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Including covariates in loglinear models of population registers improves
population size estimates for two reasons. First, it is possible to take hetero-
geneity of inclusion probabilities over the levels of a covariate into account;
and second, it allows subdivision of the estimated population by the levels of
the covariates, giving insight into characteristics of individuals that are not
included in any of the registers. The issue of whether or not marginalizing the
full table of registers by covariates over one or more covariates leaves the esti-
mated population size estimate invariant is intimately related to collapsibility
of contingency tables [Biometrika 70 (1983) 567-578]. We show that, with
information from two registers, population size invariance is equivalent to the
simultaneous collapsibility of each margin consisting of one register and the
covariates. We give a short path characterization of the loglinear model which
describes when marginalizing over a covariate leads to different population
size estimates. Covariates that are collapsible are called passive, to distin-
guish them from covariates that are not collapsible and are termed active.
We make the case that it can be useful to include passive covariates within
the estimation model, because they allow a finer description of the popula-
tion in terms of these covariates. As an example we discuss the estimation
of the population size of people born in the Middle East but residing in the
Netherlands.

1. Introduction. A well-known technique for estimating the size of a human
population is to find two or more registers of this population, to link the indi-
viduals in the registers and to estimate the number of individuals that occur in
neither of the registers [Fienberg (1972); Bishop, Fienberg and Holland (1975);
Cormack (1989); International Working Group for Disease Monitoring and Fore-
casting, IWGDMEF (1995)]. For example, with two registers A and B, linkage gives
a count of individuals in A but not in B, a count of individuals in B but not in A,
and a count of individuals both in A and B. The counts form a contingency table
denoted by A x B, with the variable labeled A being short for “inclusion in reg-
ister A” taking the levels “yes” and “no,” and likewise for register B. In this table
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the cell “no, no” has a zero count by definition, and the statistical problem is to
better estimate this value in the population. An improved population size estimate
is obtained by adding this estimated count of missed individuals to the counts of
individuals found in at least one of the registers.

With two registers the usual assumptions under which a population size esti-
mate is obtained are as follows: inclusion in register A is independent of inclusion
in register B; and in at least one of the two registers the inclusion probabilities are
homogeneous [see Chao et al. (2001) and Zwane, van der Pal and van der Heij-
den (2004)]. Interestingly, it is often, but incorrectly, supposed that both inclusion
probabilities have to be homogeneous. Other assumptions are that the population is
closed and that it is possible to link the individuals in registers A and B perfectly.

However, it is generally agreed that these assumptions are unlikely to hold in
human populations. Three approaches may be adopted to make the impact of pos-
sible violations less severe. One approach is to include covariates into the model, in
particular, covariates whose levels have heterogeneous inclusion probabilities for
both registers [see Bishop, Fienberg and Holland (1975); Baker (1990); compare
Pollock (2002)]. Then loglinear models can be fitted to the higher-way contin-
gency table of registers A and B and the covariates. The restrictive independence
assumption is replaced by a less restrictive assumption of independence of A and
B conditional on the covariates; and subpopulation size estimates are derived (one
for every level of the covariates) that add up to a population size estimate. Another
approach is to include a third register, and to analyze the three-way contingency
table with loglinear models that may include one or more two-factor interactions,
thus getting rid of the independence assumption. Here the (less stringent) assump-
tion made is that the three-factor interaction is absent. However, including a third
register is not always possible, as it is not available, or because there is no infor-
mation that makes it possible to link the individuals in the third register to both
the first and to the second register. A third approach makes use of a latent vari-
able to take heterogeneity of inclusion probabilities into account [see Fienberg,
Johnson and Junker (1999); Bartolucci and Forcina (2001)]. Of course, these three
approaches are not exclusive and may be used concurrently in one model.

When the approach is adopted to use covariates, the question is which covariates
should be chosen. In the traditional approach, only covariates that are available in
each of the registers can be chosen. Recently, Zwane and van der Heijden (2007)
showed that it is also possible to use covariates that are not available in each of
the registers. For example, when a covariate is available in register A but not in B,
the values of the covariate missed by B are estimated under a missing-at-random
assumption [Little and Rubin (1987)]; and the subpopulation size estimates are
then derived as a by-product. Whether or not the covariates are available in each of
the registers, the number of possible loglinear models that can be fit grows rapidly.

In this paper we study the (in)variance of population size estimates derived from
loglinear models that include covariates. Including covariates in loglinear models
of population registers improves population size estimates for two reasons. First, it
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is possible to take heterogeneity of inclusion probabilities over the levels of a co-
variate into account; and second, it allows subdivision of the estimated population
by the levels of the covariates, giving insight into characteristics of individuals that
are not included in any of the registers. The issue of whether or not marginalizing
the full table of registers by covariates over one or more covariates leaves the es-
timated population size estimate invariant is intimately related to collapsibility of
contingency tables. With information from two registers it is shown that population
size invariance is equivalent to the simultaneous collapsibility of each margin con-
sisting of one register and the covariates. Covariates that are collapsible are called
passive, to distinguish them from covariates that are not collapsible and are termed
active. We make the case that it may be useful to include passive covariates within
the estimation model, because they allow a description of the population in terms
of these covariates. As an example we discuss the estimation of the population size
of people born in the Middle East but residing in the Netherlands.

By focusing on population size estimates, collapsibility in loglinear models is
studied in this paper from a different perspective than found in Bishop, Fienberg
and Holland (1975) who are interested in parametric collapsibility. Our work ap-
plies model collapsibility of Asmussen and Edwards (1983), later discussed by
Whittaker [(1990), pages 394-401] and Kim and Kim (2006), concerning the com-
mutativity of model fitting and marginalization. We use model collapsibility in the
context of population size invariance and show invariance requires model collapsi-
bility of each margin consisting of one register and the covariates. A novel feature
is to apply collapsibility in the context of a table containing structural zeros. We
give a short path characterization of the loglinear model which describes when
marginalizing over a covariate leads to different population size estimates.

