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We study to what extent dielectric nanoparticles prefer to self-assemble into linear chains or into more
compact structures. To calculate the Van der Waals (VdW) attraction between the clusters we use the
Coupled Dipole Method (CDM), which treats each atom in the nanoparticle as an inducible oscil-
lating point dipole. The VdW attraction then results from the full many-body interactions between
the dipoles. For non-capped nanoparticles, we calculate in which configuration the VdW attraction
is maximal. We find that in virtually all cases we studied, many-body effects only result in local
potential minima at the linear configuration, as opposed to global ones, and that these metastable
minima are in most cases rather shallow compared to the thermal energy. In this work, we also
compare the CDM results with those from Hamaker-de Boer and Axilrod-Teller theory to investi-
gate the influence of the many-body effects and the accuracy of these two approximate methods.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792137]

I. INTRODUCTION

In recent years, the self-assembly of colloidal nanopar-
ticles has received a large amount of attention. Many proce-
dures have been proposed to achieve the desired highly or-
dered structures, e.g., by using systems with substrates or
templates,1 applying external electric, or magnetic fields2–6

to particles with anisotropic response to these fields, or by
using a fluid flow7 to align the particles. One of the most
widely used techniques, however, is the design and manip-
ulation of particle-particle interactions, which can result in
spontaneous self-assembly. Since the synthesis of anisotrop-
ically shaped particles has improved significantly in the past
decade,8, 9 it is possible to control the shape of the particles
and rely on excluded-volume interactions (possibly with the
use of a depletant) to achieve alignment.10, 11 Alternatively,
interaction design by controlling the relevant chemistry has
also been successfully employed, for example in the form of
patchy colloids,12–14 or by the use of single-stranded DNA
molecules as linkers.15, 16

Spontaneous self-assembly of nanoparticles into lin-
ear chains has been observed experimentally. Various types
of particles display this behavior. Observed systems in-
clude gold,17 PbSe,18–20 CdSe,18, 21–23 ZnSe,23 and CdTe24, 25

nanoparticles. In the referenced papers, the behavior is at-
tributed to the presence of a permanent dipole moment in the
nanoparticles, although its origin is not entirely understood.
Initial explanations attributed it to the intrinsic polar charac-
ter of the wurtzite (CdSe) structure,21 but this does not explain
why the same behavior is observed in the nanoparticles of
other structures. Other suggested origins include the presence
of trapped, surface-localized charges,23 and breaking of the
nanoparticle’s central symmetry due to asymmetric arrange-
ment of crystal facets.19

More recent experimental26, 27 as well as theoretical and
simulational27 studies suggest that the capping layer plays
an important role in the self-assembly of particles into vari-
ous structures, including chains. The underlying mechanism
here is a competition of the attractions between the parti-
cle cores with the entropy loss from distorting the capping
layer polymer chains when two or more particles are close
together. The linear conformation of the chains is explained
by migration of ligands when two particles attach, making the
site diametrically opposite the first contact point the most at-
tractive for attachment of a third particle.27 A detailed sim-
ulation study of the influence of the type of capping layer
on two- and three-body interactions between nanoparticles28

indeed suggests, among other things, that, due to the influ-
ence of the capping layer, a linear configuration of particles
is energetically preferred over a triangular structure. These
studies thus provide a possible explanation for spontaneous
chain formation that does not depend on the presence of a
permanent dipole. In this work, we investigate a third option,
namely, the presence of nonpermanent, induced, fluctuating
dipoles. These fluctuating dipoles are the origin of the Van
der Waals (VdW) force between atoms and colloidal particles.
This force is isotropic between two interacting atoms, but be-
comes orientation-dependent when more atoms are consid-
ered, since the fluctuating dipoles, like permanent ones, prefer
to lie head-to-toe as opposed to side-by-side. Thus, to inves-
tigate this effect, we cannot rely on pairwise interactions be-
tween atoms, but have to calculate the full, many-atom VdW
interaction, using a method called the Coupled Dipole Method
(CDM), on which we elaborate in the next paragraph and
Sec. II. It turns out that in virtually all cases we studied, many-
body effects only result in local potential minima at the linear
configuration, whereas the global minimum occurs for com-
pact clusters. Moreover, these metastable minima are usually
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rather shallow compared to the thermal energy. In most cases,
the answer to the question asked in this Paper’s title there-
fore seems to be “No.” There are, however, extreme parameter
regimes where linear configurations have the lowest energy.

The CDM, which models atoms as interacting inducible
dipoles, was first introduced by Renne and Nijboer29–31 in
the 1960s. The method employs large-matrix manipulation
to calculate the eigenmodes of the system under study; the
sum of these frequencies then yields the ground state en-
ergy. The CDM takes many-body effects into account and
can, therefore, be expected to be more accurate than both
Hamaker-de Boer (HdB) theory,32, 33 which employs pairwise
summation of atom-atom interactions, and a modification
thereof, offered by Axilrod and Teller,34 which includes three-
atom interactions. In this work, we will examine the accuracy
of the latter two methods, when compared to the CDM (which
we will assume to be the “exact” result), for several many-
atom systems.

