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A theory is presented of how orienting fields and steric interactions conspire against the formation of a

percolating network of, in some sense, connected elongated colloidal particles in fluid dispersions. We

find that the network that forms above a critical loading breaks up again at higher loadings due to

interaction-induced enhancement of the particle alignment. Upon approach of the percolation threshold,

the cluster dimensions diverge with the same critical exponent parallel and perpendicular to the field

direction, implying that connectedness percolation is not in the universality class of directed percolation.
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High-aspect-ratio nanofillers potentially enhance the
physical properties of the material they are dispersed in.
For instance, polymeric composites containing carbon
nanotubes or graphene sheets acquire (some of) the re-
markable thermal, mechanical, and electrical properties of
these carbon allotropes even at loadings below one volume
percent [1]. The minimum concentration required to ob-
serve significant changes in the material properties of the
composite is dictated by the necessity for them to form a
system-spanning network in it. For the composite to be-
come, e.g., electrically conducting, the filler particles need
not (and actually do not) make direct physical contact to be
part of the conducting network [2]. The reason is that
charge carriers are able to jump from one filler particle to
the other over some distance.

The critical value beyond which clusters of, in some
sense, connected particles are formed, linking regions of
the material on macroscopic scales and beyond which the
quantity of interest, e.g., the conductivity of the composite,
exhibits a massive increase [1], is known as the (electrical)
percolation threshold. A vast body of literature is devoted
to the problem of percolation, both on a lattice and in
continuous space [3]. Practically, the most fundamental
insight for randomly dispersed, mutually penetrable parti-
cles is that the percolation threshold must scale inversely
with the aspect ratio of the fillers [4]. For long enough
carbon nanotubes, this scaling is confirmed experimentally,
albeit that the scatter in the data is very large indeed, which
may be due to the influence of polydispersity [5].

A source of variability in observed percolation thresholds
that is often ignored is the processing that takes place in the
fluid stages of the nanocomposite fabrication, e.g., com-
pression molding, compounding, and extrusion [2,6]. If the
fluid is not allowed to relax post processing, this may affect
the network structure in the final solid product through
alignment of filler particles. In fact, particle alignment has
been induced deliberately by electric and magnetic fields to

enhance and/or induce anisotropy in the conductivity of the
material [4,7–10]. Naively, one expects the percolation
threshold to go up if the particles become mutually aligned,
as this increases the shortest distance separating them. This
is confirmed by computer simulations for penetrable sticks
in two [7] and three dimensions [11] and for impenetrable
ones in three [9]. Contact-volume theories confirm this also:
the mean volume swept out by the particles decreases with
increasing alignment [4,7,12,13]. Unclarified, however, is
how this competes with the transition to the nematic liquid-
crystalline phase, which takes place in the absence and
presence of orienting fields [14].
In order to shed light on this, we present an analytical

theory showing how an externally applied alignment field
and excluded-volume interactions conspire against the for-
mation of a percolating network in fluid dispersions of
elongated particles, although the formalism extends to
other shapes, as well [5]. Our anisotropic continuum per-
colation theory self-consistently links (i) connectedness
percolation theory for the cluster size and (ii) Onsager
theory for the interplay between interactions and the
field-induced particle alignment. Angular correlations be-
tween the particles, ignored in contact-volume theories, are
explicitly taken into account [4,7,12,13].
We find that the system-spanning, self-assembled net-

work that forms above some critical loading (that depends
on the strength of the external quadrupole field) breaks up
again at higher loadings; see Fig. 1. This kind of reentrance
behavior is caused by the interaction-induced enhancement
of the alignment of the particles and is not unlike the
disentanglement of rodlike particles in elongational flow
fields [15]. For weak fields, the densities at which this
happens are preempted by the transition to the uniaxial
nematic phase. For sufficiently strong fields, the low-
density percolation threshold is suppressed completely.
According to our calculations, the dimensions of the

clusters are different parallel and perpendicular to the field
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direction, albeit that both diverge with the same critical
exponent. This field-induced cluster anisotropy might, in
thin-film setups, be utilized to fabricate nanocomposites
with strongly anisotropic electrical conductivities and very
low particle loading [8,10].