The second result can be fruitfully applied in population size estimation. In a
specific loglinear model, we denote covariates as passive when they are collapsi-
ble and active when they are not collapsible. In principle, the approach of Zwane
and van der Heijden (2007) permits the inclusion of many passive covariates in a
model; we make a case for including such passive covariates because they allow
the description of both the observed part as well as the unobserved of the popula-
tion in terms of these covariates.

The paper is built up as follows. In Section 2 we discuss the data to be analyzed.
These refer to the population of people with Afghan, Iranian and Iraqi nationality
residing in the Netherlands. In Section 3 we discuss theoretical properties of the
loglinear models in the context of population size estimation. This is discussed in
detail for the case of two registers. We illustrate the two properties of loglinear
models using a number of examples, and then prove the properties using results
from graphical models. We distinguish the standard situation that every covariate
is available in each of the registers from the situation that there are one or more co-
variates that are available in only one of the registers [Zwane and van der Heijden
(2007)]. For completeness we also discuss the situation when three registers are
available and illustrate that the same properties apply. In Section 4 we develop the
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notion of active and passive covariates, and in Section 5 we present an example.
We end with a discussion. In Appendix A we extend the work of Asmussen and
Edwards (1983) to population size invariance.

2. The population of people with Middle Eastern nationality staying in the
Netherlands. The preparations for the 2011 round of the Census are in progress
at the time of writing. More countries now make use of administrative data (rather
than polling) for that purpose. There are countries who are repeating this method,
such as Denmark, Finland and the Netherlands, and more than ten European coun-
tries that are using administrative data for the first time [Valente (2010)]. The ad-
ministrative registers are combined by data-linking and micro-integration to clean
and improve consistency. The outcome of these processes is called a statistical
register or a register for short.

The most important administrative register to be used in the Netherland Cen-
sus is an automated system of decentralized (municipal) population registers (in
Dutch, Gemeentelijke BasisAdminstratie, referred to by the abbreviation GBA).
This register is used for the definition of the population. The GBA contains all
information on people that are legally allowed to reside in the Netherlands and are
registered as such. The register is accurate for that part of the population such as
people with the Dutch nationality and foreigners that carry documents that allow
them to be in the Netherlands for work, study, asylum, and their close relatives.
However, these data do not cover the total population, in particular, those residing
in the Netherlands but who are not allowed to stay under current Dutch law. These
latter groups are sometimes referred to as undocumented foreigners or illegal im-
migrants.

Under Census regulations a quality report is obligatory, and one of the aspects
that needs to be addressed is the undercoverage of the Census data. This asks for
an estimate of the size of the population that is not included in the GBA. In this
paper we approach the problem by linking the GBA to another register and then
apply population size estimation methods to arrive at an estimate of the total pop-
ulation. Therefore, we implicitly estimate that part of the population not covered
by the GBA. The second register that we employ is the central Police Recognition
System or HerkenningsDienst Systeem (HKS) that is a collection of decentralized
registration systems kept by 25 separate Dutch police regions. In HKS suspects
of offences are registered. Each report of an offence has a suspect identification
where, if possible, information about the suspect is copied from the GBA. If a sus-
pect does not appear in the GBA, finger prints are taken so that he or she can be
found in the HKS if apprehension at a later stage occurs.

We test the methodology described in the next sections using previously col-
lected data of the 15-64 year old age group of people with Afghan, Iranian or Iraqi
nationality. For the GBA we extract the registered information of 2007. For HKS
we extract information on apprehensions made during 2007. Table 1 illustrates the
problem. For people with Afghan, Iranian or Iraqi nationality 1085 + 26,254 =
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TABLE 1
Linked registers GBA and HKS

HKS
GBA Included Not included

Included 1085 26,254
Not included 255 -

27,339 are registered in the population register GBA; 1085 4 255 = 1340 are reg-
istered in the police register HKS, of whom 255 are missed by the GBA. The
number of people not in the GBA and not in HKS is to be estimated: this is the
number of people missed by both registers. This latter estimate plus 255 should
be the size of the population with Afghan, Iranian and Iraqi nationality that do not
carry documents for a legal stay in the Netherlands. (We ignore the small group
of persons who travel on a tourist visa, and are also not in the GBA and HKS.)
This latter estimate plus (255 4 1085 + 26,254) is the size of the population with
Afghan, Iranian or Iraqi nationality that stays in the Netherlands, either with or
without legitimate documents.

An estimate of the number of people missed by both registers can be obtained
under the assumption that inclusion in GBA is independent of inclusion in HKS.
In other words, that the odds for in HKS to not in HKS (1085: 26,254) for the
people included in the GBA also holds for the people not included in the GBA.
The validity of this assumption is difficult to assess. From a rational choice per-
spective people without legitimate documents do their best to stay out of the hands
of the police and so make the probability of apprehension smaller for those not in
the GBA. On the other hand, people without legitimate documents may be more
involved in activities that lead to a higher probability of apprehension and so make
the probability larger for those not in the GBA. Both perspectives have face valid-
ity but, as far as we know, there is little empirical evidence to support either. The
only relevant work we found was Hickman and Suttorp (2008), who compared the
recidivism of deportable and nondeportable aliens released from the Los Angeles
County Jail over a 30-day period in 2002, and found no difference in their rearrest
rates. Yet the relevance of this research for the data at hand, that discuss people
from the Middle-East residing in the Netherlands, is of course questionable.

With the data at hand, we start from the independence assumption, but mitigate
this by using covariates. If a covariate is related to inclusion in GBA as well as to
inclusion in HKS but that, conditional on the covariate, inclusion in GBA is inde-
pendent of inclusion in HKS, so that ignoring the covariate leads to dependence
between inclusion in GBA and HKS. For both registers we have gender, age (lev-
els: 15-25, 25-35, 35-50, 50-64) and nationality (levels: Afghan, Iraqi, Iranian).
For GBA we additionally have the covariate marital status (levels: unmarried, mar-
ried), and for HKS we have the covariate police region of apprehension (levels:
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large urban, not large urban). We first study theoretical properties for the models
employed and then discuss an analysis of the data.