At the time the CDM was conceived of, it was infeasi-
ble to perform the large-scale numerical calculations asso-
ciated with the matrix manipulation, but computers of today
can easily handle systems of at least O (104) atoms. Recently,
the CDM has been employed to calculate interactions be-
tween, and also the polarizability of, nanoclusters of various
sizes and shapes.35–41 Furthermore, the accuracy of the first-,
second- and third-order approximations of the CDM have
been compared to the CDM itself in the context of graphitic
nanostructures, yielding similar results to ours.40

For reasons that will be explained shortly, the CDM is
only valid for non-metallic particles made of a material that
satisfies a0/α

1/3
0 � 1.7, where a0 is the lattice constant and

α0 the atomic polarizability associated with the material. Fur-
thermore, all the calculations in this work are performed
for particles in vacuum. To obtain results for particles in a
medium, the atomic polarizability would have to be modi-
fied to a value that can be obtained by inserting the permit-
tivity contrast between the particle and the medium into the
Clausius-Mossotti relation.

II. METHODS

A. Atomic point dipoles

Throughout this paper, we will use the Lorentz-Drude
model, which regards an atom as a nucleus of positive charge,
with electrons harmonically bound to it. In this work, we con-
sider only one electron (per nucleus) with charge −e and,
hence, a nucleus charge of +e. The polarization p of the atom
is then simply given by p = eu, where u is the distance be-
tween the nucleus and the electron. Upon applying an external
electric field E, it can be shown that

p = α0E,

where (in CGS units)

α0 = e2

meω
2
0

(1)

is the atomic polarizability. Here, me is the mass of the elec-
tron and ω0 is the frequency associated with the harmonic

force. In effect, an atom described in this way is a harmonic
oscillator with frequency ω0, therefore sometimes called a
Drude oscillator.

Since in this model, the electrons are assumed to be
bound to their nuclei, it does not apply to metals, because
these contain unbound (free) electrons.

B. The coupled dipole method

The interaction between a pair of these atoms, at posi-
tions ri and rj , is assumed to be the dipole-dipole interaction
potential −e2ui · T(rij ) · uj , where ui is the distance vector
between the nucleus and electron of atom i, and where we
introduced a 3 × 3 dipole tensor

T(rij ) ≡ Tij =
{(

3rij rij /r2
ij − I

)
/r3

ij if i �= j,

0 if i = j,

with rij = ri − rj and rij = |rij |. In the case of N atoms in
vacuum, all at fixed positions, we can write the Hamiltonian
as a set of coupled harmonic oscillators

H = 1

2me

N∑
i=1

k2
i + meω

2
0

2

N∑
i,j=1

ui(Iδij − α0Tij ) · uj , (2)

where we used ki to denote the linear momentum of the ith
electron. The Hamiltonian of Eq. (2) represents a set of cou-
pled harmonic oscillators. The angular eigenfrequencies of
this system, ωk with k = 1, 2, . . . , 3N, depend solely on
the dimensionless positions ri/α

1/3
0 of the dipoles and on ω0

(or, equivalently via Eq. (1), α0). For N � 104 it is numeri-
cally fairly straightforward to find these eigenfrequencies, and
hence the quantum mechanical ground state energy29–31, 35–39

E
({

ri/α
1/3
0

}
; ω0

) = ¯
2

3N∑
k=1

ωk, (3)

where ¯ is the reduced Planck constant.
In this paper, we are interested in the effective inter-

actions between nanoparticles composed of atomic dipoles.
These nanoparticles are described as clusters of atomic
dipoles arranged in a cubic lattice with lattice spacing a0

such that they form a cubic or an (approximately) spher-
ical nanoparticle. We will only consider interactions be-
tween identical nanoparticles. If we assign each nanoparticle a
center-of-mass-position Ri , the spectrum of eigenfrequencies
ωk only depends on the atomic eigenfrequency ω0, the num-
ber of atoms in each nanoparticle, the dimensionless combi-
nations Rij /a0, where Rij = Ri − Rj , and the dimensionless
lattice spacing

a ≡ a0/α
1/3
0 .

Typical values of a are, in vacuum, a = 2.64 for hexane, a
= 2.05 for silica and a = 1.75 for sapphire.38 For low values
of a, we encounter a polarization catastrophe, where the in-
teractions become so strong that they overcome the harmonic
binding force between the nuclei and their electrons, and the
material becomes ferromagnetic. In the CDM, the catastro-
phe manifests itself by some of the frequencies ωk becoming
imaginary. For large numbers of atoms, the value at which the
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catastrophe occurs lies between a ≈ 1.70 and a ≈ 1.75, de-
pending on the lattice type. For very low numbers of atoms,
the interatomic distance is allowed to be somewhat smaller;
e.g., in Sec. III A, we show a setup with three atoms where
the CDM is valid for a � 1.44.

To obtain the effective interaction energy
V

(CDM)
2 (R1, R2) between two nanoparticles at position

R1 and R2 we subtract the ground state energy at infinite sep-
aration, which is the same as the energy of each nanoparticle
if the other were absent

V
(CDM)

2 (R1, R2) = E
(CDM)
2 (R1, R2) − E

(CDM)
1 (R1)

− E
(CDM)
1 (R2)

= E
(CDM)
2 (R1 − R2) − 2E

(CDM)
1 . (4)

Here, E
(CDM)
2 (R1, R2) is the CDM-energy of the system by

taking the positions of the atoms in the clusters at R1 and
R2 and plugging them into Eq. (3), and E

(CDM)
1 (Ri) is ob-

tained by plugging only the positions of the atoms in clus-
ter i into Eq. (3). In the second line, we have resolved some
of the dependencies by noting that, in the case of two clus-
ters, translational symmetry requires that E

(CDM)
2 (R1, R2)

= E
(CDM)
2 (R1 − R2) only depends on the relative cluster co-

ordinates, and that E
(CDM)
1 (Ri) = E

(CDM)
1 does not depend on

the center-of-mass position of the particle. Note that in this
simplification, we also use that the clusters are identical.

