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Abstract

Global environmental change scenarios typically distinguish between about 10–20 global regions. However, various studies need

scenario information at a higher level of spatial detail. This paper presents a set of algorithms that aim to fill this gap by providing

downscaled scenario data for population, gross domestic product (GDP) and emissions at the national and grid levels. The proposed

methodology is based on external-input-based downscaling for population, convergence-based downscaling for GDP and emissions, and

linear algorithms to go to grid levels. The algorithms are applied to the IPCC-SRES scenarios, where the results seem to provide a

credible basis for global environmental change assessments.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Interaction between human and environmental systems
has become an important focal point of research of the last
decades. An important aspect of this relationship is scale.
As different phenomena take place at different spatial
scales, the preferred spatial scale depends on the analysis
undertaken. In the case of studies that look into long-term
future changes of the global environment and/or its driving
forces, the scale of large global regions is often the most
useful level of analysis. Major global scenario studies, such
as the scenarios in the Special Report on Emission
Scenarios (Nakicenovic et al., 2000), the Global Environ-
ment Outlook (UNEP, 2002) and the Millennium Ecosys-
tem Assessment (MA, 2005) are developed using models
that typically distinguish between 10 and 20 global
regions.1 This aggregation scale is often chosen as a
compromise: it contains sufficient detail to capture
e front matter r 2006 Elsevier Ltd. All rights reserved.
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oth examples, the official reports actually reported on a

of regions (4–6). Here, another compromise is made

the ability to present information and the ability to provide
differences between different parts of the world and avoids
the additional complexity of modelling at a more detailed
scale level. Such complexities include the large number of
possible interactions between the different geographical
units, the need to deal with local processes and the need to
include local policies.
However, with other applications, a finer scale may be

preferable. For instance, when analysing specific interna-
tional policy options (e.g. post-Kyoto climate policy) the
national level might be a preferred scale of analysis given the
fact that the interests of individual countries play a major
role in international negotiations (see Den Elzen, 2005).
Impact, vulnerability and adaptation studies may require
even higher levels of detail, i.e. the sub-national level and/or
the more detailed grid level (see, for example, Arnell, 2004;
Parry, 2004). The reason is that crucial parameters that
determine actual impacts—such as land use patterns or
altitudes—can vary across very short distances, resulting in
a need for location-specific information.
(footnote continued)

consistency checks with other parts of the report. The modelling groups

involved provide the underlying data on request.
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The situation described above means that most global
environmental scenarios, which are developed at the coarse
scale of world regions, fail to meet the needs of a potential
group of users of these scenarios. Given the coarse scale
of current global integrated scenarios (and probably of
those in the future), downscaling provides one possible tool
for generating information at finer resolutions. The term
‘‘downscaling’’ is used here for any process in which
coarse-scale data is disaggregated to a finer scale while
ensuring consistency with the original data set. A good
downscaling procedure needs to comply with several
criteria, including: (1) consistency with existing local data
(for the base year); (2) consistency with the original source
(the scenario data on the much coarser scale); (3)
transparency; and (4) plausibility of the outcome. While
this last criterion may sound obvious, not all existing
methods comply with it. At the same time, it is often not
possible to define unambiguously what is plausible or
what is not.

One area where downscaling is frequently discussed is
climate change impact analysis. The Task Group on Data
and Scenario Support for Impact and Climate Assessment
(TGICA) is a special body of the Intergovernmental Panel
on Climate Change (IPCC). It is responsible for coordinat-
ing data development for climate impact analysis (IPCC,
2004). The TGICA has asked research teams to provide
downscaled scenario data about socio-economic indicators
at the level of individual countries rather than aggregated
regions. A helpful initial effort was made by Gaffin et al.
(2004). In their publication and the pre-publication of their
results on the Internet, they stated extensive caveats to their
results. Nevertheless, Castles and Henderson (2003) and
Pitcher (2004) still questioned several results of their
downscaling approach.2 This criticism (which will be
discussed in detail in Section 2) led the TGICA board to
conclude that improved downscaling procedures are
required for socio-economic data (IPCC, 2004).

The purpose of this paper is twofold. Firstly, we provide
generic algorithms and methodologies—taking into ac-
count the criticisms of earlier attempts—which can be
applied to other sets of global scenarios. Secondly, we
describe the results of one application of these algorithms,
i.e. a consistent set of downscaled data for the IPCC-SRES
scenarios. The algorithms are defined for three important
driving forces of global environmental change: population
size, economic growth and greenhouse gas (GHG) emis-
sions. We use three levels of aggregation: (1) the original
regional data, (2) the national level (for about 220
countries) and (3) a 0.51� 0.51 grid level (population and
2The results of Gaffin et al. (2004) were already available at the CIESIN

internet address in 2003 (which allowed people to use and access the data

at that time). Note too that the review by Picher has not been published in

open, peer-reviewed literature, but did serve as input for an IPCC TGICA

meeting. We cite the document here as it provides a valuable analysis of

the results of downscaling by Gaffin et al. (2004). We will summarise the

criticism as part of our discussion of earlier downscaling attempts in

Section 2.
income only). The algorithms are described in this paper
and discussed along with samples from the downscaled
dataset, while the full dataset can be downloaded from our
website.3

2. General methods used for downscaling global

environmental change scenarios

2.1. Different types of downscaling

As mentioned in the Introduction, the term ‘‘down-
scaling’’ is used for a wide range of different procedures.
Some important aspects can be identified in the available
literature on downscaling. First of all, information can be
downscaled to one particular region, e.g. a particular
country (Carter et al., 2004) which encompasses only a part
of the original dataset. Alternatively, it can be downscaled
to a set of units that, taken together, still encompass the
total domain. A second important factor is the scale level
itself, as downscaling can refer to anything: from global
regions or countries to a grid level. A third factor is the
nature of the information. In the case of the IPCC-SRES
scenarios, this information may include either socio-
economic data or climate data (see for instance, Mearns
et al., 2004). Finally, a fourth factor is the purpose
of downscaling: are the results a final end-point, or is
downscaling only used as an intermediate step, while
results are still interpreted on the broader scale? The latter
was, for instance, the case as part of the construction of the
quantitative MA scenarios (see Alcamo et al., 2005), where
regional information is downscaled to the country level
only to facilitate the coupling of simulation models that use
slightly different regional definitions.
These very different aspects give rise to a range of

methods, which can be seen as a continuum from very
simple algorithms to more complex methodologies such as
conditional modelling. The general rule is that if less
information is available, simpler algorithms need to be
used. Below, we briefly discuss some general downscaling
methods.

