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OPTIMAL EXPANSIONS IN NON-INTEGER BASES

KARMA DAJANI, MARTIJN DE VRIES, VILMOS KOMORNIK, AND PAOLA LORETI

(Communicated by Bryna Kra)

Abstract. For a given positive integer m, let A = {0, 1, . . . ,m} and q ∈
(m,m+ 1). A sequence (ci) = c1c2 . . . consisting of elements in A is called an
expansion of x if

∑∞
i=1 ciq

−i = x. It is known that almost every x belonging
to the interval [0,m/(q − 1)] has uncountably many expansions. In this pa-
per we study the existence of expansions (di) of x satisfying the inequalities
∑n

i=1 diq
−i ≥

∑n
i=1 ciq

−i , n = 1, 2, . . . , for each expansion (ci) of x.

1. Introduction

Let x ∈ [0, 1). The decimal expansion

x =
b1
10

+
b2
102

+
b3
103

+ · · · ,

where we choose a finite expansion whenever it is possible, has a well-known
“each-step” optimality property: for each k = 1, 2, . . . , among all finite sequences
c1 . . . ck of integers with 0 ≤ ci ≤ 9 for i = 1, . . . , k, satisfying the inequality∑k

i=1 ci10
−i ≤ x, the sum

∑k
i=1 bi10

−i is the closest to x. An analogous property
holds for expansions in all integer bases 2, 3, . . . .

In his celebrated paper [16], Rényi generalized these expansions to arbitrary real
bases q > 1 as follows. If b1, . . . , bn−1 have already been defined for some n ≥ 1 (no
condition for n = 1), then let bn be the largest integer satisfying the inequality

b1
q

+ · · ·+ bn
qn

≤ x.

One may readily verify that
∞∑
i=1

bi
qi

= x;

it is called the greedy expansion of x in base q.
The purpose of this paper is to show that the natural analogue of the above

optimality property fails for most non-integer bases, but it still holds for a particular
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438 K. DAJANI, M. DE VRIES, V. KOMORNIK, AND P. LORETI

countable set of bases, the smallest of them being the golden ratio q = (1+
√
5)/2 ≈

1.618. Before formulating our result precisely we will first introduce expansions of
real numbers with respect to a more general set of digits.

Given a real number q > 1 and a finite alphabet or digit set A = {a0, . . . , am}
consisting of real numbers satisfying a0 < · · · < am, by an expansion of x (in base
q with respect to A) we mean a sequence (ci) of digits ci ∈ A satisfying

(1.1)

∞∑
i=1

ci
qi

= x.

Pedicini [15] proved the following basic result on the existence of such expansions.

Proposition 1.1. Each x ∈ JA,q := [a0/(q − 1), am/(q − 1)] has an expansion if
and only if

(1.2) max
1≤j≤m

(aj − aj−1) ≤
am − a0
q − 1

.

For the convenience of the reader we provide an elementary proof of this propo-
sition. Observe that (ci) is an expansion of x in base q with respect to A if and only
if (ci − a0) = (c1 − a0)(c2 − a0) . . . is an expansion of x− a0/(q − 1) in base q with
respect to the alphabet {0, a1 − a0, . . . , am − a0}. Moreover, the inequality (1.2)
holds if and only if the same inequality holds with aj−a0 in place of aj , 0 ≤ j ≤ m.
Hence we may (and will) assume in the rest of this paper that a0 = 0.

Proof of Proposition 1.1. First assume that the inequality (1.2) holds. We define
recursively a sequence (bi) with digits bi belonging to A by applying the following
greedy algorithm: if for some integer n ∈ N := {1, 2, . . .} the digits bi have already
been defined for all 1 ≤ i < n (no condition for n = 1), then let bn be the largest
digit in A satisfying the inequality

∑n
i=1 biq

−i ≤ x. Note that this algorithm is well
defined for each x ≥ 0. We show that (bi) is an expansion of x for each x belonging
to JA,q.

If x = am/(q − 1), then the greedy algorithm provides bi = am for all i ≥ 1,
whence (bi) is indeed an expansion of x.

If 0 ≤ x < am/(q − 1), then there exists an index n such that bn < am. If
bn < am for infinitely many n, then for each such n we have

0 ≤ x−
n∑

i=1

bi
qi

<
max1≤j≤m(aj − aj−1)

qn
.

