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Abstract

In this essay we develop a mathematical theory of syntactic domains with
special` attention to the theory of government and binding. Starting from
an intrinsic characterization of command relations as defined in [Ba 90] we
determine the structure of the distributive lattice of command relations. This
allows to introduce implication and negation as constructors, whose logic
turns out to be the intuitionistic logic of linear posets. Using what is known
about intuitionistic logic we can study how domains can be defined from some
basic set of command relations that are naturally supplied by the grammar.
Moreover, this can be reversed. to see how the requirement that domains can
be defined in a particular way constrains the syntax. This general theory
will then be. applied to GB and .we- will- show that there is great evidence to
support our claim that command relations are the basic relations from which
all other syntactic domains must be defined in a clear and rigid way.

*This research was supported by the project NF 102/62 - 356 (`Structural and Semantic Paral-
lels in Natural Language and Programming Language') funded by the Netherlands Organization
for the advancement of Research (N.W.O.).
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1

Y troductio
-In a sense, what -the `entire GB theory is calculated to do is- (among

other things) precisely to identify the syntactic indicators of scope'

A lot of linguistic knowledge consists in knowledge that is phrased not in terms.. of
rules but in terms of nearness conditions in trees. To use some simplified examples,
a, reflexive- pronoun must find, an-, antecedent -within its own clause-,-. ,a A race -_ must
find an antecedent within the-, least constituent containing the trace and a barrier
(or sometimes two barriers) above the trace NP. All these requirements say in some
way or another that if X and Y are some syntactic categories, any construction
... X ... Y ... is banned where X is not close enough to Y. Nearness in grammar is
always measured in terms of the syntactic tree not in terms of how many items are
in between or how long the intervening material is, although that. might occasionally
have some influence. This applies not only to syntax but also ,to other -disciplines
such as the investigation of discourse; it has been discovered -that the availability of
a discourse referent is. largely scheduled by the internal .structure of the discourse
and not so much by accidental factors such as time. Nearness conditions are: stated
in terms of domains, that is, `influence spheres' for: elements in a structure.

In contrast to many other devices in syntax; the formal theory of domains is
heavily underdeveloped, that is to , say,, nonexistent. The only exceptions we know
of are [Rn 81] and [Ba 90] where the case is argued for some fundamental properties
that all domains in grammar must have., The present investigation is, intended to
attack the theory of domains from a mathematical point of view. Nevertheless we
want to make some strong linguistic claims namely that the notion of domain is
universal in the following sense. Anything that deals with nearness should make
reference to domains as we define them. This means. that not only government of
binding should be subjected to regimentation via domains, but also movement and
subjacency. This is not as bold a step as it appears to be, formalizing these notions
in our way, if possible at all, is rather straightforward. But the hierarchy of domain
formation that- we will construct will make it apparent which notions are better
behaved than others and perhaps also which of the notions of, say, subjacency
should be preferred. In addition, we will show that, for some domains -there -is
absolutely no way to define them unless one makes particular assumptions about
the feature system of the grammar.

This essay starts in § 2 `with an intrinsic characterization of command `relations`
(CRs) and gives a rough*.classfication<of them. The relationship between a CR and
domains or nearness is that a CR R defines for -each-node a'in -the tree-a--,do main
Ra. It is useful to single- out two special classes of -CRs.- The sm-allest- class is that
of TIGHT CRs.. They correspond- to the prototypical definitions of C-command,

1
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RELATIONS ON TREES

A command relation specifies a set {Rata E T} of domains. We refer to a as
the (domain-, R-) head of Ra. ([Ba 90] call this element the commander.) Also, if
(a, b) E -R (i. e. b c Ra) then a is the (domain-, R-) head of b and b the (domain-,
R-' )foot of a. The definition of a domain head goes back to [Rn 81] who was careful
not speak of `the' head of a domain rather than `a' head. Indeed, if a and b are
sisters in a tree then the IDC-domain of a is identical to the IDC-domain of b.
Thus, b is a, head of IDCa and a is a head of IDCb. We say then that -a and b
are co-heads for this relation; formally, a and b are `(R-)co-heads if Ra = Rb, in
symbols a -h b: --h is an equivalence relation and each- maximal set of co-heads is
called a chamber. Chambers are sets of type {blb -h _a} for some cc.