2.1.1. Conditional modelling

Models that operate at a finer scale and that are
conditional on results and/or assumptions with a coarser
resolution are used as a relatively refined way of down-
scaling scenario data. Here, the conditions set to the fine-
scale model form the means to downscale information
which can include the scenario storyline (at the very least)
or one or more quantitative results. Conditional modelling
can be used only if there is sufficient information about the
downscaled indicators and their relationships to other
parameters at the finer scale. In the case of the IPCC-SRES
scenarios, the description of the storylines is helpful in
inferring consistent assumptions at finer scales. Bollen
3Data can be downloaded from http://www.mnp.nl/en/publications/

2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.html.

http://www.mnp.nl/en/publications/2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.html
http://www.mnp.nl/en/publications/2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.html
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(2004), for instance, used the macro-economic WorldScan
model to downscale the original Gross Domestic Product
(GDP) data in the IPCC-SRES scenarios for the four IPCC
regions to the 12 WorldScan regions by: (1) making sure
that the sum of more detailed regions still complied with
the original 4 IPCC-SRES regions and (2) making
assumptions within the model (for trade policies, factor
productivity growth, demographic parameters and saving
rates) that were consistent with the storyline of the SRES
scenarios. Another example of conditional modelling is
formed by Regional Climate Models (RCMs). Local
climate change is influenced greatly by local features such
as terrain, which cannot be represented in the global
climate models because of their coarse resolution. At the
same time, finer models are impractical for the global
simulation of long periods of time. RCMs have therefore
been developed with a much higher resolution, but they
cover only a limited area and a shorter period of time.
Much of the input for these models therefore come from
the coarse-resolution climate models—and they provide
consistent information at a more detailed level (see for
example, Hadley, 2006). Another example is the work of
Carter et al. (2004), who used several models to create
socio-economic, emission and environmental data consis-
tent with the IPCC-SRES scenarios for Finland, using both
the SRES storylines and outcomes of the global models as
boundary conditions.

Conditional modelling is less applicable for downscaling
global socio-economic data into a fully comprehensive set
of country data (worldwide) given the lack of appropriate
models. A more general disadvantage of conditional
modelling as a downscaling method is the impaired
transparency of model-based methods. Most of the
algorithms discussed in the next section can be described
in just a few pages. By contrast, with models, the reader is
generally referred to extensive model documentation.

2.1.2. Clearly defined algorithms

The second method is downscaling on the basis of clearly
defined algorithms. The main difference with conditional
modelling is that these algorithms do not themselves
provide a description of the subject at issue (as a detailed
economic model does for the economy or a regional climate
model for climate change); they provide only a statistical
description of how coarse information is disaggregated.
Still these tools may be complex as those sometimes used to
downscale climate information (Wilby et al., 2004). In the
case of socio-economic data, however, a lack of more
refined information seems to call for much simpler
algorithms (with greater transparency).

Three generic algorithms are considered in this paper:
1.
 Linear downscaling: This method of downscaling
assumes that all elements within the unit have the
same growth rates as the larger unit. This method is
applicable in cases where the differences between the
units at the finer scale are relatively small, and when
there is no information available to distinguish between
them. The method, however, can be flawed if finer-scale
units diverge too much from the average values.
2.
 Convergence downscaling: An alternative to linear
scaling is to assume convergence (complete or partial)
of the units to the regional average, making sure that the
total outcome is attuned to the pathway of the larger
unit. This assumption is especially applicable to cases
where there are large differences between units within a
region in the base-year and where there is already
(partial) convergence between the original regions. The
rate of convergence can be influenced and can be only
partial during the scenario period.
3.
 External-input-based downscaling: This method requires
other finer-scale scenarios to be available and uses
relative positions of the subunits within the larger unit
as the basis for downscaling. For instance, the relative
share of a country within its region in one scenario can
be used to downscale another regional scenario to that
particular country. An advantage of this method is that
it can capture the future dynamics of different units if
these are included in the scenario used for downscaling.
2.2. Earlier attempts to downscale IPCC-SRES scenarios/

drivers

At least two earlier studies have attempted to downscale
IPCC-SRES scenario data from the four large global
regions (for which they were developed) to the country and
grid levels. Gaffin et al. (2004) downscaled population and
GDP drivers, while Höhne and Ullrich (2005) downscaled
the GHG emissions.
The work of Gaffin et al. (2004) used algorithm 3 and

algorithm 1 for the population data and algorithm 1 for
total GDP levels. It should be noted that the authors
already pointed out several limitations to their work (they
specifically mentioned implausibly high growth rates for
some developing countries and base-year issues). This
criticism was repeated in an external review (Pitcher, 2004).
In brief, the main shortcomings of the results of the Gaffin
et al. (2004) methodology are as follows:
1.
 Algorithm 3 was applied before 2050 (for most scenarios
based on the basis of age-groups), but could not be used
after 2050 as no country-level scenarios were available at
the time of the study. Instead algorithm 1 was used. The
abrupt change in algorithm resulted in discontinuities in
growth patterns after 2050 for the majority of 181
countries for which data is given (a discontinuity of
more than 0.2% annual growth rate is found for about
120 countries). For instance, Russia’s population
declines by 0.5% annually between 2045 and 2050 (this
decline increases steadily in the decades before 2045),
but this rate is reduced to only 0.2%.
2.
 For GDP, the linear algorithm results in ‘‘unacceptable
results’’ (wording taken from Gaffin et al. (2004)) where
there are very large differences between country levels
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within a region. Further on in this article, we will show
that if countries like South Korea and Singapore are
assigned the average Asian growth rates, this results in
extremely high income levels for both countries. For the
A1 scenario, eight countries (Republic of Korea,
Reunion, Singapore, Brunei Darussalam, New Caledo-
nia, Macao, French Polynesia and Hong Kong) were
assigned a 2100 income level above 500,000 US$/
capita—while the richest OECD country, Switzerland,
is assigned an income level of 280,000 US$/capita (in
2000, the income level of Switzerland was at least twice
that of these countries). Another example is the position
of countries compared to the USA. In 2000, only eight
countries had income levels higher than the USA. While
the OECD region continues to have the highest income
level of all regions in the original data, the 2100
downscaling results show that 65 countries have a
higher income than the USA, with 52 of these countries
being non-OECD countries. By the same token, one can
also argue that the method also results in excessive
growth rates for other developing countries—but in a
less extreme way—or in unreasonably low per capita
incomes for other countries.
3.
 A final shortcoming is that income downscaling was
applied to total GDP, and not to per capita income. As
this is done independently from the population growth
rates, this can lead to serious differences in per capita
growth rates within a region, again easily leading to
implausible results (excessive growth rates for some
developing countries compared to the growth rates of
developed countries in equal conditions). Some of the
implausible per capita income results discussed in the
previous section may in fact come from this ‘‘unlinking’’
of income and population.