If the system consists of two “clusters” consisting each of
only one atom with polarizability α0, separated by a distance
r, calculation of the interaction is possible analytically within
the CDM. When we Taylor-expand the result up to quadratic
order for large interatomic distance, we find that the r0 and
r−3 terms of the expansion vanish and that we are left with
only an r−6 term

V
(CDM)

2 (r) � −3

4
¯ω0

α2
0

r6

(
r � α

1/3
0

)
. (5)

This is the VdW interaction energy between two atoms.
For three clusters, the effective interaction energy is the

sum of the effective interaction energies V
(CDM)

2 (Ri , Rj ),
plus the three-body term

V
(CDM)

3 (R1, R2, R3)

= E
(CDM)
3 (R1, R2, R3) − V

(CDM)
2 (R1, R2)

− V
(CDM)

2 (R2, R3) − V
(CDM)

2 (R1, R3)

− E
(CDM)
1 (R1) − E

(CDM)
1 (R2) − E

(CDM)
1 (R3)

= E
(CDM)
3 (R1, R2, R3) − E

(CDM)
2 (R1 − R2)

− E
(CDM)
2 (R2 − R3) − E

(CDM)
2 (R1 − R3)

+ 3E
(CDM)
1 . (6)

Here, E
(CDM)
3 (R1, R2, R3) is obtained by plugging the atom

positions of all three clusters into Eq. (3), and the second
equality is obtained by using Eq. (4) and resolving the de-
pendencies, as in the two-body case.

C. The Hamaker-de Boer potential

A widely used method for calculating the interaction en-
ergy in a colloidal system is by summation of the London
potential between pairs of fluctuating dipoles. Given a set of
atoms with locations {ri} (where i = 1, . . . , N), the total HdB
interaction energy is given by

E(HdB)({ri}) =
∑
(ij )

v(L)(rij ), (7)

where v(L)(rij ) is the London interaction between atom i and
j, given by

v(L)(r) = − A

r6
, (8)

where A is a constant determined by the two atoms’ ionization
energies and where r is the distance between the atoms. When
dealing with clusters of atoms, E(HdB)({ri}) will not only con-
tain interactions between pairs of atoms in different clusters,
but also between pairs of atoms in the same cluster. Since we
are only interested in the interaction energy between the clus-
ters, we subtract the latter from their total energy to obtain the
HdB inter-cluster interaction energy V

(HdB)
2 (R1, R2). For two

clusters located at R1 and R2, respectively, we have, similar
to Eq. (4),

V
(HdB)

2 (R1, R2) =E
(HdB)
2 (R1, R2) − E

(HdB)
1 (R1)

− E
(HdB)
2 (R2)

=E
(HdB)
2 (R1 − R2) − 2E

(HdB)
1 .

Here, E
(HdB)
2 (R1, R2) is obtained by considering the atoms of

both clusters 1 and 2 for Eq. (7), while E
(HdB)
1 (Ri) is obtained

by only considering the atoms of cluster i. For three clusters,
it turns out that V

(HdB)
3 (defined similar to V

(CDM)
3 ) vanishes

because only atomic pair interactions are considered.
The constant A to be used in Eq. (8) can be calculated

in various ways. In this work, we intend to compare the HdB
method to the CDM, and we therefore require that the long-
range interaction energy between two atoms be equal when
calculated using Eq. (8) and when using CDM (Eq. (5)). Com-
paring Eq. (5) with Eq. (8), we find

A = 3

4
¯ω0α

2
0 . (9)

This is in agreement with, for example, the results in
Ref. 42, Eq. (5), if u1 = ¯ω0 is inserted into that equation.
Note that ¯ω0 is the energy cost of ionizing the harmonic
(Drude) oscillator, as expected.

D. The Axilrod-Teller potential

The HdB potential only includes pair interactions and
ignores any many-body interactions. In 1943, Axilrod and
Teller34 approximated the three-body contribution to the
atomic interaction energy,

v(AT )(ri, rj , rk) = B
1 + 3 cos θi cos θj cos θk

r3
ij r

3
jkr

3
ki

, (10)
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where cos θi = r̂ij · r̂ik , and B is, according to Ref. 42 with
u1 = ¯ω0, given by

B = 9

16
¯ω0α

3
0 .

We note that Eq. (10), such as Eq. (8), is a good approximation
only for sufficiently large distances. The total Axilrod-Teller
(AT) potential energy is the HdB potential energy, extended
by a summation over dipole triplets,

E(AT )({ri}) = E(HdB)({ri}) +
∑
(ijk)

v(AT )(ri, rj , rk), (11)

and the interaction energy between clusters of dipoles can
be defined in the usual way, i.e., by Eqs. (4) and (6),
where the superscript (CDM) is replaced by (AT), and E

(AT )
1 ,

E
(AT )
2 (Ri , Rj ) and E

(AT )
3 (Ri , Rj , Rk) are now calculated us-

ing Eq. (11).
As far as we are aware, there is no closed expression for

the CDM potential energy of three dipoles in an arbitrary con-
figuration and therefore, it is in general not possible to com-
pare the expression of the AT potential energy to that of the
Taylor expansion of the CDM potential energy, as we did in
the case of two dipoles. However, for the special case of an
atomic triplet where r12 = r23, we show in the Appendix that
the AT potential equals the first two nonzero terms of this Tay-
lor expansion of the CDM potential energy.