On the other side of the fence are the feet,. Where we called elements co-heads_
when they generate the same domain, we speak of a and bas co-feet if they are
contained in the same domains, that is, if for all c =a E R6 b E= Rc. In symbols,,
a.- f b. This again is an , equivalence relation; any -maximal set of co-feet. is a set of
type- {b1b -f a}_ for some a -and is called a cell. In -,contrast to chambers, the cells
are rather straightforwardly computed from a given R. The first characterization
is that of an atom in the boolean algebra generated by .the domains Ra, a E T.
That sounds rather horrifying but is in fact not so hard. Just consider the domains-
Ra as subsets of T; they form a collection of sets closed under intersection but not
under union and .complementation. But now take as_ B(R) the. set of all subsets
of T that can be generated from the domains of R by intersection, union and
complementation. Then, as is well-known, an atom of J(T) is a set of typ_e,A(C) _
fl(RaIa E C) f1 (1(-Rblb C) for a C such that A(C) 0. Now if x E A(C) then
x E Ra iff a E C; consequently, any two elements of A(C) are co-feet. On the other
hand, given an element x, we let C = {alx E Ra} and we get x E A(C) for this
C Moreover, x -f y exactly if, y E A(C) and this shows that cells are indeed such
atoms.

Remember `also that R-domains are lower "cones; so if -Ra x' and Rb ,1 y

then, Ra x y= This proves `-first of, all that if we take any two different
generators xy of domains they cannot be in -the same cell; by which we have at least
as many =cells-=as we have different generators of R-domains. But a cell is basically
an intersection of cones with a number of cones cut off. As any intersection of cones
is a cone, we have that cells are what we- ragged cones.` A ragged cone is any
set of type -,l.x - U(,ytji E ri); ragged cones are convex sets.- (Recall:that, C is a
convex set=if (Vxyz)(x-, y`E`-C:A x G-z <" y. -- -z E C).) It is thus legitimate -to
speak `of the-c ell of Ra whereby we -mean the cell of co-feet for the generator of Ra
Moreover, if a and -b- are- c o-heads then the cells of Ra and Rb are the same since
Ra = Rb. Thus there is a one-to-one correspondence between domains, generators
of domains, cells and chambers. There is then a way to view R as a function from
its chambers to its cells. Given the chambers and cells and the function relating
them R is recoverable. But knowing the cells, for example, is not enough. The

8 2
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2.3- Ways of Generating Command Relations

following theorem shows why .this is -so and gives us-.also another. characterization-
of TIGHTNESS.

Theorem 2.2.1 Let T be a tree and Cr a partition of -T -into ragged cones: Then
there is- a TIGHT command relation R such that (f is the system of R-cells.

Proof. Take as X the set of all- maximal- elements of sets in Ot. We know that each
set C E- (t has a unique maximal element which is then by definition collected into
X. The R-domains now consist of all cones 1 x, x E X. If we define Ra to be least
cone 1 x such that x E °a and x E X, then this relation as defined is indeed tight.
This will be proved below. It is not hard to see that R as defined` has indeed allr

x, x E X, as its domains and so as its system of cells

Finally, we mention the notion of a mate as defined in [Ba 90]. They -defrne.
R-mates as pairs (a, b) such that both a E Rb and b c Ra. Equivalently, a is ahead
of b and b a head of a. They incorrectly conclude that if R is TIGHT then R-mates-
are co-heads. `But with the definition given, a and fR(a) are always R-mates since;
fn(a) E Ra (by definition of fR) and a E RfR(a) because RfR(a) 2 .l fR(a) E a by
WELL-INCLUSION. However, a and fR(a) can never be co-heads unless fR(a) = r by,
DOMAIN °. There might still be possible uses for mate relations, but they certainly
do not characterize the notion -of .co-headness. However, again we: will show that
TIGHT means well-behaved..

