associations, we found that stratified estimation yields supe-

rior prediction model performance, particularly when the intercept is adapted to the new study pop-

ulation. This is best achieved by selecting the intercept from an available study in the meta-analysis

that most closely matches the validation study according to the outcome proportion (prevalence),

or by re-estimating the intercept from the outcome proportion or incidence in the IPD for the new

(validation) population. Compared to using the average intercept, these approaches generally gave

E/O ratios much closer to 1 in the validation study and yielded calibration curves that coincided

with the 45◦ reference line. Unfortunately, derived models did not discriminate well because the

included predictors sex and surg are not highly predictive. This implicates that risk predictions

are quite accurate on a whole, but that the model cannot discriminate well between cases and

non-cases. We therefore consider a second scenario where we include a set of strong predictors

during model derivation.

Case Study 2: Strongly heterogeneous predictor-outcome associations

In the second scenario, we consider the derivation of a prediction model with important but het-

erogeneous predictors to investigate the impact of invalid homogeneity assumptions concerning the

predictor-outcome associations across the included studies. Previous research identified malign,

surg, calfdif3 and ddimdich as core predictors for diagnosing DVT [66]. Consequently, we included

these predictors from 10 of the 12 datasets to derive a novel prediction model, as two studies did not
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measure all variables. By performing a full random effects meta-analysis similar to Case Study 1,

we found α̂ = −3.98 (τ̂α = 0.31), β̂malign = 0.38 (τ̂βmalign
= 0.35), β̂calfdif3 = 1.05 (τ̂βcalfdif3

= 0.16),

β̂surg = 0.25 (τ̂βsurg
= 0.09) and β̂ddimdich = 2.76 (τ̂βddimdich

= 0.41). Clearly the heterogeneity

estimates (τ values) are quite large for most variables. Results from the IECV are presented in

Table 3.4 and 3.5.

Results in Table 3.4 and 3.5 demonstrate that all strategies for choosing intercepts perform poorly,

as they generally give E/O ratios that are not close to 1, and thus considerably over- or underes-

timate the outcome prevalence when applied in other study populations. Even the strategies that

performed very well in Case Study 1, that of estimating the intercept from the outcome prevalence

in the validation study, or that of selecting an intercept from a study that most closely matched

the outcome prevalence in the validation study, show poor performance on the whole.

Although the calibration slope boverall is quite good in most validation samples, visual inspection

of the calibration plots (Figure A.2. in the e-appendix) reveals that calibration curves of derived

models strongly deviate from the 45◦ reference line. Accordingly, we may conclude that predicted

probabilities do not correspond to actual outcome risks, and that the quality of model predictions

is poor. This deterioration in calibration strongly contrasts with a considerable improvement in

the discriminative ability of derived models. Whereas models from Case Study 1 achieved an AUC

between 0.55 and 0.65 in the validation studies, the inclusion of malign, surg, calfdif3 and ddimdich

increased this statistic to values between 0.73 and 0.92.

In conclusion, when predictor-outcome associations in the IPD meta-analysis are strongly hetero-

geneous, we found that all approaches yield prediction models that generally have poor calibration

when applied in the validation studies. This is likely due to model intercepts and predictor-outcome

associations that do not correspond to the true intercepts and predictor-outcome associations in

the validation studies because of heterogeneous predictor-outcome associations of the included

variables. However, we found that the inclusion of these strong predictors did considerably im-

prove the discriminative ability of derived prediction models. The resulting models are better able

to discriminate between cases and non-cases, but yield inaccurate risk predictions, limiting their

usefulness.

Case Study 3: Weakly heterogeneous predictor-outcome associations

In this last scenario, we attempt to derive a useful prediction model that both achieves good

calibration (similar to Case Study 1) and good discrimination (similar to Case Study 2). To

this purpose, we consider the derivation of a prediction model that includes the homogeneous

predictors sex and surg from Case Study 1 and one strong predictor calfdif3 from Case Study
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2. By performing a full multivariate random effects meta-analysis similar to Case Study 1, we

found α̂ = −2.25 (τ̂α = 0.47), β̂sex = 0.37 (τ̂βsex = 0.06), β̂surg = 0.56 (τ̂βsurg = 0.15) and

β̂calfdif3 = 1.28 (τ̂βcalfdif3
= 0.19). The estimated τ values indicate that these predictor-outcome

associations are weakly to moderately heterogeneous. Results from the IECV are presented in

Table 3.6 and 3.7, and indicate that stratified estimation (where the final intercept is estimated

from the outcome prevalence in the new study population, or selected from an available study

in the meta-analysis that most closely matches the validation study according to the outcome

proportion) again yields prediction models with superior performance. Specifically, this approach

resulted into E/O ratios close to 1 in all validation studies. Furthermore, visual inspection of the

calibration plots (Figure 3.2, 3.3 and 3.4) revealed good agreement, across the whole range, between

predicted and actual outcome probabilities in at least 9 of the 12 validation studies (studies 1, 2,

4, 6, 9, 11 and 12). Studies 3, 8 and 10 showed poor calibration at predicted probabilities around

0.4, but as these studies also involved relatively small numbers of participants and events, it is

difficult to know whether this is due to chance or a truly poor prediction performance in these

settings. To be cautious, one could consider discarding these studies when fitting the final model,

but our judgment was to leave them in. Finally, the discriminative ability of derived models was

relatively good, and ranged between 0.64 and 0.76 across the validation studies. Consequently, the

inclusion of weakly to moderately heterogeneous predictors resulted into prediction models that

both discriminate and calibrate well in new patient populations.

DISCUSSION

An increasing number of prediction models are derived from an IPD-MA. Very little guidance

currently exists about how researchers should account for the inherent potential for between-study

heterogeneity, and how to implement the model in practice when outcome frequencies (baseline

risks) differ across included study populations. As a consequence, many prediction models ignore

clustering of participants and thus effectively assume they are using IPD from a single study. This

straightforward stacking of IPDs is often not justified and, as we show in our Case Study 1 (Table 3.2

and 3.3), may lead to inconsistent model performance and considerably reduced generalizability.

We therefore considered two other approaches to account for heterogeneity of baseline risk (random

effects or stratified estimation), and evaluated several techniques to implement the developed model

in a new clinical setting where the baseline risk is potentially unknown.

When there is homogeneity in predictor-outcome associations, stratified estimation of the model

intercept helps to improve generalizability. This approach allows to derive a near-optimal intercept

from reported outcome incidences when predictor variables are centered around their local means
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Figure 3.2: Calibration plots for study 1–4 (Case Study 3)
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Calibration plots of models derived by stratified estimation of the intercept (where the final inter-
cept is estimated from the outcome proportion in the validation study) in the validation studies
of Case Study 3. The triangles indicate groups of observations with similar predicted probabilities
and their corresponding outcome proportion. Note that a maximum of 8 groups can be generated
because the included predictor variables sex, surg and calfdif3 are dichotomous.
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Figure 3.3: Calibration plots for study 5–8 (Case Study 3)
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Calibration plots of models derived by stratified estimation of the intercept (where the final inter-
cept is estimated from the outcome proportion in the validation study) in the validation studies
of Case Study 3. The triangles indicate groups of observations with similar predicted probabilities
and their corresponding outcome proportion. Note that a maximum of 8 groups can be generated
because the included predictor variables sex, surg and calfdif3 are dichotomous.
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Figure 3.4: Calibration plots for study 9–12 (Case Study 3)
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Calibration plots of models derived by stratified estimation of the intercept (where the final inter-
cept is estimated from the outcome proportion in the validation study) in the validation studies
of Case Study 3. The triangles indicate groups of observations with similar predicted probabilities
and their corresponding outcome proportion. Note that a maximum of 8 groups can be generated
because the included predictor variables sex, surg and calfdif3 are dichotomous.

78



Chapter 3

(see Intercept estimation from outcome prevalences). Alternatively, an estimated intercept can be

selected from existing studies in the meta-analysis using the outcome incidence or prevalence in

the new study population (see Intercept Selection). When no information about the population

of interest is available, using the average intercept (for instance obtained by random effects or

stacking) presents a workable solution, but generally this may cause poor calibration when baseline

risks strongly differ (see Stacking and Random effects modeling of the intercept). In such situations,

the IECV (“internal-external cross-validation”) technique may be particularly helpful to identify

the generalizability of derived prediction models across other study populations [215]. It allows the

model fit and its predictive ability to be appraised across several studies, and ultimately allows a

single (final) prediction model to be built using as much of the data as possible. It also identifies

which populations (if any) the model is not suitable for, and helps ascertain the strategy for

choosing an intercept, an additional validation step to gain insight into the future generalizability

of the newly constructed model.

Some important limitations need to be considered to fully appraise the findings of this study.

Firstly, the inclusion of homogeneous predictors may not always yield highly discriminative pre-

diction models. Weakly heterogeneous but strong predictors may therefore be included to improve

discrimination at the cost of model calibration. Heterogeneity may further be reduced by including

additional covariates, non-linear associations or interaction terms, or by applying bootstrap and

shrinkage techniques [23, 59, 149, 237, 244]. Secondly, when many but relatively small studies

are available, stratified estimation may no longer be feasible due to its inherent model complex-

ity. In such scenarios, random intercept effects modeling may considerably reduce the amount

of unknown parameters whilst still allowing individual study intercepts. Thirdly, our case stud-

ies indicate that IPD-MA developers should report estimated model intercepts and corresponding

outcome frequencies of included studies when their baseline risks are heterogeneous. In this man-

ner, the derivation of an appropriate model intercept can be facilitated when the model is to be

implemented or externally validated in new study populations. Note that it is possible to further

improve the intercept choice by estimating an appropriate intercept from characteristics of the new

study population. Further research might therefore consider a Bayesian approach to this frame-

work and the selection of an intercept. Finally, it is often difficult to obtain IPD with the same and

prognostically important information, especially if datasets were originally collected for a different

purpose. Consequently, missing data is likely to be a common challenge in IPD-MA, and advanced

imputation methods may be required to appropriately address their hierarchical nature. Future

research will investigate the performance of several imputation methods, adopting a frequentist or

Bayesian perspective.

In conclusion, in this article we have recommended steps for developing, implementing, and eval-

uating a risk prediction model when IPD from multiple studies are available (Figure 3.1). For
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model development, stratified estimation appears to be the most promising approach, which ac-

counts for clustering of patients within studies and thereby allows a separate intercept per study.

For implementation and external validation of this model, the predictor-outcome associations can

be combined with the population’s intercept as estimated from the outcome prevalence in the new

population, or by taking the estimated intercept for one of the studies included in the model devel-

opment whose outcome incidence closely matches that in the new population. Alternatively, it is

possible to implement the population’s intercept as estimated from IPD available for this popula-

tion. Performance of the model and intercept strategy can be evaluated using the IECV approach.

A reliable model that is generalizable across all studies is facilitated by homogeneity in predictor-

outcome associations; however restricting inclusion to just homogeneous predictors may cause the

model to have poor discrimination and so weakly heterogeneous predictors might also be consid-

ered. Further research is needed to evaluate how between-study differences in predictor-outcome

associations could be addressed appropriately.
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Abstract

Individual participant data meta-analyses (IPD-MA) are increasingly used for devel-

oping multivariable risk prediction models. Unfortunately, some predictors may not

have been measured in each study and are systematically missing in the IPD-MA. As a

consequence, predictor effects can no longer be estimated in each study, certainly when

the clustering of subjects within studies need to be accounted for.

We used a case study to develop a multivariable logistic regression model for predicting

the presence of Deep Venous Thrombosis (DVT) in subjects with a suspected DVT.

Hereto, 12 datasets with a total of 8 974 subjects (1 733 events) were used for model

development. These data contain 15 predictors of which 5 are systematically miss-

ing. We evaluated four approaches to deal with the resulting missingness. The first

approach simply excludes studies with any systematically predictors (FCA). The sec-

ond approach simply ignores the missing predictors when developing a model (FPA).

The third approach imputes missing data by stacking the study datasets and applying

multiple imputation ignoring the clustering of subjects within studies (TMI). Finally,

the fourth approach allows for a study-specific intercept in the imputation model to

account for clustering (SMI). An external validation study with 1 028 subjects (131

events) was used for evaluating the performance of the derived prediction models in

terms of their discrimination and calibration.

We found a c-statistic of 0.82 (FCA), 0.68 (FPA), 0.82 (TMI) and 0.82 (SMI) in the

validation sample. The calibration-in-the-large was 0.48 (FCA), -0.25 (FPA), -0.07

(TMI) and 0.11 (SMI). The calibration slope was 0.81 (FCA), 0.85 (FPA), 0.85 (TMI)

and 0.4 (SMI). Finally, we found that estimates for between-study heterogeneity inflated

when applying imputation strategies (as compared to full case analysis).

Our study demonstrates that an IPD-MA with systematically missing predictors does

not need to discard studies or predictors, and may benefit from imputation strategies.

Ignoring systematically missing predictors generally leads to poorest model perfor-

mance, particularly when important predictors are excluded.



Chapter 4

“We demand rigidly defined areas of doubt and uncertainty!”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

A
n important aim in diagnostic and prognostic research is the development of clinical pre-

diction models. These models predict whether a certain outcome is present (diagnosis)

or will occur (prognosis) in a subject by relying on several predictors. These may range

from individual characteristics, signs and symptoms, to results of more invasive or costly mea-

sures such as imaging, electrophysiology, blood, urine, coronary plaque or even genetic markers

[170, 201, 247]. The development of a novel prediction model typically utilizes a so-called indi-

vidual participant dataset (IPD). This dataset contains the predictor values and final diagnosis of

several subjects, and is ideally obtained from a prospective cohort study [170]. However, during the

past decades, the popularity of prediction research has increased and international collaboration

has become more commonplace. Individual participant datasets are therefore frequently combined

when developing or validating a novel prediction model. This strategy is also known as individual

participant data meta-analysis (IPD-MA) [6, 68, 188, 215, 222, 248].

A key issue in an IPD-MA is the presence of between-study heterogeneity, i.e. clustering of par-

ticipants within studies. Heterogeneity typically manifests as differences in baseline risks, that

is, outcome prevalences (for diagnostic models) or incidences (for prognostic models), or in the

predictor-outcome associations. Recently, Debray et al. proposed a framework for developing,

implementing, and validating a risk prediction model when IPD from multiple studies are available

[68]. This framework accounts for between-study heterogeneity in baseline risk by estimating a

stratified intercept term (or baseline hazard) for each study. It also proposes to pursue homo-

geneity in predictor-outcome associations during model development as to improve the model’s

generalizability across all studies. For implementation and external validation of this model, the

estimated predictor-outcome associations can then be combined with an intercept term that is

appropriate for the local circumstances.

Unfortunately, it may arise that the studies from an IPD-MA measured different subject character-

istics or performed different (biomarker) tests, e.g. due to cost constraints. When combining the

corresponding datasets, some predictors are no longer complete and become systematically missing

[45, 253]. As a consequence, researchers often choose to exclude entire studies with one or more

missing predictors from the IPD-MA [248]. Alternatively, systematically missing predictors are

ignored during model development. It may be clear that this approach is undesirable as available

evidence is not optimally used, and certainly if the missing predictors are known to be important.

In this article, we investigate four simple approaches for developing a prediction model from an

IPD-MA when some predictors are systematically missing. Each approach can be implemented
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with standard software packages, and makes different assumptions about the missing data mech-

anisms. The first approach excludes entire studies where predictors are systematically missing

during model development. The second approach does not include systematically missing predic-

tors in the prediction model. The third approach treats the IPD-MA as a single dataset, and uses

traditional multiple imputation strategies for dealing with missing data. Finally, the fourth ap-

proach implements an extension of the third approach that accounts for clustering of participants

within studies. We illustrate each approach in an empirical example of predicting Deep Venous

Thrombosis (DVT).

METHODS

In this section, we perform a case study to illustrate four approaches for developing a logistic

regression model in an IPD-MA with systematically predictors. We consider 2 scenarios in which

different amounts of studies are at hand, and measure several performance statistics in an inde-

pendent validation sample. All approaches were implemented in R version 2.15.1, using mice 2.17

(multiple imputation) and lme4 0.999999-2. The corresponding source code is available on request.

Case Study

In order to illustrate the approaches we describe a clinical example involving the diagnosis of Deep

Vein Thrombosis (DVT) presence. DVT is a blood clot that forms in a vein in the body and may

lead to blockage in the lungs, preventing oxygenation of the blood and potentially causing death.

Clinical DVT diagnosis is not straightforward. For this reason, multivariable diagnostic prediction

models have been developed to predict the probability of presence of DVT in suspected patients

[182, 261, 281]. These models use the results from history taking, physical examination and blood

tests as predictors for DVT presence. They may subsequently be used to safely exclude DVT

without having to perform further testing.

In this case study, we use an IPD meta-analysis of 13 studies conducted for diagnosing DVT in

patients with a suspected DVT. The IPD-MA contains a total of 10 002 subjects of which 1 864

(18.6%) truly have DVT (Table A.1 in the Appendix) [17, 18, 24, 44, 73, 137, 138, 140, 182, 223,

232, 260, 261, 282]. The following 10 predictors were measured in all studies: male gender (sex ),

active malignancy (malign), paresis (par), recent surgery or bedridden (surg), localized tenderness

deep venous system (tend), entire leg swollen (leg), calf difference >= 3 cm (cdif3 ), pitting edema

(pit), vein distension (vein) and alternative diagnosis present (adiag). Finally, 5 predictors were

systematically missing in one or more studies: D-dimer positive (ddimd), no leg trauma present
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(notraum), family history of thrombofilia (coag), oral contraceptive use (oachst) and history of

previous DVT (hdvt)

Approaches

We consider four approaches to develop a prediction model with a binary outcome from an IPD-

MA when some predictors are systematically missing across studies. In general, the presence of

missing data can be described by three mechanisms with different assumptions about the prob-

ability of missingness. When this probability is identical for all subjects, predictors are missing

completely at random (MCAR). Conversely, missing at random (MAR) occurs when the probabil-

ity of missingness depends on the observed information. Finally, missing not at random (MNAR)

occurs when the probability of missingness depends on the (potentially missing) predictor itself or

on other predictors that have not been measured.

In the presence of missing data it is common to assume MAR and to apply multiple imputation.

This approach generates several copies of the original dataset and replaces missing values by values

drawn from a multivariate distribution (joint modeling) [220] or from a set of conditional densities

(fully conditional specification) [267, 268, 286]. The imputed datasets are then analyzed separately

and resulting model estimates are pooled using Rubin’s rule [216].

In an IPD-MA with sporadically missing data it is generally recommended to apply multiple impu-

tation separately for each study IPD or to implement a hierarchical imputation model [45, 285, 287].

These approaches allow each IPD to have a different covariance structure, and can thereby accom-

modate for between-study heterogeneity. Particularly hierarchical imputation models are appealing

because they allow to share information between the available IPD. Unfortunately, implementation

of these approaches is not feasible in the presence of systematically missing predictors. This is be-

cause study-specific associations are no longer identifiable for all relevant predictors. Researchers

therefore often have to fall back on simpler but possibly flawed approaches. We list some com-

mon approaches below, and present a simple imputation algorithm that accounts for clustering of

subjects within studies.

I Full case analysis (FCA). The most common approach to deal with missing data is to exclude

studies where important predictors have not been measured. This approach actually assumes

that the occurrence of systematic missingness in predictors is MCAR on the study level.

I Full predictor analysis (FPA). An alternative approach may simply discard systematically

missing predictors during model development. This approach has the advantage that no

assumptions are made about the missing data mechanisms. Unfortunately, it also implies
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that the performance and generalizability of the prediction model may degrade, particularly

when missing predictors are known to be important.

I Traditional Multiple Imputation (TMI). More sophisticated approaches assume that the miss-

ingness mechanisms depend on the observed data only (MAR). Because it is not possible to

impute each dataset separately (as systematically missing predictors will remain present),

one may choose to stack all study IPD and treat them as a single dataset during imputation

[139]. This traditional approach, however, does not account for clustering of subjects within

studies, and assumes a common covariance structure for all IPD. In addition, the traditional

imputation approach may lead to inconsistencies when subsequent model development actu-

ally does account for clustering (e.g. by estimating a stratified intercept term). It is widely

acknowledged that imputation models should be congenial with the analysis model [45, 178].

Generally speaking, this implies that predictors should be treated similarly during imputa-

tion of missing data and the estimation of a prediction model. For instance, if a prediction

model estimates stratified a intercept term to account for between-study heterogeneity, the

imputation model should adopt the same strategy. Unfortunately, traditional imputation

strategies cannot accommodate for between-study heterogeneity and may therefore lead to

bias in estimated predictor effects and standard errors [45, 139].

I Stratified Multiple Imputation (SMI). Finally, it is possible to address the pitfalls of TMI by

extending the imputation model with a clustering term. This can be achieved fairly straight-

forward by creating a categorical variable with the study identification number [90, 284]. The

corresponding variable is typically dummy-coded and can be used as additional predictor(s)

in the imputation model. As a consequence, the imputation model includes a study-specific

(stratified) intercept term and thereby accommodates for clustering of subjects within stud-

ies. This implies that the imputation of a missing predictor allows a study-specific prevalence

(or mean for continuous predictors) for that predictor. The estimation of stratified intercept

terms is, however, problematic when predictors are systematically missing [45]. This is be-

cause study-specific intercept terms are no longer identifiable in studies where predictors are

systematically missing (i.e. the study-specific mean or prevalence is unknown). Fortunately,

it is possible to evaluate which studies would have similar study-specific intercept terms, even

when they cannot be estimated. This can be achieved by constructing a baseline table with

the prevalence (or mean) of each predictor in each study, and imputing missing entries in

this table (due to systematic missingness) using predictive mean matching. Studies with a

similar prevalence (or mean) can then be identified for each systematically missing predictor

and subsequently be treated as a single study. This can be achieved by creating a categorical

grouping variable for each predictor in the imputation model. Each missing predictor can

therefore be imputed using a different grouping of studies, thereby preserving a substantial
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degree of clustering. The general strategy of stratified imputation is to combine studies by

predicted prevalence of systematically missing predictors for each imputation model of a

systematically missing predictor, in such a way that resulting groups are no longer affected

by systematic missingness. If no distinct groups can be formed (e.g. when all studies need

to be combined to avoid systematic missingness), stratified imputation will simply ignore

clustering of subjects and collapse to TMI.

Scenarios

We consider two scenarios to develop a multivariable logistic regression model in an IPD-MA for

the prediction of DVT presence. In the first scenario, 12 studies (N = 8 974, Table 4.1 and 4.2) were

available for model development. Conversely, the IPD-MA of the second scenario only includes 6

studies (N = 4 466, ID 2, 5, 6, 10, 11, 13 in Table 4.1 and 4.2) of which 5 studies are affected by

systematic missingness. In each scenario, we first performed data completion by applying FCA

(full case analysis), FPA (full predictor analysis), TMI (traditional multiple imputation) or SMI

(stratified multiple imputation). We subsequently developed a multivariable risk prediction model

with a predefined set of 8 predictors (Table 4.3) [182] and a stratified intercept term to allow

baseline risk to differ across studies [68].

Model evaluation

We evaluated the performance of the developed prediction models in an independent dataset that

was not used by the aforementioned scenarios. The corresponding validation sample contains

1 028 subjects of which 131 were diagnosed with DVT. For each prediction model, an appropriate

intercept term for the validation sample was selected from the development study with the most

similar outcome prevalence (as compared to 13% in the validation sample) [68]. Model performance

was then quantified in terms of discrimination and calibration [83, 101, 237]. Discrimination is

the ability to distinguish high-risk subjects from low-risk subjects, and is typically quantified

by the concordance (c) statistic (which should ideally be 1) [77, 116]. Calibration reflects the

extent to which the predicted probabilities and actual probabilities agree, and can be quantified by

the calibration-in-the-large and calibration slope statistics. The calibration-in-the-large quantifies

whether the average of predictions corresponds with the average outcome frequency, and ideally

equals 0. Conversely, the calibration slope reflects whether predicted risks are appropriately scaled

with respect to each other over the entire range of predicted probabilities, and ideally equals 1

[60, 160]. A calibration slope below 1 usually reflects overfitting of the model in the development

sample, but may also indicate inconsistency of predictor effects between the development and
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Table 4.3: Overview of heterogeneity in estimated regression coefficients, depicted by the square
root of τ2 and by the ICC.