In our model, we presume the network to be formed in
the fluid stages of the composite processing and subse-
quently to be frozen in upon solidification. This allows us
to invoke the connectedness analog of the Ornstein-
Zernike equation of liquid-state theory and calculate the
(weight) average cluster size of connected particles, N.
Within connectedness percolation theory, we have [16]

N ¼ 1þ lim
q!0

�hhP̂qðu;u0Þiuiu0 ; (1)

in terms of the Fourier transform P̂qðu;u0Þ of the pair

connectedness function Pr;r0 ðu;u0Þ that describes the

probability that two particles at positions r and r0, and
with orientations u and u0, are in the same cluster. In
Eq. (1), � is the overall number density of particles,
presumed cylindrical with a main body-axis vector u that
obeys an as yet unknown orientational probability distri-
bution function c ðuÞ. Here, h. . .iu�

R
duð. . .Þc ðuÞ denotes

an orientational average, and ð ^. . .Þq¼
R
drð. . .Þexpðiq �rÞ a

Fourier transform with q the wave vector [5,16].
This connectedness function can be calculated from the

connectedness Ornstein-Zernike (OZ) equation [16],
which in Fourier space reads

P̂ qðu;u0Þ ¼ f̂þq ðu;u0Þ þ �hf̂þq ðu;u00ÞP̂qðu00;u0Þiu00 ; (2)

if we invoke the second-virial approximation. This is ac-
curate, provided the rod length is much larger than its
width, which we presume to be of the order of the typical
distance over which charge transport can take place [5].
Charge transport enters effectively in Eq. (2) via the
connectedness Mayer function fþr;r0 ¼ expð��uþÞ, with
� ¼ 1=kBT, where kB is Boltzmann’s constant and T the
absolute temperature. uþ is the connectedness potential
that we choose such as to mimic an exponentially decaying
conductivity between two rods, presumed impenetrable.
This we do below.

Solving Eq. (2) for P̂, averaging this function over the
orientation distribution c ðuÞ, and inserting this into Eq. (1)
gives the cluster size N. The critical density �p for which

this quantity diverges we identify as the percolation thresh-
old. The distribution of the particles in the absence of an
external field is isotropic, c ¼ 1=4�, at least for densities
below which the fluid undergoes a spontaneous transition
to the uniaxial nematic liquid-crystalline state. In the pres-
ence of an orienting field, the distribution function be-
comes a function of the strength of this field and the
density of the particles.
The orientation distribution function we calculate from

Onsager’s density functional theory for impenetrable rods
in an alignment field [17]. The degree of alignment of the
rods depends self-consistently on the sum of the external
and molecular field strengths, because the latter is a func-
tion of excluded-volume interactions that themselves are a
function of the degree of alignment. This makes c ðuÞ
depend on both the field strength and the density.
According to Onsager’s second-virial theory [17], it obeys
the nonlinear self-consistent field equation [18,19]

logc ðuÞ ¼ �þ �hf̂0ðu;u0Þiu0 �UðuÞ; (3)

where f̂0 is the zero-wave-vector Fourier transform of the
Mayer function fr;r0 ¼ expð��uÞ � 1 for the interparticle

interaction potential u, � serves as a Lagrange multiplier,
and U is the dimensionless external potential.
We presume U to be of the quadrupole type, so U ¼

�Kcos2#, where K is the field strength and # the polar
angle between the field direction and the main body-axis
vector. For negative values of K, the rods align along the
field direction (orienting field), while, for positive ones,
they align perpendicular to it (disorienting). The field in
our model is generic, and its strength depends on the type
of field. If we align the particles in an electric field of
strength E and they do not have a permanent dipole mo-
ment, we have K ¼ ���E2=2, with �� their electric
polarizability anisotropy. For a magnetic field, K ¼
���H2=2, with H the magnetic field strength and ��
the susceptibility anisotropy of the rods. If they are coupled
to an extensional flow field, K ¼ �3 _�=4Dr, with _� the
strain rate and Dr the rotational diffusivity [19].

FIG. 1 (color online). Scaled particle concentration cp ¼
�DL2�p=4 at the percolation threshold as a function of the

dimensionless field strength �K. Solid lines: connectivity per-
colation; dashed curves: contact-volume approach for �=D ¼
0:3 (top), 0.6 (middle), and 1 (bottom). Only in the enclosed
areas does a percolating network exist. The shaded area is the
region of coexisting isotropic (paranematic) and nematic phases
[18]. Inset (a): calculated percolation thresholds scaled to the
zero-field value c0p. Inset (b): order parameter S2 with, from

steepest to flattest, �=D ¼ 0:3, 0.6, and 1. The dots indicate the
largest value of j�Kj that allows for a percolation threshold.
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Equations (1)–(3) form the basis of our model and
connect the cluster size N, the external field strength K,
the orientation distribution function c , and the particle
density �. Evidently, the calculation of the particle density
at which the mean cluster size diverges (the percolation
threshold) requires a self-consistent treatment of this set of
three equations. The complicating term here is the inter-
action term in Eq. (3) that makes solving them a nontrivial
exercise. To actually perform the calculation, we need to
specify the connectedness potential uþ and the interaction
potential u. Again, we presume the rods to behave as
mutually impenetrable, rigid cylinders of length L and
diameter D. This implies that u ! 1 and uþ ! 1 for
all centerline-to-centerline distances r < D between two
rods. Furthermore, u ¼ 0 for r > D.