Höhne and Ullrich (2005) used algorithm 1 in their
attempt to downscale GHG emissions. Their results are
basically open to the criticism discussed under points 2 and
3 for the downscaling of GDP data (not repeated here; see
also Den Elzen, 2005). Moreover, this study did not
provide a consistent set of socio-economic and emissions
data as downscaling was done directly on the basis of
emissions data. Including information on population or
le 1

erall description of the methodology applied in this paper
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income can make the downscaling method more plausible,
but also allow for expressing data in relative terms such as
per capita emissions or emission intensities.

3. Methodology applied in this paper

3.1. Overall description

The purpose of this paper is to provide a consistent set of
downscaled data for the IPCC-SRES scenarios at the level
of individual countries and at the grid level of 0.51� 0.51,
taking into account criticisms of earlier attempts.
A selection was made of the three generic algorithms
discussed above. An overall description of the methodol-
ogies used is provided in Table 1, while details are
discussed in the subsequent sections. For population
downscaling we took advantage, in general terms, of new,
country-level scenario data of the UN to apply external-
input-based downscaling, i.e. method 3. For the other
two datasets—income and emission levels—we used the
partial convergence method, i.e. method 2, for income per
capita and technology (emission intensity) levels. The
rate of convergence is based on the scenario storyline and
the rate at the regional level. Partial, conditional conver-
gence is a powerful tool in the downscaling of scenarios
since many long-term scenarios (including the SRES
scenarios) show some degree of convergence for many
socio-economic variables. In fact, also the population
scenarios implicitly assume some form of convergence:
each of the external population scenarios used in down-
scaling show some degree of convergence in underlying
birth and death rates, consistent with historical trends
(Wilson, 2001).
It should be noted that the algorithms used in this paper

have deliberately been kept simple as a good downscaling
method needs to be transparent. We will discuss the most
important limitations of the method in the Discussion
section.

3.2. IPCC-SRES scenarios

The IPCC-SRES scenarios consist of a set of storyline-
based scenarios to describe both changes in major driving
Grid level (0.51� 0.51)

basis of existing

orld Population

Linear scaling from the national level on the

basis of the 2000 population map

basis of partial Multiplication of the national GDP per

capita data and the population map

y and industry:

asis of IPAT equation,

vergence of emission

sources: linear
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forces (population, economy, energy production and
use) and the resulting emissions for all major GHGs.
The set of scenarios is based on two fundamental
uncertainties (axes): (1) whether future development
will be dominated by further globalisation or more
regional emphasis and (2) whether economic development
goals are given priority over environmental and social
goals. The extremes along these two axes create four
storylines known as A1 (globalisation and economic
orientation), A2 (regionalisation and economic orienta-
tion), B1 (globalisation and environment/social focus)
and B2 (regionalisation and environment/social focus).4

All IPCC-SRES scenarios show some level of partial
convergence in their assumptions and results. In none
of the scenarios, however, is there full convergence
for the four global regions described. Two of the four
scenarios—A1 and B1—deliberately emphasise conver-
gence as a leading theme in their storyline. Consistent
with this, the level of convergence in the per capita
income levels is strongest. In the reported results,
convergence is lowest in the A2 scenario (again consistent
with the scenario storyline). For our downscaling, we
chose a year outside the scenario period that is
relatively near the scenario horizon for A1 and B1, and
relatively far away for A2. On the basis of storyline
and the consistency of country-level and regional results,
we chose the following convergence years: 2150 for A1 and
B1, 2250 for A2 and 2200 for B2. The choice of a
convergence year beyond the time horizon of the
scenario is justified by the fact that no full convergence is
achieved at the regional level in any of the SRES
scenarios.5 In Section 5, we will show that these assump-
tions lead to country results that seem to be consistent with
the regional trends.

3.3. IMAGE 2.2 implementation of the IPCC-SRES

scenarios

We used the 17-region implementation of the IPCC-
SRES scenarios in the IMAGE 2.2 model as the starting
point of our analysis (IMAGE-team, 2001). The regional
definition of the 17 world regions can be found in
Kreileman et al. (1998). The IMAGE 2.2 regional numbers
for population were directly based on the information
provided by the SRES modelling teams (see IMAGE-team,
2001). Results from the WorldScan model (Bollen, 2004)
were used for GDP. Energy and GHG emissions are based
on the submodels of the IMAGE 2.2 model, but conform
to the harmonisation criteria as indicated in the IPCC-
SRES report.
4Recently, there have been some criticisms of the consistency of the

IPCC-SRES scenarios with more recent data and scenarios. Van Vuuren

and O’Neill (2006), however, showed that the IPCC-SRES scenarios are,

in most cases, still up-to-date for most parameters.
5It should be noted that the convergence equations (described in

Section 5) need to be adapted slightly to allow for convergence within the

time period of the scenario.
3.4. Base year

The IMAGE 2.2 implementation of the SRES scenarios
is based on base-year data for 1995, and values for 2000 are
model projections. By now, base-year data have become
available for the year 2000. These new (country-level) data
were therefore used as the starting point for our down-
scaling exercise (see Table 2). In order to be consistent with
both the new base-year country-level data and the original
IPCC-SRES scenario data, a linear correction value was
used that ensures full consistency with the base-year data
on the one hand and the scenario data in 2100 on the other
hand. In other words, a scaling factor was used that starts
with the ratio between historical data and scenario values
at the regional level in the base year and converges towards
1 in 2100.