E. A note on notation

In this paper, we only consider setups where a number
of clusters (usually two) are stationary, while an extra clus-
ter is moved. For computational simplicity we will therefore
consider the stationary clusters as one, so that we only calcu-
late V

(CDM)
2 , V

(HdB)
2 , and V

(AT )
2 between the moving and the

stationary clusters. In the case of three clusters, we have also
analyzed the system when considered as three independent
clusters, and calculated V

(CDM,HdB,AT )
3 plus the three cluster

pair interactions V
(CDM,HdB,AT )

2 . As expected, the resulting
interaction energy plots are the same, albeit shifted by a con-
stant. Since every interaction energy we calculate in this paper
is a V

(CDM,HdB,AT )
2 , we can ease the notation: from now on,

we denote the interaction energy of the moving cluster with
respect to the stationary ones by VCDM , VHdB , and VAT .

III. CHAINS VERSUS COMPACT CLUSTERS

A. Atomic chains and clusters

Before discussing nanoparticles each composed of many
atoms, we first consider N single atoms fixed on a straight
line, separated by a lattice constant a0. We consider an
N + 1th atom near the end of the chain, such that the vec-
tor separating this atom from the last atom in the chain has
length a0 and makes an angle θ with the line. This is illus-
trated in Fig. 1 for N = 2 (note that r = a0 in the case of single
dipoles). We calculate the CDM, HdB and AT interaction en-
ergies VCDM (θ ), VHdB (θ ), and VAT (θ ), respectively, between
the N + 1th atom and the cluster formed by the N atoms on
the line, as a function of the angle θ , to study the most fa-

FIG. 1. The angle θ is defined as the angle between the line connecting the
first two particles and the line connecting the last two particles. The dis-
tance between two successive particles is r. The situation here depicted is for
N = 2.

vorable (lowest energy) position of the additional atom. Here
θ varies from θ = 0, corresponding to the linear configura-
tion, to θ = 2π /3, corresponding to an equilateral triangle of
the three end-particles of the chain. It is not a priori clear
which of these configurations is more stable: the orientational
dependence of the dipole-dipole interaction favors a linear ar-
rangement and hence θ = 0, but the 1/r3 decay of dipolar
interactions favors small distances between the particles and
hence θ = 2π /3. If V (0) < V (2π/3), the linear chain is more
stable, while otherwise, a dense globule is favored.

In Fig. 2, we plot VCDM (θ ), VHdB(θ ), and VAT (θ ) for

N = 2, 3, and 10, with α0 = 5.25 Å (such that ω0 =
√

e2

meα0

= 6.9 × 1015s−1) for the dimensionless lattice spacings
a = 2.0 and a = 1.7, the latter corresponding to stronger cou-
pling. Note that we represent the interaction energies in units
of kBT, with kB the Boltzmann constant and T = 293 K.

Concentrating first on VCDM (solid lines) only, we note
that for both a = 2.0 and a = 1.7, the configuration where the
final three particles form an equilateral triangle is stable, by
typically 1.5kBT for a = 2.0 and by 4kBT for a = 1.7. How-
ever, the insets also clearly show that for all cases a broad
local minimum at θ = 0 is separated from the global mini-
mum at θ = 2π /3 by a maximum at θ ≈ 0.32π for a = 2.0
and at θ ≈ 0.42π for a = 1.7. The barrier between the lo-
cal and global minimum depends on the coupling parameter
a: it is much smaller than kBT in the weak coupling case of
a = 2.0, while it grows to almost 1kBT for N = 10 and
a = 1.7. Hence, in both cases we expect thermal fluctuations
to allow for relatively fast crossing of this barrier, such that
the linear configurations should be short-lived at best.

When comparing the results of the CDM to those of the
HdB and AT methods, there are several things to note. First
of all, the accuracy of the approximation is dependent on the
interatomic distance: at weaker coupling, a = 2.0, they are
much more accurate than at stronger coupling, a = 1.7. We
note, furthermore, that the accuracy is also dependent on θ ,
higher values of which (more compact clusters) tend to pro-
duce a slightly better agreement. Comparing the HdB and the
AT, we note first of all, that AT seems to approximate the fea-
tures of the CDM graph better than the HdB method, exhibit-
ing a local minimum at θ = 0, a barrier at θ ≈ 0.3π , and a
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FIG. 2. Angular dependence of the interaction potential V (θ )/kBT , where
T = 293 K, of adding a particle to the end of a string of N particles at
r = a0 (see Fig. 1), for dimensionless lattice constant a = 2.0 (a) and
a = 1.7 (b), and for N = 2 (blue), N = 3 (red), and N = 10 (yellow). The
results of three calculation methods are shown: the Coupled Dipole Method
(solid lines), the Hamaker-de Boer method (dashed lines), and the Axilrod-
Teller method (dotted lines). The inset shows a magnification of the small-
angle part of V (θ ).

global minimum at θ = 2π /3, whereas the HdB method yields
a monotonically decreasing function with its minimum at
θ = 2π /3. In passing, we can therefore note that many-body
effects are clearly responsible for creating a local minimum
at the linear configuration. In terms of absolute numbers, the
accuracy depends on θ : AT produces better results for low
angles, while the HdB method actually beats AT for high an-
gles. Both HdB and AT underestimate the effect of adding a
dipole to the chain: the graphs for the various values of N are
very close together for HdB and AT, while the CDM produces
clearly separated graphs.