Letting n → ∞, we see that (bi) is an expansion of x. Next we show that there
cannot be finitely many n such that bn < am. Indeed, if there were a last index n
with bn = aj < am, then(

n∑
i=1

bi
qi

)
+

∞∑
i=n+1

am
qi

≤ x <

(
n∑

i=1

bi
qi

)
+

aj+1 − aj
qn

or equivalently
am
q − 1

< aj+1 − aj ,

contradicting (1.2).
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Finally, if condition (1.2) does not hold and a� − a�−1 > am/(q − 1) for some
� ∈ {1, . . . ,m}, then none of the numbers belonging to the non-empty interval(

a�−1

q
+

∞∑
i=2

am
qi

,
a�
q

)
⊂ JA,q

has an expansion. �

The proof of Proposition 1.1 shows that if (1.2) holds, then each x ∈ JA,q has a
lexicographically largest expansion (bi(x,A, q)), which we call the greedy expansion
of x. The normalized errors of an arbitrary expansion (ci) of x are defined by

θn((ci)) := qn

(
x−

n∑
i=1

ci
qi

)
, n ∈ N.

We call an expansion (di) of x optimal if θn((di)) ≤ θn((ci)) for each n ∈ N and each
expansion (ci) of x. It follows from the definitions that only the greedy expansion
of a number x ∈ JA,q can be optimal. The following example shows that the greedy
expansion of a number x ∈ JA,q is not always optimal. Other examples can be
found in [3].

Example 1.2. Let A = {0, 1} and 1 < q < (1 +
√
5)/2. The sequence (ci) :=

011(0)∞ is clearly an expansion of x := q−2 + q−3. Applying the greedy algorithm
we find that the first three digits of the greedy expansion (bi) = (bi(x,A, q)) of x
equal 100. Hence θ3((bi)) > θ3((ci)) = 0.

Let A = {0, 1, . . . ,m} and q ∈ (m,m+ 1) for some positive integer m. Proposi-
tion 1.1 implies that in this case each x ∈ JA,q has an expansion. Let P be the set
consisting of those bases q ∈ (m,m+ 1) which satisfy one of the equalities

1 =
m

q
+ · · ·+ m

qn
+

p

qn+1
, n ∈ N and p ∈ {1, . . . ,m} .

We have the following dichotomy:

Theorem 1.3.

(i) If q ∈ P , then each x ∈ JA,q has an optimal expansion.
(ii) If q ∈ (m,m + 1) \ P , then the set of numbers x ∈ JA,q with an optimal

expansion is nowhere dense and has Lebesgue measure zero.

In Section 2 we compare greedy expansions with respect to different alphabets.
This gives us a characterization of optimal expansions which is essential to our proof
of Theorem 1.3 in Section 3. In Section 4 we briefly discuss optimal expansions of
real numbers in negative integer bases.

2. Greedy expansions

Consider an alphabet A = {a0, a1, . . . , am} (0 = a0 < · · · < am) and a base q
satisfying the condition (1.2) as in the preceding section. Let the greedy transfor-
mation T : JA,q → JA,q corresponding to (A, q) be given by

T (x) :=

⎧⎨
⎩
qx− aj if x ∈ C(aj) :=

[
aj

q ,
aj+1

q

)
, 0 ≤ j < m,

qx− am if x ∈ C(am) :=
[
am

q , am

q−1

]
.

Observe that bi(x,A, q) = aj if and only if T i−1(x) ∈ C(aj), i ≥ 1.
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For any fixed positive integer k, the equation (1.1) can be rewritten in the form

d1
qk

+
d2
q2k

+ · · · = x

by setting

di :=
k−1∑
j=0

cik−jq
j , i = 1, 2, . . . .

In other words, every expansion in base q with respect to the alphabet A can also
be considered as an expansion in base qk with respect to the alphabet

Ak :=
{
c1q

k−1 + · · ·+ ck : c1, . . . , ck ∈ A
}
.1

(For k = 1 this reduces to the original case.) In particular we have

JAk,qk = JA,q

for every k. We may therefore compare the greedy transformation Tk corresponding
to (Ak, q

k) with the k-th iteration T k of the map T corresponding to (A, q). It is
easily seen that Tk(x) ≤ T k(x) for each x ∈ JA,q, but in general we do not have
equality here.