3. Theoretical properties of loglinear models.

3.1. Two registers, all covariates observed in both registers. We denote inclu-
sion in the two registers by A and B, with levels a, b = 1, 2 where level 2 refers
to not registered, and we assume that there are / categorical covariates denoted
by X;, wherei =1, ..., I. The contingency table classified by variables A, B and
X1 is denoted by A x B x X|. We denote hierarchical loglinear models by their
highest fitted margins using the notation of Bishop, Fienberg and Holland (1975).
For example, in the absence of covariates, the independence model is denoted by
[A][B], and when there is one covariate X| the model with A and B condition-
ally independent given X1 is [AX1][BX1]. In each of the models considered the
two-factor interaction between A and B is absent, as this reflects the (conditional)
independence assumption discussed in the Introduction.

Under the saturated model the number of independent parameters is equal to the
number of observed counts, and the fitted counts are equal to the observed counts.
The table A x B has a single structural zero so that the saturated model is [A][ B].
When there are I covariates, the saturated model for the table A x B x X| X --- X
X7 is [AXy---X71[BX1---X1], where A and B are conditionally independent
given the covariates.

We use the following terminology. We use the word marginalize to refer to the
contingency table formed by considering a subset of the original variables. For
example, starting with contingency table A x B x X1, if we marginalize over X1,
we obtain the table A x B. We use the word collapse to refer to the situation that
when a table is marginalized the population size estimate remains invariant. For
example, as we see below, the table A x B x X is collapsible over X|; when
the loglinear model is [AX][B] (or is [A][BX]), as the model gives the same
population size estimate as does the [A][B] model for the marginal table A x B.

There are two closely related properties of loglinear models that we wish to
examine:

(1) There exist loglinear models for which the table is collapsible over specific
covariates.

(2) For a given contingency table there exist different loglinear models that
yield identical total population size estimates.

The properties are closely related because if Property 2 applies, for both loglinear
models the contingency table to which Property 2 refers is collapsible over the
same covariates. We first illustrate the properties and then provide an explanation.

Example 1. Assume that there is one covariate X;. The data are collated in
a three-way contingency table A x B x Xj. The total population size estimates
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FIG. 1. Interaction graphs for loglinear models with one covariate.

under loglinear models M| =[AX][B] and M, = [A][B X] are equal; this illus-
trates Property 2. Both total population size estimates are equal to the population
size estimate under model My = [A][B] in the two-way contingency table A x B.
Hence, the three-way table is collapsible over X; and this illustrates Property 1.
In passing, we note that this result illustrates the second assumption of population
size estimation from two registers discussed in the Introduction, namely, that the
inclusion probabilities only need to be homogeneous for one of the two registers.
The population size estimate under loglinear model M3 = [AX ][ B X] is different
from these population size estimates. See Figure 1 for interaction graphs of models
My, My, M, and M3.

We present a numerical example in Tables 2 and 3. Here A refers to inclusion in
the official register GBA, B refers to inclusion in the police register HKS and the
covariate X is gender. See Section 2 for more details. We note that, even though
the total population size estimates for models M| and M, are equal, estimates
of the subpopulations (i.e., males and females) for M; are different from those
under M.

Example 2. Suppose that there are two covariates, namely, X| and X,. Table 4
presents a fairly comprehensive list of typical models including the estimated num-
bers missed and deviances. We note that models My, Mg and Mé have identical
total population size estimates. Models Ms, Mg, My, M1 and M {1 also have iden-
tical total population size estimates. The remaining models M7, M9 and M1y, M 12
and M, have different total population size estimates.

TABLE 2
Models fitted to contingency table of variables A (GBA),
B (HKS) and to A, B and X | (gender), deviances, degrees
of freedom and estimated numbers missed

Model Deviance df Missed
Moy: [A][B] 0.0 0 6170.3
M;:[AX][B] 548.5 1 6170.3
M,: [Al[BX] 1.1 1 6170.3
M;5: [AX][BX ] 0.0 0 5696.1
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TABLE 3
Observed and fitted counts for the three-way table of A (GBA), B (HKS) and X1 (gender); for A
and B level 1 is present and for X1 level 1 is male

A B X1 obs My M, Ms

1 1 1 972 629.2 976.5 972.0
2 1 1 234 234.0 229.5 234.0
1 2 1 14,883 15,225.8 14,883.0 14,883.0
2 2 1 0 5662.2 3497.9 3582.9
1 1 2 113 455.8 108.5 113.0
2 1 2 21 21.0 25.5 21.0
1 2 2 11,371 11,028.2 11,371.0 11,371.0
2 2 2 0 508.1 2672.5 2113.2

We discuss Properties 1 and 2 together. We use two notions from graph the-
ory and graphical models, namely, of a path and a short path [e.g., see Whittaker
(1990)]. The two registers A and B are connected by a path if there is a sequence
of adjacent edges connecting the variables A and B in the graph. A short path
from A to B is a path that does not contain a sub-path from A to B. Figures 1
and 2 illustrate.

e In models where A and B are not connected, so that there is no path from A to B,
the contingency table can be collapsed over all of the covariates in the graph. So
in Figure 1 the contingency table A x B x X1 can be collapsed over X in model

TABLE 4
Models fitted in four-way array of variables A, B, X1 and X»; registers A (GBA), B (HKS),
covariates X1 (gender), X» (age coded in four levels); deviances, degrees of freedom
and estimated numbers missed

Model Deviance df Missed
My [AX]1[BX>] 617.6 13 6170.3
Ms [AX{1[BX1[X>] 228.6 15 5696.1
Mg [AX | X5][B] 718.2 7 6170.3
My [AX1][AX,][ X X2][B] 725.6 10 6170.3
M7 [AX1[BX>][X1X3] 588.6 10 6179.4
Mg [AX{][BX][BX>] 69.1 12 5696.1
My [AX{][BX][X1X3] 200.2 12 5696.1
Mo [AX{1[BX2][AX3][BX 1] 65.9 9 5837.1
My [AX{1[BXX>3] 4.9 6 5696.1
Mil [AX{1[BX{1[BX3][[X1X3] 34.4 9 5696.1
Mo [AX1X2][BX1X>3] 0.0 0 5910.1
M, [AX1X,][BX1[BX>] 23.3 3 6257.1
Mi/z [AX{1[AX,][BX1[BX,][X X721 31.2 6 5831.4
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FI1G. 2. Interaction graphs of loglinear models with two covariates.