Scenario 1 FCA FPA TMI SMI

τ ICC τ ICC τ ICC τ ICC

(Intercept) 0.50 (0.07) 0.58 (0.09) 0.48 (0.04) 0.47 (0.06)
sex 0.02 (0.00) 0.07 (0.00) 0.09 (0.00) 0.05 (0.00)
oachst† 0.04 (0.00) 0.24 (0.01) 0.20 (0.01)
malign 0.03 (0.00) 0.44 (0.05) 0.43 (0.03) 0.41 (0.04)
surg 0.01 (0.00) 0.20 (0.01) 0.14 (0.00) 0.14 (0.00)
notraum† 0.23 (0.01) 0.15 (0.00) 0.17 (0.01)
vein 0.12 (0.00) 0.20 (0.01) 0.26 (0.01) 0.27 (0.02)
cdif3 0.21 (0.01) 0.21 (0.01) 0.18 (0.01) 0.19 (0.01)
ddimd† 0.07 (0.00) 0.50 (0.04) 0.43 (0.05)

Scenario 2 FCA‡ FPA TMI/SMI∗

τ ICC τ ICC τ ICC

(Intercept) 0.72 (0.13) 0.74 (0.12)
sex 0.07 (0.00) 0.13 (0.00)
oachst† 0.33 (0.03)
malign 0.50 (0.06) 0.42 (0.04)
surg 0.17 (0.01) 0.20 (0.01)
notraum† 0.14 (0.01)
vein 0.21 (0.01) 0.33 (0.02)
cdif3 0.13 (0.00) 0.15 (0.00)
ddimd† 0.52 (0.06)

Estimates for τ were obtained by fitting a mixed effects model with full random effects on the
intercept and predictoroutcome associations. Standard errors are not presented because confidence
intervals around variance components are not symmetrically distributed (but instead follow a scaled
X2 distribution), and because lme4 does not provide such estimates for exactly the same reason.
† These predictor variables were systematically missing in one or more studies.
‡ Between-study heterogeneity could not be assessed as only one study was left in the anlyses.
∗ TMI and SMI are the same approach because no distinct groups could be formed.

90



Chapter 4

validation sample [132, 239, 249, 270, 275]. The quality of predicted risks was further investigated

by visual inspection of the calibration plot. This plot indicates how predicted risks diverge from

observed outcomes in different deciles of predicted risks and shows perfect predictions when the

calibration curve goes through the origin and has a slope of 45◦.

Finally, we evaluated the extent to which aforementioned approaches affect the perception of

between-study heterogeneity in predictor effects. Hereto, we used the completed development

sample to perform a full one-stage multivariate meta-analysis using the model’s predictors (model C

in [67]). This implies that 9 (FCA, TMI and SMI) and respectively 6 (FPA) predictors were

included as joint random effects in a mixed effect model. The between-study heterogeneity for

each regression coefficient βj was then quantified in terms of its variance across studies, i.e. τ2j

[68], and its Intra-Class Correlation (ICC). The ICC quantifies dependence among subjects [183]

and can be calculated as τ2j /(
∑
j τ

2
j + π2/3) for a logistic regression coefficient βj .

CASE STUDY RESULTS

Full case analysis

Results from scenario 1 (Figure 4.1) illustrate that FCA yields adequate discrimination, even

though 9 studies are discarded during model development and 3 842 subjects (826 events) remain

for estimation purposes. Model calibration was reasonable (calibration slope = 0.81), but sub-

stantially deteriorated (calibration slope = 0.67) in scenario 2 where only one study remained

for model development (Figure 4.2). Indeed, visual inspection of the calibration plot indicated

that the calibration curve of the prediction model strongly deviated from the 45◦ reference line.

As a consequence, the prediction model in scenario 2 may be prone to overfitting, or may be af-

fected substantially by between-study heterogeneity of predictor effects. Finally, we noticed that

the calibration-in-the-large was relatively poor in both scenarios, and corresponded to a predicted

outcome prevalence of 9% in the validation sample (observed: 13%). Results in Table 4.3 fur-

ther indicate that the between-study heterogeneity of predictor effects in the development sample

was relatively low, except for the intercept term (β0 = −5.11 with τ0 = 0.50) and the predictors

notraum (βnotraum = 0.58 with τnotraum = 0.23) and vein (βvein = 0.46 with τvein = 0.12). Un-

fortunately, evaluation of between-study heterogeneity was not possible in scenario 2, as only one

study remained for model development.
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Figure 4.1: Calibration plots of estimated models (Scenario 1).
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The calibration plots were calculated in the external validation sample.

Full predictor analysis

Results demonstrate that ignoring systematically missing predictors leads to prediction models

with a good calibration, but a rather poor discriminative ability. In particular, we found that the

c-statistic decreased to 0.68 in scenario 1 and 2. The calibration-in-the-large was -0.25 (scenario

1) and 0.1 (scenario 2), corresponding to a predicted outcome prevalence in the validation sample
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Figure 4.2: Calibration plots of estimated models (Scenario 2).
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The calibration plots were calculated in the external validation sample.

of 16% and respectively 12%. The calibration slope was reasonable (0.85) in the first scenario, and

good (0.99) in the second scenario. Finally, for both scenarios we found a substantial amount of

heterogeneity in the intercept term and the predictors malign, surg and vein of the development

sample.
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Figure 4.3: Example dataset with dummy-coding for SMI

studyID Dddimd1 Dddimd2 Dnotraum1 dvt sex ddimd notraum . . .

3 0 0 0 0 0 NA 1 . . .
3 0 0 0 1 0 NA 0 . . .
8 0 0 0 0 0 1 NA . . .
9 0 0 1 0 1 1 1 . . .

12 0 0 0 0 1 NA NA . . .
...

...
...

...
...

...
...

...
. . .

2 0 1 0 0 0 1 NA . . .
5 0 1 0 0 1 1 1 . . .
7 0 1 0 0 0 NA NA . . .
7 0 1 0 0 1 NA NA . . .
...

...
...

...
...

...
...

...
. . .

4 1 0 1 0 1 1 1 . . .
4 1 0 1 0 0 1 1 . . .
6 1 0 0 1 1 1 1 . . .

10 1 0 0 0 0 NA NA . . .
11 1 0 0 0 0 1 0 . . .
13 1 0 0 0 0 NA NA . . .

...
...

...
...

...
...

...
...

. . .

When applying SMI, an imputation model needs to be specified for each systematically missing
predictor variable. Each imputation model uses a dummy variable D to group studies according to
the (predicted) prevalence of the missing predictor variable. For instance, when imputing ddimd
the following groups can be formed that are no longer affected by systematic missingness for any
predictor variable: [3, 8, 9, 12], [2, 5, 7] and [4, 6, 10, 11, 13]. The imputation model of ddimd is
then as follows: ddimd = f(Dddimd1, Dddimd2, dvt, sex, notraum, . . .). Conversely, when imputing
notraum we could group [2, 3, 5, 6, 7, 8, 10, 11, 12, 13] and [4, 9] and subsequently use the imputation
model notraum = f(Dnotraum1, dvt, sex, ddimd, . . .). Note that in mice, the imputation models
can be specified by the investigator in the predictorMatrix.
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Traditional Multiple imputation

When all datasets are stacked and imputed by treating them as a single study (TMI), resulting

prediction models perform similar to FCA. However, because imputation does not discard any

datasets from the analyses, model intercept terms are available from additional studies and the

calibration-in-the-large may improve. This situation occurred in scenario 1, where the calibration-

in-the-large decreased from 0.48 (FCA) to -0.07 (TMI). The relative performance of TMI substan-

tially improved when fewer studies were available in the IPD-MA (scenario 2). In particular, we

found that the calibration was no longer adequate when applying FCA (calibration slope = 0.67),

but remained nearly optimal when applying TMI (calibration slope = 0.91). Finally, results in

Table 4.3 indicate that estimates for τ substantially increased as compared to FCA. For instance,

τddimd increased from 0.07 (FCA) to 0.50 (TMI), and τmalign increased from 0.03 (FCA) to 0.43

(TMI) in scenario 1.

Stratified Multiple Imputation

The implementation of stratified multiple imputation was only possible in scenario 1 (Table 4.1

and 4.2), and an illustration of the corresponding grouping of studies is depicted in Figure 4.3.

For scenario 2, there was only one study with information on oachst and SMI therefore collapsed

to TMI. For both scenarios, we found that stratified imputation performed similar to traditional

imputation and yielded a c-statistic of 0.82. For scenario 1, the calibration-in-the-large was 0.11

and the calibration slope was 0.84. The degree of between-study heterogeneity in predictor effects

from the development sample was similar as compared to TMI.

DISCUSSION

In this study, we used an empirical example to demonstrate that the presence of systematically

missing predictor variables in an IPD-MA can be tackled by relatively simple solutions and standard

software packages when developing a novel prediction model. In particular, our results showed

that full case analysis does not necessarily compromise model performance, and that imputation

strategies are preferred when systematically missing predictors are strong or few studies are at hand.

These findings are in line with previous research [45, 131] and underline the value of imputation

strategies in prediction modeling studies.

Various aspects need to be addressed to appreciate these results. First, the implementation of full

case analysis is the most straightforward but may not always be recommendable. In particular, we
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found that full case analysis substantially hampers model development when after study exclusion

only few studies are left for the analysis. This situation arose in scenario 2 where only one study

remained for model estimation. As a consequence, it was no longer possible to assess the between-

study heterogeneity of predictor effects, and the prediction model became prone to overfitting. In

addition, the calibration-in-the-large of estimated models using full case analysis was substantially

than when imputation strategies were used. This is mainly because no appropriate intercept term

could be selected when evaluating the prediction model’s performance in the validation sample.

Second, we did not evaluate imputation techniques that employ a hierarchical approach. These

approaches borrow information across studies whilst accounting for clustering of subjects within

subjects. They are likely to yield better performance when covariance structures between the

(missing) predictors substantially differ across studies. Unfortunately, hierarchical imputation ap-

proaches for dealing with systematically missing predictor variables have received limited attention,

and software implementations are currently lacking. As a consequence, researchers necessarily fall

back on traditional imputation strategies that assume a common covariance structure across the

IPD-MA studies. These traditional strategies may then support a self-fulfilling prophecy when

assessing the between-study heterogeneity of predictor effects. Our results, however, demonstrate

that traditional (and stratified) imputation strategies can actually inflate estimates of between-

study variance. Thus, we did not find any evidence that traditional imputation strategies promote

similarity of IPD-MA datasets.

Third, we used a predefined set of predictors to develop a multivariable risk prediction model. It

is not clear how variable selection should optimally be applied in an IPD-MA, and approaches

for this purpose are currently lacking. In addition, Debray et al recently demonstrated that the

generalizability of prediction models increases when included predictor effects are homogeneous

across studies [68]. Results from our case study, however, indicated substantial between-study

heterogeneity in some of the included predictor effects. This may have affected model performance

in the independent validation sample. It may therefore be valuable to investigate how predictor

selection algorithms may be implemented to identify a useful set of homogeneous predictor-outcome

associations.

Fourth, the implementation of stratified multiple imputation may not be feasible when many

predictors are systematically missing. This is because predicting the prevalence (or mean) of

missing predictors may no longer be possible due to a lack of observed prevalances (or means).

Furthermore, predictions for missing prevalences (or means) are only performed once in SMI.

Although this facilitates the identification of studies with a similar prevalence (or mean) for a

predictor, it also implies that the uncertainty of these predictions are not taken into account.

Further research is needed to evaluate how these issues can be addressed.
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General conclusions Traditional imputation of systematically missing predictors appears an

efficient approach when developing a multivariable risk prediction model. Exclusion of affected

studies during model development generally leads to similar model performance if a sufficient

amount of studies remains available in the IPD-MA. Finally, ignoring systematically missing pre-

dictors leads to poorest model performance, particularly when important predictors are ignored

during model development.
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Abstract

Diagnostic and prognostic literature is overwhelmed with studies reporting univariable

predictor-outcome associations. Currently, methods to incorporate such information

in the construction of a prediction model are underdeveloped and unfamiliar to many

researchers. This article aims to improve upon an adaptation method originally pro-

posed by Greenland (1987) and Steyerberg (2000) to incorporate previously published

univariable associations in the construction of a novel prediction model. The proposed

method improves upon the variance estimation component by reconfiguring the adap-

tation process in established theory and making it more robust. Different variants of

the proposed method were tested in a simulation study, where performance was mea-

sured by comparing estimated associations with their predefined values according to

the Mean Squared Error and coverage of the 90% confidence intervals. Results demon-

strate that performance of estimated multivariable associations considerably improves

for small datasets where external evidence is included. Although the error of estimated

associations decreases with increasing amount of individual participant data, it does

not disappear completely, even in very large datasets. In conclusion, the proposed

method to aggregate previously published univariable associations with individual par-

ticipant data in the construction of a novel prediction models outperforms established

approaches and is especially worthwhile when relatively limited individual participant

data are available.



Chapter 5

“Invention, it must be humbly admitted, does not consist in creating out of void but out
of chaos.”

– Mary Shelley

R
ecent medical literature has shown an increasing interest in clinical prediction models

obtained from cross-sectional studies (diagnostic models) as well as case-control, cohort

and randomized controlled data (prognostic models) [167, 170, 192, 237, 280]. Such

models combine multiple predictors or markers that are independently associated with the presence

(in case of diagnosis) or future occurrence (in case of prognosis) of a particular outcome. Typically,

logistic regression is used to model these binary outcomes. Alternatively, Cox proportional hazards

regression may be applied to account for the time-to-event.

The development of a novel prediction model requires a dataset with a sufficient amount of par-

ticipants to obtain accurate associations and to make reliable predictions. Also, larger numbers of

participants increase the statistical power when selecting predictive subject characteristics to be

included in predictive models. Although numerous prediction models are constructed from a single

dataset, it is possible to increase the amount of evidence available by incorporating information

from the literature.

The availability of individual participant data (IPD) is commonly recommended as gold standard

for combining existing information with newly collected data [203, 234]. However, this situation is

often unfeasible due to practical constraints [126, 236], for instance when studies were conducted

several years ago. Fortunately, numerous papers contain baseline population characteristics from

which univariable predictor-outcome associations can be derived. Consequently, these associations

represent an appealing source of evidence when developing a novel prediction model [27, 52, 76,

118, 166, 196, 206, 237, 252].

Greenland and Steyerberg have recently proposed adaptation methods to incorporate previously

published univariable predictor-outcome associations as prior evidence in a regression analysis

[91, 243]. These methods combine the result of a univariable meta-analysis with the results of

a univariable and multivariable logistic regression analysis on the IPD. Although these quantita-

tive approaches may considerably improve the quality of a model’s regression coefficients and its

resulting performance, they are not yet frequently used in practice [207, 219].

Here we present an improved alternative to the methods proposed by Greenland and Steyerberg

that aims to further increase the accuracy and precision of the multivariable associations esti-

mated using external evidence. This method improves upon the variance estimation component

by reconfiguring the adaptation process in established theory and making it more robust. We
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present two variants of our method and test their performance in a simulation study. We illustrate

the proposed methods’ application in a clinical example involving the prediction of peri-operative

mortality after elective abdominal aortic aneurysm surgery [246].

METHODS

This method is intended to address the specific situation where IPD have been collected to evaluate

the effect of a number of predictors on a dichotomous outcome using logistic regression analysis.

Here, univariable and multivariable associations (logistic regression coefficients) are estimated and

denoted as βu and βm . Particularly, two sources of associations are assumed to be available,

namely the IPD of the study at hand ( I ) and aggregated data from the literature ( L ). The

univariable and multivariable associations estimated in the derivation data are denoted as β̂u|I and

β̂m|I. For the literature, only univariable associations are available ( β̂u|L ). It is assumed that the

study at hand and the studies forming the literature are both random samples from a common

underlying patient population.

Previously, Greenland proposed a method to incorporate univariable associations reported in the

literature when developing a novel multivariable prediction model from newly collected data [91].

This method attempts to approximate a situation where the individual participant data from

all the previously published datasets was available for all the candidate covariates. It uses the

calculated change from univariable to multivariable association in the newly collected data and

uses this difference to estimate the multivariable association that would have been reported in the

previous literature using the IPD from the previous studies:

β̂m|L = β̂u|L +
(
β̂m|I − β̂u|I

)
(5.1)

The proposed estimate for the variance of β̂m|L is given as follows [91, 94].

V̂ar
(
β̂m|L

)
= V̂ar

(
β̂u|L

)
+
[
V̂ar

(
β̂m|I

)
− V̂ar

(
β̂u|I

)]
(5.2)

Here, β̂u|L can be obtained through a meta-analysis involving fixed or random effects, and β̂m|L is

the (asymptotically) unbiased estimate of the multivariable association β̂m. Subsequently, Steyer-

berg et al. extended this method by defining a weight c to reflect inconsistencies and variability in
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previous research [243]:

β̂m|L = β̂m|I + c
(
β̂u|L − β̂u|I

)
(5.3)

Previous simulations have however shown that the original unweighted method (c = 1 in expression

5.3) has a similar performance.

Concerns and proposed solutions

Although aforementioned formulas are relatively simple to apply, the calculation of V̂ar(β̂m|L) in

expression 5.2 clearly contrasts with the theoretical variance component:

Var
(
β̂m|L

)
=Var

(
β̂u|L

)
+ Var

(
β̂m|I

)
+ Var

(
β̂u|I

)
+ 2 Cov

(
β̂u|L, β̂m|I

)
− 2 Cov

(
β̂m|I, β̂u|I

)
− 2 Cov

(
β̂u|L, β̂u|I

)
(5.4)

Although it is possible to assume that estimated associations from the literature and IPD at

hand are independent, i.e. Cov(β̂u|L, β̂m|I) = Cov(β̂u|L, β̂u|I) = 0, the remaining assumption that

Cov(β̂m|I, β̂u|I) = Var(β̂u|I) seems unrealistic. Particularly, this assumption requires that the uni-

variable and multivariable association in the IPD at hand are strongly correlated and neglects

Var(β̂m|I), as Cov(β̂m|I, β̂u|I) = ρ(β̂m|I, β̂u|I) Var(β̂m|I) Var(β̂u|I). Consequently, expression 5.2 may

yield biased variance estimates of adapted multivariable associations. Although it is even possible

that V̂ar(β̂m|L) becomes negative when V̂ar(β̂m|I) < V̂ar(β̂u|I), this is unlikely to happen because

adjustment of logistic regression coefficients is expected to result in a loss of precision [209].

In order to obtain asymptotically unbiased estimates for Var(β̂m|L), we incorporate the distribution

of estimated associations. A pragmatic parametric family for the distribution of associations is

the normal distribution, where we assume that β̂u|I ∼ N(µu|I, σ
2
u|I), β̂m|I ∼ N(µm|I, σ

2
m|I) and

β̂u|L ∼ N(µu|L, σ
2
u|L). Then, the adaptation from univariable to multivariable association, i.e.

β̂m|I − β̂u|I in expression 5.1, is also normally distributed. The distribution of this adaptation is
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further denoted as N
(
µδ, σ

2
δ

)
, such that β̂m|L can be estimated by:

µ̂u|L + µ̂δ (5.5)

with a standard error estimate of √
σ̂2
u|L + σ̂2

δ (5.6)

The probabilistic adaptation from univariable to multivariable association N(µδ, σ
2
δ ) can be es-

timated from the IPD at hand using bootstrap sampling [62]. This procedure applies repeated

sampling with replacement of subjects from the derivation dataset. Hence, it allows generating

numerous datasets (bootstrap samples) where the adaptation can be estimated. Unfortunately, the

bootstrap procedure may become unstable when the effective sample size is small, and yield regres-

sion coefficients with extreme values [9, 145, 184]. This, in turn, may strongly affect the quality of

estimated adaptations and result in poor estimates of βm|L. For this reason, we propose to shrink

the adaptation by implementing a Bayesian prior for the univariable and multivariable associations

of the IPD at hand. Recently, Gelman et al. proposed a weakly default prior distribution that is

based on the Cauchy distribution and assumes a probability of 70.48% for associations between -5

and 5. This distribution is less conservative than the uniform prior distribution (which assumes

higher probabilities for extreme associations), and yields estimates that make more sense and have

predictive performance better than maximum likelihood estimates [87]. The weakly informative

prior distribution for generalized linear modeling was recently implemented in R, and is available

in the package arm.

Finally, the summary of univariable associations from the literature N(µu|L, σ
2
u|L) is originally esti-

mated by applying a fixed effects meta-analysis [106, 179]. Because this estimate may be unstable

when few studies are available, Steyerberg et al. proposed using the univariable associations from

the literature (published as β̂u|L ) and the IPD at hand (estimated as β̂u|I) [243]. When the homo-

geneity assumptions made by the adaptation method are violated, it is possible to assume random

effects to further improve the robustness of estimated associations.

Given aforementioned concerns, we propose two variants (Table 5.1) of the adaptation method

which we further denote as the Improved Adaptation Method. The first variant (no prior) decreases

the bias of V̂ar(β̂m|L) by effectively removing the unrealistic assumptions about the covariance

between univariable and multivariable associations in the IPD at hand. This variant also attempts

to reduce the impact of heterogeneity by allowing random effects in the pooling of literature

associations. The second variant (weakly informative prior) aims to further improve the quality of

estimated multivariable associations by implementing a weakly informative prior distribution for
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estimating the univariable and multivariable associations in the IPD at hand. For this purpose, its

logistic regression analyses use independent Cauchy distributions on all regression coefficients, each

centered at 0 and with scale parameter 10 for the constant term and 2.5 for all other coefficients.

In this manner, estimates for the adaptation from univariable to multivariable association become

more robust.

SIMULATION STUDY

We performed a simulation study to assess the quality of estimated multivariable associations.

Hereto, we considered the situation in which IPD and literature data are described by two predictors

and a dichotomous outcome. Arbitrary values were predefined for the independent association

between these predictors and their respective outcome, with b0 = −3.43, b1 = 1.45 and b2 = 1.18

(where we chose x1, x2 ∼ N (0, 1) and ρ (x1, x2) = 0, i.e. x1 and x2 are not correlated) which we

further refer to as the reference model. The outcome y for each subject i = 1, . . . , N is generated

as follows, and corresponds to an average incidence of 9%.

y =

1, if u < logit−1(−3.43 + 1.45x1 + 1.18x2)

0, if u ≥ logit−1(−3.43 + 1.45x1 + 1.18x2)

where u ∼ U(0, 1). We applied aforementioned methods (Table 5.1) to update only the multivari-

able association of the first predictor b1. In each scenario, data for four literature studies as well

as an IPD are generated with different degrees of comparability. For this purpose, we used the

reference model (fixed effects) to generate the IPD and source datasets of the univariable associa-

tions from the literature. We investigated the impact of sample size by evaluating different choices

for NI (100, 200, 500 and 1 000) and NL (500 and 2 000). Note that NI = 100 violates the rule

of thumb that logistic models should be used with a minimum of 10 outcome events per predictor

variable [184]. We also evaluated the performance for the scenario in which the key assumption of

study exchangeability is violated. Hereto, we introduced random variation in b1 of the reference

model when generating data for the literature studies:

y =

1, if u < logit−1(−3.43 + (b1|L)j x1 + 1.18x2)

0, if u ≥ logit−1(−3.43 + (b1|L)j x1 + 1.18x2)
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where u ∼ U(0, 1) and (b1|L)j ∼ N
(
1.45, σ2

h

)
with j = 1, . . . , 4. Consequently, differences in

multivariable associations from the literature appear due to sampling variance and heterogeneity

across study populations originated from one source of variability (e.g. due to a focus of studies on

primary versus secondary care, younger versus older patients etc). Multivariable associations from

the IPD at hand remain homogeneous with the study population (b1|I = 1.45). The scenarios are

illustrated in Figure 5.1, which also demonstrates that the sampling process substantially affects

the bias and variance of the univariable and multivariable associations.

Finally, the updated multivariable association β̂1 obtained with each method is compared with the

predefined association b1 from the reference model. We evaluate the frequentist properties of the

estimated associations in terms of the percentage bias (PB) and the Mean Squared Error (MSE)

[46], where

PB
(
β̂1

)
=
β̂1 − b1

b1
× 100% (5.7)

and

MSE
(
β̂1

)
=
(
β̂1 − b1

)2
+
(

SE
(
β̂1

))2
(5.8)

In addition, we calculate the coverage of the 90% confidence intervals (90% CI coverage) and

quantify how often invalid variance estimates are obtained (i.e. V̂ar(β̂1) < 0) for the Green-

land/Steyerberg adaptation method. We simulated different degrees of available evidence and

heterogeneity, and repeated each scenario 500 times. The corresponding results are presented in

Table 5.2, 5.3, 5.4 and 5.5. An implementation in R of aforementioned methods is available on

request.

No meta-analysis (classical approach)

Results demonstrate that the classical approach to logistic regression, ignoring published univari-

able evidence from previous studies, considerably overestimates multivariable associations, partic-

ularly when the IPD at hand is very small. Although the percentage bias and MSE of β̂1 decreases

in larger datasets, it does not completely disappear. Similar to previous research, we found that

the bias of estimated regression coefficients increases when collinearity occurs and effective sample

sizes are small [155]. The coverage of the 90% confidence interval was adequate for all scenarios

considered.
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Figure 5.1: Comparison of estimated associations

 95% range of estimated associations

 Estimated multivariable b1

σh = 0.00 and n = 150

σh = 0.20 and n = 150

σh = 0.00 and n = 500

σh = 0.20 and n = 500

σh = 0.00 and n = 1000

σh = 0.20 and n = 1000

0 0.5 1 1.5 2 2.5 3

 Estimated univariable b1

σh = 0.00 and n = 150

σh = 0.20 and n = 150

σh = 0.00 and n = 500

σh = 0.20 and n = 500

σh = 0.00 and n = 1000

σh = 0.20 and n = 1000

0 0.5 1 1.5 2 2.5 3

Graphic presentation of multivariable (with true value 1.45) and corresponding univariable (with
true value 1.25) associations estimated in an IPD of size n. This dataset is generated according
to x1, x2 ∼ N(0, 1) with Pr(y = 1) = logit−1(−3.43 + b1x1 + 1.18x2) and b1 ∼ N(1.45, σ2

h). Each
interval is based on 10 000 repetitions
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Chapter 5

Greenland/Steyerberg adaptation method

The multivariable associations estimated with the Greenland/Steyerberg Adaptation method were

far more accurate than those estimated with the classical approach, especially when little actual

data were available. Estimated associations remain, however, too extreme compared to the asso-

ciations from the reference model. The coverage of the 90% confidence interval was good for most

scenarios, although we observed over-coverage when collinearity was present, and under-coverage

when the literature studies were very large and heterogeneous. Unfortunately, we also noticed

that some estimates for Var(β̂m|L) were negative when IPDs were small, and particularly when

the literature studies were large (such that Var(β̂u|L) becomes negligible). Finally, the presence of

heterogeneity in the literature associations did not influence the accuracy of estimated associations.