Propos tion:f=.2 Let R be TIGHT. Consider a and b such that neither a fn(b)-
nor b =- fR(a). Then a and b are R-mates if and only. if they` are co'xheads.

Proof. If wand- b are co-heads then -a c Ra Rb and'b- E Ra Rb `°and so they
are R-mates. -(This is thus generally valid.) Conversely, if a E Ra and a fn(b)
then by TIGHTNESS fR(a) < fR(b); by symmetry, fR(b) < fn(a) `arid that had to
be shown.

Moreover, if a-^-h b then -a and b= are mates. For then Ra = Rb and so- since a c Ra-
we also have a E Rb`-and :since-.b= -E Rb - also -b E Ra. Similarly, if ` a `- f b -then
a E Ra b E- R, for every c and so since a c Ra we have a c Rb and by symmetry
b E Ra._- Thus -also -co-feet are mates. --Both notions are therefore at least -P

-'art

related with the mate relation:

2.3 - Ways; o Generating-: Command Relations

In- [Ba 90], it -is not relation -that` are$geiierating CRs.and they do'
that. in the following manner. - Suppose that G is a binary relation on T. -Then
the command relation generated by G is defined by EG, {(a,b)I (Vc> a)(a-Gc-

9
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10 2 RELATIONS ON'TREES-

b <,c)}.- In- somewhat more simple words, 'G, is determined by the
function- -g which gives for each a the least -c E - °a that stands in the- G-relation--
with a. If we denote by UB(a, G) =- °a fl Ga the set of upper bounds- of a
then=_ g(a) = _MUB(a, G) = min UB(a, G), that.is,_ g- picks the =least upper bound fo _
a with- respect to G. -A simple, counting argument shows that- there are far more
generating relations than there are- command. relations.- On the other =hand, given
R, take G = {,(a, fR(a))1 d-_E T j; this is the graph of fR-. Then 'G, = R since:
UB(a, G) =_ { fR(a)} whence MUB(a,G) = fR(a). Thus every CR can be generated-
via binary relations the easiest and in fact minimal of which is the graph of its
associated function... This makes the remarks given in [Ba 90] totally vacuous that
government domains can be defined via generating binary relations. This does not-
disqualify the use of generating relations as such, indeed the formulation of a barrier
in [Ch 86] seems to be best approached in these terms; but that seems to have no
implications beyond the fact that it qualifies the- relation as -a -CR.-

Thus.we.areleft.with deciding when two relations -G, H generate the same CR.
([Ba 90] .write G ti H for rG, = rH-'. This is not hard to-do. All that needs to,
hold is that given any node a, the least upper bound with respect to G should- be the
same as the least upper bound with respect to H. In particular, from this we deduce-
that- there also is a generating_ relation for a CR which is maximal with- respect,
to inclusion;. given a command relation R wetake the set G = {(a; b) -.not a -.

b ornot b <JR(a)}_

[Ba 90] consider also a special type of command relations, namely command
relations which are-generated. by a set P C_ T of nodes- rather than a binary relation-
Define the. set :UB(a, P) of. upper bounds for, a to be =°a -fl P. -Then MUB(a, P) =
min -UB(a, P) is called, the. minimal upper bound of a with respect to P. We
say,tha P. `geaaerates the -command relation 'R, {(a, b) I b <_ MUB(a,
J({a} x, j. MUB(a, P). ( a E T) and -that a P-commands b if and only if (a, b) E FP 7.
([Ba- 90]' write Cp for- this relation.) Relations which are generated. by a-set will from-
now=on_be called FAIR, but

Theorem 2.3.1 A command relation is FAIR iff it is TIGHT.