M and in model M>. This illustrates Property 1 that under models M and M
the population size estimate is identical to the population size estimate M. In
this example this also implies Property 2, that models M| and M> have identical
population sizes estimates. The table A x B x X| x X» can be collapsed over
both X and X, in models M4, Mg and Mé because X and X, are not on a short
path from A to B. In passing, we note this property of model M4 shows that the
inclusion probabilities of A and of B may both be heterogeneous as long as the
sources of heterogeneity, that is, X and X», are not related.

e In models with a short path connecting A and B, the table is not collapsible
over the covariates in the path. A simple example is model M3 of Figure 1,
where the contingency table A x B x X cannot be collapsed over X. Another
simple example is model M7 of Figure 2, where the contingency table cannot be
collapsed over either X or X».

e When the covariate X» is not part of any path from A to B as in models M5 and
Mg, then A x B x X1 x X3 is collapsible over X», illustrating Property 1. Again,
for this example, Property 1 implies Property 2, namely, that these models have
identical population size estimates.

e For model M1, of Figure 2 there are two paths from A to B, A — X| — B and
A — X1 — X, — B; however, the table is collapsible over X», as the second path
is not short, containing the unnecessary detour X| — X, — B.

e The other models have no covariates over which the contingency table can be
collapsed. For example, in model M, of Figure 2, and its reduced versions
Mj, and M{,, there are again two short paths, one through X and one path
through X».

3.2. Two registers, covariates observed in only one of the registers. In Sec-
tion 3.1 it is presumed that covariates are present in both register A as well as
in register B. Recently, it has been made possible to estimate the population size
making use of covariates that are only observed in one of the registers [see Zwane
and van der Heijden (2007); for examples, see van der Heijden, Zwane and Hessen
(2009), and Sutherland, Schwartz and Rivest (2007)]. A simple example illustrates
the problem [see Panel 1 of Table 5] where covariate X (Marital status) is only
observed in register A (GBA) and covariate X, (Police region) is only observed
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TABLE 5
Covariate X is only observed in register A and X, is only observed in B

Panel 1: Observed counts

A=1
A=2
X1=1 X1=2 X1 missing
B=1 X, =1 259 539 13,898
Xr=2 110 177 12,356
B=2 X missing 91 164 -
Panel 2: Fitted values under [AX,][BX1][X1X2]
X;1=1 X1=2 X1=1 X1=2
B=1 Xo=1 259.0 539.0 4510.8 9387.2
Xr=2 110.0 177.0 4735.8 7620.3
B=2 Xy = 63.9 123.5 11124 2150.2
Xo=2 27.1 40.5 1167.9 1745.4

in register B (HKS). As a result, X; is missing for those observations not in A
and X, is missing for those observations not in B. Zwane and van der Heijden
(2007) show that the missing observations can be estimated using the EM algo-
rithm under a missing-at-random (MAR) assumption [Little and Rubin (1987),
Schafer (1997a, 1997b)] for the missing data process. After EM, in a second step,
the population size estimates are obtained for each of the levels of X; and X>.

The number of observed cells is lower than in the standard situation. For exam-
ple, in Panel 1 of Table 5 this number is 8, whereas it would have been 12 if both
X1 and X, were observed in both A and B. For this reason only a restricted set of
loglinear models can be fit to the observed data. Zwane and van der Heijden (2007)
show that the most complicated model is [AX][BX1][ X1 X2]; note that the graph
is similar to the graph of M7 in Figure 2, but X| and X, are interchanged. At first
sight this model appears counter-intuitive, as one might expect an interaction be-
tween variables A and X1, and between B and X,. However, the parameter for the
interaction between A and X (and B and X,) cannot be identified, as the levels
of X1 do not vary over individuals for which A =2.

This most complicated loglinear model [AX>][B X 1][X1X>] is saturated, as the
number of parameters is 8 (namely, the general mean, four main effect parame-
ters and three interaction parameters) and there are just 8 observed values. Conse-
quently, these 8 observed values are identical to the corresponding 8 fitted values.
The fitted values under this model are presented in Panel 2 of Table 5. Note that, for
example, the EM algorithm spreads out the observed value 13,898 over the levels
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F1G. 3. Interaction graphs of loglinear models with partially observed covariates.

of X into fitted values 4510.8 and 9387.2; note also that the ratio 4510.8/9387.2
of these fitted values is identical to the ratio 259/539 of the observed values.

By comparison, when X and X, are observed in both A and B, the saturated
model is M1, = [AX1X][BXX>3]. This is a less restrictive model than the model
[AX2][BX1][X1X2] and the difference is due to the MAR assumption.

We now consider the more general case when there are also covariates observed
in both A and B. Suppose that there is one covariate X just observed in register A,
one covariate X» just observed in register B, and one covariate X3 observed in both
registers. The most complicated model is M3 = [AX2X3][BX1X3][X1X>X3],
with graph in Figure 3. When X and X, are conditionally independent given X3,
the model simplifies to M4 = [AX2X3][BX1X3]. In M4 there is only one short
path, namely, A — X3 — B, and neither covariate X; and X> is part of it. Therefore,
we can collapse the five-way table A x B x X1 x X» x X3 over X and X;, which
illustrates Property 1. We conclude that inclusion of covariates that are unique to
specific registers only modify the total population size estimate under the model
M3, in which the covariates just in A are related to the covariates just in B.