This finding can however be explained by the fact that heterogeneity was only introduced in the

spread of the literature associations.

Improved adaptation method (no prior)

When no shrinkage was applied for the associations of the IPD at hand, estimated multivariable

associations had the largest error, particularly when few data were available. Regression coefficients

in bootstrap samples were often non-identifiable (results not shown), resulting in unstable estimates

and over-coverage of multivariable regression coefficients. When the size of the IPD at hand

increased, this approach performed similar to the improved adaptation method with a weakly

informative default prior and the approach proposed by Greenland and Steyerberg.

Improved adaptation method (weakly informative prior)

Results demonstrate that estimated associations were most accurate when a weakly informative

prior was used during estimation of the adaptation. Even when the rule of thumb that logistic

models should be used with a minimum of 10 outcome events per predictor variable is clearly

violated, this approach yielded superior estimates of b1 that were very similar to estimates obtained

from large amounts of IPD. Finally, we observed over-coverage of the 90% confidence interval

when collinearity was present, and under-coverage when the literature studies were very large and

heterogeneous with the IPD at hand.
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APPLICATION

We applied the methods discussed above to an empirical dataset of the prediction of peri-operative

mortality (in-hospital or within 30 days) after elective abdominal aortic aneurysm surgery [246].

The study was exempted from ethical approval under Dutch law. Individual participant data were

available for 238 subjects (including 18 deaths) and consisted of the predictors age, gender, cardiac

co-morbidity (history of myocardial infarction, congestive heart failure, and ischemia on the ECG),

pulmonary co-morbidity (COPD, emphysema or dyspnea) and renal co-morbidity (elevated pre-

operateive creatinine level). Univariable literature data were available from 15 studies with 15 821

subjects including 1 153 deaths in total [65]. We incorporated the univariable evidence from the

literature data to estimate the multivariable associations of four of these predictors. Similar to the

simulation study, we applied standard logistic regression modeling (no meta-analysis), the Green-

land/Steyerberg Adaptation method and the improved adaptation method. The corresponding

results are presented in Table 5.6.

No meta-analysis (classical approach)

The poor quality of estimated associations can be illustrated by their substantial variance. The

predictor ‘Female Sex’ is a good example, since the 90% confidence interval of its multivariable

association was estimated as [−1.30, 2.00].

Greenland/Steyerberg adaptation method

The Greenland/Steyerberg Adaptation method yielded notably different multivariable associa-

tions. For instance, whereas the classical approach estimated a multivariable association of 0.74

(ORadj = 2.10) for the predictor ‘History of MI’, this estimate was shrunk to 0.26 (ORadj = 1.20)

by the adaptation method. Here, the considerable difference in univariable associations between

the individual dataset and the literature is a major cause of shrinkage. Finally, the variance

of multivariable associations was much smaller when published evidence from the literature was

incorporated.

Improved adaptation method (no prior)

We noticed a substantial increase in the variance of estimated adaptations due to the occurrence

of non-identifiability in some of the bootstrap samples. These findings illustrate the need for a
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Table 5.6: Calculation of Adapted Associations in the Application

Sex MI CHF ischemia

Adaptation

Greenland/Steyerberg 0.02; 0.13 -0.76; 0.07 -0.74; 0.05 -0.72; 0.08
Improved (no prior) 0.04; 0.39 -0.69; 0.15 -0.67; 0.16 -0.72; 0.41
Improved ∗ 0.05; 0.12 -0.65; 0.07 -0.63, 0.05 -0.67; 0.11

Univariable association

Greenland/Steyerberg 0.35; 0.03 1.02; 0.07 1.58; 0.12 1.52; 0.10
Improved (no prior) 0.35; 0.03 1.02; 0.07 1.58; 0.12 1.52; 0.10
Improved ∗ 0.34; 0.03 1.00; 0.07 1.52; 0.11 1.48; 0.09

Multivariable association

No meta-analysis 0.30; 0.75 0.74; 0.32 1.04; 0.35 0.99; 0.38
Greenland/Steyerberg 0.36; 0.16 0.26; 0.14 0.84; 0.17 0.80; 0.18
Improved (no prior) 0.38; 0.42 0.33; 0.22 0.91; 0.28 0.80; 0.51
Improved ∗ 0.39; 0.15 0.35; 0.14 0.90; 0.16 0.81; 0.21

Illustration of the adaptation methods for four independent associations for predicting peri-
operative mortality (in-hospital or within 30 days) after elective abdominal aortic aneurysm
surgery. The following estimates are presented: adaptation from univariable to multivariable
association (with mean µ̂δ and variance σ̂2

δ ), summary of univariable associations from the litera-
ture and IPD (with mean µ̂u and variance σ̂2

u) and adapted multivariable association (with mean
µ̂m and variance σ̂2

m). Multivariable estimates were obtained through independent adaptation of
the corresponding univariable associations, and are adjusted for the following variables: female
sex (Sex), age in decades, history of myocardial infarction (MI), congestive heart failure (CHF),
ischemia on electrocardiogram, renal co-morbidity and lung co-morbidity.
∗ This improved adaptation method employs a weakly informative prior

prior distribution that shrinks the associations of the individual dataset and thereby robustifies

the adaptation.

Improved adaptation method (weakly informative prior)

Multivariable associations were similar but not equal to those estimated with the Greenland/Steyerberg

Adaptation method. For instance, the multivariable association of the predictor ‘History of MI’

was shrunk to a lesser extent by both variants of the improved adaptation method. Furthermore,

the variance of estimated adaptations and multivariable associations decreased considerably by

implementing a weakly informative prior distribution.
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DISCUSSION

The incorporation of previously published univariable associations from single diagnostic or prog-

nostic test, predictor or marker studies, into the development of a novel prediction model is both

feasible and beneficial. A simple method for this purpose was proposed by Greenland and Steyer-

berg using the change from univariable to multivariable association observed in the IPD to adapt

the univariable associations from the literature. We present an improved adaptation method and

demonstrate its additional value in a simulation study. Particularly when the individual dataset is

relatively small, this method estimates multivariable associations with a smaller MSE, and obtains

better coverage of their 90% confidence intervals. Major performance gain is obtained by shrinking

the associations from the individual dataset when calculating the adaptation. When no shrinkage

was applied (no prior), non-identifiability occurred in some of the bootstrap samples and estimated

adaptations were no longer normally distributed. Since we know that extreme associations are very

rare in medical sciences, the use of a weakly informative default prior is justified [87], resulting in

improved accuracy and precision of the adaptation and hence also the multivariable associations

under study.

Several issues must be considered when evaluating these findings: Firstly, performance was evalu-

ated here through the estimation of an association in a small prediction model. Our method may

perform better in larger models where correlations between univariable and multivariable associ-

ations may be less strong, but this remains untested. Secondly, advanced Bayesian approaches

for summarizing the evidence from the literature were not considered. Although these approaches

might further improve the accuracy and coverage of multivariable associations, they are less readily

compared with meta-analytical models and require more modeling expertise.

Third, the assumption that studies from the literature are exchangeable with the data at hand

might not always hold. Simulations showed an under-coverage of the estimated 90% confidence

interval when comparability between the considered associations was low, indicating that incor-

porating strongly heterogeneous evidence from the literature into prediction modeling remains

problematic. In those scenarios, the change from univariable to multivariable association in the

IPD at hand may no longer be representative for associations from the literature. Evidently, the

incorporation of strongly heterogeneous evidence (for example indicated by the I2 statistic) from

the literature into the development of a novel prediction model remains questionable [92, 113].

In addition, aggregating published results may not be desirable if publication bias is present or

suspected. Fortunately, the use of random effects when summarizing the associations from the

literature seems to counter this problem to some extent.

Fourth, we did not consider the situation in which multivariable (rather than univariable) associ-
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ations are available from the literature. Although their incorporation may be difficult due to the

diversity of considered predictors, it could further improve the quality of estimated associations.

The synthesis process of associations from the literature should then account for differences in

model specification and included associations. Future research will investigate how these chal-

lenges can be assessed [66].

Finally, our simulation study only evaluated the performance of estimated multivariable predictor-

outcome associations. Although Steyerberg et al. showed that improved estimates may increase

the quality of the prediction model [243], this relation was not assessed here. It is possible that all

adaptation methods perform similar in a prediction task. However, we showed that the Improved

Adaptation Method with a weakly informative prior may further reduce the bias of multivariable

associations when datasets are small. It may be clear that for strong predictors, this improvement

may have a meaningful impact when making predictions. Additional research is needed to eval-

uate the extent to which improved predictor-outcome associations result in an improved model

performance.

CONCLUSIONS

Our study demonstrates that the MSE in multivariable associations of a novel prediction model

is largest when external evidence, in this case previously published univariable predictor-outcome

associations, is ignored. Although this error decreases with increasing amount of IPD, it does not

disappear completely, even in very large datasets. Therefore, it is valuable to incorporate any

existing univariable evidence from the literature unless this evidence is strongly heterogeneous.

Even when the individual dataset is relatively large compared to the literature, the proposed

method will still result in an estimate closer to the underlying multivariable association than the

standard method ignoring the literature. The improved and original adaptation methods are robust

approaches for this purpose. Whereas the latter method is simpler to apply, the former is more

vigorous in small datasets and provides the most stable estimates.
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Abstract

During recent decades interest in prediction models has substantially increased, but ap-

proaches to synthesize evidence from previously developed models have failed to keep

pace. This causes researchers to ignore potentially useful past evidence when developing

a novel prediction model with individual participant data (IPD) from their population

of interest. We aimed to evaluate approaches to aggregate previously published pre-

diction models with new data. We consider the situation that models are reported in

the literature with predictors similar to those available in an IPD dataset. We adopt a

two-stage method and explore three approaches to calculate a synthesis model, hereby

relying on the principles of multivariate meta-analysis. The former approach employs

a naive pooling strategy, whereas the latter account for within- and between-study

covariance. These approaches are applied to a collection of 15 datasets of patients

with Traumatic Brain Injury, and to 5 previously published models for predicting Deep

Venous Thrombosis. Here, we illustrated how the generally unrealistic assumption of

consistency in the availability of evidence across included studies can be relaxed. Re-

sults from the case studies demonstrate that aggregation yields prediction models with

an improved discrimination and calibration in a vast majority of scenarios, and result

in equivalent performance (compared to the standard approach) in a small minority

of situations. The proposed aggregation approaches are particularly useful when few

participant data are at hand. Assessing the degree of heterogeneity between IPD and

literature findings remains crucial to determine the optimal approach in aggregating

previous evidence into new prediction models.



Chapter 6

“The multitude of books is making us ignorant.”

– Voltaire

I
t is well known that many prediction models do not generalize well across patient popula-

tions [30, 136, 167, 237, 238, 259]. This quandary may occur, e.g., when prediction models

are developed from small data sets, when too many predictors were studied compared to

the effective sample size, or when the population in which the model is validated or applied di-

verges (substantially) from the population where the model was developed. Although the use of

larger datasets for model development covers a straightforward solution, in practice this option is

frequently not possible due to, for example, cost constraints, ethical considerations or inclusion

problems.

It is remarkable that despite the scarcity of individual participant data, there is an abundance

of prediction models in the medical literature, even for the same clinical problem. For example,

there are over 60 published models aiming to predict outcome after breast cancer [11, 159], over

25 for predicting long-term outcome in neurotrauma patients [186], and about 10 to diagnose

venous thromboembolism. This dispersion of information reduces the scientific and clinical utility

of prognostic research overall. Prior knowledge from previous research goes unused and clinicians

are left to pick from a cacophony of unreliable prognostic models with limited scope. This is

undesirable for all parties involved.

Conceptually, combining prior knowledge from multiple studies is already widespread in etiologic

and intervention research, in the form of meta-analyses [70]. More elaborate approaches, e.g. for

synthesizing the accuracy of diagnostic tests [193], have also recently emerged but remain largely

lacking in prediction research, despite the fact that the potential gains are arguably even greater

[109]. The closest existing equivalent techniques focus upon updating of existing prediction models

that are being applied to a different setting [167, 237, 239, 243, 272]. Approaches for using prior

knowledge in prediction research are underdeveloped [109]. Some published approaches rely on

evidence that is typically not published, such as covariance matrices or regression coefficients, or

lack a formal statistical foundation [25, 63].

We aimed to investigate how previously published prediction models or studies can be used in the

development of a (new) prediction model when published models and the individual participant

data incorporate similar predictors. We realize that published prediction models often differ in

their composition through the inclusion of different covariates in the models, the transformations

and coding applied, and adjustment for overfitting [22, 112]. We here assume as a start that

identical model formulations are available for the published prediction models.
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We adopt the two-stage method proposed by Riley et al. [207] and explore three approaches to

aggregate the published prediction models (with similar predictors) with individual participant

data (IPD). These approaches reduce the available IPD to Aggregate Data (AD), and combine

this evidence with the AD from the literature (i.e. the published prediction models). The first two

approaches calculate an overall synthesis model, whereas the third approach employs a Bayesian

perspective to adapt the coefficients of previously published prediction models with the IPD at

hand. The approaches are evaluated here through testing the predictive performance of prediction

models for 6 month outcome in 15 Traumatic Brain Injury (TBI) datasets [152, 248]. In addition, we

illustrate their application in a genuine example involving the prediction of Deep Vein Thrombosis

(DVT).

METHODS

We consider the situation in which an individual participant dataset (IPD) as well as a number

of previously published multivariate logistic regression models are available. The IPD is described

by i = 1, . . . ,K independent predictors, a dichotomous outcome, and contains NIPD subjects.

The characteristics and observed outcome of subject s = 1, . . . , NIPD in these data are denoted

as xs1, . . . xsK and ys respectively. The Aggregate Data (AD) from the literature studies are

represented by the published prediction models, and can be obtained from individual study publi-

cations or directly from the study authors themselves. We assume that the literature models have

a similar set of predictors as the IPD, and were developed with a similar prediction task in mind.

Furthermore, we assume that for each of j = 1, . . . ,M previously published prediction models, the

estimated regression coefficients β̂0j , . . . , β̂Kj and their corresponding standard errors σ̂0j , . . . , σ̂Kj

are available. The regression coefficients obtained from the IPD are denoted as β̂1,IPD, . . . , β̂K,IPD

(with intercept β̂0,IPD) and their respective variance-covariance matrix as Σ̂IPD. Although we focus

on the presence of one IPD, it is possible to add additional IPDs in a similar manner.

From this situation, we propose three approaches to then combine the literature models with the

IPD and derive a novel, aggregated prediction model with coefficients β0,UPD, . . . , βK,UPD and

variance-covariance matrix ΣUPD (with variance elements σ2
0,UPD, . . . , σ

2
K,UPD where UPD stands

for “updated”). These approaches adopt the two-stage method described by Riley et al. [207],

where the available IPD are reduced to AD, and then combined with existing AD using meta-

analytical techniques. Specifically, the IPD is first reduced to β̂0,IPD, . . . , β̂K,IPD and Σ̂IPD, and

then aggregated with β̂0j , . . . , β̂Kj and σ̂0j , . . . , σ̂Kj using meta-analysis techniques appropriate

for multivariate synthesis. The first two approaches derive an average synthesis model across the

included study populations, which may not be relevant to the population of interest. For this
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reason, the third approach assumes that the IPD reflects the clinically relevant population, and

uses the synthesis model from the literature for updating the regression coefficients from the IPD.

Finally, all aggregation approaches re-estimate the model intercept in the IPD to ensure that

updated models remain well calibrated. For all three approaches this can be achieved by fitting a

logistic regression model in the IPD, using an offset variable that is calculated from the updated

regression coefficients:

Pr(ys = 1) = logit−1(β0,adj + offset)

offset = β̂1,UPDxs1 + . . .+ β̂K,UPDxsK
(6.1)

In this expression, β0,adj is the only free parameter that is used as new estimate for the intercept of

the aggregated prediction model. The variance-covariance matrix Σ̂UPD can be adjusted according

to the variance-correlation decomposition:

Ĉov(β̂0,adj, β̂i,UPD) =
σ̂0,adj
σ̂0,UPD

Ĉov(β̂0,UPD, β̂i,UPD) where i = 1, . . . ,K (6.2)

All approaches were implemented in R 2.14.1 [190]. The corresponding source code is available on

request.

Univariate meta-analysis

A straightforward strategy to combine the previously published prediction models with IPD is

to summarize their corresponding multivariate coefficients and standard errors. We propose the

weighted least squares (WLS) approach as a first simple approach to combine the coefficients.

Appropriate weights for the coefficients can be obtained from their corresponding standard errors

or study sample size when these are not available. This approach corresponds to a typical meta-

analysis involving fixed or random effects as commonly applied to univariate regression coefficients

or effect estimates. Here, the coefficient β̂ij is weighted according to wij = 1/(σ̂2
ij + τ2j ) with τ2j

the between-study variance of β̂j .

As the coefficients are pooled independently for each predictor, dependencies between regression

coefficients are ignored. This simplification is not necessarily problematic when the previously

published regression coefficients are homogeneous. However, when estimates for these coefficients

are known to be correlated across studies, a more advanced approach that accounts for between-
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study covariance may be more appropriate. We will discuss such an approach below.

Multivariate meta-analysis

The concept of multivariate meta-analysis is relatively new to the medical literature, and can be

seen as a generalization of DerSimonian and Laird’s methodology for summarizing effect estimates

[70, 130]. In contrast to univariate meta-analysis, the multivariate approach accounts for within-

study covariance (instead of within-study variance). Furthermore, multivariate meta-analysis es-

timates between-study covariance (rather than between-study variance) of regression coefficients,

and may therefore better account for heterogeneity across studies. This explicit distinction of

within- and between study (co)variance has become paramount in epidemiological research. For

this reason, we do not pursue other potentially useful approaches where evidence is aggregated

from a different perspective, such as the Generalized Least Squares approach proposed by Becker

et al [25].

In this section we present a generalized random effects model that accounts for within-study and

between-study covariance of the regression coefficients when pooling them. A univariate [254] and

bivariate random effects model [271] for this purpose can be generalized as follows:


β0

β1
...

βk


l

∼ MVNK+1 (µre, (Σre)l) (6.3)

with

(Σre)l = Σbs + Σl (6.4)

and
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Σbs =


τ20 τ01 . . . τ0K

τ01 τ21 . . . τ1K
...

...
. . .

...

τ0K τ1K . . . τ2K

 (6.5)

and

Σl =


σ2
0 Cov (β0, β1) . . . Cov (β0, βK)

Cov (β0, β1) σ2
1 . . . Cov (β1, βK)

...
...

. . .
...

Cov (β0, βK) Cov (β1, βK) . . . σ2
K


l

(6.6)

In the expressions above, between-study estimates are denoted as bs, and random-effects esti-

mates as re. Here l denotes each included set of predictors from literature and IPD, i.e. l =

{1, . . . ,M, IPD}.

We explicitly distinguish between the within-study and between-study covariance of the regres-

sion coefficients, denoted as Σl (for study l) and Σbs respectively. Estimates for (β0, β1, . . . , βK)l

and Σl can be obtained from (β̂0, β̂1, . . . , β̂K)l and Σ̂l respectively. The unknown parameters in

µre and Σbs can be estimated with maximum likelihood, and provide the pooled means µUPD =

µre and covariance matrix ΣUPD =
(∑M+1

l=1 (Σre)
−1
l

)−1
. Their corresponding log-likelihood is

given by ` (µre,Σbs) =
∑
`l (µre,Σbs) where `l (µre,Σbs) = ln (Pr (β0l, . . . , βKl|µre, (Σre)l)) and

Pr (β0l, . . . , βKl|µre, (Σre)l) ∼ NK+1 (µre, (Σre)l). To facilitate convergence of the maximum likeli-

hood estimation procedure, we used the independently pooled estimates of the previously published

regression coefficients as initial values for µre, and a zero-matrix as initial choice for Σbs. In addi-

tion, we used the Cholesky decomposition to ensure that Σbs is positive semi-definite.

Although Σl is fully defined for the individual participant data, its non-diagonal entries are usually

unknown for previously published regression coefficients. For this reason, we propose to impute

missing entries in Σ̂l based on the observed correlations in Σ̂IPD, according to

Σ̂φψl = Ĉov(β̂φl, β̂ψl) =
Ĉov(β̂φ,IPD, β̂ψ,IPD)σ̂φl σ̂ψl

σ̂φ,IPD σ̂ψ,IPD
(6.7)

with φ, ψ = 0, . . . ,K. This imputation strategy assumes that the within-study covariance of

regression coefficients is exchangeable across all studies. Alternatively, it is possible to restrict
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non-diagonal entries in Σ̂l to zero, according to Σ̂l = diag(σ̂2
0l, σ̂

2
1l, . . . , σ̂

2
Kl). The former approach

may be more appropriate in more homogeneous sets of studies, as then the correlations from the

IPD are likely to be closer to the underlying correlations in the included AD. Furthermore, it

is possible to assume a common correlation value amongst all slopes (e.g. Σ̂φψl = 0.2 σ̂φl σ̂ψl),

or to introduce uncertainty in the correlation parameter(s) by adopting a Bayesian perspective

[25, 127]. Finally, simulation studies have revealed that multivariate meta-analysis models appear

to be fairly robust to errors made in approximating within-study covariances when only summary

effect estimates (here represented by the regression coefficients) are of interest [127].

The complexity of the meta-analysis is mostly defined by Σbs. If each element in this matrix is

modeled as an unknown parameter, a full random effects meta-analysis is performed. Conversely, if

all (non-diagonal) entries in Σbs and Σl are restricted to zero, the regression coefficients are pooled

independently as described in univariate meta-analysis. Furthermore, it is possible to perform

a reduced random effects meta-analysis by restricting a selection of Σbs-elements to zero. For

instance, we can assume fixed effects for β1 by choosing τ21 = τ0,1 = τ1,2 = . . . = τ1,K = 0.

Additional fixed effects can be introduced in a similar manner. We argue that by restricting the

amount of unknown parameters in Σbs, estimates for their corresponding values may become more

robust. The stability of µre and Σbs may further be improved by introducing (weakly) informative

prior distributions. Unfortunately, such approach ultimately requires the use of highly advanced

distributional families which may not have a straightforward interpretation or implementation.

Implementing these is beyond the scope of this article.

Finally, the described approach can easily be extended to scenarios in which multiple IPDs are

available. In these scenarios, Σl is fully defined for multiple studies and hence allows an improved

estimation of the unknown parameters. Alternatively, it is possible to adopt a one-stage approach

that does not reduce the IPD to AD, but instead accounts for the fact that some studies provide

IPD, and some studies provide only AD [204]. Similarly, when no IPDs are available, the non-

diagonal entries of Σl are (probably) undefined for all studies and making reasonable assumptions

about these entries becomes more important to obtaining valid results.

Bayesian Inference

The approaches for performing a univariate and multivariate meta-analysis estimate a ‘pooled’

prediction model whenever a number of previously published prediction models as well as IPD are

available. It may be clear that an average synthesis model across the included study populations

may not always reflect the population of interest. Here, we assume that the IPD represents the

clinically relevant population. Good prediction in these particular subjects is hence of primary
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interest. Therefore, we consider an alternative approach where the evidence from existing predic-

tion models is used to update the regression coefficients from the IPD. To this purpose, we apply

a Bayesian framework where a summary of the previously published regression coefficients serves

as prior for the regression coefficients in the IPD. This summary of literature evidence can be

obtained through the multivariate meta-analysis approach previously described:

µPRIOR = µre (6.8)

ΣPRIOR =

 M∑
j=1

(Σre)
−1
j

−1 (6.9)

Note that this prior distribution does not include estimates from the IPD. Instead, we assume that

the estimated coefficients from the IPD follow a multivariate normal distribution with mean µIPD

and covariance matrix ΣIPD. This distribution represents the likelihood and can be formulated

as Pr (β0,IPD, . . . , βK,IPD|µIPD,ΣIPD) ∼ NK+1 (µIPD,ΣIPD). We propose to construct a conjugate

prior distribution for µIPD with Pr (µIPD) ∼ NK+1 (µPRIOR,ΣPRIOR) such that the posterior den-

sity Pr (µIPD|β0,IPD, . . . , βk,IPD,ΣIPD) ∼ NK+1 (µPOST,ΣPOST) can be determined analytically:

µUPD =
(
Σ−1PRIOR + Σ−1IPD

)−1 (
Σ−1PRIOR µPRIOR + Σ−1IPD µIPD

)
(6.10)

ΣUPD =
(
Σ−1PRIOR + Σ−1IPD

)−1
(6.11)

Here, the parameters µIPD and ΣIPD can be substituted by (β̂0,IPD, . . . , β̂K,IPD) and Σ̂IPD respec-

tively. Consequently, the vector µUPD represents the expected (posterior) value of the multivariate

regression coefficients β0,UPD, . . . , βK,UPD, and ΣUPD represents the expected (posterior) value of

the corresponding variance-covariance matrix. When multiple IPDs are available, it is possible to

subsequently add each IPD using Bayesian Inference.