From a theoretical perspective, it is interesting to inves-
tigate the behavior of VCDM (θ ) for values of a that are lower
(i.e., stronger coupling) than the aforementioned value of 1.7.
For (large) lattices of atoms, the CDM fails for such low a,
since some of the eigenfrequencies ωk become imaginary.
In the specific case of three dipoles forming a configuration
as in Fig. 1, however, the lower limit is a ≈ 1.435194. In
Fig. 3(a), we show what happens to VCDM (θ ) when a is low-
ered to this value. The HdB and AT approximations, VHdB(θ )
and VAT (θ ), respectively, are not considered here, since for
low a, they become increasingly inaccurate. We clearly see
that both the potential well at θ = 2π /3 (the triangular con-
figuration) and the one at θ = 0 (the linear configuration)

a 1.5

a
1.44332

a
1.43537
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1.45 1.50 1.55 1.60 1.65 1.70
0
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(b)

FIG. 3. (a) The CDM interaction energy VCDM , in room temperature
(T = 293 K) kBT units, of adding a third dipole with polarizability
α0 = 5.25 Å3 to a chain of two, under an angle θ (defined in Fig. 1). The di-
mensionless dipole-dipole distance is a = r/α

1/3
0 = 1.50 (blue line), 1.44332

(red line), and 1.43573 (yellow line). (b) The well depth, defined as the dif-
ference in interaction energy at the well’s configuration and the maximal in-
teraction energy (here located at around θ ≈ 0.5π ), of the linear (θ = 0)
configuration (blue) and the triangular (θ = 2π /3) configuration (red).

deepen as a is lowered, but that the θ = 0 well deepens more.
Below the value a ≈ 1.44332, the well at the linear config-
uration becomes the deeper of the two. We note that, when
compared with the aforementioned lower limit, that makes
the range of values for a for which a linear configuration is
favorable extremely narrow. Note, however, that the barrier
between the metastable and the stable configurations grows
significantly with decreasing a, being approximately 4kBT at
a = 1.5 and 14kBT at a ≈ 1.44, which could cause long-
lived linear triplets. This is also visible in Fig. 3(b), where
the depths � of the wells at θ = 0 and θ = 2π /3 are plotted
as a function of a.

It should be noted that throughout this subsection,
we have varied the dimensionless dipole-dipole distance
a = a0/α

1/3
0 by fixing α0 and varying a0. Another option is

to fix a0 and vary α0 instead. This affects the results, because
ωk/ω0 depends on a only, and hence the eigenfrequencies ωk

(and, thus, VCDM ) are proportional to ω0 ∝ α
−1/2
0 . Therefore,

the shape of the graphs in Fig. 3(b), where a is the variable,
become different, and the relative height of the various graphs
of VCDM (Figs. 2(a), 2(b), and 3(a)) with different a change.
However, as it turns out, these changes are not significant
enough to warrant reporting here (for the parameters of in-
terest), and the same qualitative conclusions apply.
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FIG. 4. Interaction potential for three spherical nanoclusters of radius
R = 3.85a0, giving 321 silica particles each, with dimensionless lattice spac-
ing a = 2.0, as a function of the angle θ between the line connecting the first
and second, and the one connecting the second and third cluster. The results
of four calculation methods are shown: the Coupled Dipole Method (solid
blue lines), the Hamaker-de Boer method (dashed blue lines), the Axilrod-
Teller method (dotted blue lines), and the result from Hamaker’s formula
Eq. (12) (the solid red line).

B. Clusters and chains of spherical nanoclusters

We now focus on chains of spherical nanoparticles. We
perform these calculations with spherical nanoparticles made
from silica atoms (α0 = 5.25 Å), which are positioned on a
face-centered cubic (fcc) lattice with a = 2.0. To create a
single nanoparticle of radius R, we start by placing the silica
atoms on the grid and then remove all of them located further
than a distance R away from the origin. Hence, we obtain an
approximately spherical cluster with radius R. Furthermore,
we use the same definition for r and θ as given in Fig. 1 for
the single particles. Now we fix r = 2R + a0 and proceed in
the same manner as above to calculate the interaction energy
between a cluster consisting of two spheres and a third sphere
as a function of the angle θ . It is again not a priori clear which
is the more stable orientation: the orientational dependence
of the dipole-dipole attraction will favor a linear arrangement
(θ = 0), whereas the 1/r3 decay will favor the small distances
between the particles (θ = 2π /3).