Simplified situations exist when covariates X, X, or X3 are not available.
When X is not available, M3 reduces to model [AX>X3][BX3], where the ta-
ble A x B x X, x X3 is collapsible over X; because X» is not in the short path
A — X3 — B. Hence, to improve the total population size estimate, covariates
such as X, are not useful unless X both exists and is related to X;. Similarly,
when X is not available, M3 reduces to [AX3][B X X3] where the table is col-
lapsible over X;. When the covariate X3 is not available, M3 reduces to model
[AX2][BX1][X1X2], discussed earlier, where the covariates affect the population
size when X is related to X». If they are not related, the graph is similar to model
My and collapsing the contingency table over both X; and X, does not affect the
total population size.

3.3. Three registers. For completeness we give illustrative examples of the
situation with three or more registers even though it is irrelevant for the data in
Section 2, where there are only two. For three registers A, B and C the contingency
table A x B x C has one structural zero cell. We consider how the Properties apply
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FI1G. 4. Interaction graphs of loglinear models with three registers and one covariate (see also next
page).

to the context of three registers A, B and C, and with a single covariate X. We
discuss three models with their graphs displayed in Figure 4.

For model M5 =[AX][AB][BC] the table A x B x C x X is collapsible over
covariate X, as it is not on any short path. This illustrates Property 1. Property 2 is
illustrated by the other models where A and C are conditionally independent given
B and X is related to only one of the registers, namely, models [AB][BC][BX]
and [AB][BC][CX].

For model M1 = [ABX][BC X] covariate X is on the short path from A to C
and, therefore, the contingency table is not collapsible over X. For model M7 =
[ABX][BC][AC] covariate X is not on the short path from A to B, as the short
path is A — B, and, therefore, the contingency table is collapsible over X.

The maximal model [ABX][BCX][ACX] is discussed at the end of Ap-
pendix A.

4. Active and passive covariates. In Section 3 we discussed the result that
marginalizing over a covariate does not necessarily lead to a change in the popu-
lation size estimate. Whether the population size estimate changes or not depends
on the loglinear models in the original and in the marginalized table. We term a
covariate active if marginalizing over this covariate leads to a different estimate
in the reduced table, so that this covariate plays an active role in determining the
population size; we call a covariate passive if marginalizing leads to an identical
estimate in the reduced table.

As an example we discuss active and passive covariates referring to Figure 3.
We noted that in model M3 the contingency table is not collapsible over covariates
X1 and X», hence, they are active covariates. On the other hand, in model M14, by
deleting the edge between X and X», the contingency table is collapsible over X
and X, hence, they are passive covariates.

While passive covariates do not affect the size estimate, which suggests that
they might be ignored, a possible use is the following. A secondary objective of
population size estimation is to provide estimates of the size of subpopulations, or,
equivalently, to break down the population size in terms of given covariates. This
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may well include passive covariates. Describing a population breakdown in terms
of passive covariates is an elegant way to tackle this important practical problem.
This extends the approach of Zwane and van der Heijden (2007) of using register
specific covariates in the population size estimation problem.

Most registers have several covariates that are not common to other registers,
because the different registers are set up with different purposes in mind. An in-
teresting data analytic approach is, therefore, first, to determine a small number of
active covariates, possibly of covariates that are in both registers; and second, to
set up a loglinear model structured along the lines of model M4, where several
passive covariates can be entered by extending X or X5, and where these covari-
ates may or may not be register specific. Passive covariates are helpful in breaking
down the population size under the assumption that the passive covariates of reg-
ister A are independent of the passive covariates of register B conditionally on the
active covariates.

We note that the introduction of many covariates may lead to sparse contin-
gency tables and hence to numerical problems due to empty marginal cells in
those margins that are fitted. Consider, for example, a saturated model such as
[AX1 X2 X3][BX|X2X3]. In this model the conditional odds ratios between A and
B are 1. However, when a zero count in one of the subtables of X, X, and X3
occurs for the levels of A and of B, the estimate in this subtable for the missing
population is infinite. One way to solve this is by setting higher order interaction
parameters equal to zero.

Another approach to tackle this numerical instability problem is as follows. We
start with an analysis using only active covariates, for example, using the covariates
observed in all registers in the saturated model. We may monitor the usefulness of
the model by checking the size of the point estimate and its confidence interval.
If the usefulness is problematic (e.g., when the upper bound of the parametric
bootstrap confidence interval is infinite), we may make the model more stable by
choosing a more restrictive model. One way to do this is by making a covariate
passive. For example, both in model [AX|X7][BX1X2X3] as well as in model
[AX1X2X3][BXX>] the covariate X3 is passive and both models yield identical
estimates and confidence intervals. When one of these two model is chosen, its size
may then be increased by adding additional passive variables, such as variables that
are only observed in register A or register B.

5. Example. We now discuss the analysis of the data introduced in Section 2.
To recapitulate, A is inclusion in the municipal register GBA and B is inclusion
in the police register HKS. Covariates observed in both A and B are X, gender,
X», age (four levels), and X3, nationality (1 = Iraqi; 2 = Afghan; 3 = Iranian).
Covariate X4, marital status, is only observed in the municipal register GBA. Co-
variate X5, police region where apprehended, with levels 1 = in one of the four
largest cities of the Netherlands, and 2 = elsewhere, and is only observed in the
police register HKS.
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TABLE 6
Models fitted to example of variables A, B, X| to X5, deviances, degrees of freedom, AIC’s,
estimated population size and 95 percent confidence intervals

Model Deviance df AIC Pop. size CI
Ny [AX1 X2 X31[BX1X,X3] 0 0 144.0 33,098.6 32,209-c0
Ny [AX1X,][BX1X,X3] 24.9 16 136.8 33,504.1 32,480-35,468
N3 [AX1 X2 X3][BX1X5] 28.8 16 140.7 33,504.1 32,480-35,468
Ny [AX1X>X5][BX1X2X3X4] 75.7 72 3157 33,504.1 32,480-35,468
Ns [AX1XX5][BX1X2X3X4][X4X5] 75.7 71  317.7 33,503.8 32,395-35,543
Ng [AX1X>X3X5][BX1X2X4] 523.8 72 763.7 33,504.1 32,480-35,468

N7 [AX1X2X3X5][BX1X2X4][X4X5] 289.1 71 5314 33,5109 32,363-35,432

A first model is model N = [AX 1 X2X3][BXX2X3]. This is a saturated
model. For this model the estimate for the missed part of the population size is
5504.6, and the total population size is 33,098.6. However, the parametric boot-
strap confidence interval [Buckland and Garthwire (1991)] shows that we deal
with a solution that is numerically unstable, as the upper bound of the 95 per-
cent confidence interval is infinite. The instability of the model is a consequence
of too many active covariates, and a solution is to make covariate X3 passive.
Two models in which X3 is passive covariate are Ny = [AX1X2][BX1X2X3]
and N3 = [AX1X2X3][BX1X>]. For these models the population size estimate
is 33,504.1 (95 percent CI is 32,481-35,469). Table 6 summarizes the results.