APPLICATION: TRAUMATIC BRAIN INJURY

We tested univariate meta-analysis, multivariate meta-analysis, Bayesian Inference and Standard

Logistic Regression (SLR) modeling (i.e. analysis using the IPD only) on 15 empirical datasets of

Traumatic Brain Injury (TBI) patients (Table 6.1). TBI is a leading cause of death and disabil-

ity worldwide with a substantial economic burden [122, 147]. It is difficult to establish a reliable

prognosis on admission [134]. This requires the consideration of multiple and easily accessible risk

factors in multivariable prognostic models [4, 175, 237, 248]. Many prognostic models with admis-

sion data are readily available from the literature [175]. However, most models were developed on

relatively small sample sizes originating from a single center or region and lack external valida-

tion [175, 186]. Therefore, their aggregation might improve the generalization of novel prognostic
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models.

Table 6.1: Datasets of IMPACT database

Study Code Study Year Study Type Patients

TCDB 1984 – 1987 Obs. 603
UK4 1986 – 1988 Obs. 791
HIT I 1987 – 1989 RCT 350
HIT II 1989 – 1991 RCT 819
TIUS 1991 – 1994 RCT 1 041
TINT 1992 – 1994 RCT 1 118
PEGSOD 1993 – 1995 RCT 1 510
SLIN 1994 – 1996 RCT 409
EBIC 1995 Obs. 822
SKB 1996 RCT 126
SAPHIR 1995 – 1997 RCT 919
CERESTAT 1996 – 1997 RCT 517
NABIS 1994 – 1998 RCT 385
APOE 1996 – 1999 Obs. 756
PHARMOS 2001 – 2004 RCT 856

RCT = Randomized Controlled Trial; Obs = Observational Study

Application Setup

To test the potential value of our approaches we used 15 series of individual participant data col-

lected in the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)

project (Table A.2 in the Appendix) [21, 80, 152–154, 172–174, 256, 294]. The outcome used in each

of these trials was the Glasgow Outcome Scale score (GOS) at 6 months after injury, dichotomized

between severe and moderate disability.

We fitted a logistic regression model to each of the available datasets, and considered a core

set of conventional TBI prognostic factors (age, motor score and pupil response to light) (Table

6.2 and 6.3) [175, 248]. In this manner, we aimed to simulate scenarios in which a common

set of core predictors is available and can be aggregated with individual participant data. We

realize that for many genuine examples the assumption of literature models sharing the same set of

parameters is unrealistic. This problem also arises in our application, where some of the previously

published regression coefficients are unknown because some studies did not contain all categories

of the motor score or pupil response. Instead of discarding the corresponding predictors from

the aggregated model, we propose using uninformative regression coefficients when they cannot

be estimated from the data. We argue that this strategy can also be applied in other examples
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Table 6.2: Overview of estimated logistic regression coefficients in the IMPACT data.

Characteristics Coding Regression coefficient

Baseline risk β0
Age, years β1
Motor Score Localizes/obeys Ref.

None β2
Extension β3
Abnormal flexion β4
Normal flexion β5
Untestable/missing β6

Pupillary reactivity Both pupils reacted Ref.
One pupil reacted β7
No pupil reacted β8

where the literature models do not share the same set of parameters. Finally, we measured the

Area under the Receiver Operator Characteristic curve (AUC) and the Brier Score (BS) of the

aggregated models as indication of performance. Whereas the former quantifies the model’s ability

to distinguish high-risk from low-risk patients, the latter assesses the accuracy of its predictions

[39, 99].

Practical Example

As an illustration, we used the HIT I study [21] as IPD, the HIT II study [256] as validation data,

and the prediction models of the remaining studies as previously published evidence (Table 6.4

and 6.5). We calculated the I2 index of heterogeneity for each separate (and known) regression

coefficient of the previously published prediction models by performing a univariate meta-analysis

[113]. These coefficients were found to be moderately to strongly heterogeneous with I2(β̂0) = 0.71,

I2(β̂1) = 0.15, I2(β̂2) = 0.49, I2(β̂3) = 0.40, I2(β̂4) = 0.52, I2(β̂5) = 0.48, I2(β̂6) = 0.54,

I2(β̂7) = 0.53 and I2(β̂8) = 0.61. These estimates should however be interpreted with caution, as

much discrepancy between the previously published regression coefficients is due to small standard

errors. Next, we imputed previously published regression coefficients that could not be estimated

from the data and performed a sensitivity analysis to assess two different imputation approaches.

To this effect we evaluated β̂φ = 0 with σ̂2
φ = 100, and compared it with a mean imputation with

σ̂2
φ =

∑M
j=1 σ̂

2
φj . Finally, we aggregated the previously published prediction models with the IPD.

The considered approaches are:
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I Standard Logistic Regression (SLR) modeling ignoring the literature studies

I Full IPD modeling (FULL) is a standard logistic regression analysis using all available IPD

datasets (except for the validation study). The resulting model is used as “gold standard”

for comparing the aggregated models.

I Univariate meta-analysis (UMA)

I Multivariate meta-analysis (MMA)

I Bayesian Inference (BI)

Because the multivariate meta-analysis approach requires the within-study covariance of the pre-

viously published prediction models to be fully specified, we evaluated two strategies for imputing

missing (i.e. non-diagonal) entries in Σl. As explained above, we compared a strategy that involved

imputing missing covariance entries based on observed correlation in the IPD with a strategy based

on restricted non-diagonal entries in Σl to zero.

Results (Table 6.4, 6.5 and [66]) from this example illustrate that particular choices for imputing

missing regression coefficients and unknown within-study covariance do not have a large impact

on the resulting prediction model. Although each strategy yields somewhat different estimated

regression coefficients, most variation seems to arise from the uncertainty in the available regres-

sion coefficients. The example also illustrates that regression coefficients of aggregated prediction

models are more similar to the coefficients from the reference “gold standard” model (compared

to SLR modeling). Furthermore, we noticed that prediction models incorporating prior evidence

achieved slightly improved AUC and Brier scores. It is possible that improvements in this particu-

lar example are relatively small due to the strong relation between the IPD and validation data (the

HIT II study is a follow-up study of the HIT I study). Finally, we noticed a considerable decrease

in the standard errors of estimated regression coefficients when prior evidence was incorporated.

Although these errors are not of primary concern in prediction research, they reflect an improved

stability of the derived prediction models.

APPLICATION: DEEP VENOUS THROMBOSIS

To confirm the potential value of the proposed approaches, we describe a genuine clinical example

involving the prediction of Deep Venous Thrombosis (DVT). In this example, we aggregated 5

previously published prediction models [81, 86, 182, 251, 281, 282] with one IPD set, and evalu-

ated different strategies for coping with missing predictor values and within-study covariance. We
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Table 6.4: Estimated regression coefficients (and standard error) in the TBI example.

SLR FULL UMA † MMA † BI †

β̂0 -2.66 (0.47) -2.52 (0.07) -2.67 (0.12) -2.67 (0.12) -2.65 (0.12)

β̂1 0.03 (0.01) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)

β̂2 1.36 (0.37) 1.22 (0.07) 1.20 (0.13) 1.21 (0.10) 1.19 (0.11)

β̂3 2.53 (0.54) 1.88 (0.08) 1.81 (0.12) 1.81 (0.09) 1.83 (0.09)

β̂4 1.95 (0.47) 1.21 (0.07) 1.17 (0.12) 1.17 (0.10) 1.19 (0.09)

β̂5 0.80 (0.42) 0.60 (0.06) 0.60 (0.09) 0.60 (0.07) 0.59 (0.07)

β̂6 1.08 (0.77) 0.98 (0.08) 0.82 (0.13) 0.81 (0.11) 0.81 (0.11)

β̂7 0.42 (0.35) 0.80 (0.06) 0.83 (0.10) 0.83 (0.07) 0.81 (0.07)

β̂8 2.15 (0.42) 1.48 (0.06) 1.46 (0.12) 1.44 (0.12) 1.51 (0.12)

AUC 0.745 (0.017) 0.749 (0.017) 0.749 (0.017) 0.749 (0.017) 0.749 (0.017)
BS 0.206 (0.008) 0.207 (0.007) 0.203 (0.007) 0.203 (0.007) 0.203 (0.007)

In this example, the HIT I study (N = 350) is used as individual participant dataset, the HIT II
study (N = 819) as validation dataset and the remaining studies as evidence from the literature.
Missing within-study covariance is restricted to zero. The Area under the Receiver Operator
Characteristic curve (AUC) and the Brier Score (BS) of the aggregated models are presented
as measure of performance in HIT II. Standard errors for the AUC were obtained through the
standard error of the Somer’s D statistic. Standard errors for the BS were estimated according to
sd[(ps − os)2]/

√
N .

† Uninformative regression coefficients are used for missing estimates in the literature models
(β̂φ = 0 with σ̂2

φ = 100)
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Table 6.5: Estimated regression coefficients (and standard error) in the TBI example.

SLR FULL UMA ‡ MMA ‡ BI ‡

β̂0 -2.66 (0.47) -2.52 (0.07) -2.67 (0.12) -2.67 (0.12) -2.65 (0.12)

β̂1 0.03 (0.01) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)

β̂2 1.36 (0.37) 1.22 (0.07) 1.20 (0.13) 1.21 (0.10) 1.19 (0.11)

β̂3 2.53 (0.54) 1.88 (0.08) 1.81 (0.12) 1.81 (0.09) 1.83 (0.09)

β̂4 1.95 (0.47) 1.21 (0.07) 1.17 (0.12) 1.17 (0.10) 1.21 (0.08)

β̂5 0.80 (0.42) 0.60 (0.06) 0.60 (0.09) 0.60 (0.07) 0.59 (0.07)

β̂6 1.08 (0.77) 0.98 (0.08) 0.81 (0.13) 0.81 (0.11) 0.81 (0.11)

β̂7 0.42 (0.35) 0.80 (0.06) 0.83 (0.10) 0.83 (0.07) 0.79 (0.10)

β̂8 2.15 (0.42) 1.48 (0.06) 1.46 (0.12) 1.44 (0.12) 1.47 (0.08)

AUC 0.745 (0.017) 0.749 (0.017) 0.749 (0.017) 0.749 (0.017) 0.749 (0.017)
BS 0.206 (0.008) 0.207 (0.007) 0.203 (0.007) 0.203 (0.007) 0.202 (0.007)

In this example, the HIT I study (N = 350) is used as individual participant dataset, the HIT II
study (N = 819) as validation dataset and the remaining studies as evidence from the literature.
Missing within-study covariance is restricted to zero. The Area under the Receiver Operator
Characteristic curve (AUC) and the Brier Score (BS) of the aggregated models are presented
as measure of performance in HIT II. Standard errors for the AUC were obtained through the
standard error of the Somer’s D statistic. Standard errors for the BS were estimated according to
sd[(ps − os)2]/

√
N .

‡ Mean imputation for missing estimates in the literature models (with σ̂2
φ =

∑M
j=1 σ̂

2
φj )
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Table 6.6: Performance of aggregated prediction models, expressed by means of the Area under
the Receiver Operator Characteristic curve (AUC) and the Brier Score (BS).

UK4

NIPD = 500 (NVAL = 291) NIPD = 200 (NVAL = 591)
AUC (SE) BS (SE) AUC (SE) BS (SE)

SLR 0.813 (0.022) 0.165 (0.010) 0.801 (0.011) 0.172 (0.006)
FULL 0.822 (0.020) 0.174 (0.009) 0.821 (0.008) 0.176 (0.003
UMA 0.821 (0.020) 0.162 (0.009) 0.820 (0.008) 0.164 (0.005)
MMA 0.820 (0.020) 0.162 (0.009) 0.820 (0.008) 0.164 (0.005)
BI 0.820 (0.020) 0.162 (0.009) 0.820 (0.008) 0.164 (0.005)

HIT II

NIPD = 500 (NVAL = 319) NIPD = 200 (NVAL = 619)
AUC (SE) BS (SE) AUC (SE) BS (SE)

SLR 0.739 (0.021) 0.201 (0.008) 0.728 (0.013) 0.207 (0.007)
FULL 0.744 (0.020) 0.205 (0.007) 0.742 (0.010) 0.207 (0.004)
UMA 0.744 (0.020) 0.199 (0.008) 0.743 (0.010) 0.199 (0.005)
MMA 0.745 (0.020) 0.198 (0.008) 0.743 (0.010) 0.199 (0.005)
BI 0.745 (0.019) 0.198 (0.008) 0.743 (0.010) 0.199 (0.005)

For multivariate meta-analysis and Bayesian Inference, we used uninformative regression coeffi-
cients when missing. Missing within-study correlations were assumed to equal 0.

used an IPD (N = 1 028) from the Amsterdam-Maastricht-Utrecht Study on thromboEmbolism

(AMUSE-1) [44] and aggregated these data with the prediction models described below. A de-

tailed description of the predictors can be found in the online Appendix [66]. After aggregation,

we validated the original and aggregated models in an independent dataset of 791 participants

(Table A.1 in the Appendix) [261].

Unfortunately, we encountered some difficulties during incorporation of the previously published

prediction models. For instance, some articles did not report the original regression coefficients

and standard errors of the prediction model and reported a scoring rule with weights instead, with

score = weight1x1 + . . . + weightKxK (eg. Wells rule, modified Wells rule and Hamilton rule).

We attempted to reconstruct the original regression coefficients and standard errors by deriving a

prediction model in the IPD with the scoring rule as single variable, according to:

Pr(DVT presence) = logit−1(βadj0 + βadj1score) (6.12)

The resulting slope β̂adj1 is then multiplied with the reported weights to obtain an estimate for the
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Table 6.7: Performance of aggregated prediction models, expressed by means of the Area under
the Receiver Operator Characteristic curve (AUC) and the Brier Score (BS).

EBIC

NIPD = 500 (NVAL = 322) NIPD = 200 (NVAL = 622)
AUC (SE) BS (SE) AUC (SE) BS (SE)

SLR 0.810 (0.019) 0.179 (0.010) 0.801 (0.013) 0.185 (0.007)
FULL 0.814 (0.019) 0.176 (0.009) 0.814 (0.010) 0.176 (0.004)
UMA 0.815 (0.019) 0.176 (0.009) 0.814 (0.010) 0.176 (0.004)
MMA 0.815 (0.019) 0.176 (0.009) 0.814 (0.010) 0.177 (0.005)
BI 0.814 (0.019) 0.176 (0.009) 0.814 (0.010) 0.177 (0.005)

PHARMOS

NIPD = 500 (NVAL = 356) NIPD = 200 (NVAL = 656)
AUC (SE) BS (SE) AUC (SE) BS (SE)

SLR 0.642 (0.024) 0.237 (0.007) 0.627 (0.017) 0.243 (0.007)
FULL 0.653 (0.022) 0.242 (0.008) 0.656 (0.009) 0.242 (0.004)
UMA 0.654 (0.023) 0.236 (0.008) 0.657 (0.009) 0.236 (0.004)
MMA 0.654 (0.024) 0.236 (0.008) 0.657 (0.009) 0.236 (0.004)
BI 0.654 (0.024) 0.236 (0.008) 0.657 (0.009) 0.236 (0.004)

For multivariate meta-analysis and Bayesian Inference, we used uninformative regression coeffi-
cients when missing. Missing within-study correlations were assumed to equal 0.

original regression coefficients, and β̂adj0 is used as estimate for the model intercept. Conservative

estimates for the corresponding standard errors can be obtained by assuming

σadj1 =

 M∑
j=1

σ−2j

−1/2 (6.13)

This assumption implies that the standard errors σj are equal for all regression coefficients of the

model under consideration. The standard error for the model intercept can directly obtained from

σ̂adj0. Alternatively, reported p-values of regression coefficients can be converted into standard

errors by assuming normality [12]. An advantage of this approach is that the AUC of recon-

structed models remains equal to the performance of the original models, as the linear predictors

are proportionally identical.

We illustrate this approach using the Wells rule. This rule consists of nine clinical items where

WellsScore = 1 malign + 1 par + 1 surg + 1 tend + 1 leg + 1 calfdif3 + 1 pit + 1 vein −
2 altdiagn. We attempted to reconstruct the original regression coefficients and standard errors
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by deriving a prediction model in the IPD with the Wells score as single variable. This approach

yielded the following model: Pr(DVT presence) = logit−1(−2.66+0.52 WellsScore). Consequently,

we may reconstruct the original regression coefficients as follows: β̂0 = 2.66, β̂malign = 0.52,

β̂par = 0.52, β̂surg = 0.52, β̂tend = 0.52, β̂leg = 0.52, β̂calfdif3 = 0.52, β̂pit = 0.52, β̂vein =

0.52 and β̂altdiagn = −1.04. We found σ̂adj0 = 0.15 and σ̂adj1 = 0.05, such that σ̂0 = 0.15 and

σ̂malign, . . . , σ̂altdiagn = 0.16.

We applied the previously published models in the validation data, and observed an AUC < 0.634,

and a Brier score > 0.133 for most models, with exception of the Oudega model (AUC = 0.767

and Brier score = 0.125).

Evidence Aggregation

Consequently, we aggregated the previously published prediction models with the IPD. The ap-

proaches considered are: standard logistic regression (ignoring the evidence from the literature),

univariate meta-analysis, multivariate meta-analysis and Bayesian Inference. Because a relatively

large number of predictors were considered, including all of them would preclude multivariate

meta-analysis that would lead to clinically viable prediction models (15 predictors + intercept).

Hence we focused on a subset of 4 important predictors: malign, surg, calfdif3 and ddimdich. A

summary of the evidence from each of the literature sources and from the IPD is presented in Table

6.8. These were then pooled. In order to appraise the quality of the derived model (which only

included 4 core predictors), we also fitted a more complex prediction model where we considered

the 8 predictors from the Oudega model. The AUC of the resulting model however decreased

from 0.72 to 0.70, indicating that the simplified model is more generalizable and presents a better

reference for comparing the aggregated prediction models. Finally, we compared the simplified

aggregated models to a more extensive model derived with univariate meta-analysis using the 8

predictors from the Oudega model. This model yielded the following regression coefficients (and

standard error): β̂0 = −4.70 (0.10), β̂calfdif3 = 0.63 (0.08), β̂ddimdich = 2.45 (0.28) β̂malign = 0.79

(0.20), β̂notraum = 0.58 (0.15), β̂oachst = 1.01 (0.15), β̂sex = 0.54 (0.11), β̂surg = 0.46 (0.08) and

β̂vein = 0.48 (0.09).

Results in the DVT case study

Results in Table 6.9 indicate that the aggregated prediction models, despite including few(er) pre-

dictors, are superior to models that do not incorporate evidence from the literature. However,

we also noticed that the Oudega model outperforms the aggregated models in terms of AUC (but

achieves a similar Brier score). This discrepancy decreases when an extended model with 8 predic-
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tors using univariate meta-analysis is derived (AUC = 0.759 and Brier Score = 0.124). These results

possibly indicate that the Oudega model considerably contributes to the discriminative ability of

the aggregated models. Particularly, it is the only literature model with a regression coefficient

for ddimdich, a relatively strong predictor in DVT. We noticed that β̂ddimdich was considerably

smaller in the IPD and aggregated models, and much larger in the Oudega model and validation

data (β̂ddimdich = 3.95, adjusted for the 4 core predictors), which may partially explain the decrease

in discriminative ability. Furthermore, results indicate that different implementations for multivari-

ate meta-analysis perform similarly. Estimated regression coefficients and standard errors, on the

other hand, may considerably differ according to the implemented approach. For instance, we no-

ticed that uninformative imputation yielded relatively large standard errors for β̂ddimdich. Possibly,

these errors are inflated in multivariate meta-analysis because some of the estimated between-study

correlations take extreme values: ρ(β̂ddimdich, β̂0) = −0.79 and ρ(β̂ddimdich, β̂malign) = −0.97 [198].

Finally, we noticed that standard errors of aggregated regression coefficients tend to be smallest

when estimated with Bayesian Inference.

DISCUSSION

In line with previous research, we found that the aggregation and incorporation of previously

published prediction models can indeed improve the performance of a novel prediction model [133,

167, 243, 271]. The case-studies demonstrate that the proposed methods are particularly useful

when few participant data are at hand. Although the aggregation methods perform similarly in

most scenarios, multivariate meta-analysis and Bayesian Inference tend to yield smaller confidence

intervals for the regression coefficients. According to previous research, this may be related to

the fact that these approaches take more evidence into account [129], and allow more flexibility.

The inclusion of additional evidence (i.e. within-study covariance) may, however, also introduce

additional uncertainty and cause estimation difficulties, resulting in an inflation of standard errors

[127, 198]. Finally, results indicate that the proposed aggregation approaches may considerably

reduce model complexity without comprising their predictive accuracy. Particularly, by focusing

on a set of core predictors, the model can be pruned effectively.

In this article we evaluated and compared three evidence aggregation approaches in two case

studies using real clinical data. The two case-studies demonstrate that aggregation yields prediction

models with an improved discrimination and calibration in a vast majority of scenarios, and result

in equivalent performance (compared to the standard approach) in a small minority of situations.

The exact preconditions for this occurrence could not be definitively established here. Possibly

data aggregation is little added value in scenarios where derivation and validation populations are
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highly similar and the AD from the literature is relatively different. The exact causes need to be

further explored.

Finally, we have illustrated how the generally unrealistic assumption of consistency in the availabil-

ity of evidence across included studies can be relaxed for real-life scenarios. Specifically, we have

demonstrated how these methods can be applied when predictor values, covariance data and even

original regression coefficients are unknown. The fact that aggregation of such evidence succeeds

in improving the performance of novel prediction models underscores the value and versatility of

this methodology, as illustrated in the DVT example.

Based on these results from our empirical studies, the following tentative guidelines can be pro-

posed. First, when there are relatively many IPD at hand and evidence from the literature is

strongly heterogeneous with these data, the standard approach by fitting a new model (from

scratch) from that data set without incorporating or synthesizing the published evidence is accept-

able. Secondly, when the evidence from the literature is moderately heterogeneous, or the IPD is

relatively small, Bayesian Inference (and multivariate meta-analysis) may improve calibration and

discrimination of the newly developed prediction model. Even when the actual degree of hetero-

geneity is unknown, these approaches may still be preferred to the standard approach of fitting an

entirely new model from scratch, and is relatively easy to implement. Finally, when the evidence

from the literature is (relatively) homogeneous, univariate meta-analysis represents a superior ap-

proach for improving or updating the newly developed prediction model. Heterogeneity may be

quantified using the I2-statistic, where published criteria suggest adjectives of low, moderate, and

high to I2 values of 25%, 50%, and 75% [113].

Limitations Although we addressed important aspects of aggregating data in the two case-

studies, we did not assess or address the potential impact of selection bias. Conceivably, pooled

regression coefficients may be over- or underestimated when important predictors are excluded.

This problem may arise when literature models are derived using data-driven selection with stepwise

methods, and particularly in small samples [241]. Furthermore, the selection of a core set of

predictors may introduce additional bias when the excluded regression coefficients are strongly

influential or correlated with the included predictors. This is known as confounding of pooled

effects, and usually results in underestimation of pooled regression coefficients (as predictors are

typically positive in clinical prediction research). It is therefore important to select a reasonable

set of core predictors when pooling differently specified prediction.

Another potential limitation of this article is the fact that only two clinical examples were examined.

Conceivably these may not be representative of the majority of clinical prediction research and our

evaluation of the evidence aggregation methods are not reproducible in different scenarios. We

142



Chapter 6

feel that this is unlikely since the examples used, TBI and DVT, are two typical areas of clinical

prediction research for which we included numerous articles (15 and 5, respectively). We welcome

the evaluation of these approaches in other case-studies by other authors.

Finally, our DVT application illustrates that aggregated prediction models generally improve the

predictive accuracy of novel prediction models, but do not always outperform previously published

prediction models in terms of discriminative ability. We demonstrated that this situation may

occur when a strong predictor is poorly available from the literature, and not well estimated in

the IPD. Moreover, it is well known that the AUC is not the most sensitive measure to assess

incremental value of predictors [57, 185]. For this reason, we also considered model accuracy in

terms of the Brier Score.

Conclusion The incorporation of previously published prediction models into the development

of a novel prediction model with a similar set of predictors is both feasible and beneficial when

IPD are available. Particularly in small datasets we noticed that the inclusion of such aggregate

evidence may provide considerable leverage to improve the regression coefficients and discriminative

ability of the new prediction model. However, it remains paramount that researchers identify to

what extent the previously published prediction models are comparable with those in the available

IPD, as the justification of the considered approaches depends on the clinical relevance of the

aggregated model. Future research may therefore focus on the quantification of heterogeneity

across prediction models. In conclusion, aggregation is better or at least equivalent. Real life

clinical examples support these conclusions.
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Abstract

Published clinical prediction models are often ignored during the development of novel

prediction models despite similarities in populations and intended usage. The plethora

of prediction models that arise from this practice may still perform poorly when applied

in other populations. Incorporating prior evidence might improve the development of

prediction models, and make them potentially better generalizable. Unfortunately,

aggregation of prediction models is not straightforward and methods to combine dif-

ferently specified models are currently lacking. We propose two approaches, Model

Averaging and Stacked Regressions, for aggregating previously published prediction

models when a validation dataset is available. These approaches yield user-friendly

stand-alone models that are adjusted for the new validation data. Both approaches

rely on weighting to account for model performance and between-study heterogeneity,

but adopt a different rationale (averaging versus combination) to combine the models.