We effectively incorporate an exponentially decaying
probability of charge transport between two rods for dis-
tances r > D in our description by taking �uþ ¼
ðr�DÞ=�, with � the typical hopping distance. This pro-
duces an exponentially decaying connectedness Mayer
function that in our model describes short-range correla-
tions between connected particles. With these ingredients
and using Straley’s oblique coordinate system, we find

f̂þq ¼ 2L2�j0ðq � uL=2Þj0ðq � u0L=2Þj sin	j and f̂q ¼
�f̂þq D=�, at least in the slender-rod limit L � �;D and

jqjD � 1 [5]. Here, 	 ¼ 	ðu;u0Þ is the angle between two
rods u and u0, and j0ðxÞ � sinx=x.

It turns out not to be necessary to know the full angular
and wave-vector dependence of the pair connectedness

function P̂qðu;u0Þ to calculate the percolation threshold.

The reason is that the cluster size can be written as N ¼
1þ �hgðuÞiu, with gðuÞ � hP̂0ðu;u0Þiu0 . The latter func-
tion we obtain from Eq. (2), which, for q ! 0, reduces to

gðuÞ ¼ hf̂þ0 ðu;u0Þiu0 þ �hf̂þ0 ðu;u0Þgðu0Þiu0 , which can be
viewed as a ‘‘reduced’’ OZ equation. Because of cylindri-
cal symmetry, the angular distribution function c ðuÞ ¼
c ð#Þ depends only on the polar angle #, implying that the
integration over the azimuthal angle ’ involves only the
j sin	j in the connectedness Mayer function that enters the
reduced OZ equation.

Another simplification follows from expressing this in-
tegral in terms of a sum of the Legendre polynomials
P2nðcos#Þ by invoking the addition theorem [15].
Because of cylindrical symmetry, we write c ð#Þ ¼
ð2�Þ�1½a0 þ a2P2ðcos#Þ þ a4P4ðcos#Þ� [20], where
a0 ¼ 1=2 because c is normalized. For this expansion to
be meaningful, we insist that ja4j � ja2j. Because (i) we
are only interested in an orientational average of gð#Þ
and (ii) we truncate the expansion of the distribution
function c after the third term [21], we find that we only
need to account for three ‘‘moments’’ of the typeR
�
0 d# sin#P2nðcos#Þgð#Þ, i.e., those for n ¼ 0; 1; 2.

Solving N�1 ¼ 0 for the density � now gives a third-order
polynomial in � in terms of the coefficients a2 and a4,
the root of which is the percolation threshold, �p. It is

important to note that the coefficients themselves also

depend on the density �, as well as on the field strength
K, because they obey Onsager’s equation (3). To determine
their functional dependence on � and K, we again apply
the addition theorem in Eq. (3) and expand the logarithm
for small values of a2=a0 and a4=a0. This gives two
equations for a2 and a4 as a function of � and K.
The polynomial equation for the percolation threshold

�p that we obtain needs to be combined with the set of

equations for a2 and a4 derived above. This gives three
equations for the three unknowns a2, a4, and �p in terms of

the field strength K and the ratio �=D describing how
easily charge transport between two rods takes place.
The percolation threshold we calculate is plotted in
Fig. 1 for sensible values of �=D for single- and multi-
walled carbon nanotubes [5]. We see that the percolation
threshold strongly increases with increasing field strength,
irrespective of whether the field is orienting or disorient-
ing. For strong enough fields, j�Kj * 0:5, which depends
on the precise value of �=D, a percolating network does
not form in the regime where cp is of the order unity and

the volume fraction of the order 
p ¼ OðD=LÞ � 1.

Another remarkable finding that we read off from Fig. 1
is that, for values of �K where a percolating network does
form at some low particle concentration, the network dis-
solves again at higher particle loadings, i.e., exhibits reen-
trance behavior. Interestingly, a similar kind of reentrance
with increasing imposed alignment was observed in com-
puter simulations of the electrical conductivity of systems
of penetrable rodlike particles [11]. According to our
calculations, this is caused by the enhancement of the
field-induced alignment due to the anisotropic excluded-
volume interactions.
For weak fields, the reentrant transition penetrates the

region where the transition to a nematic phase occurs [22].
The shape and size of the percolating domain depend
sensitively on the ratio �=D. Figure 1 shows that the lower
percolation threshold decreases with increasing �=D,
whereas the reentrance threshold depends weakly on
�=D. If we amend the contact-volume approach that pre-