Models N> and N3 are both candidates to be extended by including marital
status (X4) or police region (X5). Note that X4 is only observed in GBA (A) and
X5 is only observed in HKS (B). When N, is extended by adding X4 and X5 as
passive variables, we get model N4[AX1X>X5][BX1X2X3X4]. This model yields
an identical estimate for the missed part of the population, illustrating that in model
[AX1X2X3X5][BX1X2X3X4] the covariates X4 and X5 are indeed passive. With
72 degrees of freedom and a deviance of 75.7 the fit is good. The AIC is 315.7.
We check whether it is better to make covariates X4 and X5 active and we do
this by adding the interaction between the covariates X4 and X5 to give model Ns.
The deviance of this model is identical and we conclude that Ny is a better working
model than Ns. We also extend N3 by adding X4 and X5 as passive variables giving
Ng. Note again that the estimate for the missed part of the population is identical,
however, the deviance is 523.8 so the fit is worse. Adding the interaction between
X4 and X5 in N7 helps as the deviance goes to 289.1, however, the deviance of N7
is larger than the deviance of N4, so we choose N4 as the final model.

Out interest lies in the undocumented part of the population, that is, in the peo-
ple not registered in the GBA. Table 7 shows the two-way margins of GBA with
the other variables estimated under N4. The estimates show that the undocumented
population from Afghanistan, Iraq and Iran are mostly not included in the police



ACTIVE AND PASSIVE COVARIATES 845

TABLE 7
Estimates for GBA with each of the other variables under model N4

In HKS Not in HKS Male Female
In GBA 1085.0 26,254.0 15,855.0 11,484.0
Not in GBA 255.0 5910.0 3874.7 2290.3
15-25 25-35 35-50 50-64
In GBA 7234.0 8361.0 9185.0 2559.0
Not in GBA 1292.2 2167.3 1925.9 779.7
Afghan Iraqi Iranian
In GBA 12,818.8 8743.3 5776.8
Not in GBA 2950.9 1914.5 1299.7
Unmarried Married 4 large cities Elsewhere
In GBA 14,698.2 12,640.8 9720.0 17,619.0
Not in GBA 3302.3 2862.7 2182.6 3982.5

register HKS, are more often male, between 25 and 50, from Afghanistan, unmar-
ried and mostly not staying in the four largest cities.

6. Conclusion. We have demonstrated two closely related properties of log-
linear models in the context of population size estimation. First, under specific
loglinear models marginalizing over covariates may leave the population size es-
timate unchanged. Second, different loglinear models fit to the same contingency
table may yield identical population size estimates. This is worked out in detail for
the case of two population registers and illustrated for the three-register case.

Using the first property, we have introduced the notion of active and passive
covariates. In a specific loglinear model, marginalizing over an active covariate
changes the population size estimate, while marginalizing over a passive variable
leaves the population size estimate unchanged. This idea can be particularly pow-
erful in those situations where each of the registers has unique covariates, but a
description of the full population in terms of these covariates is needed. It may
then be useful to introduce these register specific covariates as passive covariates
into a model such as M14. For example, if a loglinear model is proposed where
the covariates unique to register A are conditionally independent of the covari-
ates unique to register B, then the full contingency tables is collapsible over these
covariates and, hence, these covariates are passive.

Such a conditional independence assumption is strong, yet in many data sets
there may not be enough power to test its correctness. It is demonstrated that a
direct relation between the passive covariates of register A and those in B can
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only be assessed among those individuals that are in both register A and B. If
there is overlap between register A and B, with relatively many individuals in both
A and B, the relationship between the passive covariates of A and B can easily
be assessed; conversely, if the overlap is small, there is little power to establish
whether or not this relation should be included in the model.

This new methodology should be of use for estimating the missing population
due to undercoverage in the 2011 Census of the Netherlands where the size of the
total population can be estimated by application of loglinear models. It could also
be applied to countries that use register information to estimate the undercoverage
of their Population Register as well as to countries which use traditional methods.
The use of passive covariates gives insight into which characteristics individuals
have that are not covered by the Census and thereby illuminate the bias due to the
undercoverage.

In the Introduction we mentioned latent variable models that take heterogeneity
of inclusion probabilities into account. For this purpose both Fienberg, Johnson
and Junker (1999) as well as in Bartolucci and Forcina (2001) proposed general-
izations of the so-called Rasch model. It is beyond the scope of this paper to study
collapsibility properties for their models in the presence of covariates. However, it
is interesting to note that one important specific form of the Rasch model, the so-
called extended Rasch model, is mathematically equivalent to the loglinear model
that includes three two-factor interactions that are identical and a three-factor inter-
action [see Hessen (2011); this loglinear model is also used in IWGDMEF (1995),
where it is referred to as a heterogeneity model]. Collapsibility properties of this
loglinear model can be studied using the perspective presented in this paper.

APPENDIX A: IDENTIFICATION OF EQUIVALENT MODELS

We establish which models listed in Figures 14 have the same estimates, and
which do not, by showing that models for population size estimation are model
collapsible onto two margins; and by demonstrating how the short path criterion
identifies noninvariance of population size estimates. Our method is to apply the
Asmussen and Edwards (1983) criterion to the population size estimation model
which contains structural zeros.