We illustrate their implementation in two clinical datasets and compare them with

established methods for prediction modeling in a simulation study. Results from the

clinical datasets and simulation studies demonstrate that aggregation yields prediction

models with an improved discrimination and calibration in a vast majority of scenar-

ios, and results in equivalent performance (compared to developing a novel model from

scratch) when validation samples are relatively large. In conclusion, model aggregation

is a promising extension of model updating when several models are available from the

literature, and a validation dataset is at hand. The aggregation methods do not require

existing models to have similar predictors and can be applied when relatively few data

are at hand.



Chapter 7

“If I have seen further it is by standing on the shoulders of Giants.”

– Isaac Newton, The Correspondence Of Isaac Newton

T
he past decades has seen a great emphasis on explicitly modelling diagnoses and prognoses

in medicine, with gravid appreciation for prediction models [11, 159, 170, 171, 237]. In the

cardiovascular domain, well known prediction models are the Framingham [289], SCORE

[56], ASSIGN [292], EuroSCORE [176], PROCAM [19] and Wells’ scores [281, 283]. Unfortunately,

many prediction models perform more poorly than anticipated when taken from the research

settings in which they were developed and applied in routine care [74]. This deficiency may

occur when prediction models were developed from relatively small datasets or used inappropriate

modelling strategies, leading to poorly estimated predictor effects and over-optimism [241, 242].

However, model performance does not necessarily improve when prediction models are developed

from larger studies such as Individual Participant Data (IPD) meta-analyses [68]. This is because

baseline risks and predictor effects may vary across different patient populations, i.e. between-study

heterogeneity occurs. Several authors have therefore recommended that model development should

be proceeded by external validation studies assessing the performance of developed prediction

models in a new sample before they are implemented in guidelines or applied in practice [30, 169,

237, 259].

When an external validation study shows disappointing results, researchers often reject the original

prediction model and develop a new one from their own data [132, 171, 239]. This practice is

an unfortunate habit as it makes prediction research particularistic and prior knowledge is not

optimally used. Moreover, validation studies are often smaller than development studies, such

that the accuracy of the new model (from the validation sample) in future patients can actually

be worse than applying the original model. Finally, redevelopment results in the publication of

multiple models predicting the same outcomes for the same (or similar) patients or individuals.

These models often incorporate different predictors, adding to the incompatibility and confusion.

The user must then choose between a cacophony of existing models for which performance may

be obscure, which is far from straightforward. For example, there are over 60 published models

aiming to predict outcome after breast cancer [11], over 25 for predicting long-term outcome in

neurotrauma patients [186], over 14 for identifying patients at risk of prolonged stay at the Intensive

Care Unit [75] and over 12 for predicting the risk of cardiovascular disease in patients with type 2

diabetes [269].

An alternative solution to redevelopment is to update existing prediction models with the external

validation sample at hand [16, 132, 169, 239, 270]. The updated model is then based on both the

development and validation data, further improving its performance in the new population. The
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proliferation of published prediction models shows a tendency to adopt this strategy, as it typically

requires less data than model redevelopment. Updating methods are, however, not a panacea

against poorly-conceived and underpowered prediction research [239, 276]. In addition, the limited

scope of updating methods does not accomodate the use of evidence from other potentially useful

models. For this reason, some form of evidence synthesis during model updating may substantially

improve its performance in local or contemporary circumstances, and further contribute to its

generalizability.

Meta-analysis has recently emerged as a crux to unravel the incompatibility and confusion of

results arising from heterogeneous studies [70, 106, 109, 252]. This practice is now commonly

applied in therapeutic research where effect estimates for a particular intervention from different

trials are combined and synthesised. We therefore anticipate that a meta-analysis of previously

published prediction models would help breaking the cycle of under-powered model development,

poor generalizability and redevelopment [65, 66].

Here we present two approaches that extend the classical paradigm of model validation and up-

dating by applying model aggregation. These approaches combine the literature models into a

so-called ‘meta-model’ that weights the predictor-outcome associations from the original models

according to their performance in the validation sample and is adjusted for the local circumstances.

The first approach, Model Averaging, generates a meta-model that focalizes on the best perform-

ing literature model. Conversely, the second approach is called Stacked Regressions and yields

an optimal linear combination of the literature models. Both approaches may discard literature

models when they are not deemed relevant for the validation population. Although we target a

binary prediction task, the proposed approaches could easily be extended to other outcome types.

Through a series of case studies we demonstrate that these approaches can be used to combine mul-

tiple models that exist for the same outcome or target population, and improve the identification

of new predictors.

EMPIRICAL EXAMPLE

In order to illustrate the methods below we describe a genuine clinical example involving the pre-

diction of Deep Vein Thrombosis (DVT). DVT is a blood clot that forms in a vein in the body

(usually in the lower leg or thigh). A (part of such) clot can break off and be carried through the

bloodstream to the lungs and there cause a blockage (pulmonary embolism), preventing oxygena-

tion of the blood and potentially causing death. Clinical DVT diagnosis is not straightforward.

For this reason, multivariable diagnostic prediction models have been developed during the past

decades [182, 261, 281]. These models predict the probability of presence of DVT in suspected pa-
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tients using various patient characteristics obtained from history taking and physical examination

to safely exclude DVT without having to perform further testing. Physicians may doubt whether

or when to use such a diagnostic prediction model as most of these models have not previously

been validated and their performance may change when applied to the heterogeneous reality of

routine care. Consequently, a validation study may indicate which models are indeed useful and

allow recalibration if necessary.

We previously identified 5 published prediction models for diagnosing DVT (Table 7.1) [66], and

collected a validation sample of 1 028 subjects. Three of these models represent score charts (Wells,

Modified Wells, Hamilton), whereas the remaining two models represent logistic regression models

(Gagne, Oudega). For the logistic regression models, the predicted probability of DVT presence

can be calculated as logit−1(LP) = 1/(1 + exp(−LP)), where LP represents the linear predictor.

For instance, the linear predictor of the Oudega model is given as:

LPOudega =− 5.47 + 0.42xmalign + 0.38xsurg + 1.13xcalfdif3 + 0.48xvein

+ 0.75xoachst + 0.59xsex + 0.60xnotraum + 3.01xddimdich

such that a female subject (xsex = 0) with an active malignancy (xmalign = 1), no recent surgery

(xsurg = 0), a calf difference ≥ 3cm (xcalfdif3 = 1), no vein distension (xvein = 0), not using

oral contraceptives or hst (xoachst = 0), no leg trauma (xnotraum = 1) and positive D-dimer test

(xddimdich = 1) has a linear predictor of -0.31 and a corresponding DVT probability of 42%. Note

that the score charts can also be interpreted as a regression model as they typically assume linearity

of predictor effects.

Below, we briefly discuss how the literature models would typically be identified, validated and

updated. Afterwards, we describe how the updated literature models can be combined into a new

summary model that captures all the available evidence.

CLASSICAL PARADIGM: MODEL VALIDATION AND UP-
DATING

The generalizability of prediction models is typically evaluated in so-called external validation

studies where individuals are ‘different but related’ to the development sample [169]. Because

many models predict the same outcome for a similar patient population, it is increasingly common

to identify such models by means of a systematic review and validate them all togheter [1, 11,
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55, 75, 159, 186, 224]. The systematic review required typically begins with a literature search

of electronic databases such as Medline and Embase [85, 105, 123, 291]. A critical appraisal

can help to identify those literature models that may indeed be useful for the intended outcome

or patient population, and to exclude the models that are deemed irrelevant or of poor quality.

Although there are no explicit guidelines for such prognostically-orientated appraisal at this stage,

several comprehensive item lists have been proposed that are based on existing methodological

recommendations for conducting and reporting prediction research [34, 55, 104, 186].

Once all relevant prediction models have been identified, their performance is evaluated in the

validation sample. This is achieved by applying the model to the available subjects, and comparing

the predicted risks to the observed outcomes. The performance of the evaluated models can be

quantified in terms of calibration and discrimination. Calibration reflects the extent to which

the predicted probabilities agree with observed event rates, whereas discrimination is the ability

to distinguish high-risk patients from low-risk patients. The Area under the Receiver Operating

Characteristic curve (AUC) is a common summary measure of discrimination and is strongly

related to the Brier Score (BS), an overall performance measure [77, 99, 116, 160, 237, 249]. Other

measures are also available (e.g. calibration-in-the-large, calibration slope, R2 and Goodness-of-

fit), and may be equally useful [116, 221, 239]. In the empirical example, we found the following

AUC for the original models when applied in the validation sample: 0.67 (Hamilton), 0.76 (Wells),

0.77 (Modified Wells), 0.81 (Gagne) and 0.82 (Oudega).

Finally, the model(s) showing the most appealing characteristics in the validation sample can be

selected for updating. Here, the previously published prediction models are recalibrated by re-

estimating some of their parameters in the validation sample [132, 169, 237, 239, 274]. The most

straightforward strategy of model updating is to adjust its intercept such that the mean predicted

probability is equal to the observed event rate (intercept update). Additional updating methods

vary from overall adjustment of the model intercept and the overall calibration slope (logistic

calibration), adjustment of a particular regression coefficient, to the re-estimation of included or

the addition of completely new predictors to the exsiting model (model revision). It is, however,

important to realize that extensive updating strategies use more information from the validation

sample at hand and may therefore lead to overfitting. In addition, extensive updating strategies

adust the model to the validation sample and therefore reduce its evaluated external validity

to internal validity. For this reason, updating strategies should be carefully conducted when

the validation sample is relatively small. In the empirical example, we updated all available

models using logistic calibration (Gagne and Oudega) or model revision (Wells, Modified Wells

and Hamilton). The updated models are presented in Table 7.1 and their resulting calibration in

the validation sample is depicted in Figure 7.1 and 7.2. Here, the Wells models achieved the best

performance, and the AUC increased from 0.76 to 0.82 (Wells) and from 0.77 to 0.83 (Modified
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Figure 7.1: Calibration plots of the updated prediction models in the empirical example.
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Calibration curves of the aggregated models in the validation sample and corresponding 95%
confidence intervals (shaded area). The Area under the ROC curve (AUC) and the Brier score
(BS) are presented with their standard error. The triangles indicate groups of observations with
similar predicted probabilities and their corresponding outcome proportion.

Wells) in the validation sample. However, because this performance was only attained by extensive

updating strategies (i.e. re-estimation of individual regression coefficients), the updated Wells

models are likely overfitted to the validation sample. The Oudega and Gagne model involved less

adjustments and also achieved good performance.
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Figure 7.2: Calibration plots of the updated prediction models in the empirical example.
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Calibration curves of the aggregated models in the validation sample and corresponding 95%
confidence intervals (shaded area). The Area under the ROC curve (AUC) and the Brier score
(BS) are presented with their standard error. The triangles indicate groups of observations with
similar predicted probabilities and their corresponding outcome proportion.

Although updating strategies may effectively adjust literature models to local circumstances, their

extensiveness is usually impeded by a lack of validation data. Furhermore, because the limited

scope of updating methods does not accomodate the accumulation of other potentially useful

models, updating methods may not always improve model performance. In the next section, we

therefore describe how meta analaytical approaches or model aggregation can be augmented to

external validation studies.

MODEL AGGREGATION

We here describe two aggregation approaches and consider the situation in which a literature search

and a critical appraisal have been performed. These approaches extend the classical paradigm by

aggregating all literature models into a meta-model that is optimized for the validation data at

hand. The meta-model is then based upon a broader base of prior evidence and is likely to provide

more insight into which predictive variables are truly informative.

Here, we consider that the validation sample is described by K independent predictors, a dichoto-

mous outcome, and contains N subjects. For instance, in the empirical example we have N = 1 028
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and K = 13. Let X denote the N ×K matrix of all the independent variables theorized to be pre-

dictors of outcome y based on the set of literature models. We assume that the validation sample

captures all predictors included in the previously published prediction models, or at least represents

good proxy variables [1, 75]. We denote the set of literature models as M = [M1,M2, . . . ,MM ],

where M corresponds to the total amount of literature models that are being aggregated. Here,

each prediction model Mj considers the set of predictors Cj and is parameterized by vector θ̂j . For

the empirical example, these parameters are presented in Table 7.1. Although technically any type

of prediction model (such as regresson models, decision trees, neural networks, etc.) may form the

basis of model aggregation, we here consider the case that all literature models were developed

using logistic regression, such that:

M =



M1

M2

...

MM


=



logit−1(LP1)

logit−1(LP2)
...

logit−1(LPM )


=



logit−1(θ̂0 + θ̂1x1 + . . .+ θ̂KxK)1

logit−1(θ̂0 + θ̂1x1 + . . .+ θ̂KxK)2
...

logit−1(θ̂0 + θ̂1x1 + . . .+ θ̂KxK)M


(7.1)

where xk ⊂ X represents a vector with the observations of predictor k for all subjects and where

it is possible that (θ̂k)m = 0 if model m does not include predictor k. Note that LPm represents

the linear predictor of model m.

Model Averaging

A straigthforward approach to aggregate models with a varying apparent performance is to create

a weighted average. Because the resulting meta-model takes all available evidence into account, it

tends to outperform each of the original models (given an appropriate choice of averaging weights).

A well-known implementation of model averaging is Bayesian Model Averaging (BMA), where

multiple models are developed from the same data and subsequently combined into a meta-model

[119, 164]. Here, we adapt BMA to allow the aggregation of models that were developed from

different samples and may be heterogeneous with the validation sample. The resulting strategy

consists of three individual steps, described below.

In the first step, the literature models are updated in the validation sample to increase their

mutual comparability. Hereto, strategies such as intercept update, model calibration or even model

revision may be considered and selected by hand or closed-testing procedures [274]. Afterwards

the updated models are applied in the validation sample to calculate a predicted outcome event

p̂im = logit−1(LPim) for each subject (leading to M×N predicted probabilities). A model averaged
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prediction for subject i (where i = 1, . . . , N) can then be written as:

pi =

M∑
m=1

wmp̂im (7.2)

where wm represents the weight associated to model Mm (and all weights sum up to 1).

In the second step, appropriate model weights are estimated. A simple weight scheme may assign

equal weight wm = 1/M to each model. As a result, pi then represents the geometric mean of

the predictions for subject i. An alternative approach to weight the predictions from the updated

literature models is to rely on the concepts of BMA, where the predictions from each model are

weighted by the posterior model probability [119]:

wm =
exp(−0.5 BICm)∑M
l=1 exp(−0.5 BICl)

(7.3)

where BICm = −2 `m + umln(N) and um represents the number of estimated parameters for

updating literature model m. Typical values for u are 1 (intercept update), 2 (logistic calibration)

or K + 1 (model revision). Finally, `m represents the log-likelihood of model m in the validation

sample and is given as `m =
∑N
i=1 (yi ln (p̂ im) + (1− yi) ln (1− p̂ im)). Note that `m takes lower

values for decreasing model fit in the validation sample. Consequently, the likelihood of each

updated literature model is penalized according to how much information from the validation

sample was used to improve its external performance. In summary, the BIC ensures that models

with good performance in the validation sample and not extensively updated will have a larger

contribution in the summarized predictions. Conversely, models that perform poorly (such that

−2 `m increases) or were extensively updated (such that umln(N) increases) receive lower weights

(as BICm increases and wm therefore decreases). Note that small differences in BIC usually lead

to large differences in posterior model probabilities (i.e. resulting model weights) because the

exponential transformation needs to be applied. This implies that some models may end up with

weights very close to zero or one, particularly when few literature models are under consideration.

As a consequence, Model Averaging may lead to model selection.

In the empirical example, the log-likelihood of the updated models in the validation sample is given

as -360 (Hamilton), -318 (Gagne), -312 (Oudega), -307 (Wells) and -304 (Modified Wells). Although

the Wells (u = 10) and Modified Wells (u = 11) models achieve the best fit in the validation

sample, the Oudega and Gagne models involved less extensive updating strategies (u = 2). As a

consequence, the BIC of of these models was much lower and resulted in non-zero weights (0.998

and 0.002 for the Oudega and Gagne model respectively).
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Finally, in the third step the models’s averaged predictions pi are used to develop the meta-model.

This is achieved by performing a linear regression analysis where the original predictor variables are

used as independent variables, and the averaged predictions are used as dependent variable. Here,

we apply the logistic transformation to ensure linearity of the dependent variable, the transformed

outcome is then given as zi = logit (pi). Furthermore, we only include the predictor variables from

the literature models for which w ≥ 0.0001, such that the total amount of predictors reduces to

KAVG. The linear regression analysis is then given as:

zi = β0 +

KAVG∑
k=1

βkxik + εi

εi ∼ N(0, σ2)

(7.4)

The unknown parameters β0 (model intercept), βk (predictor effects) and σ2 (error variance) can

be estimated with maximum likelihood estimation. By allocating low weights to estimates from

poorly fitting or extensively updated models we effectively push the weighted average towards the

validation sample, maximizing its relevance for the corresponding population. The meta-model

then represents a logistic regression model with intercept β0 and predictor effects βk.

Figure 7.3: Calibration plots of the aggregated prediction models in the empirical example.
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In the empirical example, we developed a meta-model using the predictors from the Oudega and

Gagne models (since wOudega = 0.998 and wGagne = 0.002) and the averaged linear predictor as

outcome. Since w = 0 for the Wells, Modified Wells and Hamilton model, the corresponding

updated literature models are not included in the meta-model. The regression coefficients of the

resulting meta-model are depicted in Table 7.1 and indicate that the meta-model is almost identical

to the updated Oudega model. The calibration of the meta-model is depicted in Figure 7.3, where

the AUC and Brier Score have slightly improved. Consequently, in this example Model Averaging

has led to a selection of literature models, and yielded an aggregated model that captures the

updated Oudega model and also includes two new predictors altdiagn and histdvt from the Gagne

model.

Stacked Regressions

There are several concerns with the Model Averaging approach. Firstly, Model Averaging requires

the user to update each literature model to ensure that it is adjusted to the validation population.

It may be clear that such strategy uses relatively much information from the validation sample

and may lead to overfitting. In addition, there is no formal procedure to choose an appropriate

updating strategy. Secondly, the implementation of Model Averaging tends to produce extreme

weights being assigned to models, leading to a degree of skewing towards stronger models. This is

because Model Averaging operates under the assumption that only one of the literature models is

correct and places too much weight on their maximum likelihood [163]. As a consequence, Model

Averaging generally reduces to a selection procedure that accounts for model uncertainty [161, 163].

For this reason, we here propose a second approach that emphasizes model combination rather than

informative model selection. This approach is based on Stacked Regressions [37] and relates to

ensemble learning where the predictions of multiple models are combined into a weighted summary

[37, 290]. However, instead of individually identifying and subsequently averaging the best updated

literature models, Stacked Regressions simultaneously updates, discovers and estimates the best

combination of literature models in the validation sample. This implies that the aforementioned

steps of Model Averaging no longer need to be applied, and that the meta-model is developed from

the original literature models forthwith.

In essence, Stacked Regressions treats the predictions of each literature model as a predictor
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variable of the meta-model and subsequently creates a linear combination of model predictions:

yi ∼ Bernoulli(πi)

logit(πi) = α0 +

M∑
m=1

αmLPim
(7.5)

under the constraint αm ≥ 0 to ensure that models with a negative contribution on the com-

bined prediction will effectively be discarded from the meta-model. The unkown parameters

α0, α1, . . . , αM can be estimated by minimizing an error function using bound constrained opti-

mization [47]. For instance, the original implementation of Stacked Regressions adopted a squared

error loss function related to the Brier Score [37]:

N∑
i=1

(
yi − α0 −

M∑
m=1

αmp̂im

)2

(7.6)

Thus, the predictions of model m for subject i, i.e. p̂im = logit−1(LPim), are combined in the

validation sample by means of a weighted sum that minimizes their decrepancy with the actually

observed outcomes yi. Hereto, the predictions of each model are weighted by an independent

parameter αm that emphasizes good prediction in overall, and penalizes models with poor per-

formance or extreme predictions (similar to logistic calibration). The weight parameter α0 is

unrestricted and ensures that the baseline risk of the synthesis model is optimal for the valida-

tion sample (similar to intercept updating). We further adapted this minimization function to

implement the Maximum Likelihood Estimator:

−

[
N∑
i=1

yi ln

(
1 + exp

(
−α0 −

M∑
m=1

αmLPim

))
− (1− yi)

ln

(
1 + exp

(
α0 +

M∑
m=1

αmLPim

))] (7.7)

again under the constraint αm ≥ 0.

In the empirical example, we used the original literature models and calculated their linear predictor

in the validation sample (Table 7.1). For score charts such as the Wells model, we used the

reported weights as coefficients in LPWells. We subsequently performed Stacked Regressions and
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obtained the following weight parameters: 0.50 (Gagne), 0.54 (Oudega) and 0 (Wells, Modified

Wells, Hamilton). The residual weight parameter α̂0 was 1.01. Consequently, by applying Stacked

Regressions we effectively discarded 3 literature models that did not contribute to the performance

of the synthesis model.

Finally, the regression coefficients of the aggregated model (with intercept term β0 and regression

coefficients β1, . . . , βK) can be calculated as a weighted sum of the regression coefficients of the

original models: β0 = α̂0 +
∑M
m=1 α̂m(θ̂0)m and βk =

∑M
m=1 α̂m(θ̂k)m where 1 ≤ k ≤ K. Note

that some predictor variables may not be included in the linear predictor as a result of discarding

models with αm equal to zero. Consequently, variable reduction may occur when literature models

include peculiar predictors and lead to poor predictions in the IPD. The meta-model is no longer

dependent on the predictions from the individual literature models.

In the empirical example, the estimated regression coeffients from the meta-model are depicted

in Table 7.1. Although Stacked Regressions identified the same predictors as Model Averaging,

different parameter estimates were obtained by both approaches. For instance, the predictor effect

of ddimdich decreased from 2.39 to 1.62, whereas the predictor effect of malign increased from 0.34

to 1.22. Results in Figure 7.3 further indicate that Stacked Regressions achieved the best AUC and

BS. Additional validation studies are needed to evaluate whether aggregation has indeed improved

external validity.

Concluding remarks

The Model Averaging and Stacked Regressions approaches synthesize previously published predic-

tion models into a summary model that is adjusted by or to the validation data at hand. Model

Averaging first updates each literature model by estimating
∑M
m=1 um unknown parameters from

the validation sample. Afterwards, M additional parameters are estimated to obtain appropri-

ate model weights. Finally, synthesis is achieved using a linear weighting scheme with 1 + KAVG

unknown parameters that are again estimated from the validation sample. Stacked Regressions

directly combines all original literature models into a meta-model by estimating M+1 (Stacked Re-

gressions) unknown parameters from the validation sample. It is therefore the most parsimonious

approach in terms of required degrees of freedom.
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APPLICATIONS

In order to illustrate the approaches, we describe two applications with previously collected datasets

used for diagnosis of Deep Venous Thrombosis (DVT) and prognosis of Traumatic Brain Injury

(TBI). In each application, we considered Model Averaging using weights based on the BIC and

Stacked Regressions (using the Maximum Likelihood Estimator) to combine the previously pub-

lished prediction models with the validation sample. We also evaluated model calibration (i.e.

intercept and overall slope) of the literature model with the highest AUC. Finally we performed

stepwise logistic regression using backward selection (based on AIC) and penalised maximum like-

lihood estimation [101, 168] as alternative approaches ignoring the models from the literature and

developing a novel prediction model from the validation data. To evaluate the generalizability of

the newly developed, updated and aggregated models, we employed a split-sample procedure to

ensure external validation was applied in new subjects. Here, we measured the AUC and Brier

Score as indication of model performance.

Deep Venous Thrombosis

As a first example, we performed a simulation study with previously collected clinical data for

diagnosing DVT (Table A.1 in the Appendix). This simulation study is based on the data from 7

previously conducted studies (N = 7 116) and 14 candidate predictors (K = 14), with a median

event rate of 22% (range 13% to 39%). The data of each study were used to develop a prediction

model according to stepwise logistic regression with backward selection (based on AIC). These

models serve as source for selecting the literature models in the forthcoming analyses.

The simulation study consists of 7 analyses, i.e. one for each available study, and is based on the

following procedure. For each study sample, we used a split-sample procedure for generating two

validation datasets. This procedure samples NVAL1 subjects without replacement from the study

sample for applying the described methods (redevelopment using backward selection, redevelop-

ment using PMLE, model updating of intercept and common slope, Model Averaging, Stacked

Regressions), and the remaining NVAL2 subjects for externally validating the resulting models.

In this manner, we can develop and validate the aggregated prediction models in different but

related subjects. Afterwards, we evaluated the performance of the developed prediction models by

measuring their AUC and BS in the second validation sample. We repeated this process 30 times

for each analysis, using two different sample sizes: NVAL1 = 200 and NVAL1 = 500. By evaluat-

ing different sample sizes for the former validation sample, it is possible to ascertain the effect of

variable selection and overfitting, and thus expose the need for incorporating external evidence.
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Table 7.2: Results from Application 1 based on 30 random split-sample validation samples (AUC
and standard error).