4. Population

4.1. Rationale behind downscaling methods

The population represents an important driver of global
environmental change, directly influencing the consump-
tion of goods and emission levels. Population size and
structure are the outcome of the three basic underlying
processes of birth, death and migration (see e.g., Hilderink,
2000). The intertwinement of mortality reduction and—
with some delay—the decline of fertility is known as the
demographic transition. There is considerable variation
between countries in the phasing of the demographic
transition, though a strong tendency towards demographic
convergence can be seen (Wilson, 2001). In most high-
income countries, the demographic transition has entered
its final stage and the process of ageing will peak in the
coming decades. In many low-income regions, on the other
hand, countries are still in the transitional phase and
fertility is declining, resulting in a relatively young age
structure. The age profile of a population is one of the
crucial factors in future population growth and represents
a major reason for not applying linear downscaling to
population projections. Fortunately, in the case of
population, the existence of authoritative national-scale
projections provides the option of external-input-based
downscaling. The most useful projections for this purpose
are the long-range population projections (up to 2300)
published by the UN (2003). Using the relative size of
countries in the UN projections makes it possible to
downscale the IPCC-SRES scenarios, while capturing some
of the important dynamics resulting from differences in the
age profiles of different countries. Alternatively, one can
also use the various age groups in the UN projection to
break down the population scenarios by age (O’Neill et al.,
2005). The latter does not lead to very different results for
population size, but has the advantage of generating more
information (age profiles). We have used both method to
provide national population data, and both data sets can
be obtained from the authors. For most countries, 2050
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Table 2

Overall description of the base-year data

17 world regions 224 countries Grid level (0.51� 0.51)

Population IMAGE 2.2 Base-year data from UN (2003) Base-year data from CIESIN (2003)

GDP IMAGE 2.2 Base-year data from WDI (2005) and

UNSTAT (2005)

Base-year data on the basis of

population map and country data

GHG emissions IMAGE 2.2 Base-year data from WRI (2004)
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Fig. 1. Absolute population numbers for South-East Asia in 2000, the

base year, and 2050 for the A1 and A2 scenarios.
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differences are only 1–2% of total population. In this
paper, we concentrate on the numbers obtained from the
simplest method (downscaling based on total population
size).6

Population data can be downscaled from the national
level to the grid level using a linear downscaling algorithm
(each grid cell within a country changes at the country’s
rate of change). Alternatively, more refined methods can be
considered that model future population distribution on
the basis of fertility, mortality and migration processes and
micro-characteristics such as population densities and
urbanisation (Gutmann, 2000; Hilderink, 2004). However,
variations in the definition of urbanisation, in combination
with the weak relationship between population density and
urbanisation, still constitute an obstacle to appropriate
implementation (Hilderink, 2004). At this stage, therefore,
the simple linear method was preferred, as it is a more
transparent method.

4.2. Base-year data

The most important data relating to historical and future
population trends are provided by the UN World Popula-
tion Prospects (2004), including the three population
variants for low, medium and high fertility. The UN
long-range projections (UN, 2003) are used to extend the
time horizon to 2300. At the sub-national level, CIESIN
(2003) provides population data at a more detailed level:
population per 20 km2 for 1990 and 1995.

4.3. Method used for downscaling

The three variants of the UN long-range population
projections are used for downscaling the regional popula-
tion. The low variant is used for A1 and B1, the medium
variant for B2 and the high variant for A2

PopC ¼ PopRðAC=ARÞ. (1)

In this formula, AC represents population data for the
national-scale scenario (here, the UN data), AR is equal to
the sum of the population data of all countries within the
region (again based on the UN data) and PopR, is the total
population of the regional scenario (here the regional
IMAGE data). Grid-level data is generated by assuming a
6See http://www.mnp.nl/en/publications/2006/DownscalingDriversOf-

GlobalEnvironmentalChangeScenarios.html.
growth rate equal to the national level for all grid cells
within that country.

4.4. Results

4.4.1. Downscaling to the national level

The method described in the previous section leads to a
set of population projections that are an improvement on
the previous work discussed in Section 2. The main reason
is that the problems with downscaling discontinuities are
eliminated. It should be noted that the results of the
downscaling exercise depend on the original IPCC-SRES
scenarios. At the moment, these scenarios are not longer
fully reflecting current insights into possible future demo-
graphic trends (Van Vuuren and O’Neill, 2006). The same
methodology, however, can also be used for other (more
recent) population projections.
As an example of the results obtained, Fig. 1 shows the

results of the downscaling for the countries in the South-
east Asia region for the A1 and A2 scenarios. The figure
clearly shows the high population growth under the A2
scenario. In A1, the 2100 global population size is more or
less equal to the current level while, in A2 in most
countries, there is a doubling of the population. Fig. 1 also
illustrates that the external-input-based downscaling meth-
od can result in different growth rates for countries within
a region.

http://www.mnp.nl/en/publications/2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.html
http://www.mnp.nl/en/publications/2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.html
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Fig. 2. Population density in 2100 for the A1 scenario (upper left) and A2 scenario (upper right), along with relative population growth between 1995 and

2100 for the A1b scenario (bottom left) and A2 scenario (bottom right).
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4.4.2. Downscaling to the grid level

Fig. 2 shows the grid level results for population density
and population growth in the 2000–2100 period for the A1
and the A2 scenarios. The low fertility levels in A1 cause, in
the long run, a fall in the population in the East Asia
region, South Asia, the Former Soviet Union and Eastern
Europe. In A2, on the other hand, where the continuing
global population growth reaches approximately 15 billion
people, almost all grid cells show a significant increase. The
absolute population density maps in the two scenarios are
less distinctive, but can provide a useful basis for many
types of impact assessments.