The resulting angle-dependence of the potential is, for
R = 3.85a0 (Nc = 321 particles in each cluster), given in
Fig. 4 for CDM, HdB, and AT. Also shown is the result when
we use Hamaker’s famous expression for the interaction en-
ergy between a pair of spheres,32

VHamaker(r, σ ) = − π2ρ2A

12

(
σ 2

r2 − σ 2
+ σ 2

r2

+ 2 log

[
r2 − σ 2

r2

])
, (12)

where σ is the diameter of the spheres, r is the center-to-center
distance between the spheres (given above), A is the London-
VdW constant, in our case given by Eq. (9), and ρ is the num-
ber density of atoms in the sphere, which can be obtained by
noting that for a fcc lattice with a0/α

1/3
0 = 2,

ρ = 2√
2a3

0

= 1

4
√

2α0

,

so that π2ρ2A ≈ 42kBT at room temperature. Since our clus-
ters are not exactly spherical, and the outer atoms are never
exactly a distance R away from the sphere center, the value
to use for σ is nontrivial. We derive it by considering the de-
pendence of the mean square displacement 〈r ′2〉ball of mass
inside a solid sphere, with homogeneous mass density ρ, on
its diameter d,

〈r ′2〉ball =
∫

dr′ρr ′2∫
dr′ρ

= 4π
∫ d/2
r=0 dr ′r ′4

4π
∫ d/2
r=0 dr ′r ′2

= 3

20
d2,

where r′ is the distance of a mass element ρdr′ from the cen-
ter of the sphere. We now assume that the mean square dis-
placement of atoms inside our spherical atom clusters, 〈r2

i 〉c
= 1

Nc

∑Nc

i=1 r2
i where ri is the distance of atom i from the cen-

ter of the sphere, obeys the same relationship, 〈r2
i 〉c = 3

20σ 2,

such that

σ =
√√√√ 20

3Nc

Nc∑
i=1

r2
i .

The numerical value for our clusters with R = 3.85a0 turns
out to be

σ ≈ 7.55a0 ≈ 0.98 × 2R.

The results of the CDM, HdB, and AT methods are sim-
ilar to those observed for the atomic chains above, i.e., there
is a local minimum at θ = 0, when all three nanoclusters line
up, while the global minimum is in the triangle orientation
(θ = 2π /3). The difference between the local minimum at
θ = 0 and the global minimum at θ = 2π /3 is of the order of
3kBT. The main difference with the atomic chain is the addi-
tional wells at θ ≈ 0.25π and θ ≈ 0.5π , separated by barriers
of the order of 0.5kBT. This structure is caused by the rela-
tively small size of the spherical nanoclusters (only 321 parti-
cles each), which renders the surfaces of the clusters not very
smooth, causing the edges of the particles to “coincidentally”
be closer to each other for some values of θ than for others.
Surprisingly, the AT approximation, in this case, gives worse
results than the HdB approximation.

The graph obtained from VHamaker(r, σ ) is quite accurate
in shape and displays a very good quantitative agreement with
the HdB approximation. This is remarkable, because for val-
ues of σ so close to r, the effective interaction energy depends
strongly on σ . The graph does not contain local minima, since
in this method, the spheres are assumed to consist of a contin-
uous, homogeneous material, and the atoms are not individu-
ally modeled.

C. Clusters and chains of cubic nanoclusters

Next, we consider L × L × L cubic nanoparticles of
Nc = L3 atoms on a cubic lattice with lattice spacing a0. Sim-
ilar to the case above, we focus on a configuration of three
particles: two lined up and close together, forming essentially
a single 2L × L × L particle, with a third particle in its vicin-
ity. We present results for clusters with L = 5. For the cu-
bic particles of interest, we will use Cartesian coordinates in-
stead of the polar coordinates used before, with the x-direction
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FIG. 5. Orientation of the system of interest for three cubic clusters of which
two are lined up and the third is a distance (x, y) away.

parallel to the chain and y- and z-directions perpendicular, as
illustrated in Fig. 5.

We consider here two cases, both for coupling constant
a = 2.0. First, we vary y for fixed x = 7.5a0, such that the
third particle can (just) slide “vertically” past the other two
on the right side. Note that this means that when y = 0, all
three clusters lie on the same line and are touching (i.e., this
corresponds to the θ = 0 orientation of the spherical clusters).
Second, we fix y = 5a0 and vary x, such that the third particle
slides “horizontally” along x on top of the other two particles.

The results are plotted in Fig. 6. Figure 6(a) shows the po-
tential V (x = 7.5a0, y) for the first, “vertical” case, revealing
local minima at (roughly) y/a0 ≈ 0,±0.96, ±1.93, and ±2.89,
while a “pseudo-minimum” (inflection point) occurs at y/a0

≈ ±3.82. These correspond to alignment of horizontal sheets
of atoms in the three 5 × 5 × 5 nanoclusters; we interpret
the small deviation from perfect alignment (which occurs at
y/a0 = 0, ±1, ±2, etc.) as a finite-size effect. The global mini-
mum in Fig. 6(a) occurs for the linear chain characterized by y
= 0. The energy barriers between adjacent local minima vary
from roughly 5.9kBT between y/a0 = ±0.96 and y/a0 = 0, and
2.7kBT from y/a0 = ±1.93 to y/a0 = ±0.962, to vanishingly
small barriers for y/a0 ≥ 3. As a consequence, one could ex-
pect (temporary) trapping in local minima at y/a0 = ±0.96
and ±1.93. Figure 6(b) shows the potential V (x, y = 5a0) for
the second, “horizontal” case. Again, we observe local min-
ima, near where vertical sheets of atoms align, in this case for
x/a0 ≈ ±0.50, ±1.50, ±2.48, ±3.45, ±4.43, ±5.38. The six
deepest ones (with |x/a0| < 2.5) are essentially degenerate and
separated by barriers of about 15kBT. We note that the minima
occur closer to perfect alignment when the third cube is near
the middle: here, the effect of the edges of the first two cubes
is smallest. For |x/a0| � 7/2, we can still make out the points
where either 4, 3, 2, or 1 sheet(s) align(s).