Study 1 Study 2 Study 3
N 500 (528) 200 (828) 500 (314) 200 (614) 500 (1256) 200 (1556)

BWS 0.84 (0.02) 0.80 (0.04) 0.79 (0.02) 0.76 (0.02) 0.89 (0.01) 0.87 (0.02)
PMLE 0.85 (0.02) 0.82 (0.02) 0.79 (0.02) 0.77 (0.01) 0.89 (0.01) 0.88 (0.01)
MU† 0.83 (0.02) 0.83 (0.01) 0.78 (0.02) 0.78 (0.01) 0.89 (0.01) 0.89 (0.00)
MA† 0.84 (0.02) 0.84 (0.01) 0.79 (0.02) 0.79 (0.01) 0.89 (0.01) 0.89 (0.01)
SR 0.84 (0.01) 0.84 (0.01) 0.79 (0.02) 0.79 (0.01) 0.90 (0.01) 0.89 (0.01)

Study 4 Study 5 Study 6
N 500 (291) 200 (591) 500 (575) 200 (875) 200 (157)

BWS 0.74 (0.03) 0.72 (0.02) 0.86 (0.01) 0.85 (0.02) 0.75 (0.03)
PMLE 0.75 (0.03) 0.73 (0.03) 0.87 (0.01) 0.85 (0.02) 0.77 (0.03)
MU† 0.74 (0.02) 0.74 (0.02) 0.88 (0.01) 0.88 (0.01) 0.78 (0.02)
MA† 0.75 (0.02) 0.75 (0.01) 0.88 (0.01) 0.88 (0.01) 0.79 (0.02)
SR 0.75 (0.02) 0.75 (0.01) 0.88 (0.01) 0.88 (0.01) 0.79 (0.02)

Study 7
N 500 (795) 200 (1095)

BWS 0.77 (0.01) 0.75 (0.01)
PMLE 0.78 (0.01) 0.77 (0.01)
MU† 0.77 (0.02) 0.77 (0.01)
MA† 0.77 (0.01) 0.77 (0.01)
SR 0.77 (0.01) 0.77 (0.01)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
There are 2 validation samples for each scenario. The first validation sample is used for model
redevelopment, model updating or model aggregation. The resulting prediction models are then
evaluated in the second validation sample (sample size indicated between brackets). The study
datasets have median event rate of 22% (range 13% to 39%).
† Literature models are updated by re-estimating the intercept and common slope.

Results in Table 7.2 and 7.3 demonstrate that prediction models developed with stepwise reduction

yield the poorest performance, particularly when few data (NVAL1 = 200) are available. Results

in Table 7.4 illustrate that this approach achieves the poorest discrimination and calibration in

136 and, respectively, 162 scenarios of the 210 considered scenarios. Although the performance

of prediction models considerably improves by applying penalization (PMLE), this only holds

when relatively much data (NVAL1 = 500) are at hand. When few data are at hand (NVAL1 =

200), updating the literature models performed slightly better than redevelopment. For instance,

updating the best literature model yielded the highest AUC in 40, versus 8 (stepwise reduction)

or 24 (PMLE) of the 210 considered scenarios. However, we noticed that the best models were

developed by means of aggregation. Results in Table 7.4 indicate that Model Averaging slightly

outperforms Stacked Regressions across all repeated scenarios. Particularly, Model Averaging
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Table 7.3: Results from Application 1 based on 30 random split-sample validation samples (Brier
Score and standard error).

Study 1 Study 2 Study 3
N 500 (528) 200 (828) 500 (314) 200 (614) 500 (1256) 200 (1556)

BWS 0.09 (0.01) 0.10 (0.01) 0.18 (0.01) 0.19 (0.01) 0.11 (0.00) 0.12 (0.01)
PMLE 0.09 (0.01) 0.10 (0.01) 0.18 (0.01) 0.19 (0.01) 0.11 (0.00) 0.12 (0.01)
MU† 0.09 (0.01) 0.10 (0.00) 0.18 (0.01) 0.18 (0.00) 0.11 (0.00) 0.11 (0.00)
MA† 0.09 (0.01) 0.09 (0.00) 0.18 (0.01) 0.18 (0.00) 0.11 (0.00) 0.11 (0.00)
SR 0.09 (0.01) 0.09 (0.00) 0.18 (0.01) 0.18 (0.00) 0.11 (0.00) 0.11 (0.00)

Study 4 Study 5 Study 6
N 500 (291) 200 (591) 500 (575) 200 (875) 200 (157)

BWS 0.12 (0.01) 0.13 (0.01) 0.10 (0.01) 0.11 (0.01) 0.16 (0.01)
PMLE 0.12 (0.01) 0.13 (0.01) 0.10 (0.01) 0.11 (0.01) 0.16 (0.01)
MU† 0.12 (0.01) 0.12 (0.00) 0.10 (0.01) 0.10 (0.00) 0.15 (0.01)
MA† 0.12 (0.01) 0.12 (0.00) 0.10 (0.01) 0.10 (0.00) 0.15 (0.01)
SR 0.12 (0.01) 0.12 (0.00) 0.10 (0.01) 0.10 (0.00) 0.15 (0.01)

Study 7
N 500 (795) 200 (1095)

BWS 0.15 (0.00) 0.16 (0.01)
PMLE 0.15 (0.00) 0.15 (0.01)
MU† 0.15 (0.00) 0.15 (0.00)
MA† 0.15 (0.00) 0.15 (0.00)
SR 0.15 (0.00) 0.15 (0.00)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
There are 2 validation samples for each scenario. The first validation sample is used for model
redevelopment, model updating or model aggregation. The resulting prediction models are then
evaluated in the second validation sample (sample size indicated between brackets). The study
datasets have median event rate of 22% (range 13% to 39%).
† Literature models are updated by re-estimating the intercept and common slope.

yielded the best and second best AUC in 77 and respectively 90 of the 210 considered scenarios

where NVAL1 = 200. Stacked Regressions, however, yielded the best overall performance (BS) in

83 and respectively 63 of the 210 considered scenarios.

Traumatic Brain Injury

In this second application, we performed a simulation study with previously collected clinical

data predicting unfavorable outcome 6 months after Traumatic Brain Injury (TBI) (Table A.2 in

the Appendix) [152]. This simulation study uses the same procedure as described in the previous

application, and is based on the data from 10 studies (N = 9 149) with 9 candidate predictors: age,
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Table 7.4: Performance comparison of derived prediction models in Application 1 in terms of
achieved ranks.

Achieved ranks based on AUC

N = 500 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

BWS 26 (14%) 42 (23%) 22 (12%) 33 (18%) 57 (32%)
PMLE 73 (41%) 30 (17%) 19 (11%) 36 (20%) 22 (12%)
MU† 30 (17%) 23 (13%) 28 (16%) 27 (15%) 72 (40%)
MA† 17 (9%) 50 (28%) 41 (23%) 56 (31%) 16 (9%)
SR 34 (19%) 35 (19%) 70 (39%) 28 (16%) 13 (7%)
N = 200

BWS 8 (4%) 12 (6%) 9 (4%) 45 (21%) 136 (65%)
PMLE 24 (11%) 17 (8%) 30 (14%) 100 (48%) 39 (19%)
MU† 40 (19%) 21 (10%) 83 (40%) 38 (18%) 28 (13%)
MA† 77 (37%) 90 (43%) 29 (14%) 12 (6%) 2 (1%)
SR 61 (29%) 70 (33%) 59 (28%) 15 (7%) 5 (2%)

Achieved ranks based on Brier Scores

N = 500 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

BWS 23 (13%) 19 (11%) 34 (19%) 42 (23%) 62 (34%)
PMLE 47 (26%) 39 (22%) 24 (13%) 45 (25%) 25 (14%)
MU† 17 (9%) 24 (13%) 36 (20%) 25 (14%) 78 (43%)
MA† 28 (16%) 57 (32%) 37 (21%) 53 (29%) 5 (3%)
SR 65 (36%) 41 (23%) 49 (27%) 15 (8%) 10 (6%)
N = 200

BWS 4 (2%) 4 (2%) 10 (5%) 30 (14%) 162 (77%)
PMLE 23 (11%) 10 (5%) 29 (14%) 128 (61%) 20 (10%)
MU† 22 (10%) 37 (18%) 94 (45%) 33 (16%) 24 (11%)
MA† 78 (37%) 96 (46%) 29 (14%) 5 (2%) 2 (1%)
SR 83 (40%) 63 (30%) 48 (23%) 14 (7%) 2 (1%)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
Results are based on 300 scenarios (30 random split-sample validation samples for 10 studies), in
which the performance of each model is ranked from best (rank 1) to worst (rank 5). The totals
(and percentage) of achieved ranks are summarized for each approach. Note that percentages may
not always sum up to 100% due to rounding.
† Literature models are updated by re-estimating the intercept and common slope.
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Table 7.5: Results from Application 2 based on 30 random split-sample validation samples (AUC
and standard error).

Study 74 Study 75 Study 77
N 500 (618) 200 (918) 500 (541) 200 (841) 500 (419) 200 (719)

BWS 0.73 (0.02) 0.70 (0.02) 0.74 (0.01) 0.72 (0.02) 0.69 (0.02) 0.67 (0.02)
PMLE 0.73 (0.01) 0.72 (0.01) 0.74 (0.01) 0.73 (0.01) 0.70 (0.03) 0.68 (0.01)
MU† 0.72 (0.02) 0.72 (0.01) 0.73 (0.01) 0.73 (0.01) 0.69 (0.02) 0.69 (0.01)
MA† 0.73 (0.02) 0.72 (0.01) 0.74 (0.01) 0.73 (0.01) 0.70 (0.02) 0.69 (0.01)
SR 0.73 (0.01) 0.73 (0.01) 0.74 (0.01) 0.73 (0.01) 0.70 (0.02) 0.70 (0.01)

Study 79 Study 81 Study 85
N 500 (1010) 200 (1310) 500 (291) 200 (591) 500 (322) 200 (622)

BWS 0.69 (0.01) 0.68 (0.02) 0.71 (0.02) 0.70 (0.02) 0.77 (0.02) 0.76 (0.02)
PMLE 0.70 (0.01) 0.68 (0.01) 0.71 (0.03) 0.71 (0.01) 0.77 (0.02) 0.76 (0.01)
MU† 0.69 (0.01) 0.69 (0.01) 0.72 (0.03) 0.71 (0.01) 0.77 (0.02) 0.77 (0.01)
MA† 0.70 (0.01) 0.70 (0.01) 0.72 (0.03) 0.72 (0.01) 0.78 (0.02) 0.77 (0.01)
SR 0.70 (0.01) 0.70 (0.01) 0.72 (0.03) 0.72 (0.01) 0.78 (0.02) 0.77 (0.01)

Study 86 Study 89 Study 90
N 500 (319) 200 (619) 500 (17) 200 (317) 500 (356) 200 (656)

BWS 0.68 (0.02) 0.65 (0.02) 0.56 (0.17) 0.63 (0.02) 0.64 (0.03) 0.61 (0.02)
PMLE 0.69 (0.02) 0.67 (0.02) 0.55 (0.18) 0.63 (0.02) 0.64 (0.03) 0.62 (0.01)
MU† 0.68 (0.02) 0.67 (0.02) 0.58 (0.18) 0.65 (0.02) 0.64 (0.02) 0.64 (0.01)
MA† 0.68 (0.02) 0.67 (0.01) 0.58 (0.18) 0.66 (0.02) 0.64 (0.02) 0.64 (0.01)
SR 0.68 (0.02) 0.67 (0.01) 0.58 (0.18) 0.66 (0.02) 0.64 (0.02) 0.64 (0.01)

Study 91
N 500 (256) 200 (556)

BWS 0.75 (0.02) 0.73 (0.02)
PMLE 0.75 (0.02) 0.73 (0.01)
MU† 0.75 (0.02) 0.74 (0.01)
MA† 0.75 (0.02) 0.75 (0.01)
SR 0.75 (0.02) 0.75 (0.01)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
There are 2 validation samples for each scenario. The first validation sample is used for model
redevelopment, model updating or model aggregation. The resulting prediction models are then
evaluated in the second validation sample (sample size indicated between brackets). The study
datasets have median event rate of 46% (range 38% to 65%).
† Literature models are updated by re-estimating the intercept and common slope.
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Table 7.6: Results from Application 2 based on 30 random split-sample validation samples (Brier
Score and standard error).

Study 74 Study 75 Study 77
N 500 (618) 200 (918) 500 (541) 200 (841) 500 (419) 200 (719)

BWS 0.21 (0.01) 0.22 (0.01) 0.20 (0.01) 0.21 (0.01) 0.22 (0.01) 0.23 (0.01)
PMLE 0.21 (0.01) 0.21 (0.00) 0.20 (0.00) 0.20 (0.01) 0.21 (0.01) 0.22 (0.00)
MU† 0.21 (0.01) 0.21 (0.01) 0.20 (0.00) 0.20 (0.01) 0.22 (0.01) 0.22 (0.00)
MA† 0.21 (0.01) 0.21 (0.01) 0.20 (0.00) 0.20 (0.01) 0.22 (0.01) 0.22 (0.00)
SR 0.21 (0.01) 0.21 (0.00) 0.20 (0.00) 0.20 (0.01) 0.22 (0.01) 0.22 (0.00)

Study 79 Study 81 Study 85
N 500 (1010) 200 (1310) 500 (291) 200 (591) 500 (322) 200 (622)

BWS 0.22 (0.00) 0.23 (0.01) 0.20 (0.01) 0.20 (0.01) 0.20 (0.01) 0.20 (0.01)
PMLE 0.22 (0.00) 0.23 (0.00) 0.20 (0.01) 0.20 (0.01) 0.20 (0.01) 0.20 (0.00)
MU† 0.22 (0.00) 0.22 (0.00) 0.20 (0.01) 0.20 (0.01) 0.19 (0.01) 0.20 (0.00)
MA† 0.22 (0.00) 0.22 (0.00) 0.20 (0.01) 0.20 (0.00) 0.19 (0.01) 0.19 (0.00)
SR 0.22 (0.00) 0.22 (0.00) 0.20 (0.01) 0.20 (0.01) 0.19 (0.01) 0.20 (0.00)

Study 86 Study 89 Study 90
N 500 (319) 200 (619) 500 (17) 200 (317) 500 (356) 200 (656)

BWS 0.22 (0.01) 0.23 (0.01) 0.24 (0.04) 0.23 (0.01) 0.24 (0.01) 0.25 (0.01)
PMLE 0.21 (0.01) 0.22 (0.01) 0.25 (0.04) 0.23 (0.01) 0.24 (0.01) 0.24 (0.00)
MU† 0.22 (0.01) 0.22 (0.01) 0.24 (0.04) 0.23 (0.01) 0.24 (0.01) 0.24 (0.00)
MA† 0.22 (0.01) 0.22 (0.00) 0.24 (0.04) 0.23 (0.01) 0.24 (0.01) 0.24 (0.00)
SR 0.22 (0.01) 0.22 (0.00) 0.24 (0.04) 0.23 (0.01) 0.24 (0.01) 0.24 (0.00)

Study 91
N 500 (256) 200 (556)

BWS 0.19 (0.01) 0.20 (0.01)
PMLE 0.19 (0.01) 0.20 (0.01)
MU† 0.19 (0.01) 0.20 (0.01)
MA† 0.19 (0.01) 0.20 (0.01)
SR 0.19 (0.01) 0.20 (0.01)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
There are 2 validation samples for each scenario. The first validation sample is used for model
redevelopment, model updating or model aggregation. The resulting prediction models are then
evaluated in the second validation sample (sample size indicated between brackets). The study
datasets have median event rate of 46% (range 38% to 65%).
† Literature models are updated by re-estimating the intercept and common slope.
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Table 7.7: Performance comparison of derived prediction models in Application 2 in terms of
achieved ranks.

Achieved ranks based on AUC

N = 500 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

BWS 58 (19%) 47 (16%) 50 (17%) 70 (23%) 75 (25%)
PMLE 75 (25%) 64 (21%) 28 (9%) 63 (21%) 70 (23%)
MU† 37 (12%) 41 (14%) 74 (25%) 44 (15%) 104 (35%)
MA† 51 (17%) 79 (26%) 67 (22%) 85 (28%) 18 (6%)
SR 79 (26%) 69 (23%) 81 (27%) 38 (13%) 33 (11%)
N = 200

BWS 21 (7%) 15 (5%) 13 (4%) 82 (27%) 169 (56%)
PMLE 42 (14%) 22 (7%) 37 (12%) 124 (41%) 75 (25%)
MU† 44 (15%) 47 (16%) 109 (36%) 53 (18%) 47 (16%)
MA† 102 (34%) 117 (39%) 61 (20%) 17 (6%) 3 (1%)
SR 91 (30%) 99 (33%) 80 (27%) 24 (8%) 6 (2%)

Achieved ranks based on Brier Scores

N = 500 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

BWS 45 (15%) 54 (18%) 41 (14%) 53 (18%) 107 (36%)
PMLE 83 (28%) 55 (18%) 27 (9%) 90 (30%) 45 (15%)
MU† 28 (9%) 42 (14%) 75 (25%) 49 (16%) 106 (35%)
MA† 43 (14%) 94 (31%) 72 (24%) 75 (25%) 16 (5%)
SR 101 (34%) 55 (18%) 85 (28%) 33 (11%) 26 (9%)
N = 200

BWS 17 (6%) 6 (2%) 14 (5%) 60 (20%) 203 (68%)
PMLE 46 (15%) 26 (9%) 33 (11%) 151 (50%) 44 (15%)
MU† 34 (11%) 62 (21%) 104 (35%) 57 (19%) 43 (14%)
MA† 98 (33%) 115 (38%) 67 (22%) 16 (5%) 4 (1%)
SR 105 (35%) 91 (30%) 82 (27%) 16 (5%) 6 (2%)

BWS = Model redevelopment (backward selection), PMLE = Model redevelopment (penalized
Maximum Likelihood Estimation), MU = Model updating, MA = Model averaging, SR = Stacked
Regressions
Results are based on 300 scenarios (30 random split-sample validation samples for 10 studies), in
which the performance of each model is ranked from best (rank 1) to worst (rank 5). The totals
(and percentage) of achieved ranks are summarized for each approach. Note that percentages may
not always sum up to 100% due to rounding.
† Literature models are updated by re-estimating the intercept and common slope.
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EDH (0 = no epidural hematoma, 1 = epidural hematoma), i tsah (0 = no traumatic subarachnoid

hemorrhage, 1 = traumatic subarachnoid hemorrhage), i hypoxia (0 = no hypoxia, 1 = hypoxia), i -

hypots (0 = no hypotension, 1 = hypotension), i dsysbp (systolic blood pressure), i hb (hemoglobin

level), i glucos (glucose level) and i sodium (sodium level). The included datasets have median

event rate of 46% (range 38% to 65%). Results in Table 7.5, 7.6 and 7.7 again demonstrate

that prediction models developed with stepwise reduction have the poorest discriminative ability

and calibration, and that Model Averaging and Stacked Regression consistently yield superior

prediction models.

SIMULATION STUDY

Finally, we perform a simulation study to evaluate the performance of the aggregation methods

in the validation population. Particularly, we investigate the influence of the validation sample

size and the presence of heterogeneity between the populations of the literature models and the

validation sample. We use a logistic regression model that serves as reference to generate data for

the validation samples. Here, the outcome yi for subject i with characteristics (x1)i, . . . , (x10)i is

given as:

yi ∼Bernoulli(πi)

logit(πi) =β0 + β1(x1)i + β2(x2)i + β3(x3)i + β4(x4)i + β5(x5)i + β6(x6)i

+ β7(x7)i + β8(x8)i + β9(x9)i + β10(x10)i

(Model A)

where β0 = −3 and β1 = β2 = . . . = β6 = 1 and β7 = β8 = β9 = β10 = 0. The 10 covariates

are independent and each taking the values -1, 0 and 1 with probability 1/3. The corresponding

outcome prevalence is 16%.

For each scenario, we generate 5 literature models and two validation samples. The literature

models are developed using logistic regression with backward selection from a literature sample

that contains 20 events. To ensure the generation of stable literature models, we draw literature

samples until model convergence is reached and the error variance of estimated literature coefficients

is within acceptable ranges (< 50 for the model intercept and < 10 for the predictor effects).

Furthermore, to ensure that the populations of the literature models are different but related to

the validation population, we use different reference models for generating the literature samples

(that are based on the original reference model; see scenario A, B and C). Note that it is possible

that generated literature models j = 1, . . . , 5 may have (β7)j , . . . , (β10)j 6= 0 due to small sample
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bias or confounding (scenario C), or (β1)j , . . . , (β6)j = 0 due to selection procedures. All validation

samples are generated directly from the original reference model. The first validation sample (with

14–114 events) is then used to apply the previously described methods (model redevelopment using

backward selection, model redevelopment using PMLE, model updating using logistic calibration,

Model Averaging, Stacked Regressions using the Maximum Likelihood Estimator). Conversely,

the second validation sample (with 1 000 events) is used for assessing the performance of the

developed, updated and aggregated models in the original patient population (as defined by the

reference model).

Heterogeneous baseline risk across literature models (Scenario A)

We first consider the scenario in which the literature models have a heterogeneous baseline risk.

This is achieved by generating the literature samples from a deviation of the reference model,

where the intercept takes a random value per study from a normal distribution with mean β0 and

standard deviation 0.50. This implies that the outcome yij for subject i in study j is generated

according to:

yij ∼Bernoulli(πij)

πij = logit−1
(

(β0)j + (x1)i + (x2)i + (x3)i + (x4)i + (x5)i + (x6)i

)
(β0)j ∼N(−3, 0.50)

(Model B)

The resulting interquartile range (IQR) for the distribution of the intercept term of the literature

models (β0)j is -3.35 to -2.66.

Heterogeneous baseline risk and predictor effects across literature models
(Scenario B)

In this second scenario, we consider the situation in which heterogeneity occurs in the baseline risk

and common slope of the literature models. To this purpose, the slopes from Model A are multiplied

by a factor H which is sampled from a Gamma distribution (to ensure that the reference coefficients

remain positive) with scale 0.5 and rate 0.5. This implies that the outcome yij for subject i in

study j is generated according to:

168



Chapter 7

yij ∼ Bernoulli(πij)

πij = logit−1
(

(β0)j +Hj [(x1)i + (x2)i + (x3)i + (x4)i + (x5)i + (x6)i]
)

(β0)j ∼N(−3, 0.50)

Hj ∼Γ(0.5, 0.5)

(Model C)

The resulting IQR for the distribution of the predictor heterogeneity factor Hj is 0.67 to 1.27. This

implies that the overall strength of the regression coefficients in the population of study j will be

too strong (Hj > 1) or too weak (Hj < 1) in comparison to the validation sample.

Non-accomodated heterogeneity (Scenario C)

In this third scenario, we consider the situation in which heterogeneity occurs in the literature

models that is not accomodated for by the updating strategies. To this purpose, we extend the

previous scenarios by confounding the literature models with two extraneous variables x7 and x8.

Whereas in previous scenarios the generated literature models would, on average, yield similar

regression coefficients as the reference model, confounding allows them to be systematically het-

erogeneous with the validation samples. Here, we introduce moderate confounding by amending

Model C with two additional factors β7 and β8 that are different from zero.

yij ∼ Bernoulli(πij)

πij = logit−1
(

(β0)j +Hj [(x1)i + (x2)i + (x3)i + (x4)i + (x5)i + (x6)i]

+ (β7)j (x7)i + (β8)j (x8)i

)
(β0)j ∼N(−3, 0.50)

(β7)j , (β8)j ∼N(0.5, 0.2)

Hj ∼Γ(0.5, 0.5)

(Model D)

In this model, each literature model j = 1, . . . , 5 is affected by two confounders (β7)j and (β8)j .

Note that it is possible to accomodate for this heterogeneity by adjusting the updating strategy to

re-estimate β7 and β8 individually (in addition to re-estimating the model’s intercept and common

slope). However, we here assume that the confounding effect goes unnoticed and evaluate whether

the aggregation approaches are robust against the presence of unsuspected heterogeneity.
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Figure 7.4: Results from the simulation study (Scenario A and B).
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Results from the simulation study for 2 scenarios: (A) heterogeneous baseline risk across literature
models and (B) heterogeneous baseline risk and predictor effects across literature models (common
predictor variables). The following approaches are evaluated: redevelopment using backward selec-
tion (solid line), redevelopment using penalised maximum likelihood (dash), model updating of
intercept and common slope (dot), Model Averaging (dash-dot) and Stacked Regressions (long
dash).