dicts �p ¼ hhf̂þ0 iui�1
u0 [4,7,12,13] with the Onsager theory

for the alignment of hard rods and compare it to our theory,
we conclude that it significantly underestimates the impact
of the external field on the percolation threshold. At reen-
trance for high loadings, the error can be up to a few
hundred %. It appears that ignoring couplings between
angular correlations of particles is at the root of this
discrepancy [5].
It is instructive to evaluate the relevant order parameters

along the stability boundary of our model of electrical
percolation in rod dispersions. These are the familiar ne-
matic order parameters S2 � hP2ðcos#Þiu ¼ 2a2=5
(shown in Fig. 1) and S4 � hP4ðcos#Þiu ¼ 2a4=9 (not
shown). First, we find S4 to be always positive and much
smaller than the corresponding value of S2, justifying our
earlier assumption. Second, S2 increases along the curves
where the percolation threshold increases, even beyond the
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inflection point where jS2j � 0:1. This confirms that, for a
given field strength, the degree of order increases with
increasing density. The largest value of S2 for which per-
colation occurs is below that of the nematic phase [18], so
there percolation is lost completely.

In order to investigate the structure of our clusters upon
approach of the percolation threshold, we probe the wave-
vector dependence of the connectedness function

hhP̂qiuiu0 ¼ hhP̂0iuiu0 þ hhMðu;u0Þiuiu0 :qq=2þ . . . , with

Mðu;u0Þ � @2P̂q=@q
2jq¼0 [16]. The linear term in q

drops out for symmetry reasons. From Eq. (2), we obtain
a self-consistent equation for hMðu;u0Þiu0 ¼
2�L2�hj sin	ðu;u0ÞjhMðu0;u00Þiu00 iu0 � �L4hj sin	ðu;u0Þj
ðuuþ u0u0Þ½1þ �gðu0Þ�iu0=6. Because of azimuthal sym-
metry, the matrix hhMðu;u0Þiuiu0 has nonzero elements on
its diagonal only, one associated with cluster growth par-
allel to the field direction and the others with that perpen-
dicular to it. The wave vector q separates into components
qk parallel and q? perpendicular to the field. We compute

hhMðuÞiuiu0 in a manner similar to that of the cluster
size N. Our final result can be expressed as

hhP̂qiuiu0=hhP̂0iuiu0 ¼ 1� �2
kq

2
k � �2

?q
2
?, with correlation

lengths �k and �?. Values of �k and �? for vertical and

horizontal cuts through the phase diagram of Fig. 1 are
shown in Fig. 2.

Both correlation lengths �k and �? diverge as 1=j�p �
�j1=2 for constant K and as 1=j�Kp � �Kj1=2 for constant
�, with Kp the critical field strength for a given density.

The mean-field exponents �k ¼ �? ¼ 1=2 that we find are
exact for hard rods in the limit of the infinite aspect ratio
[5]. However, the prefactors are not equal and depend on
the density, the sign, and the strength of the external field.
For a disorienting field, �K > 0, the clusters are flat be-
cause �? > �k, while, for an orienting field, �K < 0, they
are elongated: �? < �k. Although percolation in systems

of aligned rods seems superficially related to that of
directed percolation, the critical exponents for the latter
have been found to be �k ¼ 1 and �? ¼ 1=2 in three

dimensions in mean-field theory [23]. Hence, anisotropic
continuum connectedness percolation of elongated parti-
cles is not in the universality class of directed percolation.

In conclusion, an externally applied field enhanced by
excluded-volume interactions significantly destabilizes
percolating clusters of hard, rodlike particles, limiting
them to an island of stability in the phase diagram, bounded
from above by the isotropic-nematic phase transition.
Upon approach of the percolation threshold, the size of
clusters of connected particles diverges with the same
scaling exponent parallel and perpendicular to the field
direction. Hence, directed percolation and anisotropic con-
tinuum percolation of elongated particles do not belong to
the same universality class. Still, due to nonuniversal pre-
factors, the clusters are anisotropic, elongated for orienting
and flat for disorienting fields.
The work of R. O. forms part of the research program of

the Dutch Polymer Institute (DPI Project No. 648).
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FIG. 2 (color online). The parallel (solid) and perpendicular
(dashed) correlation lengths �k and �? near the percolation

threshold for �=D ¼ 0:3. (a) �K ¼ �0:27 and (b) cp ¼ 1:67.

Away from the percolation threshold, the correlation lengths
decay to the radius of gyration L=

ffiffiffiffiffiffi
12

p
of a rod.
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