Combining the information of Figs. 6(a) and 6(b) reveals
that the global minimum, for these 5 × 5 × 5 clusters,
occurs in the vicinity of the “triangular” configuration, since
V (x = a0/2, y = 5a0) ≈ −97kBT , whereas the deepest
linear-chain minimum is V (x = 7.5a0, y = 0) = −91kBT ,
the difference being about 6kBT. One should realize, however,
that the barrier(s) separating the two configurations are of the
order of 100kBT, such that a chain, once formed, could exist

4 2 0 2 4
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40

20

0

y a0

V

k BT

10 5 0 5 10
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20
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x a0

V

k BT

(a)

(b)

FIG. 6. Interaction potential for three cubic clusters of 125 particles each
with lattice spacing a0 = 2.0α

1/3
0 , (a) as function of the y-coordinate of the

third cluster for fixed x = 7.5a0 and (b) as function of the x-coordinate of
the third cluster for fixed y = 5a0. The results of three calculation methods
are shown: the Coupled Dipole Method (solid lines), the Hamaker-de Boer
method (dashed lines), and the Axilrod-Teller method (dotted lines).

essentially forever. It thus appears that the main difference
between the attachment potential of atomic triplets (treated
in an earlier section) and the 5 × 5 × 5 triplets here is the
existence of local minima separated by barriers due to the
underlying atomic structure of the latter. These results are
qualitatively similar to those of 3 × 3 × 3 and 7 × 7 × 7
particles.

We note again that the HdB approximation gives bet-
ter results than the AT approximation, although the latter
seems to better approximate the height of the inter-well bar-
riers. We note that both the shape of the graphs, which
feature local minima induced by the atomic structure, as
well as the qualitative conclusion that HdB is more accu-
rate than AT, are similar to those presented in Ref. 41. For
this setup, we also calculated the net force on the third
(“moving”) particle by considering the gradient of V , but no
interesting conclusions could be drawn from these calcula-
tions, except that the accuracy of the HdB and AT approxima-
tions remained roughly the same.

IV. SUMMARY AND CONCLUSION

In this work, we have addressed the question whether
nonadditive dispersion forces can explain chain formation of
nanoparticles. This we have done using the CDM, where we
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model the nanoparticles as built up out of atoms and take
into account all their many-body interactions. We have stud-
ied configurations of single atoms, spherical and cube-shaped
atomic clusters. For almost all these systems, we have found
a local minimum of the potential energy at the linear con-
figuration, but a global minimum at the triangular one, mak-
ing the latter thermodynamically favorable. For single dipoles
the energy difference between the two configurations is
generally several kBT and the barrier between the two only
of the order of, at most, one kBT, such that we do not expect
linear configurations to be stable. For a small parameter sub-
space we did find a stable linear configuration; however, given
the small size of this region and the exotic parameters chosen,
it seems unlikely that this has experimental significance. For
spherical clusters of dipoles, we found only a stable triangu-
lar phase. For cubes, although the triangular configuration is
the overall minimum, the energy barrier between the linear
and triangular configuration is so large that, once formed, we
expect either configuration to exist essentially forever.

In many of the studied cases, we have also investigated
how accurate the HdB and AT methods of calculating the in-
teraction energy are when compared to the result given by
the CDM. From the studied cases, we can conclude that for
strings of single dipoles, many-body effects are significant,
especially when the coupling is strong. For the clusters con-
sisting of many dipoles (i.e., spheres and cubes), we found
that the HdB method performs very well and, in fact, much
better than the AT method. A possible explanation for this is
that, while both approaches are only exact when (dimension-
less) dipole-dipole distances are large, the AT method might
be more sensitive to dipoles being close together; and in a
cluster of dipoles, each dipole has many nearby neighbors.
More research is required to test this hypothesis. For spheres,
we compared our results with Hamaker’s expression which is
obtained by integrating the Van der Waals interaction over the
volume of two spheres.

In the work by Schapotschnikow et al.,28 where simu-
lation methods are used to arrive at an effective three-body
interaction energy between triplets of nanoparticles stabi-
lized by capping layers, it is suggested that linear chains
are the overall most favorable orientation. In our work, we
find that the CDM, which includes many-body VdW interac-
tions between atoms but ignores steric interactions between
the capping layers, shows that many-body linear chains are
metastable, whereas the two-body HdB method exhibits no
local minimum at the linear configuration. Still, in the CDM,
the triangular configuration is overall more favorable, and the
linear configuration is not stable enough to predict stable lin-
ear chains in a Brownian environment. From this, we can
conclude, as already suggested by Schapotschnikow et al.,28

that an important role in explaining chain formation could
be played by effective three-body interactions between the
particles’ capping layers that make triangular configurations
unfavorable. Many-atom VdW interactions, while not strong
enough by themselves to make linear chains favorable, do
provide a local minimum at this configuration, making it the
most favorable configuration if triangular ones are excluded
by steric interactions. This could provide an explanation for
spontaneous chain formation that does not include perma-

nent dipole moments. It would be of interest to include steric
interactions in our calculations in the manner employed by
Schapotschnikow et al..28 or, using the CDM, allowing for
many-body interactions between ligand segments even during
the simulation steps, thus calculating a full, many-body, effec-
tive, average interaction energy. This is left for future study.

ACKNOWLEDGMENTS

This work is part of the research programme of FOM,
which is financially supported by NWO. Financial support by
an NWO-VICI grant is acknowledged.