Results

Results in Figure 7.4 indicate that model aggregation (i.e. Model Averaging and Stacked Regres-

sions) outperforms traditional modeling techniques in validation samples (i.e. model redevelopment
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and model updating) particularly when few data are at hand. For instance, when literature models

have a heterogeneous baseline risk (scenario A as described in section 7) and the validation sample

contains 15 outcome events, stacked Regressions achieved an AUC of 0.87, versus 0.82 (model

redevelopment using backward selection), 0.83 (model redevelopment using penalization) and 0.86

(model updating). When relatively much data were at hand (100 events or more), model rede-

velopment performed similar to Stacked Regressions and slightly outperformed Model Averaging

and model updating (in terms of AUC and BS). Similarly, when literature models have a heteroge-

neous baseline risk and predictor effects (scenario B as described in section 7), Stacked Regressions

achieved the best AUC and BS irrespective of the validation sample size. For instance, when the

validation sample contains 15 events this approach achieved an AUC of 0.86 versus 0.82 (model

redevelopment using backward selection), 0.83 (model redevelopment using penalization) and 0.85

(model updating). Again, model redevelopment achieved optimal performance for large sample

sizes (100 events or more), where it slightly outperformed Model Averging and model updating.

Finally, when literature models have a heterogeneous baseline risk plus overall slope, and effect

modification occurs (scenario C as described in section 7), aggregation or updating of literature

models is only advantageous for small sample sizes (Figure 7.5). Particularly, when the valida-

tion sample contains 30 events or less, Stacked Regressions and Model Averaging outperformed

traditional modeling techniques in terms of AUC and BS respectively. For larger sample sizes, we

noticed that model redevelopment techniques perform similarly and clearly outperform aggregation

and updating approaches in terms of AUC and BS.

In general, our simulation studies indicate that model aggregation always outperforms model up-

dating, and that model redevelopment is only useful when literature models are too heterogeneous

with the validation sample to combine (i.e. differences beyond intercept and common slope) and

sufficient data are available.

DISCUSSION

Here we have shown that a novel model validation and updating paradigm involving aggregation

or meta-analysis of existing evidence effectively adjusts the resultant models to new circumstances,

especially in situations of few validation data. Because this paradigm augments newly collected

participant data with relevant evidence from published prediction models, it is likely that resulting

meta-models are less prone to over-optimism and more generalizable towards new patient popula-

tions or settings. Aggregation can therefore help resolve the tendency towards development and

reporting of numerous prediction models with similar goals or for the same clinical problem, and

improve the cost-effectiveness of prediction research by making better use of prior evidence.
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Figure 7.5: Results from the simulation study (Scenario C).
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Results from the simulation study for scenario (C) heterogeneous baseline risk and predictor effects
across literature models (different predictor variables). The following approaches are evaluated:
redevelopment using backward selection (solid line), redevelopment using penalised maximum
likelihood (dash), model updating of intercept and common slope (dot), Model Averaging (dash-
dot) and Stacked Regressions (long dash).

Methods to integrate prior evidence in prediction modelling are currently lacking, and the few

available (updating) strategies merely adjust previously published prediction models to new (val-

idation) data [15, 16, 132, 167, 169, 239, 270]. We posited that aggregation over all available

evidence, rather than selective updating, may further improve the performance of existing or even

novel developed prediction models. For this reason, we explored two aggregation techniques: Model

Averaging and Stacked Regressions, that combine the predictions from updated literature models

by means of a weighted average. Whereas Model Averaging achieves aggregation in three consec-

utive stages (i.e. updating the literature models, calculating the model weights and estimating

the single aggregated model), Stacked Regressions updates, weights and estimates the meta-model

simultaneously. We further demonstrated that Stacked Regressions is the most efficient approach

for developing a meta-model, as it involves a minimal amount of unknown parameters whilst ac-

comodating for potential between-study heterogeneity and avoiding over-optimism. Its underlying

mechanisms are similar to logistic calibration, and allow the disposition of existing models with

poor performance. In contrast to previously proposed techniques [66], the aggregation methods do

not require existing models to have similar predictors and can be applied when relatively few data

are at hand.
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Results from example and simulation studies applying these approaches demonstrate that model

aggregation consistently outperforms traditional modeling techniques (such as model redevelop-

ment or model updating) when few data are available. Model redevelopment was only useful when

literature models were too heterogeneous with the local circumstances and sufficient patient data

were at hand. Furthermore, model updating was almost always outperformed by model aggrega-

tion or model redevelopment. These findings are in line with previous research [132, 168, 239, 276],

and further expose the advantages of incorporating prior evidence when few data is available

[65, 66, 109, 205, 243, 245].Although it is beyond the remit of this paper, these techniques could

conceivably also be used to design smaller prediction modeling studies when previous literature

models are available. Further research would be necessary before these approaches could be used

in the study design phase.

Similarly, future research investigating how a quality appraisal may identify candidate prediction

models from the literature, and how variable selection and shrinkage may be achieved during model

aggregation would further improve upon this work. Alternative weighting schemes (for Model Av-

eraging) or Bayesian estimation procedures (for Stacked Regressions) may also further improve the

predictive performance of aggregated meta-models. It is, for instance, possible to weight literature

models based on corresponding similarities between the development and validation samples (sim-

ilar to risk of bias tools in the meta-analysis of RCTs). The implementation of Model Averaging

here tends to produce extreme weights being assigned to models, leading to a degree of skewing

towards stronger models. Although we penalized stronger models when they involved extensive

updating strategies, extreme weights remained present for most considered scenarios. These results

confirm the conclusions of recent studies positing that Model Averaging essentially represents an

informative strategy of model selection [163]. More promising approaches may therefore employ

Bayesian Model Combination techniques where linear (or even non-linear) model combinations are

estimated [71, 163]. This strategy is adopted here by Stacked Regressions, where linear combina-

tions of model predictions are considered in a frequentist framework. Further research is needed to

investigate how estimation of such combinations may account for updating complexity and penalize

the contribution of models that perform well in the validation sample because they are strongly

adjusted towards these data.

The aggregation of existing models may not be desirable when strong heterogeneity is expected

[66]. Although it is possible to overcome this challenge by implementing more advanced updating

procedures (e.g. model revision) prior to (Model Averaging) or during (Stacked Regressions)

aggregation, such approach evidently requires additional validation data to test the so developed

meta-model.Critically appraising prior evidence during the systematic review process can help

to expose this and guide the selection of appropriate updating and/or aggregation approaches

[34]. The complexity of the updating procedure could also explicitly be accounted for through
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penalization of the contribution of literature models when they were updated in the validation

sample at hand. Aggregation remains problematic when the validation sample does not contain

(important) predictor variables that are included in the literature models. Possible solutions may

ignore the missing predictor or re-estimate the remaining predictors in the validation sample at

hand. Whilst this was evidently not the case in the case studies and simulations we presented here,

these strategies could further improve upon the approaches.

In conclusion, model aggregation is a promising approach to combine previously published pre-

diction models and adjust them to a new patient population. The resulting meta-models show

better performance than those generated through entire new model redevelopment or model up-

dating strategies. We recommend the use of aggregation techniques when validation samples are

relatively small and sufficient useful models (as identified from a critical appraisal of the literature)

are available. In scenarios where large amounts of data are at hand and patient populations from

the literature models are too heterogeneous with the validation population, developing a novel

model may still be the best strategy.
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Chapter 8

“An idea is always a generalization, and generalization is a property of thinking. To
generalize means to think.”

– Georg Wilhelm Friedrich Hegel

C
linical prediction models are commonly developed to facilitate prognostic or diagnostic

probability estimations in daily medical practice [101, 170, 237, 247]. Such models are

typically developed by (statistically) associating multiple predictors with outcome data

from a so-called derivation or development sample [101, 170, 171, 237]. Well known examples are

the Wells models for diagnosing Deep Venous Thrombosis [283], the Gail model for prediction of

breast cancer incidence [82] and the Framingham risk scores [289]. As almost every prediction

model is developed to be applied to new individuals, the value of a prediction model depends

on its performance outside the development sample [15, 16, 136, 169, 192]. This implies that

its predictive mechanisms should remain sufficiently accurate across new samples from the same

target population (rather reflecting a model’s reproducibility) or even from different but related

target populations (rather reflecting a model’s transportability) [136, 169, 273]. Roughly speaking,

good model performance in the same or different target populations may both reflect a model’s

generalizability.

The generalizability of prediction models is commonly assessed in so-called (external) validation

samples or studies [15, 16, 101, 136, 167, 169, 171, 237, 247]. Such studies aim to quantify the

predictive performance of a previously developed model in individuals that were not used to de-

velop the model [15, 16, 136, 169]. In practice, validation studies may range from temporal, to

geographical, to validations across different medical settings or domains with increasingly differ-

ent case mix and discrepancies in predictor and outcome definitions, and thus, in case of good

model performance in the validation sample, increasing potential of transportability of the model

[15, 16, 169, 259].

It is debatable to what extent a model should be transportable across different but related patient

populations. For instance, it may not be desirable to transport a prediction model to a population

where outcomes are defined differently, unless the model can be adjusted fairly straightforward.

Transportability therefore relates to which extent differences in target populations do not mean-

ingfully affect model performance. Because validation studies typically differ from development

samples, some quantification of their relatedness may be useful to better interpret model valida-

tion results and to identify the actual population in which a prediction model can successfully be

implemented.

Unfortunately, explicit criteria for inferring on differences in case mix between the development

and validation sample remain ill-defined, let alone that there are methods to formally quantify
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these differences. As a consequence, it is often unclear to what extent good performance in the

validation sample implies rather reproducibility of the model across samples of the same target

population of the development sample, or truly transportability of the model across different but

related populations [273]. This, in our view, impedes transparent interpretation of results from

external validation studies [167].

Based on previous recommendations [15, 16, 136, 169, 192, 247], we here describe a framework of

methodological steps and address statistical methods for analyzing and interpreting the results of

external validation studies. We illustrate this framework with an empirical example of prediction

models for the diagnosis of Deep Venous Thrombosis developed by logistic regression modeling.

The framework may, however, mutatis mutandis be applied to prediction models developed by

e.g. survival modeling or even linear regression modeling. Consequently, we aim to improve the

inference making of studies aimed at testing of prediction models in samples of new individuals

and thus inferences of model generalizability. The framework is intended to ultimately facilitate

faster and wider implementation of genuinely useful models and allow a speedier identification of

models that are of limited value [228].

EMPIRICAL EXAMPLE DATA

Deep Vein Thrombosis (DVT) is a blood clot that forms in a vein in the body and may lead to

blockage in the lungs, preventing oxygenation of the blood and potentially causing death. Multi-

variable diagnostic prediction models have been developed during the past decades to safely exclude

DVT without having to refer for further testing. Physicians may doubt whether or when to use

such a diagnostic prediction model if their patient(s) represent a clinically relevant subgroup, such

as the elderly or patients with a history of DVT and/or pulmonary embolism[261]. For this paper,

we hypothesize that it is yet unclear to what extent these models are generalizable across samples

of the same or different (but related) target populations, because the performance of a prediction

model may change according to characteristics of the patients or clinical setting (e.g. primary or

secondary care).

To illustrate our framework, we used the individual participant data (IPD) from four datasets

(Table 8.1 and Table A.1 in the Appendix) to develop and externally test (validate) a multivariable

diagnostic model for predicting the presence of DVT. Specifically, we used one dataset (n = 1 295)

to develop a logistic regression model with 7 patient characteristics and the D-dimer test result

(Table 8.2). Afterwards, we externally validated this model in the three remaining datasets (n1 =

791, n2 = 1 028 and n3 = 1 756).
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Table 8.1: Baseline Table for 4 Primary Care DVT Datasets.

Development Val. 1 Val. 2 Val. 3

Line of care primary primary primary secondary

N 1 295 791 1 028 1 756

Incidence DVT 22% 16% 13% 23%
Male gender 36% 38% 37% 37%
Oral contraceptive use 10% 10% 10% 5%
Presence of malignancy 6% 5% 5% 13%
Recent surgery 14% 13% 8% 11%
Absence of leg trauma 85% 82% 72% 85%
Vein distension 20% 20% 15% 16%
Calf difference ≥ 3cm 43% 41% 30% 24%
D-dimer abnormal 70% 72% 46% 52%

METHODS

Below, we describe a framework of three methodological steps (Figure8.1) and address statistical

methods for analyzing and interpreting the results of external validation studies. In the first step,

we quantify to what extent the development and validation sample are related. The second step

assesses the model’s predictive accuracy in the development and validation sample to identify the

extent to which its predictive mechanisms differ or remain accurate and valid. The final step

interprets the model’s performance in the validation sample in terms of reproducibility or trans-

portability. This step also indicates what type of revisions to the model, based on the validation

sample, may be necessary. We describe a straightforward analytical and judgmental implementa-

tion for each step, and illustrate the approach using the diagnostic prediction model from our case

study.

Step 1: Investigate relatedness of development and validation sample

This first step aims to quantify to what extent the development and validation sample are related

or different. Two samples can have any degree of relatedness ranging from ‘identical’ to ‘not

related at all’ [15, 16, 136]. Different but related samples are located between these extremes,

and determination of their (relative) position is essential for interpreting the results of a model

validation study and make inferences on the generalizability of the model. Typically, two (or more)

samples increasingly differ when their subject characteristics (case mix), outcome occurrence or

the predictor effects (regression coefficients) differ across the corresponding populations [15, 68,
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Figure 8.1: Proposed approach to external validation studies

Step 1. Investigate extent
of relatedness

How related are the individuals
from the validation sample with
development sample?

Proposed methods:
discriminative ability of the
comparative model, standard
deviation of the linear predictor,
mean of the linear predictor

Step 3. Interpretation of model validation results

Given the results from step 1 and step 2, how well does the
model reproduce in the source population of the development
sample (similar case mix) or how well does the model transport
to a different but related target population (different case mix)?

In case of poor performance, how can we further improve the
model’s performance in the source population of the validation
sample?

Step 2. Assess
model performance

What performance do we observe
when we test the existing prediction
model as such in the development
and validation sample?

Proposed methods:
calibration-in-the-large,
calibration slope, concordance
statistic

Typical validation studies are restricted to step 2: ‘Assess model performance’.

259, 273, 275]. Consequently, it seems useful to evaluate the extent to which the development and

validation sample have (1) a similar case mix and (2) share common predictor effects.

A straightforward approach for evaluating relatedness of case mix may evaluate differences between

the subject characteristics of the development and validation sample separately, and compare their

ranges [15, 16, 54, 192]. Although this approach is useful for comparing the overall case mixes, it

does not take the interrelation of subject characteristics (per sample) into account. For instance,

Table 8.1 reveals that the development sample and Validation Study 1 have a very similar case

mix of predictor variables, but a different outcome occurrence (22% versus 16%). In Validation

Study 3, however, the outcome occurrences are similar but the case mix considerably differs. It is

not directly clear which of the validation samples is now more similar to the development sample,

and would lead to small or larger change in the predictive performance of the model as compared

to the performance found in the development set.

The heterogeneity of predictor-outcome associations between the development and validation sam-

ple can also be evaluated by, for example, refitting the original model in the validation sample

(Table8.2). Unfortunately, also for this approach it is not directly clear how to summarize differ-
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ences in estimated regression coefficients (or corresponding adjusted odds ratios) as heterogeneity

between the underlying target populations.

Given the pitfalls of the aforementioned direct comparisons, we here propose two statistical ap-

proaches that calculate an overall measure of (dis)similarity between the development and valida-

tion sample. The first approach calculates a summary measure of relatedness based on how well

individuals from both samples can be distinguished. Conversely, the second approach assesses to

which extent the risk distributions of the development and validation sample diverge.

Table 8.2: Estimated Regression Coefficients (SE) for 4 Primary Care DVT Datasets.

Dvl. Val. 1 Val. 2 Val. 3

N 1 295 791 1 028 1 756

Constant (model intercept) -5.0 (0.4) -6.7 (1.1) -4.7 (0.4) -4.5 (0.3)
Male gender 0.7 (0.2) 0.4 (0.2) 0.6 (0.2) 0.5 (0.1)
Oral contraceptive use 0.8 (0.3) 0.5 (0.4) -7.0 (58.6) 0.5 (0.3)
Presence of malignancy 0.5 (0.3) -0.1 (0.4) 0.7 (0.4) 0.3 (0.2)
Recent surgery 0.4 (0.2) 0.6 (0.3) 0.0 (0.4) 0.5 (0.2)
Absence of leg trauma 0.7 (0.2) 0.81 (0.3) 0.6 (0.3) 0.3 (0.2)
Vein distension 0.5 (0.2) 0.2 (0.3) 0.2 (0.3) 0.6 (0.2)
Calf difference ≥ 3cm 1.2 (0.2) 0.9 (0.2) 0.9 (0.2) 1.4 (0.1)
D-dimer abnormal 2.4 (0.3) 4.0 (1.0) 2.4 (0.3) 3.0 (0.2)

The linear predictor for a subject (given by the model from the development sample) is as follows -
5.02 + 0.71×male gender + 0.76×OC use + 0.50×presence of malignancy + 0.42×recent surgery +
0.67×absence of leg trauma + 0.53×vein distension + 1.15×calf difference ≥ 3cm + 2.43×abnormal
D-dimer. The probability (or risk) of Deep Vein Thrombosis for the same subject is given by
1/ (1 + exp(−linear predictor))

Comparative model. The relatedness between two samples is typically tested by assuming an

underlying distribution of subject characteristics. For instance, we may assume that individuals

from the development sample follow a multivariate normal distribution. This strategy is, however,

often undesirable because it cannot adequately account for dichotomous or non-linear variables.

For this reason, we propose to evaluate the extent to which individuals from the development and

validation sample can be distinguished. This approach is a generalization of Hotelling’s T 2 which

is related to discriminant analysis and the Mahalanobis distance metric [180]. This can be achieved

fairly straightforward by estimating a binary logistic regression model, also labelled comparative

model, to predict the probability that an individual belongs to the development sample. The

comparative model should at least consider the predictor and outcome variables of the prediction

model that is being validated. It may be clear that if the comparative model discriminates poorly
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(or well), both samples are strongly (or not much) related in terms of the considered predictor

variables and outcome status. The discriminative ability can be quantified using measures such as

the concordance (c) statistic.

Distribution of the linear predictor. It is also possible to directly compare the distribution

of the model’s predicted risks in the development and validation sample [237, 273]. This can be

achieved by calculating the spread, here defined as the standard deviation (SD), and the mean of

the linear predictor (LP) of the original model in the development and validation sample. Because

the LP is the logit transformation of the predicted risks in logistic regression, its interpretation

is fairly straightforward. In general, an increased (or decreased) population variability of the

LP indicates more (or less) heterogeneity of case mix. As the case mix heterogeneity increases,

individuals have a larger variety of patient characteristics and the model tends to discriminate

better [273]. Specifically, the discriminative ability may improve (or deteriorate) when the SD of

the LP increases (or decreases) because individual risk estimates become more (or less) separable.

Conversely, differences in mean of the LP between the development and validation sample reflect

the difference in overall (predicted) outcome frequency – i.e. in fact a reflection of case mix severity

– and may therefore reveal the model’s calibration-in-the-large in the validation sample [96].

Empirical example. Results from the empirical example (Figure 8.2) demonstrate that the

comparative model and the distribution of the linear predictor generally lead to similar conclusions.

Specifically, we found that it was difficult to distinguish between individuals from the development

sample and Validation Study 1 (c = 0.56 with 95% CI of 0.54; 0.59). These samples also had a

similar SD of the LP (1.45 vs. 1.47) and similar mean of the LP (-1.72 vs. -1.75). These results

indicate that the development sample and Validation Study 1 had a similar distribution of case

mix, and we can expect similar model performance in both samples.

For Validation Study 2 and 3, we found an increased spread of the LP and a decreased average of

the LP. The comparative models indicated that individuals from the development and validation

sample could be distinguished more easily and that their case mix was indeed much less related to

the case mix of the development sample (c = 0.71 and c = 0.68 respectively).

Step 2: Assessment of the model’s performance in the validation study

In this second step we evaluate the originally developed model’s performance in the validation

sample. This is typically quantified in terms of calibration and discrimination [83, 101, 237].

Calibration reflects the extent to which the predicted probabilities and actual probabilities agree,

184



Chapter 8

Figure 8.2: Results from step 1 in the empirical example.
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whereas discrimination is the ability to distinguish high-risk patients from low-risk patients. Here,

we focus on the calibration-in-the-large plus calibration slope, and the concordance (c)-statistic

as summary measures of calibration and discrimination respectively [57, 77, 116, 160, 237, 249].

These statistics are ideally calculated in validation samples obtained from (prospective) cohort

studies [170], although the calibration slope and c-statistic remain useful summary measures in

retrospective study designs (e.g. case-control). The calibration slope can be used as a statistic

for evaluating to which extent the model’s predictive mechanisms remain valid in the validation

sample. Finally, we recommend visual inspection of the calibration plot, where groups of predicted

probabilities are plotted against actually observed outcomes and perfect predictions should be on

the 45-degree line [249].

Calibration-in-the-large. This statistic quantifies whether the average of predictions corre-

sponds with the average outcome frequency, and ideally equals 0. Values below (or above) this value

indicate that the model overestimate (or respectively underestimate) the outcome presence. By

definition, the calibration-in-the-large is always optimal (0) in the development sample of the pre-

diction model. Consequently, it is a useful statistic for identifying whether unexplained differences

exist in the outcome frequency of the validation sample, e.g. due to mechanisms not captured by

the included predictors [16, 96, 279]. Note that calculation of the calibration-in-the-large statistic

is only meaningful when observed outcome frequencies are representative for the target population.

This implies that validation samples should ideally be obtained from (prospective) cohort studies

[170].

Calibration slope. The calibration slope, denoted as boverall, reflects whether predicted risks

are appropriately scaled with respect to each other over the entire range of predicted probabilities

(boverall = 1) [60, 160]. Typically, boverall > 1 occurs when predicted probabilities do not vary

enough (e.g. predicted risks are systematically too low) and 0 < boverall < 1 occurs when they

vary too much (e.g. predicted risks are too low for low outcome risks, and too high for high

outcome risks). A poor calibration slope (0 < boverall < 1) usually reflects overfitting of the model

in the development sample, but may also indicate inconsistency of predictor effects between the

development and validation sample [132, 239, 249, 270, 275]. It is therefore a useful measure of

external validity.

Concordance statistic. The c-statistic represents the probability that individuals with the

outcome receive a higher predicted probability than those without [57]. It corresponds to the

area under the receiver operating characteristic (ROC) curve for binary outcomes, and can range

from 0.5 (no discrimination) to 1.0 (perfect discrimination). Because the c-statistic reveals to
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what extent the prediction model can rank order the individuals according to the outcome in the

validation sample, it is a useful tool for evaluating its discriminative value.

Figure 8.3: Results from step 2 in the empirical example.
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Empirical example. In Validation Study 1, we found that the discriminative ability of the

developed model slightly decreased (Figure 8.3). Predicted risks were systematically too high

(calibration-in-the-large=-0.52 with P < 0.0001) but remained proportionally accurate (calibration

slope: 0.90). For Validation Study 2 and 3, we found an increased discriminative ability in the

validation sample. This increase was expected from step 1 due to an increased spread of the linear

predictor. Although the achieved calibration-in-the-large and calibration slope was reasonable

for Validation Study 2, predicted risks were systematically too low and did not vary enough in

Validation Study 3 (calibration slope: 1.12 with P < 0.0001).

Step 3: Interpretation of model validation results

In this final step, we describe how the model’s predictive accuracy in the validation sample (step

2) can be interpreted by combining the results from step 1. We also indicate what may be done

to further improve the model’s performance in the source population of the validation sample in

case of poor performance.

In step 1 we identified whether the reproducibility (similar case mix) or transportability (different

case mix) of the prediction model is assessed by testing its performance in the validation sample.

Step 1 also indicates whether the discriminative ability of the prediction model – as estimated

in step 2 – changes due to differences in case mix heterogeneity, and whether the calibration-

in-the-large deteriorates due to differences in case mix severity [273]. Step 2 directly indicates

whether differences in case mix between the development and validation sample actually affect

model performance in the latter. Consequently, the combined results from step 1 and step 2

indicate to what extent the model indeed seems generalizable (i.e. either in terms of reproducibility

or transportability).

In case of poor predictive performance, several methods may improve the model’s accuracy in

the validation sample at hand. These updating methods may range from an intercept update,

to adjustment or even re-estimation of individual regression coefficients or adding predictors

[132, 133, 169, 237, 270]. Specifically, a poor calibration-in-the-large may be overcome by re-

estimating its intercept in the validation sample (intercept update) [132, 133, 169, 237, 270]. Sim-

ilarly, a poor calibration slope (e.g. due to overfitting) may be corrected by applying logistic

calibration (i.e. overall adjustment of the calibration slope). On the other hand, when predictor

effects are heterogeneous between the development and validation sample, and calibration plots

show inconsistent predictions across the whole range of predicted probabilities, updating strategies

becomes more difficult and may require the re-estimation and inclusion of additional predictors.

In those scenarios, the validation study indicates that the model’s predictive mechanisms may no

188



Chapter 8

longer be valid and a larger model revision or updating is needed.

Empirical example. In Validation Study 1, we can conclude that the model reproduces well

because the development and validation sample were strongly related and model performance was

concordantly adequate in the validation sample. The model may, however, be improved by an

intercept update as predicted risks were systematically too high (Figure 8.4).

For Validation Study 2 and 3, we found substantial differences in the case mix between the develop-

ment and validation sample. Because the model’s discrimination improved in the validation sample

and its calibration remained fairly adequate, its transportability to the target populations of the

validation sample(s) appears reasonable. For Validation Study 3, however, some mis-calibration

occurred such that the prediction model should be revised, e.g. by updating its intercept and

common calibration slope in the validation sample (Figure 8.4).