Given (A, q) and a positive integer k, we denote by SA,q,k the set of sequences
(c1, . . . , ck) ∈ Ak satisfying the following condition: if (d1, . . . , dk) ∈ Ak and
(d1, . . . , dk) > (c1, . . . , ck), then

k∑
i=1

di
qi


=
k∑

i=1

ci
qi
.

For each x ∈ JA,q, the sequence b1(x,A, q) . . . bk(x,A, q)0∞ is the greedy expansion
in base q with respect to A of the number

k∑
i=1

bi(x,A, q)

qi

as follows from the definition of the greedy algorithm. Hence

SA,q,k ⊃ {(b1(x,A, q), . . . , bk(x,A, q)) : x ∈ JA,q} .
Let the injective map f : SA,q,k → JA,q be given by

(2.1) f((c1, . . . , ck)) =
c1
q

+ · · ·+ ck
qk

, (c1, . . . , ck) ∈ SA,q,k.

Proposition 2.1. The following statements are equivalent.

(i) The map f is increasing.
(ii) Tk = T k.
(iii) SA,q,k = {(b1(x,A, q), . . . , bk(x,A, q)) : x ∈ JA,q}.

Proof. (i) ⇒ (ii). Given any x ∈ JA,q, let (c1, . . . , ck) be the lexicographically
largest sequence in Ak satisfying

s :=
c1
q

+ · · ·+ ck
qk

≤ x.

Then (c1, . . . , ck) ∈ SA,q,k, and (i) implies that Tk(x) = qk(x − s). On the other
hand, we also have T k(x) = qk(x− s) by definition of the greedy expansion.

1Other aspects of expansions with respect to alphabets of the form Ak are studied in [4], [11].
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(ii) ⇒ (iii). Assume that (c1, . . . , ck) ∈ SA,q,k, and let

x′ :=
k∑

i=1

ci
qi
.

If we had (c1, . . . , ck) /∈ {(b1(x,A, q), . . . , bk(x,A, q)) : x ∈ JA,q}, then there would
exist an index m > k such that bm(x′, A, q) 
= 0, whence Tk(x

′) = 0 < T k(x′),
contradicting (ii).

(iii) ⇒ (i). As already observed, the sequence b1(x,A, q) . . . bk(x,A, q)0∞ is the
greedy expansion of the number

k∑
i=1

bi(x,A, q)

qi
.

It remains to note that x < y if and only if (bi(x,A, q)) < (bi(y,A, q)) for numbers
x and y belonging to JA,q. �

Remarks 2.2.

(i) Observe that the maps Tk and T k are continuous from the right. Hence if
Tk 
= T k, then the maps Tk and T k differ on a whole interval.

(ii) If Tk 
= T k, then Tn 
= Tn for all n ≥ k. In order to prove this, it is sufficient
to show that Tk+1 
= T k+1. By Proposition 2.1 there exist two sequences
(b1, . . . , bk), (c1, . . . , ck) both belonging to SA,q,k such that (b1, . . . , bk) <
(c1, . . . , ck) and

k∑
i=1

bi
qi

>

k∑
i=1

ci
qi
.

Note that the sequences (am, b1, . . . , bk) and (am, c1, . . . , ck) both belong to
SA,q,k+1, and

am
q

+

k∑
i=1

bi
qi+1

>
am
q

+

k∑
i=1

ci
qi+1

.

Applying Proposition 2.1 once more, we reach the desired conclusion.

3. Proof of Theorem 1.3

Let m be a given positive integer. Throughout this section we consider ex-
pansions with respect to the alphabet A = {0, 1, . . . ,m} in a base q belonging to
(m,m+1). For any integers n ≥ 1 and 0 ≤ p ≤ m we denote by qm,n,p the positive
solution of the equation

1 =
m

q
+ · · ·+ m

qn
+

p

qn+1
.

We have

m = qm,1,0 < · · · < qm,1,m = qm,2,0 < · · · < qm,2,m = qm,3,0 < · · ·
and

qm,n,p → m+ 1 if n → ∞.