Proof. --Recall thet° TICIIZ`NESS=can be stated as a -<-,f (-b) -r- :fR(a) <- .fR(b)
Now let.. R be FAIR. Then R = 'P for .some P C_ -T.r If - d < fR(b) then the-
least P-node in the crown of b is. strictly above a. Thus the least P-node in the
crown of -a is -below or equal to the least P-node in the crown of b and that was to
be shown for T IGHTNESSs =Conversely,. suppose that- R is TIGHT. First, we define=
P = {fR(a)ja E T}. It is left to show that Ra ==jMUB(a,P) for all a. Or, to use
the functions,-jR(a)_ M-UB(a,P);_that means by definition of P that we have to-
show that there is no b such that a < fR(b) C. fR(a). But suppose that a < fR(b);
then -by TIGHTNES-S fR_(a) G fR(b) and-1 ence if (b)- <-=fR(a) cannot hold.

<

= P)} =

=



2.4 Small Print 11

In [Ba 90], two -definitions of, FAIRNESS,-are given which turn out to be different
at closer look. The first, stated on p. 7, qualifies R as FAIR if an upper bound
for a node a is an upper bound for every node that a dominates." This suggests
that R is taken to be generated by a `r`elation G and that R is FAIR in this sense
if (Vab)(b <.a..--* .UB(a, G) UB(b, G)) from which (Vab)(b < a. --> .MUB(b, G) -
MUB(a, G)) and thus (Vab)(b < a. -> . fR(b) _< fR(a)); thus R is MONOTONE. The
reverse need not hold: even if R is MONOTONE G need not satisfy this condition,
but there certainly is a H that generates R and has this additional
H {(a, b) lb > fR(a)}.. The second definition, ,given.on-p. 29,-is-more accurate and
can be proved to do the job it is intended to do, namely to characterize TIGHTNESS-.
There, R is .classified as FAIR if

(Vabcd) [(aRb A bRc n -aRc) -* (aRd --> b >-d)]-
q (Vabcd)[(aRb A bRc n -aRc A aRd_A -b > d) -> L]

(Vabcd) [(aRb n.aRd A-- b > d) -* (bRc -* aRc)]
(Vab)-[(Id)(aRb-A aRdnA -mob > d) -* (Vc)(bRc -> aRc)] =-
(Vab)(b E Ra n Jb R . Rb C R,,)_

For the reasons given we have chosen _to revise the _terminology;, it was also not
obvious why the name. FAIR was chosen. We think TIGHT is more suggestive.-,.

2.4 Small Print

It is easily seen that relations satisfying CONSTITUENCY correspond to functions
on` trees. Further requirements on these functions can be-expressed by a definition
of the type -DOMAIN° where o- is a function assigning a -subset of possible generators'
for Ra for each a. For quasi command relations ° a = Tand 'for command, relations
ao = °. We `call- u 'a selector function.- We have tried to keep our definitions,
and results independent of the selector function, but in the actual wording we will;
use

-

°, the selector function for command relations. All
results,

will remain valid-
or `the condition that cr(a) is linear for every a E T. Any particular relation k
satisfying DOMAIN° is' represented by another function fR satisfying 1 fR(a) = Ra.
S u c h a function will satisfy fR(a) E a(a) and every such function will give rise -to_ a
relation satifying DOMAIN°. One may-wonder whether it is a good strategy to allow-
R,, = Ia. We think that it this is not the case for the reason that when we will
study the logic of domains, such a -choice would allow the lexicon to interfere n =the
definition and behaviour of domains. This is to be avoided since the whole point of
a : grammar is =that---it only deals with-' classes of lexical items is t e. it abstracts= away
from, the. special properties of particular lexical items..