A.1. Model collapsibility. First we recall the model collapsibility condition
of Asmussen and Edwards (1983). Consider a table classified by two sets of factors
Y and Z, so that the saturated model is [Y Z], and maximum likelihood estimation
under product multinomial sampling. The authors give conditions on the hierar-
chical loglinear model M C [Y Z] under which

(A.D) Y =" pyz (v, 2),
Z
where the right-hand side (RHS) is the margin of the MLE under the model M for

the full table, while the LHS is the MLE under the restricted model N for the mar-
gin obtained by deleting terms in Z from each generator of M. Their Theorem 2.3
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states that M is (model) collapsible onto the margin Y, that is, (A.1) holds, if and
only if the boundary of every connected component of Z is contained in a gen-
erator of M. A corollary to this result is that estimates computed under N have
the same sampling distribution as those under M, and hence the same confidence
intervals.

Implicit in their derivation is that the space on which the table is defined is
a Cartesian product of the factors. We argue that the population size estima-
tion model cannot be defined on a Cartesian product of registers, for in our
context if p were defined on A x B x X with A, B = {1, 2}, then we require
p(2,2,x)=0toreflect a structural zero. If so, the maximal loglinear model would
be M = [ABX] with a three factor interaction, as log p contains the interaction
term Agpx (2,2, x) = —oo. Furthermore, application of model collapsibility sug-
gests M = [A B X] is model collapsible onto [A B], which may be shown by coun-
terexample to be false.

A.2. Models for population size estimation. For population size estimation
the appropriate sample space S for two registers is

S=A{(a,b); (a,b)=(1,1),(1,2), (2, D},

as (2, 2) cannot be observed, and the sample space for the whole survey is S x X,
where X is the Cartesian product of the discrete spaces for the covariates. Any
loglinear model M with probability mass function p%( is defined and fitted on
this space. The loglinear expansion of log pg’lx(a, b, x) under the maximal model
M =[AX][BX]is

(A.2) A+2Ada(a) +Agb) +Aix(x) +Aax(a,x)+Apx (b, x)

for (a, b, x) € S x X. The A parameters satisfy corner point constraints to ensure
identifiability, but are otherwise arbitrary. This is an instance of a hierarchical log-
linear model; an equivalent parameterization is to write the highest order main
effect as Asx(s, x), but this obscures the submodels of interest. The register A
taking values in .4 defines the marginal probability pf"[X of p%(, similarly pg’lx.

Asmussen and Edwards (1983) define the interaction graph to be the graph with
a node for each factor classifying the table and an edge between two nodes if there
is a generator in the model containing both. Consequently, the graphs in Figures 1—
4 are the interaction graphs of particular population size models. The interaction
graph of M = [AX][BX] is that of M3 in Figure 1 with X replacing X.

These graphs cannot be interpreted as conditional independence graphs in which
the missing edge between A and B leads to the statement A I B|X, as this is false
on the restricted space S x A; for instance, if X is empty, and M = [A][B], then
P(A=1,B=1)# pa(1)pp(1). However, conditional independence interpreta-
tions between a register and covariates, and between two covariates are possible.

With the population size estimation model at (A.2) defined on the right space,
S x X, we can now employ model collapsibility to show this model is collapsible
onto two margins.



848 P. G. M. VAN DER HEIJDEN ET AL.

A.3. Model collapsibility for population size estimation. Our first result
is that the maximal population size model in (A.2) is model collapsible onto its
two margins [AX] and [BX]. Standard arguments show the sufficient statistics
are nax(a, x) and npx (b, x), where n is the frequency function of the observa-
tions over the table. Under this model the MLEs satisfy ﬁ%x =nax(a,x)/ng and
p¥y =npx(b, x)/ny; and these margins determine the full table 13§4X. To apply
(A.1) when marginalizing over B, note the boundary of {A, B, X} \ B in the inter-
action graph is {A, X}, and that these factors are both contained in a single gener-
ator of M, namely, [AX]. Similarly for marginalizing over A so that the model is
collapsible onto the two margins, and

(A3) phlxa.x)=>"p¥h(a.b.x),  pixb.x)=)" psk(a.b,x).
b a

A.4. Population size estimation invariance. We define population size esti-
mation invariance, and show it depends on the model collapsibility of the popula-
tion size model onto two margins, both containing one register and the covariates.
Examples are given.

A population size estimate is made by extending the fitted probability p%( on
S x X tor™ defined on the Cartesian product space A x B x X, by the conditional
independence statement

JTM(a, b,x)= p%x(a, x)p%/lx(b,x)/p%(x) for (a,b,x) e Ax Bx X.

Under the measure 7 the interaction graphs in Figures 1-4 now have conditional
independence interpretations.

The fitted values for #Y are computed from the fitted values pi, and pi,
which are obtained from pM (a, b, x) fitted on S? x X at (A.3). The population
size estimate is ng (1 + 7Y (2, 2)), where

(A4) M, by =Y piy(a.x)pyy (b, x)/pY (x).

Two loglinear models M and N have identical population size estimates whenever
AM(a,b) = 7N (a, b) for all (a, b) € A x B. So because of (A.4) the condition for
invariance devolves to model collapsibility of M on 4 x X andon B x X.

We illustrate population size estimation invariance by showing that certain mod-
els for  displayed in the figures above have identical estimates. The first example
shows the model M> = [A][B X ] in Figure 1 is collapsible on X to My = [A][B],
and so produces identical population size estimates. From (A.4)

~ ~(2 ~(2
AP(a, by =Y pP @ px, (b, x1),
X

by the independence of A and X under M;. By the model collapsibility of [BX]
over X1,

#@(a.b)=pP @Y by, (b.x1) = P (@) ) (b),
X1
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which is just 7 (a, b) as required.