Recall that the set P introduced in Section 1 consists of the numbers qm,n,p with
n ≥ 1 and 1 ≤ p ≤ m.

Proposition 3.1. Let n ≥ 1 and 1 ≤ p ≤ m.
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(i) If q = qm,n,p, then Tk = T k for all k ≥ 1.
(ii) If qm,n,p−1 < q < qm,n,p, then Tk = T k if and only if k ≤ n+ 1.
(iii) If q ∈ (m,m+1) \P , then there exists a positive integer k = k(q) such that

the maps Tk and T k differ on an interval contained in [0, 1).

Proof. (i) By Proposition 2.1 it is sufficient to prove that if

(c1, . . . , ck), (d1, . . . , dk) ∈ SA,q,k and (c1, . . . , ck) > (d1, . . . , dk),

then

(3.1)

k∑
i=1

ci
qi

>

k∑
i=1

di
qi
.

Let j be the first index such that cj > dj . Since q = qm,n,p, the elements of SA,q,k

do not contain any block of the form amnb with a < m and b ≥ p. Indeed, the
sum corresponding to such a block is the same as the sum corresponding to the
lexicographically larger block (a + 1)0n(b − p). Therefore, since dj < m, a block
of the form mnb with b ≥ p cannot occur in (dj+1, . . . , dk). This implies that if
d�+1 . . . d�+n+1 is a block of length n+ 1 that is contained in (dj+1, . . . , dk), then

n+1∑
i=1

d�+i

qi
≤ max

{
m

q
+ · · ·+ m

qn−1
+

m− 1

qn
+

m

qn+1
,
m

q
+ · · ·+ m

qn
+

p− 1

qn+1

}

=
m

q
+ · · ·+ m

qn
+

p− 1

qn+1
.

Therefore
k∑

i=j+1

di
qi

<
1

qj

∞∑
k=0

(
1

qn+1

)k (
m

q
+ · · ·+ m

qn
+

p− 1

qn+1

)
=

1

qj
,

which implies (3.1).
(ii) It follows from our assumption on q that

(3.2)
m

q2
+ · · ·+ m

qn+1
+

p− 1

qn+2
<

1

q
<

m

q2
+ · · ·+ m

qn+1
+

p

qn+2
.

First we show that Tk = T k for every k ≤ n+1. Let (c1, . . . , ck) and (d1, . . . , dk)
be sequences in Ak satisfying (c1, . . . , ck) > (d1, . . . , dk), and let j be the smallest
positive integer such that cj > dj . Then we have

k∑
i=1

ci − di
qi

≥ 1

qj−1

(
1

q
− m

q2
− · · · − m

qk+1−j

)

≥ 1

qj−1

(
1

q
− m

q2
− · · · − m

qn+1

)
> 0

by using (3.2) in the last step.
Due to a remark following the proof of Proposition 2.1 it remains to show that

Tn+2 
= Tn+2. The sequence 10n+1 clearly belongs to SA,q,n+2. In order to show
that 0mnp belongs to SA,q,n+2 as well, we must prove that

n+2∑
i=1

ci
qi


= m

q2
+ · · ·+ m

qn+1
+

p

qn+2
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for every sequence c1 . . . cn+2 ∈ An+2 satisfying c1 . . . cn+2 > 0mnp.
If c1 = 0, this is clear. If c1 . . . cn+2 = 10n+1, then

(3.3)

n+2∑
i=1

ci
qi

=
1

q
<

m

q2
+ · · ·+ m

qn+1
+

p

qn+2

by (3.2). In the remaining cases we have c1 ≥ 1 and c1 + · · ·+ cn+2 ≥ 2, so that

(3.4)
n+2∑
i=1

ci
qi

≥ 1

q
+

1

qn+2
>

m

q2
+ · · ·+ m

qn+1
+

p

qn+2

by (3.2) again.
Since 10n+1, 0mnp ∈ SA,q,n+2 and 10n+1 > 0mnp, the inequality (3.3) shows

that the map (2.1) with k = n+ 2 is not increasing.
(iii) As in part (ii), suppose that qm,n,p−1 < q < qm,n,p for some n, p ≥ 1. It

follows from (3.3) and (3.4) that if x belongs to the non-empty interval

D :=

[
m

q2
+ · · ·+ m

qn+1
+

p

qn+2
,
1

q
+

1

qn+2

)
,

then
n+2∑
i=1

bi(x,A, q)

qi
=

1

q
<

m

q2
+ · · ·+ m

qn+1
+

p

qn+2
=

b1(x,An+2, q
n+2)

qn+2
,

i.e.,

Tn+2(x) = qn+2

(
x− m

q2
− · · · − m

qn+1
− p

qn+2

)
< qn+2

(
x− 1

q

)
= Tn+2(x).