,

=

t : ->

results



12 REPRESENTATION OF COMMAND -RELATIONS

Rep-esentatio o Command Relations-

3.1 The Lattice _of C-omma-nd Relations_a

ry -relations as thereOver a. finite set T =of cardinality n there exist as many (binary)
.re -subsets. of T x T. Since T x T has n2 elements, there are 2n3-- relations: It

is standard =knowledge that the set of (binary) relations over T is closed- under
-unions, intersections and complements and hence forms a boolean algebra which we
-denote by 9ie2(T)- = (2TxT, -, n, u).. (Note that -we- write 2M for the powerset of
M. Sometimes we write Re2_(M) for the =set of binary relations over -M.)- Now if
T is the set of nodes of- a- tree- T = (T, r, <) and we- want -to study .the- command
relations. over T -there are immediate questions as to whether the set of command
relations over T, denoted by-_Cr. (T ), are, likewise closed under- these operations. It
will be shown that closure under negation does not obtain in general, but any union
or intersection of command relations is, again -a command relation.: Whence they
form a sublattice of 9e2(T_). -.Its structure =can-be fully described.

.In. order to -describe the lattice (Er(T) of command -relations over T we use the
correspondency between CR-s and -functions that satisfy DOMAIN ° which we can
strictly increasing functions. This correspondency can be turned into a ho-
momorphrs rr between the lattice of such functions with. operations fl, U defined
below and- the lattice of command ' relations: 'Let f and g be functions satisfy-
ing DOMAIN °. Then define f Lfg and f rl g by f U g(a)- = max{ f (a), g(a)l and
f rl g(a) = min{ f (a), g(a)j. We then have

-
,) fRUS = fR U-fS

fRnS = fR n fS

o aproof suppose R. = J,-b and Sa =:-I c. Then since b, c E °a we have either-
b b = cy or b c- since °a is linear. Then (R U S)0 = R. U Sa, = .t b U J, c = J
inax{b, c} `(R n'S)a Ra, n Sa- b n . c = J, min{ b, c}. The least strictly increasing
function is l which 'for every x < r gives .L(x)- - x - the unique cover of x. The
--largest function is T- x F--> r..,, Now denote the set of strictly increasing functions -on
T by, S f (T) and the set of=command relations on T by CR(T). The correspondence:
($) on page 2.2 yields a one-to-one map conforming with (t), This is summarized-
in the -next theorem;. before we state it, we- must- explain the notation. We have
(Er(T) (CR(T ), fl, U, 1-77).. as well as IS f (T)-= (S f (T), rl, U, l,-T). &(T), being
a lattice of sets with intersection and union as operations, ,is -distributive.:.

Theorem 3:1.1: Zr(T) = e (T).. Both are distributive lattices.,

Now-- we-.k-now-that.-.AC(T) is `dosed under -union' and intersection -we have that-it
_is a _sublattice,of 9e2=(T); this we write as-Crr(T-). '3 9te2(T), where the- arrow

3

3

< c, >
= = I

:

=



-3.1.,-The -Lattice of Command Relations= 13

>--> tells us that there is an, injective lattice. homomorphism in the- given 'direction.
(Surjective homomorphisms are indicated by -+.) Moreover, both lattices have a
top and a bottom element, but the bottom elements do not. coincide. Thus =we write

Cr(T) >__1 Ne(T) where the 1 indicates that top is mapped onto top. If bottom were

also mapped onto bottom we would write a >---->. So much for notation.

- The structure of the lattice- (S f (T ); LJ, n, T, 1) is easily exhibited. ° Since- ~ f E
S f (T) is determined. by -the value of the a E T - which is an element -of the crown
°a- and can be chosen independently of the other values -, q S f (T) [I q °a.

aET
Moreover, R C S if and only if '(Va)(Ra C Sa) if and only if (Ha)(fR(-a) < fs(a)).
Let t(k) = ({1, 2, ... , k}, max, min, 1, T) be the unique linear lattice of k elements.
For each -a E T define a nap--La : 6f(T) w t(b °.a). by La : -f _ra;;card(:°afl. f(a)).
This map is. ,a lattice- homomorphism as can he checked. - By, principles.- of -universal
.algebra, two, homomorphisms hl : £ - IN,, h2 : -> T2 induce a homomorphism
h1 ® h2 : £ -' 911 ®l2 from C- into the product 91, ®'n2 which- consists of pairs
(nl, n2) with ni E Ni; the operations act independently in each component:: One
has hl ®h2(1) = (h1(1),h2(t)) for I E L. With (& -97, denoting: the product of--,. all

iEI

-let t c &-f(T) °a) be defined by t.: f (ta(f) I a E`T). It is- riot hard to
aET .