5. Gross domestic product

5.1. Rationale behind the downscaling method

Another important driver of global environmental
change is the economic growth rate. In most scenarios,
the economic growth rates of low-income regions are, on
average, higher than those of high-income regions. This
results in partial convergence of the income gap in relative
terms.7 The degree to which this partial convergence
occurs, however, varies sharply across regions and
scenarios. As stated earlier, the IPCC-SRES scenario set
includes scenarios with a very high degree of convergence
(A1 and B1) and scenarios with much less convergence
(A2 and B2). Also scenarios exists in which some low-
income regions will not experience higher growth rates
7It should also be noted that, even in the case of partial convergence,

this does not necessarily mean a reduction of the absolute income gap.
than the global average, such as the World Bank/IMF
projections for Sub-Saharan Africa (World Bank, 2005).
There is a very wide range of literature about whether

income convergence is a logical attribute of larger
economic systems and whether such convergence can
actually be observed in the past. There is good evidence
of convergence within large regions which act more or
less like a common market (e.g. European Union, USA
and Japan (Quah, 1996; Sala-i-Martin, 1996)). Similar
evidence about convergence is found within groups of low-
income countries, such as Western Africa (Jones, 2002).
Whether convergence occurs globally is more controver-
sial, and this also depends in part on the methodology
used (compare Ben-David, 1996; Pritchett, 1997). Some
form of convergence between regions seems evident,
driven by much higher growth rates in Asia than the
OECD (high-income) average. At the same time, Latin
America and, in particular, Africa have yet not contributed
to this convergence.
The fact that relative regional growth rates are often

used as distinguishing factor between scenarios makes
downscaling on the basis of convergence metrics attractive.
This is reinforced by the fact that the evidence for intra-
regional convergence is stronger than for inter-regional
convergence. Convergence methods can avoid the major
problem of heterogeneity that troubles linear downscaling
(see Section 2).

5.2. Base-year data

For the national per capita income levels in the base
year, we used GDP per capita data from the World Bank’s
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World Development Indicators (WDI) measured in con-
stant 1995US$ (World Bank, 2004).8 Since data is missing
from this database for a small number of countries, we
supplemented the set with GDP data from the UN
Statistics Database (UNSTAT, 2005).9

5.3. Method used for downscaling

We assume partial convergence in per capita GDP
for all countries within a region, using a convergence
year (CY) outside the 2000–2100 time period, and 2000
as base year (BY). The downscaling consists of two steps.
In the first step we determine a constant annual per
capita income growth rate per country (GDPpc_grc)
leading to the regional per capita income level in the
convergence year:

GDPpc_grC ¼
GDPpcR;CY

GDPpcC;BY

� �1=ðCY�BY Þ

. (2)

In this formula, GDPpc refers to the per capita income.
The indices C and R refer to the country and the region to
which the country belongs, respectively. As the GDP paths
for the IPCC-SRES scenarios do not go beyond 2100, we
extended the scenarios towards the convergence year using
the growth rate in the last 10 years of the scenario run as a
constant growth rate after 2100.10 The preliminary per
capita income of a country C at time step t (GDPpcC,t

*) can
then simply be determined by multiplying the per capita
income level of the previous time step by this constant
growth rate

GDPpc�C;t ¼ GDPpc�C;t�1GDPpc_grC . (3)

Next, in the same time step, country-level per capita
income is adjusted to make sure that the sum of total GDP
of each country is equal to the regional total. This is
necessary as the regional growth rate changes over time
(often starts high and decreases towards the end of the
century). We first determine the difference between the
regional GDP and the summed GDP of the individual
8The data used are GDP per capita levels measured at market prices and

translated into US$ on the basis of market exchange rates (MER). There

has been discussion about the value of MER-based GDP estimates versus

estimates based on purchasing-power-parity (PPP). MER numbers are

used for this study, but the method can be applied equally well to PPP-

based numbers.
9UN data is reported in 1990US$. Due to the lack of national inflation

figures and a change in exchange-rate data for these specific countries, we

used the consumer price index for the US from the WDI database (World

Bank, 2004) to convert these constant 1990 prices into constant 1995

prices. Furthermore, as neither database reports income values for some of

the small island states, we assumed the regional average income for these

countries. For Taiwan (which is also not present in either dataset) where

the per capita income level is much higher than in China, we used the

Taiwan per capita income data from Young (1998).
10In the SRES scenarios, most regions already have relative flat income

growth rates during the last decades of the 21st century. It should also be

noted that the corrections to make sure that the sum of country data

equals the regional data (Eq. (6)) imply that the method is insensitive to

the assumed growth rate after 2100.
countries (DiffR,t):

DiffR;t ¼ GDPpcR;tPOPR;t �
X

c

GDPpc�C;tPOPC;t. (4)

This difference term is attributed to the individual
countries on the basis of their share in the increase of
GDP in the region of that specific year (GDP_shC,t) (in
other words, a country that has a relatively large increase
of GDP is assigned a larger share of the difference term):

GDP_shC;t

¼
GDPpc�C;tPOPC;t � GDPpc�C;t�1POPC;t�1P

CinRðGDPpc�C;tPOPC;t � GDPpc�C;t�1POPC;t�1Þ
.

ð5Þ

The final per capita income (GDPpcC,t) can then be
determined as

GDPpcC;t ¼ GDPpc�C;t þ
DiffR;tGDP_shC;t

POPC;t
. (6)

In this method, the convergence year can be chosen
freely, which introduces some form of flexibility. An early
convergence year obviously results in more dispersed
growth rates within a region than a late convergence year
(see also Overall methodology section).
Grid-level data can now be obtained by simply combin-

ing the per capita income levels on a country scale with the
gridded population maps as determined in Section 4. This
assumes that per capita income is spread evenly over the
whole country.

5.4. Results

5.4.1. Country-level downscaling results

Fig. 3 presents country-level per capita income levels
in 2050 and the average annual growth rates for the
2000–2050 period for both the A1 and A2 scenarios. These
economic indicators are not only relevant as outcomes of
our downscaling methodology, but can also be used to
judge the quality of the exercise. Criteria include the
relative per capita income levels and growth rates (whether
implausibly high growth rates are obtained). Fig. 3 shows
that, for 2050, the highest national per capita income levels
in both scenarios are still found in current OECD
countries. However, in A1, relatively high income levels
are also found in several countries in South America, the
Middle East and South-East Asia. The A2 map, in
contrast, is still a reasonable reflection of the current
country levels for income. In terms of growth rates, a
different picture emerges. Overall growth rates range from
2% to 8% annually in A1 and 1–6% annually in A2. The
highest growth rates in both scenarios are found in the
Asian and African countries, followed by the Former
Soviet Union and Latin America. The resulting growth
rates seem to be within the range of growth rates found
historically for different countries (although they are
high for most developing countries as a result of the
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Fig. 3. Per capita income in 2050 for the A1 scenario (upper left) and the A2 scenario (upper right), and the annual per capita income growth between

2000 and 2050 for the A1 scenario (bottom left) and the A2 scenario (bottom right).
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assumptions made within the IPCC-SRES scenarios
themselves) (World Bank, 2004).