The second example is to show the model M| =[AX][BXX>] in Figure 1 is
collapsible on X, to M3 =[AX][BX], and so produces identical population size
estimates. From (A.4), using the independence A and X, given B, X under My,

A 1 1 A(11
7MW, b) = 3 Py (@ x)pyy x, (0. x1, 22/ Y (x).,

X1,X2

~(11 A~(11 A(11
=3 Py, (@ x0 /by () Y Py x, (b, x1, x2)
X1 X2

—prf}l(a X Py, (b xD)/ Y (x1),

by the collapsibility of each of the three components in the expression and equals
7 (a, b) by definition.

A.5. Short path criterion for population size invariance. We demonstrate
how the short path criterion identifies noninvariance in the context of an example
attempting to argue that M7 produces identical estimates to M3.

First consider the population size estimate from M7:

A A A 7 A 7
D@, b) =Y pix,x, @ x1. 30 Pgx, x, (b, X1, 12)/ Yy, (31, x2).

X1,X2

Using the two independences under M7,

AP (a.b) =" pix, (@ x0)pigx, (b, x2) pY)x, (1. x2)/ B (x1) ) (x2)

X1,X2

—Zprl (a, m)/p“’(xl)ZpBXz(b X))y, (1. x2)/ Y. (x2).

While model collapsibility implies ﬁ ax, (@ x1) = ﬁf))( (a, x1), simple counter ex-

amples show pBXI(b X1 # Xy, nggz(b XZ)PXIXZ(XI,XZ)/PX)(XZ) Here X is

on a short path from A to B and the population size estimates are not invariant to
marginalizing over X5.

The last model we consider is the maximal model for three registers A, B and
C and covariate X, that is, [ABX][ACX][BCX]. It is collapsible over A, or B,
or C, but it is not collapsible over X. Of course, population size estimates are
not invariant to collapsing over A even though [ABX][ACX][BC X] is model
collapsible over A, showing that population size invariance is not equivalent to
model collapsibility.

APPENDIX B: ESTIMATION

Estimation of the missing count can be done as follows. We first discuss the
case that there is no covariate. Let A and B have levels a, b =1, 2, for “registered”
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and “not registered.” We denote observed frequencies by n,, with (a, b) = (2, 2)
missing. Expected frequencies are denoted by m,;, and fitted values by . For
the three cells (a, b) with (a, b) # (2, 2) we define a loglinear independence model
as log mgp = A 4+ Ag(a) + Ap(b) with L4 (2) = Ap(b) = 0. Then, after fitting the
loglinear model, the missing count my; is found as )y = exp(i).

In the presence of a covariate X with levels x =1, 2, the observed counts are
napx With (a, b, x) = (2,2, x) missing. A saturated loglinear model for the six ob-
served counts is log mgpry = A + Aa(a) + Ap(b) + Ax (D) + Aax(ax) + Apx(bx)
with A4(2) = Ap(2) = Ax(2) = 0. Then, after fitting a saturated or restricted
loglinear model to the six observed counts, the missing counts are found as
M| = exp(i + A x (1)) and iy = exp):. This generalizes in a natural way to
the situation that there are more registers, that covariates have more than two lev-
els and more covariates.

Extra information is needed for the models in Section 3.2, where covariates are
observed in only one of the registers. We follow the explanation in Zwane and
van der Heijden (2007). The approach taken to analyze such data (data with partly
available covariates) is to identify the problem as a missing information problem,
and then use the EM algorithm to obtain maximum likelihood estimates.

The EM algorithm is an iterative procedure with two steps, namely, the expec-
tation and maximization step. The EM algorithm starts with initial values for the
probabilities to be estimated. Initial values have to be at the interior of the param-
eter space (i.e., not equal to zero), for example, form a uniform table, in which all
the elements are equal. In the ¢th E-step, we compute the expected loglikelihood of
the complete data conditional on the available data under the values of the parame-
ters in that iteration. In the rth M-step, a loglinear model is fitted to the completed
data, with the missing cells corresponding to (a, b) = (2, 2) denoted as structurally
zero. The fitted probabilities under the loglinear model fitted in the M-step are then
used in the E-step of the (# + 1) iteration, to derive updates for the completed data.

Cycling between the E-step and the M-step goes on until convergence. At each
iteration the likelihood increases. Convergence to a local maximum or a saddle
point is guaranteed. Schafer [(1997a), pages 51-55] states that, in well-behaved
problems (i.e., problems with not too many missing entries and not too many pa-
rameters), the likelihood function will be unimodal and concave on the entire pa-
rameter space, in which case EM converges to the unique maximum likelihood
estimate from any starting value. Thus far, we have never encountered examples
where multiple maxima exist, and a typical way to investigate the presence of mul-
tiple maxima is by trying out different starting values.

After convergence, the fit is assessed using the observed elements only (e.g.,
for Table 5 there are only 8 observed elements, whereas in the completed table,
excluding the structural zero cells, there are 12 elements). Degrees of freedom are
determined using the number of observed elements minus the number of fitted
parameters.
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The values for the missing cells corresponding to (a, b) = (2, 2) are assessed
using the method that we described above.

We use parametric bootstrap confidence intervals because they provide a sim-
ple way to find the confidence intervals when the contingency table is not fully
observed. To compute the bootstrapped confidence intervals for a specific loglin-
ear model, we need to first compute the population size under this model and the
probabilities on the completed data under this model, that is, by including the cells
that cannot be observed by design. A first multinomial sample is drawn given these
parameters, and the sample is then reformatted to be identical to the observed data.
The specific loglinear model used is then fitted to the resulting data, resulting in
the first bootstrap sample estimate of the population size. If K bootstrap samples
are needed, then this is repeated K times. By ordering the K bootstrap population
size estimates, a confidence interval can be constructed.

SUPPLEMENTARY MATERIAL

Estimation in R (DOI: 10.1214/12-A0AS536SUPP; .pdf). We make use of the
CAT-procedure in R (Meng and Rubin (1991); Schafer [(1997a), Chapters 7 and 8],
(1997b)). The CAT-procedure is a routine for the analysis of categorical variable
data sets with missing values. We describe our application of this procedure in
detail in the supplemental article [van der Heijden et al. (2012)].
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