see that t is an isomorphism; it is injective since a function uniquely determines the
values for each argument, it is surjective since a function is completely determined
by naming the value for each a E T. Thus -we have the following result.

Theorem 3.1.2 (3f(T) = ® t(q °a).
aET

gmmediately,,w_e get that &f(T) ands Tr(T) are.- isomorphic to a, borolelan, lattice, if
and only if every node is, of depth < 3. We examine. this- construction in detail with
an example.., Let T = ;Q(4),; then, Ar(T) 3 x 2- x ,1 x 3 x 2 while there are
24x4 =- 216 = 655.36_ binary relations on T.

Fig. 1

=

j

9L-

-4 ® 1(0 ->

= 1
=

,3(4) 40 4 (I-r(0(4))

40 3 A p z

2 X
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14 3 REPRESENTATION OF ;COMMAND RELATIONS

In --the . picture. on the right, the-circles--- denote command relations which =are not
TIGHT whereas- TIGHT relations are denoted by a-blob. The lattice can be obtained
-as=follows.. Every command relation can be represented by a strictly increasing func-
tion on 0(4). Since such a function must satisfy f (4) = f (3) 4,. it is completely
'determined by its values for 1 and 2. Any combination of 1 F-* 2, 1 F-+ 3, 1 H 4 on
the one hand and 2 H 3, 2 F-+-4 on the other is possible. The resulting lattice is a
product of the lattices of,-functions. ({I, x}, U,-rl) and ({I, y, z}, U-, n) with U -and
n as defined ..in (t), where 1 F-* _2, 2 r-4 3, x : 1 F-4 .2, 2 F-74 4, y 1 F-+ 3, 2 " 3
and z-: 1. F-* 4, 2j-4 3. The homomorphism c associates with each, function f the
quadruple (f (1) - 1, f (2).- 2, f (3) - 3, 1). And for i < 4, ci(f) = f (i)-- i as well as

(f) = 1 is the projection onto; the 1th linear componenti 4f =or

Incidentally, the --functions` x, y and>> z generate C (Q(4)). since they .are the U-
irreducible- elements. (Recall that an element IT is: called`=U-i :redueible if- x U y =-a
-implies=x,=.a=or y = a.) This claim is easily verified, since, the functions--satisfy that
f(x) is a- mother of x for all x <rexcept for one: Each element of &f(e(4)) is -a
join of a finite set of-{x;-y,z}: By standard representation theorems for distributive
Iattic 6f(1(4)-) is- isomorphic to the lattice of downward closed subsets of {x, y, z}.
In this. particular case;,, Y ,C {x, y,'z}, is downward closed if and only if z E Y implies
y E Y. The elements x and x U are not absolute, since x(2) =_4 > x(1) = 2 and
-x-Uy(2)=4>xUy(1)=3-.:.

3 Z The Algebraic Structure of Monotone and Tight
Relations--

`We begin with"the MONOTONE relations. ' The first theorem to note is that the
-MONOTONE relations Mcr(T) are also- closed under intersection and union and
T I are both monotone. Again this is most -suitably expressed algebraically.

Theorem 3_.2.1 -JJ2cr(T)> &(T).

Proof. Suppose that R, S are-MONOTONE. Then given two, nodes. a, b with a < b
we have fR(a) < fn(b) and fs(a) <- fs(b) by assumption. (Fl) : We conclude
min '{ fR(a_), fs(a)} < fR(b),fs(b) and so min { fR(a), fs(b)} < min { fR(b), fs(b)}
whence fRns(a) < fRns(b). (U) : We conclude fR(a),fs(a) < max { fR(b), fs(b)},
from which max { fR(a), fs(b)} < max { fR(b), fs(b)} and so fRus(a) < fRus(b)}.
Thus both R:;n S- and R U S are MONOTONE.