The level of difference in income levels across countries
can be expressed by a global Gini coefficient. The Gini
coefficient is a value between 0 and 1, where 0 corresponds
to perfect equality (i.e. every country has the same income
level) and 1 corresponds to total inequality (i.e. one
country has all the income and others have zero income).
Fig. 4 shows the changes in the world’s Gini coefficient
over time, based on the original regional (before down-
scaling; dotted lines) and national (after downscaling;
straight lines) income levels. The original IPCC-SRES
scenarios assume considerable convergence between the
different regions. The downscaled data have a slightly
higher level of divergence (as can be expected from the
additional country detail) but reproduce the trends in the
original regional scenarios very well, indicating that our
downscaling methodology retains this element from the
scenarios.
For a more in-depth analysis we focus on the results of

the countries of the South-East Asia region. Given the very
large initial income differences between the countries in this
region (e.g. Singapore versus Vietnam), it is one of the
regions where the critique related to the linear downscaling
methodology is most pertinent. The left-hand graph in
Fig. 5 presents the per capita income growth rates of
Singapore and Vietnam using the downscaling methodo-
logy presented in this paper. The growth rates are presented
in two steps. The flat lines indicate the annual growth rate
that the countries need to follow (using Eq. (2)) to reach
equal per capita income levels in the convergence year (the
convergence year is 2150 for this A1 scenario). The curved
lines represent the final growth rates (Eq. (6)), which have
been adjusted to follow the intertemporal pattern of the
regional growth rate (to ensure that, at each point in time,
the sum of the GDP of all countries equals the regional
GDP). The regional per capita GDP growth rate has a
distinct pattern, starting from low numbers (as a result of
the Asia crisis in the late 1990s) towards more than 5% a
year in the first half of the century and levelling off to 2.5%
a year in 2100. This pattern is well reflected in the growth
rates of the two countries, but at a different level.
Singapore stays well below the regional average growth
rate and Vietnam needs a much higher growth to catch up
with the rest of the region. The figure also shows that the
growth rate of Vietnam after downscaling corresponds
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11Den Elzen (2005) presents a more detailed comparison of the two

methodologies.
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more or less to its historical growth rate. The growth rate
for Singapore is lower than its historical growth rate—and
is more consistent with those of high-income level
economies (OECD).

It should be noted that the downscaled growth rates in
several countries (not shown) are somewhat discontinuous
with their historical growth rates. There are two factors
that cause this. The main reason is that discontinuities
already exist in the IPCC-SRES. This mainly holds for
Central America and Africa, where several countries had
negative growth rates in the 1990s, while the scenarios
assume high growth rates in the first half of the 21st
century. The second cause is the convergence rule.
Countries with high income levels, like Singapore, are
assumed to have lower growth rates in the future in order
to converge to their regional level. While future growth is
obviously uncertain, this result could be interpreted as
being consistent with economic theory. High growth rates
in countries like Singapore may be more difficult to achieve
in the future as result of reduced competitiveness (given
their high labour costs) and proximity to the technology
frontier. Given these two factors and the fact that shifts in
economic growth rates also occurred in the past, we do not
believe that it is useful to introduce consistency with
historical trends (at country level) as an additional
requirement in our downscaling methodology at the costs
of the transparency of the method.

The right-hand graph in Fig. 5 shows the per capita
income levels for Singapore and Vietnam compared to the
regional average. The ratio between the income levels of
both countries is also shown (right y-axis). In the base year,
per capita income in Singapore is 75 times higher than that
in Vietnam. After downscaling, the income level for
Singapore in 2050 is around 100,000 US$ per capita,
which is similar to the upper range of the OECD countries
in 2050 (Luxemburg/Switzerland). This means that
Singapore occupies an almost equal position relative to
the OECD in 2000 and 2050. For Vietnam, the calculated
income level in 2050 is around 10,000 US$ per capita. This
is a decrease: from an income disparity compared to
Singapore of a factor 75 to a factor 10. In 2100, the income
disparity between both countries has decreased further to a
factor 2.
In a final analysis, we compare the results of the per

capita income levels for all countries in South-East Asia
using the earlier methodology applied by Gaffin et al.
(2004) and the methodology presented in this paper (see
Table 3 and Fig. 6). The earlier methodology differs in two
ways that applied in this paper: firstly, a linear downscaling
algorithm was used and, secondly, GDP was downscaled
rather than GDP per capita. We used the Gaffin et al.
(2004) methodology instead of reported results to eliminate
influence of the base-year data.11 The results show that
their methodology leads to high income levels for countries
starting with a relatively large income share and a large
regional growth rate. By contrast, the low-income coun-
tries in the same region remain relatively poor. This large
difference results from the equal growth rates for all
countries within the region, and is even aggravated by the
fact that the population levels in low-income countries tend
to grow faster than in higher-income countries. The results
for the methodology presented in this paper seem to be
more plausible: countries do not achieve improbably
high income levels. Moreover, countries starting with a
relatively large per capita income have lower income
growth rates than countries starting with a relatively
low per capita income. This is consistent with both
the literature on conditional convergence and the
scenario storylines. At the same time, high-income
countries still achieve much higher per capita income levels
than the low-income countries. Den Elzen (2005) made a
more detailed (worldwide) comparison between the two
methodologies.

5.4.2. Downscaling to the grid level

Fig. 7 shows that the gridded GDP density ($/km2)
values for the A1 scenario in the year 2050 follows largely
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Table 3

Income per capita for the A1b scenario in 2050 determined using the method published earlier (Gaffin et al., 2004) and the approach proposed in this study

2000 (US$/cap) 2050 Annual growth

Earlier method (US$/cap) This study (US$/cap) Earlier method (%/yr) This study (%/yr)

South-East Asia 1478 18,336 18,322 5.2 5.2

Brunei 10,786 97,942 68,470 4.5 3.8

Myanmar 607 8356 12,500 5.4 6.2

Cambodia 388 3148 12,160 4.3 7.1

Indonesia 1015 13,826 16,550 5.4 5.7

Lao PDR 451 3674 13,187 4.3 7.0

Malaysia 4808 51,499 41,796 4.9 4.4

Philippines 1173 13,057 19,420 4.9 5.8

Timor-Leste 176 1571 7497 4.5 7.8

Singapore 28,295 420,580 93,446 5.5 2.4

Vietnam 370 4595 10,032 5.2 6.8

Thailand 2828 42,289 27,554 5.6 4.7

12This was already acknowledged by Gaffin et al. (2004) but not applied

in their work.
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the same patterns as the population maps. The highest
GDP densities are found in Western and Central Europe,
both USA coasts and Japan due to high per capita income
levels and relatively high population densities. The GDP
densities are also high in India, East Asia, and parts of
South-East Asia due to intermediate per capita incomes
and high population densities. Over time, there is an
increase in density and a shift from the OECD regions to
the Asian region with the highest values. These density
levels are obviously relevant for impact analysis as they
relate largely to consumption patterns and coping cap-
abilities.