APPENDIX: ADDITIONAL MATHEMATICAL AND
NUMERICAL COMPARISONS

For the atomic configuration described in Fig. 1 and Sub-
section III A, it is possible to calculate the CDM interaction
energy exactly. The eigenfrequencies of the system are given
by

ωk = ω0

√
1 + λk,

where the λk are the nine eigenvalues of a 9 × 9 matrix. These
can be expressed in terms of the functions

A1(x) = 1 + 512x6 − 384x8,

A2(x) = 192
√

3x6(2 − 3x2)2,

B1(x) = 1 + 128x6 + 384x8,

B2(x) = 1728
√

3x8(1 − x2),

f1(x) =
√

A
3/2
1 (x) + A2(x)√

A
3/2
1 (x) − A2(x)

,

f2(x) =
√

B
3/2
1 (x) + B2(x)√

B
3/2
1 (x) − B2(x)

and

T1(x) = 3 + 2
√

3A1(x) cos

[
2

3
arctan(f1(x))

]
,

T2,3(x) = 3 −
√

3A1(x)

(
cos

[
2

3
arctan(f1(x))

]

±
√

3 sin

[
2

3
arctan(f1(x))

])

= 3 − 2
√

3A1(x) cos

[
2

3
arctan(f1(x)) ∓ π

3

]
,

T4(x) = −3 − 2
√

3B1(x) cos

[
2

3
arctan(f2(x))

]
,

T5,6(x) = −3 +
√

3B1(x)

(
cos

[
2

3
arctan(f2(x))

]

±
√

3 sin

[
2

3
arctan(f2(x))

])

= −3 + 2
√

3B1(x) cos

[
2

3
arctan(f2(x)) ∓ π

3

]
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FIG. 7. The absolute difference |�| between VCDM and VHdB (blue), VCDM and VAT (red), and VCDM and VcHdB (yellow), corresponding, respectively, to
Hamaker-de Boer, Axilrod-Teller, and “corrected HdB” (or, rather, Hamaker-de Boer but with unapproximated pair potentials) methods of approximation, for
three dipoles positioned as in Fig. 1, as a function of the dimensionless distance r̃ = r/α

1/3
0 between the first two and the last two dipoles in the chain. We

consider θ = 0 (a), θ = π /3 (b), θ = π /2 (c), and θ = 2π /3 (d).

by

λk(r̃ , θ ) = Tk

(
cos

[
θ
2

])
24r̃3 cos3

[
θ
2

] (k = 1, . . . , 6) ,

λ7,8(r̃ , θ ) =
1 ±

√
1 + 512 cos6

[
θ
2

]
16r̃3 cos3

[
θ
2

] ,

λ9(r̃ , θ ) = − 1

8r̃3 cos3
[

θ
2

] .

Here, r̃ is the dimensionless distance r/α
1/3
0 . The total CDM

interaction energy VCDM (r̃ , θ ) between the three dipoles is
given by

VCDM (r̃ , θ ) = 1

2
¯ω0

[
9∑

k=1

√
1 + λk − 9

]
.

This can be approximated for small λk (or, equivalently, large
r) by a Taylor expansion of the square root

VCDM � 1

2
¯ω0

9∑
k=1

(
1

2
λk − 1

8
λ2

k + 1

16
λ3

k

)
.

It can be straightforwardly shown that
∑9

k=1 λk = 0, while it
can also be (less straightforwardly) calculated that

9∑
k=1

λ2
k = 3

16r̃6 cos6
[

θ
2

] + 24

r̃6
,

9∑
k=1

λ3
k = 9

(
1 + 3 cos2

[
θ
2

] − 6 cos4
[

θ
2

])
4r̃9 cos3

[
θ
2

] .

It follows that

1

2
¯ω0

9∑
k=1

(
−1

8
λ2

k

)
=

∑
(ij )

v(L)(rij ),

1

2
¯ω0

9∑
k=1

(
1

16
λ3

k

)
= v(AT )(ri, rj , rk),

as defined in Eqs. (8) and (11), thus confirming that in this
case, the London and AT approximations follow from a Taylor
expansion of the CDM result.

The accuracy of the HdB and AT approximations de-
pends on the angle θ , but also greatly on the interatomic
distance r. In Fig. 7, we illustrate this for the three-dipole
case of Fig. 1 (Sec. III A), for a few values of θ , by plotting
the absolute difference � between VCDM and VHdB , VCDM

and VAT , and VCDM and VcHdB , where VcHdB is the result
obtained by only considering pair interactions in CDM but
not Taylor-expanding the result in r̃−3 (as is done for VHdB ).
For large r̃ , we observe that the AT approximation becomes
the best of the three plotted methods; however, for smaller
r̃ , this is not always the case. The AT performs best for a
straight line of dipoles (θ = 0), but even here there is a region
(r̃ � 1.8) where it is beaten by VcHdB . For θ = π /3, VcHdB

outperforms VAT up until r̃ ≈ 3.75. The straight-angled case
(θ = π /2) is interesting in that each of the three methods has
a region where it has the best accuracy: VcHdB for r̃ � 1.9,
VL for 1.9 � r̃ � 2.6, and VAT for r̃ � 2.6. In the case of the
equilateral triangle (θ = 2π /3), VHdB beats VAT in the re-
gion r̃ � 2.1. We note that, with the exception of the straight-
line case, AT only starts giving more accurate results than the
other two methods in the regime r̃ > 2.1, which was not con-
sidered in the main body of the present work.
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