Figure 8.4: Results from step 3 in the empirical example: calibration plots after recalibration in
the validation sample.
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DISCUSSION

Studies to quantify the performance of developed (existing) prediction models in other individuals

(external validation studies) are important to assess the model’s performance outside the develop-

ment setting and to evaluate its extent of generalizability and usefulness [15, 16, 101, 136, 167, 169,

171, 228, 237, 247]. Moreover, such studies guide us in deciding upon updating or re-development

strategies.[169, 237, 239, 270, 272] It is often unclear how model validation study results relate

to the general concept of generalizability of the prediction model, and how researchers should in-

terpret good or poor model performance in the validation sample. We presented a framework to

better determine whether the external validation study rather assesses a model’s reproducibility

or its transportability. This framework extends the framework originally proposed by Altman and

Royston[15], and Justice et al [136]. The latter already proposed to distinguish generalizability in

reproducibility to the overall target population and transportability to different but related target

populations.

We pose that external validation studies with stronger case mix differences as compared to the

development sample increasingly address the model’s transportability across populations. It is,

however, possible that some well-developed models are not reproducible or transportable and may

first require to varying extents model updating prior to actual implementation in another target

population.

Some considerations have to be made. Firstly, development data may not always be available. This

implies that accurate calculation of differences in case mix (step 1) may not directly be possible

and impedes the interpretation of validation study results in step 3. Although it remains possible

to evaluate case mix differences between subject characteristics on the average level by relying on

published baseline tables, this approach does not take the interrelation of subject characteristics

into account.

Secondly, we proposed using a comparative model (based on a generalization of Hotelling’s T 2) and

the distribution of the linear predictor to evaluate case mix differences between the development

and validation sample in a single dimension. Although the comparative model explicitly accounts

for differences in subject characteristics, outcome occurrence and their interrelation, and the dis-

tribution of the linear predictor merely compares risk distributions, both approaches tend to yield

similar conclusions. The linear predictor may, however, be less useful for evaluating case-mix differ-

ences in survival data as it does not account for baseline survival. Conversely, the usefulness of the

comparative model strongly depends upon its included variables and may be prone to overfitting.

Other metrics for quantifying the relatedness between samples – such as the overlap coefficient

[53, 162] or extensions of the Mahalanobis distance metric [64] – have not been evaluated here and
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may lead to different conclusions.

Thirdly, we noted that differences in characteristics outside the model, such as important predictors

that were not recorded, may substantially influence a model’s generalizability, as we found in

Validation Study 3. These missed predictors could for instance explain differences in baseline risk,

or interact with included predictor effects.[68, 96, 169, 279] As a consequence, interpretation of

differences in case mix is not always straightforward and clinical expertise remains paramount in

interpreting the results of a validation study.

Fourthly, we used the calibration-in-the-large, the calibration slope and the c-statistic as summary

statistics for assessing model performance and interpreting generalizability. Other measures such as

the case-mix corrected c-index may provide additional insights into model performance [273], and

have not been evaluated here. Furthermore, by focusing on summary statistics of model calibration,

precipitate conclusions about external validity may be reached. For instance, it is possible that the

prediction model shows good calibration as a whole, but yields inaccurate predictions in specific

risk categories. This, in turn, may affect the model’s generalizability towards these risk categories.

We therefore emphasize the graphing of calibration plots and visual inspection of these plots in

addition to calculation of the calibration slope [249].

Finally, it is important to recognize that good performance of a model in another validation sample

does not always correlate with its clinical usefulness. This is because external validity merely

requires the model’s predictive mechanisms to remain accurate across different samples, whereas

clinical usefulness also refers to cost-effectiveness, clinical judgment and strongly depends on the

context [15, 16, 167, 169, 249, 293].

Conclusions. The proposed methodological framework for prediction model validation studies

may enhance the judgment to what extent the individuals in the validation study were different

from the development sample, how it can be placed in view of other validation studies of the same

model, and to what extent the generalizability of the model is studied.
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“Take away paradox from the thinker and you have a professor.”

– Soren Kierkegaard

T
he methods presented in this thesis enable the principles of meta-analysis to be applied

in clinical prediction research and represent improvements over existing meta-analytical

approaches (developed for therapeutic research), tailored to the problem of prediction,

either diagnostic and prognostic. These methods were previously lacking, and, as we have demon-

strated in this thesis, may considerably improve the performance of previously developed or novel

prediction models. Although we believe that meta-analysis deserves a fundamental role in clinical

prediction research as well, several challenges still need to be addressed before it can successfully

be implemented.

First, the presence of between-study heterogeneity in predictor-outcome associations strongly af-

fects the validity and usefulness of a synthesis, meta-analytical model. Meta-analysis of any kind,

so also for prediction (modeling) studies, may not be desirable when studies are too distantly

related. This situation may arise when study populations differ too much and predictor-outcome

associations strongly vary across studies. Consequently, it is important to investigate under which

conditions data can be meaningfully combined, and how similarity of notably the predictor-outcome

associations can be promoted. This thesis proposed several methods for quantifying the presence

of between-study heterogeneity in predictor-outcome associations across studies (Chapter 2) and

measuring the relatedness between two study samples (Chapter 8). It may therefore be valuable

to investigate how predictor selection algorithms may be implemented when using these methods to

identify a useful set of homogeneous predictor-outcome associations across the studies. In addition,

some guidelines are needed to decide upon when to conduct a meta-analysis, and upon the imple-

mentation of a particular synthesis method in view of the quantified between-study heterogeneity

in predictor-outcome associations.

Second, meta-analysis of previously published prediction models using only aggregate, reported

data or results may not be desirable when no IPD is at hand. Particularly, we demonstrated that

the availability of an IPD set allows the synthesis model to be updated towards a specific target

population (Chapter 6 and Chapter 7). Without any IPD set, any meta-analysis will produce

a weighted average of regression coefficients that are not longer applicable to any of the original

development populations. As a consequence, unfocused evidence synthesis, i.e. meta-analysis

without some form of adjustment towards a specific target population, is likely to yield meaningless

synthesis models that do not perform well when applied in any local circumstances. Fortunately,

basic evidence such as the local outcome prevalence may already suffice to adjust synthesis models

to a particular patient population when the model’s predictor effects are homogeneous across
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studies (Chapter 3). Future research may investigate how synthesis models with heterogeneous

predictor effects can effectively be adjusted for a specific population.

Third, the meta-analysis of aggregate data produced by models from different statistical families

or with different structures is not straightforward. For instance, aggregate data for survival times

may be derived from proportional hazard models (such as Poisson, Cox or exponential regression)

or accelerated failure time models (such as Weibull regression), each leading to a different interpre-

tation of the estimated baseline hazard and regression coefficients of predictors. Other, less related,

families are also widely available and may consist of artificial neural networks, decision trees or

even support vector machines. In the latter scenarios, pooling of estimated regression coefficients

(Chapter 6) may no longer be possible and more advanced methods (Chapter 7) are required to

effectively implement all existing models and combine their output after evaluation. It is therefore

worthwhile to investigate how differently specified models can effectively be combined into a single

explicit synthesis model that is straightforward to implement, again of course with the use of at

least one IPD set.

Fourth, when implementing a clinical prediction model in a clinical decision support system

(CDSS), subject characteristics and final diagnoses can continuously be recorded. This makes

it feasible to gradually adjust a prediction model towards the local circumstances. Unfortunately,

it is not clear how updating strategies should be implemented when datasets dynamically increase

over time. It has been suggested that parsimonious updating strategies are preferred when rela-

tively few data are at hand [239]. Although extensive updating strategies may further improve the

model’s performance in local circumstances, their implementation (usually) requires a substantial

amount of data. A framework is therefore needed to identify whether early adaptation of a predic-

tion model is justified, and to decide upon the extensiveness of updating methods. It may further

be helpful to identify when a prediction model has sufficiently been validated, and subsequent

updating is no longer required.

Finally, we demonstrated that the presence of missing data may considerably hamper the develop-

ment of a meta-analytical prediction model. For instance, the imputation of systematically missing

predictor variables is not straightforward as the choice of imputation method may considerably

affect the degree of between-study heterogeneity in predictor-outcome associations (Chapter 4).

Traditional imputation strategies ignore the clustering of participants within studies and may

therefore support a self-fulfilling prophecy when assessing the degree of homogeneity in imputed

predictor variables. More sophisticated imputation methods are required to appropriately account

for missing data in an IPD meta-analysis and to evaluate the presence of between-study hetero-

geneity when predictor variables are systematically missing.
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Table A.1: Overview of Deep Venous Thrombosis datasets.

Study Line of care Size Chapter Ref.
1 2 3∗ 4 6 7 8

AMUSE-1 primary 1 028 X X X X X X [44]
AIDA secondary 814 X X X X [223]
EDIT secondary 153 X X X [18]
Kraaijenhagen secondary 1 756 X X X X X X [140]
Toll primary 532 X X X X X X X [260]

primary 259 X X X X X X X [261]
EDITED secondary 1 075 X X X X X [17]
Kearon (2001) secondary 429 X X X [137]
Elf secondary 325 X X X X [73]
Oudega primary 1 295 X X X X X [182]
Stevens secondary 436 X X X X [232]
DIEM secondary 541 X X X X [282]
Bates secondary 550 X X X [24]
Kearon (2005) secondary 809 X X X [138]

∗ The Elf study in Chapter 5 contains 357 subjects. In addition, the Kearon and Bates studies
were combined into a single dataset of 1 768 subjects.
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Summary

“Scientific knowledge is a body of statements of varying degrees of certainty – some most
unsure, some nearly sure, none absolutely certain.”

– Richard Phillips Feynman

T
he goal of this thesis was to introduce and evaluate novel statistical methods for performing

meta-analysis in clinical prediction research. Hereto, two scenarios were considered in

which individual participant data (IPD) or aggregate data (AD) were available from

multiple studies. As evidence synthesis requires some degree of similarity between the study

populations considered for inclusion into a novel prediction model, specific attention was put on

the identification and estimation of between-study heterogeneity. A brief summary of the chapters

presented in this thesis is given below.

Section II: Meta-analysis when individual participant data (IPD) is available from multiple studies.

Chapter 1 evaluates whether meta-analyses should account for clustering of participants within

studies. Logistic regression was applied in real and simulated examples. Results indicated that es-

timated associations tend to weaken and that statistical significance could disappear when cluster-

ing was ignored. Simulations showed that models accounting for clustering performed consistently,

whilst downwardly biased effect estimates and low coverage occurred when clustering was ignored.

It was concluded that routinely accounting for clustering in IPD meta-analyses would improve the

validity and generalizability of estimated predictor-outcome associations, whilst ignoring clustering

creates a risk of misleading effect estimates and spurious conclusions.

Chapter 2 describes and compares several random-effects meta-analysis models for estimating

factor-outcome associations from multiple risk-factor or predictor finding studies with a binary

outcome. These models account for heterogeneity across studies by applying a one-stage or a

two-stage method. One-stage methods use the IPD of each study and meta-analyze using the

exact binomial distribution, whereas two-stage methods first reduce evidence to the aggregated

level (e.g. odds ratios) and then meta-analyse assuming approximate normality. Although one-

stage and two-stage methods are generally thought to produce similar results, there is a dearth of

previous empirical comparisons. In this chapter, an empirical dataset was used to compare several

one-stage and two-stage methods for obtaining unadjusted and adjusted risk-factor estimates.

Results showed that one-stage and two-stage methods occasionally provided different parameter

estimates or suffered from estimation issues. In particular, two-stage models yielded unstable

estimates when zero cell counts occurred and one-stage models did not always converge. It was

therefore advised that the choice and implementation type (e.g. univariable or multivariable) of a

one-stage or two-stage method should be prespecified in the study protocol, as they may lead to

different conclusions regarding statistical significance.
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Chapter 3 describes the use of IPD from multiple studies to develop a multivariable risk prediction

model. It considers several approaches for developing a multivariable logistic regression model

from an IPD meta-analysis (IPD-MA) with potential between-study heterogeneity. As prediction

models are usually validated or applied in new individuals or study populations, this chapter also

proposes strategies for choosing a valid model intercept and evaluating model generalizability. In

an empirical evaluation, results showed how stratified estimation allowed the estimation of study-

specific model intercepts, and demonstrated how focused intercept choice facilitated the model’s

implementation in new individuals or study populations. This chapter also illustrated how internal-

external cross-validation allowed the evaluation of a single, integrated prediction model. Finally,

it was concluded that a model’s performance is likely to be more consistent across studies if there

is little or no heterogeneity in the effects of the included predictors.

Chapter 4 evaluates several approaches for developing a prediction model from an IPD meta-

analysis when some predictor variables are systematically missing. This situation may arise, for

instance, when predictor variables have not all been measured in each study. As a consequence,

some within-study predictor effects are no longer identifiable, and predictor selection can no longer

unequivocally be achieved. Results from an empirical example demonstrated that traditional

imputation strategies sufficed for developing prediction models with adequate performance, and

can be implemented fairly straightforward. As such strategies may, however, lead to a self-fulfilling

prophecy regarding homogeneity of predictor effects, it was concluded that more sophisticated

imputation strategies are needed to guarantee model generalizability.

Section III: Meta-analysis when aggregate data (AD) is available from multiple studies.

Chapter 5 proposes a novel adaptation method to incorporate previously published univariable

associations in the construction of a novel prediction model. A case study and a simulation study

were performed to compare the novel adaptation method with established approaches. Results

demonstrated that performance of estimated multivariable associations considerably improved for

small datasets where external evidence was included. Although the error of estimated associations

decreased with increasing amount of IPD, it did not disappear completely, even in very large

datasets. It was concluded that the novel adaptation method outperforms established approaches

and is especially worthwhile when relatively limited IPD are available.

Chapter 6 evaluates three approaches for aggregating previously published prediction models

with new data. Hereto it considers the situation where models are reported in the literature with

predictors similar to those available in an IPD dataset. The three approaches were applied to

more than 10 prediction models for predicting the outcome after Traumatic Brain Injury, and to

5 previously published models for predicting the presence of Deep Venous Thrombosis. Results
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from the case studies demonstrated that aggregation yielded prediction models with an improved

discrimination and calibration (common measures of model performance) in a vast majority of

scenarios, and resulted in equivalent performance (compared to the standard approach) in a small

minority of scenarios. The proposed aggregation approaches were particularly useful when few

IPD were at hand. It was concluded that assessing the degree of heterogeneity between IPD

and literature findings remains crucial to determine the optimal approach in aggregating previous

evidence into new prediction models.

Chapter 7 evaluates two approaches, Model Averaging and Stacked Regressions, for aggregating

previously published prediction models when a validation dataset is at hand. In contrast to Chapter

8, these approaches no longer require models from the literature to have similar predictors, and yield

user-friendly stand-alone models that are adjusted for the new validation data. Results from two

clinical datasets and a simulation study demonstrated that aggregation yielded prediction models

with an improved discrimination and calibration in a vast majority of scenarios, and resulted

in equivalent performance (compared to developing a novel model from scratch) when validation

samples were relatively large. It was concluded that model aggregation is a promising extension

of model updating when several models are available from the literature, and a validation dataset

is at hand. Furthermore, the aggregation methods do not require existing models to have similar

predictors and can be applied when relatively few data are at hand.

Chapter 8 proposes a sequence of steps for a proper interpretation of validation results from a

clinical prediction model. These steps involve quantifying the differences in case mix between the

development and validation sample, and assessing the model’s corresponding performance. This

information was then used to interpret estimates of model discrimination and calibration in terms

of case-mix differences. To enhance the interpretation of independent validation studies, it was

proposed to distinguish between a model’s reproducibility and transportability. Finally, it was

described how inadequate model performance can be improved by applying updating strategies.
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“Denkt aleer gij doende zijt / en doende, denk dan nog.”

– Guido Gezelle

H
et is gebruikelijk dat patiënten pas behandeld worden na het stellen van een diagnose

(wat is de onderliggende ziekte?) of prognose (wat zal de uitkomst van deze ziekte

zijn?). Deze inschatting berust meestal op de (klinische) interpretatie van verschillende

patiëntgegevens en/of testuitslagen, maar ook steeds vaker op de voorspellingen van een statistis-

che (predictie)model. Predictiemodellen worden gëımplementeerd zodra voldoende bewezen is dat

ze accurate voorspellingen leveren in nieuwe patiëntenpopulaties. Helaas worden predictiemodellen

meestal ontwikkeld uit relatief kleine datasets, die niet altijd even betrouwbaar of representatief

zijn. Bovendien houden predictiemodellen vaak geen rekening met verschillen tussen populaties,

en wordt hun voorspellend vermogen zelden getest in nieuwe patiënten. De prestaties van pre-

dictiemodellen zijn daarom vaak onduidelijk of teleurstellend, waardoor onderzoekers meestal een

volledig nieuw model ontwikkelen voor ‘eigen’ gebruik. Deze gang van zaken heeft de afgelopen

decennia geleid tot een overvloed aan gelijksoortige predictiemodellen. Zo zijn er meer dan 60

modellen ontwikkeld die de kans op overlijden van borstkankerpatiënten inschatten.

Dit proefschrift behandelt meta-analytische technieken ter ondersteuning van klinisch predictie-

onderzoek. Deze technieken laten toe om de wetenschappelijke bevindingen uit eerdere studies te

integreren bij de ontwikkeling van een nieuw predictiemodel. In dit proefschrift wordt onderscheid

gemaakt tussen de beschikking over ruwe data, b.v. individuele patiëntgegevens (IPD), en geag-

gregeerde data (AD). Omdat IPD en AD vaak verzameld worden in populaties met een variërende

mate van vergelijkbaarheid, besteedt dit proefschrift een bijzondere aandacht aan de identificatie

en schatting van heterogeneiteit tussen studies.

Section II: Meta-analyse wanneer ruwe data (IPD) beschikbaar is uit verschillende studies.

Hoofdstuk 1 onderzoekt of meta-analyses rekening moeten houden met de samenhang (clustering)

van deelnemers binnen studies. Bij het toepassen van logistische regressie in echte en gesimuleerde

voorbeelden leidde het negeren van clustering tot een onderschatting van associaties en het verdwi-

jnen van statistische significantie. Simulaties toonden verder aan dat modellen die rekening houden

met clustering consistente prestaties leveren, en dat modellen die clustering negeren leiden tot een

neerwaartse vertekening van associaties en een verminderde dekking van betrouwbaarheidsinter-

vallen. Er werd geconcludeerd dat meta-analyses die routinematig rekening houden met clustering

om de validiteit en generaliseerbaarheid van geschatte associaties te verbeteren.

Hoofdstuk 2 beschrijft en vergelijkt verschillende random-effects modellen voor het meta-analyseren

van risico-factor associaties met een binaire uitkomst. Random-effects modellen houden rekening
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met heterogeniteit tussen studies door het toepassen van een een- of tweestaps methode. Een-

staps methoden gebruiken rechtstreeks de IPD uit elke studie en meta-analyseren deze gegevens

met een exacte binomiale verdeling. Tweestaps methoden, daarentegen, reduceren de IPD eerst

tot geaggregeerde data (zoals odds ratio’s) en combineren de resulterende schattingen daarna uit-

gaande van normaliteit. Hoewel het algemeen aangenomen wordt dat een- en tweestaps methoden

vergelijkbare resultaten opleveren, ontbreken empirische vergelijkingen. In dit hoofdstuk werd een

empirische dataset gebruikt om verschillende een- en tweestaps methoden te vergelijken die uni-

en multivariabele associaties schatten. Resultaten toonden aan dat een- en tweestaps methoden

soms verschillende parameterschattingen opleveren of lijden aan schattingsproblemen. Met name

tweestaps modellen leverden instabiele schattingen op bij het optreden van lege cellen, terwijl

eenstapsmodellen niet altijd convergeerden. Er werd daarom geadviseerd dat de keuze en type

(bv. univariabele of multivariabele) van een een- of tweestaps methode vooraf gespecificeerd moet

worden in het studieprotocol.

Hoofdstuk 3 beschrijft hoe de IPD uit meerdere studies gebruikt kan worden tijdens de ontwikke-

ling van een multivariabel predictiemodel. Hiertoe werden verschillende technieken onderzocht om

een logistisch regressiemodel te ontwikkelen die rekening houdt met heterogeniteit tussen studies.

Daarnaast werden ook strategieën beschouwd die een geldig intercept opleveren wanneer het pre-

dictiemodel toepast of gevalideerd wordt in een nieuwe populatie. In een empirische studie werd

aangetoond dat het waardevol is om een afzonderlijke intercept te schatten voor elke studie uit de

meta-analyse. Dit laat immers toe om vervolgens een geschatte intercept te selecteren die gebruikt

kan worden in een nieuwe populatie. Tot slot werd beschreven hoe de generaliseerbaarheid van

het meta-analytisch predictiemodel geëvalueerd kan worden via interne-externe cross-validatie. Er

werd geconcludeerd dat predictiemodellen betere prestaties leveren in nieuwe populaties wanneer

hun associaties weinig of geen heterogeniteit tussen studies vertonen.

Hoofdstuk 4 onderzoekt hoe een predictiemodel ontwikkeld kan worden uit een IPD meta-analyse

wanneer een aantal voorspellende variabelen systematisch ontbreken. Deze situatie kan optre-

den wanneer niet alle studies dezelfde variabelen hebben verzameld (zoals de resultaten van een

biomarker test). Als gevolg hiervan zijn sommige associaties niet meer identificeerbaar in elke

studie, en is het niet langer duidelijk hoe variabelen voor het predictiemodel geselecteerd kunnen

worden. Een empirisch voorbeeld toonde aan dat imputatie van missende waarden een eenvoudige

oplossing biedt, en rekening kan houden met heterogeniteit tussen studies.

Section III: Meta-analyse wanneer geaggregeerde data (AD) beschikbaar is uit verschillende studies.

Hoofdstuk 5 beschrijft een nieuwe adaptatiemethode om gepubliceerde univariabele (i.e. ongecor-

rigeerde) associaties te incorporeren tijdens de ontwikkeling van een multivariabel predictiemodel.
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Deze adaptatiemethode werd vergeleken met bestaande technieken in een klinisch voorbeeld en

een simulatiestudie. Resultaten toonden aan dat het incorporeren van gepubliceerde univariabele

associaties leidde tot een aanzienlijk betere kwaliteit van geschatte multivariabele associaties in

kleine datasets. Hoewel het negeren van van gepubliceerde associaties weinig impact had in grote

datasets, verdween de error in geschatte associaties niet volledig. Er werd geconcludeerd dat de

adaptatiemethode beter presteert dan bestaande technieken en vooral zinvol is wanneer relatief

weinig IPD beschikbaar is.

Hoofdstuk 6 evalueert drie methoden die bestaande predictiemodellen kunnen integreren bij de

ontwikkeling van een nieuw predictiemodel. Hiertoe werd de situatie beschouwd waarin een model

ontwikkelingsdataset beschikbaar was, en dat de bestaande modellen (deels) dezelfde predictoren

bevatten. De drie methoden werden toegepast op ruim tien predictiemodellen die de uitkomst

na traumatisch hersenletsel voorspellen, en vijf gepubliceerde modellen die de aanwezigheid van

diepe veneuze trombose voorspellen. Resultaten toonden aan dat aggregatie meestal leidde tot

predictiemodellen met een betere discriminatie en kalibratie, en soms resulteerde in vergelijkbare

prestaties (in vergelijking met de standaard methode). De beschreven aggregatie methoden waren

met name waardevol in relatief kleine datasets. Er werd geconcludeerd dat het evalueren van

de mate van heterogeniteit tussen de beschikbare data en de gepubliceerde predictiemodellen een

cruciale rol speelt tijdens het bepalen van de optimale aggregatiemethode.

Hoofdstuk 7 evalueert twee methoden, Model Averaging en Stacked Regressions, die gepubliceerde

predictiemodellen aggregeren wanneer een validatie dataset beschikbaar is. In tegenstelling tot

Hoofdstuk 8, vereisen deze methoden niet dat de gepubliceerde modellen dezelfde predictoren be-

vatten. Bovendien leveren ze gebruiksvriendelijke stand-alone modellen die aangepast zijn voor de

populatie van de validatieset. Resultaten uit twee klinische datasets en een simulatiestudie gaven

aan dat aggregatie meestal leidde tot betere discriminatie en kalibratie, en resulteerde in vergeli-

jkbare prestaties bij grotere validatie datasets. Er werd geconcludeerd dat model aggregatie een

veelbelovende uitbreiding van model updating is wanneer meerdere gepubliceerde predictiemodel-

len en een validatie dataset beschikbaar zijn.

Hoofdstuk 8 stelt een stappenplan voor om de resultaten van een model validatiestudie beter

te interpreteren. Deze stappen omvatten het kwantificeren van de case mix verschillen tussen de

ontwikkelings- en validatie-sample, en het beoordelen van de resulterende model prestaties. Deze

informatie wordt vervolgens gebruikt om schattingen van model discriminatie en kalibratie te inter-

preteren in termen van case-mix verschillen. Om de interpretatie van validatiestudies te verbeteren,

werd voorgesteld om onderscheid te maken tussen de reproduceerbaarheid en transporteerbaarheid

van een predictiemodel. Tenslotte werd beschreven hoe teleurstellende modelprestaties verbeterd

kunnen worden door middel van updating strategieën.
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