In our current methodology we assume that income is
evenly spread within countries. While differences between
urban and rural areas may exists even in developed
countries, these differences are likely to be more accen-
tuated for developing countries. Using sub-national data to
describe the current situation could be a major improve-
ment (see Sachs et al., 2001; Nordhaus, 2006).12 Further-
more, combining this set with a convergence methodology
would also improve future projections.
6. GHG emissions

6.1. Rationale behind downscaling method

GHG emissions are a function of socio-economic driving
forces such as population and per capita income levels, but
also of technological advances such as energy efficiency
and the type of fuels used. Several simplified equations
have been postulated to describe this interdependence, such
as the IPAT equation (Ehrlich and Holdren, 1971) and the
related Kaya identity (Kaya, 1989). The IPAT equation
represents environmental impact (I) as the product of three
indicators: population (P), affluence (A) and technology
(T). Using GHG emissions for impact, per capita income
levels for affluence and emission intensity (emissions per
unit of GDP) for technology yields an identity equation
that can be used to analyse trends in GHG emissions.
In our downscaling approach, we distinguish between six

emission sources; i.e. (1) CO2, (2) CH4 and (3) N2O
emissions from energy generation and industrial processes,
(4) CH4 and (5) N2O emissions from agricultural processes
and total F gases (HFCs, PFCs and SF6). For all energy
and industry related emissions, the majority of emissions,
we use the IPAT equation as the downscaling framework
as these emissions are driven by population growth and
income levels. Instead, simple linear downscaling is used
for the other categories as they are only loosely linked to
consumption (and much more to production). Finally, the
CO2 land-use change and forestry emissions have not been
included since this would require some form of description
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of forest dynamics in our downscaling algorithms and this
is an area to which we have not yet paid attention.

Population and per capita income levels were already
downscaled in the previous two sections. Emission intensity
generally decreases over time in most scenarios. As with per
capita income levels, most scenarios—including IPCC-
SRES—show partial convergence of emission intensities
across regions over time. This convergence is driven by a
spread of technologies, but also by maturing economies
(i.e. post-agricultural advancing to post-industrial econo-
mies) all around the world. As emission intensities
converge at the regional level, it makes sense, once again,
to use a convergence algorithm for downscaling regional
emission intensities.

6.2. Base-year data

Country data from the CAIT database (WRI, 2004) are
used for GHG emissions. This database covers all GHG
emissions, including energy generation, industrial pro-
cesses, agricultural practices and waste, for all gases
included in our methodology.

6.3. Method used for downscaling

For agriculture related emissions we use simple
linear downscaling. For energy-related and industrial
emissions, we use the IPAT relation to downscale the
emission data to country level data (EC,t) using relative
changes of the individual components compared to base-
year level:

EC;t ¼ EC;0
POPC;t

POPC;0

GDPpcC;t

GDPpcC;0

EIC;t

EIC;0
. (7)

The population and GDP data are already available. The
convergence algorithms for downscaling energy intensity
are the same as for income (see equations in Section 4.3),
where per capita income, GDPpc, is replaced by emission
intensity, EI (EIC,BY being the country’s emission intensity
in the base year and EIR,CY the emission intensity of the
region in the convergence year)

EI_grC ¼
EIR;CY

EIC;BY

� �1=ðCY�BY Þ

. (8)

As with Formula 3, increases in emission intensity can be
used to determine the preliminary emission intensity (EI*)
and total emission levels (E*). As with income, we first
determine the difference between the regional emission
numbers and the sum of country emissions (calculated on
the basis of Eq. (7); comparable to Eq. (4)). Next, we assign
this difference on the basis of the country’s share in total
regional emissions:

E_shC;t ¼
GDPpcC;tPOPC;tEI�C;tP

CinRGDPpcC;tPOPC;tEI�C;t
. (9)

The final emission level (EC,,t) can then be determined as

EC;t ¼ E�C;t þ EDif f RE_shC;t. (10)

We use the same convergence year in Eq. (8) as in the per
capita income downscaling for the different scenarios.
Finally, by contrast with the population and GDP

downscaling, emission levels have not been scaled to the
grid level. Work on historical emissions maps have been
published earlier by Olivier and Berdowski (2001). These
maps can easily be used as a basis for further downscaling
attempts in a similar way as that presented in Section 5 for
GDP. Scenario-based grid-level emission maps have been
published earlier by Olivier et al. (2003).

6.4. Results

We will discuss the results of our downscaling method
using again the South-East Asia region as example. Fig. 8
shows how the downscaling results for emissions are
obtained for Singapore, Vietnam and Thailand in the case
of the A1 scenario. The figure shows how the factors of
Eq. (7) change over time (index 2000 ¼ 100). In all
countries, population increases by about 10–30% in the
first half of the century, before returning to 2000 levels or
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levels for three countries in South-East Asia and the region itself.

13Den Elzen (2005) presents a more detailed comparison of the two

methodologies.
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even below by the end of the century. Income levels, as the
second driver, change much more. In Singapore, 2100
income reaches a level of seven times the 2000 level; in
Thailand 35 times the 2000 level, and in Vietnam 170 times
the 2000 level. The potential increase in emissions caused by
increasing income is partly offset by changes in the
technology parameter. As Vietnam also has the highest
2000 energy intensity, the convergence rule implies that it
will decline most rapidly in this country, followed by
Thailand and Singapore. The resulting impact on emissions
is that total emissions double in Singapore between 2000 and
2050 but return to 2000 levels by the end of the century. At
the same time, emissions increase by a factor 5 in Vietnam.
In terms of per capita emissions this implies that, in 2100,
Vietnam will have reduced the gap with Singapore from a
factor of almost 10 to less than a factor 2 (see Fig. 9).