If (m,n, p) 
= (1, 1, 1), then the interval D is contained in [0, 1). If (m,n, p) =
(1, 1, 1) and 1 > q−2 + q−3, then D ∩ [0, 1) is non-empty. Therefore, also in this
case the maps Tn+2 and Tn+2 differ on an interval contained in [0, 1). It remains
to consider those values of q that satisfy 1 ≤ q−2 + q−3.

If 1 ≤ q−2 + q−3, then let � ≥ 3 be the (unique) positive integer satisfying

(3.5)
1

q�
+

1

q�+1
< 1 ≤ 1

q�−1
+

1

q�
.

If the latter inequality in (3.5) is strict, then for each x belonging to the non-empty
interval [

1

q�
+

1

q�+1
,min

{
1,

1

q
+

1

q�+1

})
,

we have b1(x,A, q) . . . b�+1(x,A, q) = 10� and

T�+1(x) ≤ q�+1

(
x− 1

q�
− 1

q�+1

)
< q�+1

(
x− 1

q

)
= T �+1(x).

If the latter inequality in (3.5) is in fact an equality, then we consider the non-empty
interval [

1

q�−1
+

1

q�+1
,min

{
1,

1

q
+

1

q�+1

})
.

For each x belonging to this interval we have b1(x,A, q) . . . b�+1(x,A, q) = 10� and

T�+1(x) ≤ q�+1

(
x− 1

q�−1
− 1

q�+1

)
< q�+1

(
x− 1

q

)
= T �+1(x).
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For each q ∈ (m,m+ 1) \ P we now have constructed an interval I ⊂ [0, 1) and
a positive integer k such that Tk < T k on I. �
Remarks 3.2.

(i) It follows from the above proof that if qm,n,p−1 < q < qm,n,p (n, p ≥ 1)
and (m,n, p) 
= (1, 1, 1), then one may take k = n + 2 in the statement of
Proposition 3.1(iii).

(ii) If Tk(x) 
= T k(x) for some x ∈ [0, 1), then the first digit of any expansion
of xq−1 in base q with respect to A must be zero, whence

Tk+1

(
x

q

)
= Tk(x) < T k(x) = T k+1

(
x

q

)
.

Hence if Tk 
= T k on a subinterval of [0, 1), then Tn 
= Tn on a subinterval
of [0, 1) for each integer n ≥ k.

Proof of Theorem 1.3. (i) Let q ∈ P . Note that the greedy expansion of x ∈ JA,q

is optimal if and only if Tk(x) = T k(x) for each k ≥ 1. Hence each x ∈ JA,q has an
optimal expansion by Proposition 3.1(i).

(ii) Let q ∈ (m,m + 1) \ P . It is well known (see, e.g., [14], [16]) that the map
T is ergodic with respect to a unique normalized absolutely continuous T -invariant
measure μ with a density which is positive on the interval [0, 1). According to
Proposition 3.1(iii) there exists an interval I ⊂ [0, 1) and a number k = k(q)
such that Tk < T k on I. An application of Birkhoff’s ergodic theorem yields
that for almost every x ∈ [0, 1) there exists a positive integer � = �(x) such that
T �(x) ∈ I. For each such x the greedy expansion of x is not optimal because the
greedy expansion b�+1(x,A, q)b�+2(x,A, q) . . . of T �(x) is not optimal. Since the
map T is non-singular2 and since for each x ∈ [1,m/(q− 1)) there exists a positive
integer n = n(x) such that Tn(x) ∈ [0, 1), we may conclude that x has no optimal
expansion for almost every x ∈ JA,q.