The above theorem says also that (MIT(T), fl, U, .1, T). is a sub-lattice of
(CR(T ), fl, u, L, T). There is- still a bit more that can be "known,, Say that an
element. x is of dimension n- if for any sequence 1 - yl - y2 .... --{ yk _=_ 4 we

=

L : :

y

01
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have °k = n. In distributive lattices this is well-defined.- An. atom -is an element of
dimension 1.

Proposition 3.2.2 Every atom of Crr(T) is MONOTONE. Moreover, 9Rcr(T)
&(T) if and only if &(T) has no irreducible elements of dimension 2 if and only if
(fr(T) is a boolean lattice if and only if T has no nodes of depth 3.

Proof. Suppose that R is an atom in ,&(T). Then the associated function is
such that there exists an element w such that for all x w, r fR(x) >- x but
fR(w) >- v >- w for some v. This function is monotone and that proves the first
claim. Now if &(T) has a non-monotone element then there must be a node of
depth 3; but if there is, let us call it v, then the function f such that f (x) >- x for
all x r, v and f (v) = f (r) = r is associated to a non-monotonic relation.

Comparing this with the discussion of the last section we see that any LJ-irreducible
of Tr(T) of dimension > 2 is not monotone. Now we are turning to TIGHT--,relations.
The first question is to what extent P characterizes 'P,. -

Theorem 3.2.3 rP-' =_EQ, if and only if P n int(T) =,Q fl int(T) Thus there
are 20 int(7) FAIR command relations.,, FAIR command relations are closed under
intersection but not under union, i. e. the fair. CRs form a meet semilattce.

Proof. Suppose that P fl i=nt(o) Q fl nt(T ), say b E P fl int(T) but b V Q fl int(T ).
Then b has a daughter a and .b < r' Then MUB(a, P) = b but MUB(a, Q) > b,
whence 'P-' 'Q,. Now suppose- P fl int(T) = Q fl int(T). Then if a P-commands
b, MUB(a, P) > b. Clearly, MUB(a, P) a unless -a = r. So if there is -a P-mode
properly dominating a, there is a Q-node properly dominating a and vice versa
and hence MUB(a,P) = MUB(a, Q).. If there is none, M-UB(a,P) = r. But then
,MUB.(a, Q) < r cannot hold. Hence MUB(a, P) = MUB(a_,-Q) in both cases.

To see&that FAIR command relations are closed under intersection we show that
a P=commands b and Q-cornmands b if and "only if a P U Q-commands b. To this end
it remains to be shown that MUB(a, P U Q) = min{MUB(a., P), MUB(a, Q)}. This is
not hard to verify-.

MUB(a, P U Q)

To -.see; a

min U'B(a, P U Q) -

min 'an (P U Q)
min {°aflP, °anQ}
-min {UB(a, P), UB(a, Q)}
rain {MUB(a, P), MUB(a, Q)}

-counterexample that- FAIR- command relations are-not closed under
union, consider again -T"=..-0(4)-and P Q-= {3}s.: In the picture, P corre-
sponds to x and Q to y. (1,3) E 'P'-U'Q>1 since (1-, 3) E Q-?but (1j4) V 'P1 U'-Q1.

:A

:

:
:/

:/:

=
=
=
=
=

= {2},
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However; (2,4) E rT? U rQ, and so 'P' L rQ, is shown to lack TIGHTNESS. Hence
it is not FAIR.