Fig. 9 shows the trends in per capita emissions over time
in each of the three countries and the region as a whole—
broken down by the different GHGs and sources. The per
capita emissions converge partly, but not totally, to the
regional average. The figure also shows that the composi-
tion of different GHGs across the countries is somewhat
different, with fossil fuel CO2 emissions completely
dominating emissions from Singapore, while non-CO2

emissions from agricultural sources constitute an impor-
tant source in Thailand. The trends over time show
increasing emissions in Thailand and Vietnam (consistent
with their state of development) while emissions in
Singapore peak in the middle of the century and decrease
as energy intensity improvement outpaces income in-
creases.
In Fig. 10 and Table 4, we again focus on the results of

all countries making up South-East Asia. Fig. 10 shows
that the differences between the scenarios at the regional
level are reflected in the downscaling results of the different
countries. Table 4 compares the method used in this paper
(A1b scenario) to the trend methodology applied by Höhne
and Ullrich (2005).13 In this method, the regional trend in
total GHG emissions is projected onto national total GHG
emissions. This methodology results in large per capita
emission levels for countries starting with relatively large
per capita emissions (Singapore and Brunei), while
countries starting with relatively low per capita emission
levels (Timor-Leste, Cambodia, Laos and Vietnam) remain
relatively low. The resulting emissions levels for Singapore
and Brunei are several times the current OECD average
and do therefore not represent a reasonable outcome. The
results of the methodology presented in this paper show
that countries with a relatively large per capita emission
level have lower growth rates than countries with a
relatively low per capita emission level.
Finally, Fig. 11 presents the downscaled per capita

emissions in 2050 for all countries and the yearly increase
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in the emissions per capita between 2000 and 2050 for both
the A1 and A2 scenarios. The emissions per capita are
much larger in 2050 in the A1 scenario than in the A2
scenario, despite the higher rate of intensity improvement
in A1. For the A1 scenario, the countries with the largest
per capita emission increase are the relatively low per
capita emission countries in the Southern African and
South Asian regions. The same holds for the A2 scenario,
although the increases are much lower.

7. Discussion and conclusions

There are several different types of analyses that require
scenario information at a finer scale than that provided by
global environmental integrated assessment models. Ex-
amples of such analyses include impact and adaptation
analyses or climate policy analyses. Several methods
have been proposed in the past for downscaling the
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Table 4

Per capita emissions for the A1b scenario in 2050 determined using the method published earlier (Höhne and Ullrich, 2005) and the methodology proposed

in this study

2000 (tCeq/cap) 2050 Annual growth

Earlier method (tCeq/cap) This study (tCeq/cap) Earlier method (%/yr) This study (%/yr)

South-East Asia 0.7 2.4 2.4 2.4 2.4

Brunei 5.9 13.7 9.0 1.7 0.9

Myanmar 0.5 1.7 1.2 2.5 1.8

Cambodia 1.4 3.0 1.3 1.5 �0.2

Indonesia 0.6 2.2 2.4 2.5 2.7

Lao PDR 0.3 0.7 0.6 1.5 1.2

Malaysia 2.0 5.5 5.1 2.0 1.9

Philippines 0.5 1.3 2.0 2.1 2.9

Timor-Leste No data available

Singapore 4.4 16.6 6.4 2.7 0.8

Vietnam 0.4 1.4 1.7 2.3 2.7

Thailand 1.2 4.5 3.3 2.7 2.1

Fig. 11. Per capita emission levels in 2050 for the A1 scenario (upper left) and the A2 scenario (upper right), and the annual per capita emissions growth

between 2000 and 2050 for the A1 scenario (bottom left) and the A2 scenario (bottom right).
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socio-economic and environmental parameters associated
with these scenarios. However, reviews of the results of
these simple downscaling methods reproached them for
yielding unsatisfactory results.

Different categories of simple, generic algorithms can be
used for downscaling, e.g. linear downscaling, convergence
and external-input-based downscaling. In this paper, we
propose a method for downscaling population data, per
capita income levels and emission levels by using a
combination of these algorithms. By applying the proposed
methodologies to the IPCC-SRES scenarios, we show that
they can actually be used to provide information about
these scenarios at the level of countries and at the grid level.
By comparing the results to those generated by earlier
work, we show that the proposed methodologies yield a
consistent dataset that does not suffer from the unsatisfac-
tory results of earlier work.
The numerical results, i.e. the datasets created for the

four IPCC-SRES scenarios, are available from the authors.
It should be noted, however, that the methodology is not
restricted to the IPCC-SRES scenarios alone and other
scenarios can also be downscaled using the methodology
discussed.
It should also be noted that downscaling methods based

on simple algorithms obviously have their strengths and
weaknesses. The strengths include the transparency and the
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relative ease at which regional level data can be made
available at a finer scale, without needing to conduct or
repeat analysis at this particular scale. The weaknesses
certainly include the limitations associated with rule-based
downscaling and the methodologies proposed here. The
methodologies are applied independently of population
and per capita income levels. In reality though, all kinds of
structural relationships exist between these two socio-
economic indicators, for example, income is related to
mortality and fertility levels but also to the size and quality
of the labour force. In addition, various circumstances that
are not taken into account (infrastructure; level of
education, urbanisation, etc.), may affect the results on
the finer scale.

One option for overcoming weaknesses consists of
refining the downscaling methodologies further. However,
this may come at a cost: while improving quality, making
the algorithms too detailed detracts from transparency. In
some cases, therefore, explicit national-scale modelling
might sometimes be more fruitful. Changes that in our view
can be made easily, while keeping the downscaling
relatively simple, would include (1) exploring alternative
convergence algorithms that also account for changes in
relative differences over time, (2) separate accounting for
large groups within the data such as sectors (industry,
services, agriculture), and societal groups (urban and
rural), (3) using better data as a basis for downscaling
(e.g. sub-national or grid GDP data), (4) developing
specific algorithms for distinct emission sources (land-use
CO2 emissions).

For many applications, however, we believe that the
results of the downscaling approach described in this paper
would certainly be sufficient. In our view, downscaling is a
way of obtaining credible national and sub-national data,
but without creating a perfect dataset for all purposes.
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