It remains to show that the set of numbers with an optimal expansion is nowhere
dense. We call an expansion (di) of a number x ∈ JA,q infinite if dn > 0 for infinitely
many n ∈ N. Otherwise it is called finite. Let x ∈ JA,q be a number with no optimal
and no finite expansion, and let (bi) = (bi(x,A, q)). Then there exists an expansion
(ci) of x and a number n ∈ N such that the inequalities

n∑
i=1

bi
qi

<

n∑
i=1

ci
qi

< x

hold. Hence the number x belongs to the interior of the interval

E :=

[
n∑

i=1

ci
qi
,

(
n∑

i=1

ci
qi

)
+

∞∑
i=n+1

m

qi

]
.

It follows from Proposition 1.1 that the set E consists precisely of those numbers
in JA,q that have an expansion starting with c1 . . . cn. Since (bi) is infinite by
hypothesis, there exists a number δ = δ(x) > 0 such that (x − δ, x + δ) ⊂ E and
such that the greedy expansion of each number belonging to (x − δ, x + δ) starts
with b1 . . . bn (this follows for instance from Lemmas 3.1 and 3.2 in [5]). Hence none
of the numbers in (x − δ, x + δ) has an optimal expansion. Denoting by Oq the

set of numbers in JA,q with an optimal expansion and its closure by Oq, we may

2Non-singularity of T means that T−1(B) is a null set whenever B ⊂ JA,q is a null set.
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thus conclude that numbers belonging to Oq \ Oq have a finite expansion, whence

Oq \ Oq is at most countable. This implies in particular that the set Oq is also a
null set and therefore has no interior points. �

For each positive integer k, the map Tk is also ergodic with respect to a unique
normalized absolutely continuous Tk-invariant measure μk as follows from Theo-
rem 4 in [13]. Since T1 = T , the measure μ introduced in the proof of Theorem 1.3
equals μ1. Methods to construct an explicit formula for (a version of) the density
of the measure μk can be found in [12] (see also [9], [2]).

Corollary 3.3. q ∈ P if and only if μ1 = μk for each k ≥ 1.

Proof. Proposition 3.1(i) implies that μ1 = μ2 = · · · if q belongs to P . Conversely,
suppose that q ∈ (m,m+1) \P and let I ⊂ [0, 1) be an interval such that Tk < T k

on I for some positive integer k. Since the maps Tk and T k are continuous from the
right, there exists a subinterval J ⊂ I and a number t > 0 such that Tk < t < T k

on J . Note that T−k([0, t)) ⊂ T−1
k ([0, t)) because Tk ≤ T k on JA,q. If we had

μk = μ1, then μ1 would also be Tk-invariant, whence

0 = μ1

(
T−1
k [0, t)

)
− μ1

(
T−k[0, t)

)
≥ μ1(J),

which contradicts the fact that the density of μ1 is positive on the interval [0, 1). �

Remarks 3.4.

(i) For each q ∈ (m,m + 1), almost every x ∈ JA,q has uncountably many
expansions (see [17], [1]). It follows from Theorem 1.3(i) that a number with
an optimal expansion may have uncountably many expansions. We do not
know whether the greedy expansion of a number with at most countably
many expansions is always optimal.

(ii) It has been shown in [8] (see also [5], [6]) that if q ∈ (m,m + 1) is close
enough tom+1, then the set Uq of numbers in JA,q with a unique expansion
is uncountable. Moreover, the Hausdorff dimension of Uq tends to one if
q → m+1. Since a unique expansion is clearly optimal, the same properties
hold for the set of numbers belonging to JA,q with an optimal expansion.

(iii) Let U be the set of bases q ∈ (m,m + 1) such that the number 1 ∈ JA,q

has a unique expansion. The set U has been extensively studied in [7], [10],
[5]. For instance it has been shown in [5] that Uq is closed if and only if

q ∈ (m,m + 1) \ U , where U is the closure of U . It follows from the proof
of Theorem 1.3 in [5] that each number x belonging to the closure Uq of
the set Uq has an optimal expansion for each q ∈ (m,m+ 1). We conclude
this section with an example showing that the set Oq of numbers with an

optimal expansion properly contains Uq for all q ∈ (m,m+ 1).

Example 3.5. Fix q ∈ (m,m + 1). It is well known that each number x ∈
JA,q \ {0} has a lexicographically largest infinite expansion (ai(x)) which coincides
with its greedy expansion if and only if the latter is infinite. If the greedy expansion
(bi(x)) of a number x ∈ JA,q \ {0} is finite and bn(x) is its last non-zero element,
then (ai(x)) = b1(x) . . . bn−1(x)(bn(x) − 1)a1(1)a2(1) . . . . For convenience we set
(ai(0)) := 0∞. It is shown in [5] that Uq ⊂ Vq, where Vq is the set of numbers
x ∈ JA,q such that

(m− an+1(x))(m− an+2(x)) . . . ≤ a1(1)a2(1) . . . whenever an(x) > 0.
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Let k be the largest positive integer satisfying the inequality
∑k

i=1 mq−i < 1, and
consider the number

x :=
1

q
+

1

qk+2
.

The greedy expansion (bi(x)) of x is clearly given by 10k10∞. Our choice of k
implies that (bi(x)) is optimal. However, the number x does not belong to Vq

because a1(x) . . . ak+2(x) = 10k+1 and a1(1) . . . ak+1(1) = mkc with c < m.

4. Optimal expansions in negative bases

Given a positive integer m and a real number m < q ≤ m+ 1, by an expansion
of a real number x in base −q we mean a sequence (ci) = c1c2 . . . of integers
ci ∈ A := {0, 1, . . . ,m} satisfying

∞∑
i=1

ci
(−q)i

= x.

One easily verifies that (ci) is an expansion of a real number x in base −q if and
only if (c′i) := (m− c1, c2,m− c3, c4, . . .) is an expansion of x′ := x+mq/(q2−1) in
base q (with respect to A). It follows from Proposition 1.1 that each x belonging
to the interval

JA,−q :=

[
−mq

q2 − 1
,

m

q2 − 1

]
has an expansion in base −q.

Definition 4.1. An expansion (di) of x in base −q is optimal if for any other
expansion (ci) of x in base −q we have∣∣∣∣∣x−

n∑
i=1

di
(−q)i

∣∣∣∣∣ ≤
∣∣∣∣∣x−

n∑
i=1

ci
(−q)i

∣∣∣∣∣
for all n = 1, 2, . . . .

We only consider here expansions in negative integer bases −2,−3, . . . . While in
positive integer bases the greedy expansion is always optimal, in negative integer
bases there are infinitely many numbers with no optimal expansion:

Proposition 4.2. In negative integer bases only the unique expansions are optimal.

Proof. Let q = m + 1 for some positive integer m. If x ∈ JA,−q has no unique
expansion in base −q, then x has exactly two expansions (ci) and (di) in base −q
because (c′i) and (d′i) are the only expansions of x′ in base q. Moreover, there
exists a positive integer k such that c′i = d′i for 1 ≤ i ≤ k − 1 and such that the
sequences (c′k, c

′
k+1, . . .) and (d′k, d

′
k+1, . . .) are equal to (p+1)0∞ or pm∞ for some

p ∈ {0, . . . ,m− 1}. If necessary, interchange (ci) and (di) so that (c′i) > (d′i), and
let n be a positive integer such that 2n ≥ k. Then

x =

(
2n∑
i=1

ci
(−q)i

)
−

∞∑
i=n

m

q2i+1
=

(
2n∑
i=1

di
(−q)i

)
+

∞∑
i=n

m

q2i+2
,

whence ∣∣∣∣∣x−
2n+1∑
i=1

ci
(−q)i

∣∣∣∣∣ = 1

q

∣∣∣∣∣x−
2n+1∑
i=1

di
(−q)i

∣∣∣∣∣ <
∣∣∣∣∣x−

2n+1∑
i=1

di
(−q)i

∣∣∣∣∣

Licensed to Universiteit Utrecht. Prepared on Fri Feb 15 08:30:53 EST 2013 for download from IP 131.211.213.168.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



OPTIMAL EXPANSIONS IN NON-INTEGER BASES 447

and ∣∣∣∣∣x−
2n∑
i=1

di
(−q)i

∣∣∣∣∣ = 1

q

∣∣∣∣∣x−
2n∑
i=1

ci
(−q)i

∣∣∣∣∣ <
∣∣∣∣∣x−

2n∑
i=1

ci
(−q)i

∣∣∣∣∣
so that the expansions (ci) and (di) are not optimal. �
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