Fig. 2 shows the Hasse diagram of the semilattice of FAIR command relations for
0(4). In Fig.1 there are four of them as predicted by Theorem 3.2.3.,-x of

Fig.1` corresponds to {2} and y to {3}. -{2, 3} corresponds- to z tJ x. It is easily
um up, theshown that there are exactly 2T-1 FAIR quasi command relations. To sum-

FAIR command relations form a semilattice and its-, structure is, as follows, where
1, Cr(11)= ,-L-, I-),._.

Let us. say that a C.R is-.semi=tight if it is a union of tight relations. SEMI=TIGHT
relations are MONOTONE, but the converse need net hold. The set STR(T) is closed
under- .union and intersection. and is therefore a sub-lattice. of .Mcr(T), containing
T,L. r

= , _=a

Theorem _3 2.5 6tr(T) > ->.9l1ct(.T).

It is quit_e:-revealing-_t,o see how much information the various lattices contain about
T. At first g-ues-s.-_ that cr-(T) tells us' everything about -T - turns out to -be-false.
Here are:-three-simple trees with isomorphic lattice of CRs. -v -01i,

3

Fig.2

,3cr(f(4)) {2, 31

{2} {3}

T =

Theorem 3.2.4 13cr(T) (2tnt(_), U, 0, int(T )) .

o,i

3.3 Recovering the Structure of the Tree
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If we analyze the isomorphism type of Tt(T) then we see that all it encodes is
low many nodes of given depth n > 1 the tree contains. For example, if &(T)
2 x 3,x 3 x 4 x 4, we have a single node of depth 2- and two nodes of depth 3 and
4 since each linear factor corresponds with a single" node. (Note that, unlike with
numbers, 4 is .not the same-'as 2 x 2. Thus counting the number of CRs is even less
revealing as the isomorphism type, of the lattice-. In our, example we have a lattice
with 288 elements and hence, knowing that= it is completely decomposable, we-are
still left with the types 2 x 2 x 2 x 2- x 2 x 3 x 3, 2 x 2 x 2 x 2 x 3 x 3 x 4 and
2 x 3 x 3- x 4 x 4. Note that other decompositions such as 3 x -3 x 4 x. 8 have the
same number of elements but no=tree T such that 04T) has this type, as
,we=would:-,theh :ave -no- nodes of depth 2-, but-=nodes. of dep- th-3-.) -It is clear then why-
nodes of depth 1 are not. recoverable; from this representation; -for.we have PC ' &A.

and hence linear factors of type 1 can-not be recovered.

Knowing the number of nodes of given depth is obviously not enough;- we still
need to know how nodes of depth n+1 depend on nodes of depth n that. is, we need
to know about . Here the study of minimal TIGHT relations is useful. A minimal
tight relation (MTR) is a CR that is TIGHT -and also minimal as a TIGHT relation;
equivalently, it is an atom in the lattice of TIGHT relations-. Using ourr'knowledge
about TIGHT relations we can see that MTRs are of the form rT - {x}, for some
interior. As it turns outs a MTR might not be minimal as a CR as is exemplified
in (3a). But this is so precisely because the node x branches as we will see; and so
the position of MTRs reveals the "branching structure of T. To prove this, let us
suppose that we have a MTR R = ET - {x}, for some _x Suppose that x covers the
nodes yl,... , y,. Then consider the relations Y defined by f=(yz) = w where w >- x
but fi(n) >- n else. The Y are then r distinct MONOTONE CRs of dimension 1 and
generate a boolean sub-lattice oftt(T");'in addition,- R = U(Y Ii- < -r). To seertliis,
note fR(ys) = w for all i, hence R 2 Y for all i. On the other hand, if z x, yi, r
then fR(z) .covers z. This proves equality; as "a consequence R is of dimension -r in
Tt(T). Hence the dimension of R tells us about the the, number of nodes coveted

there is

:/
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by x.

It seems then that we have successfully determined the structure of T. But there
remains a little snag. Namely if T has a node that is both of depth 1 and interior
then (a) it does not contribute to &(T) and (b) it does not contribute to , ct(T).
In grammar this case fortunately never arises. _ A node is called invisible if it is
interior of depth 1. -

Theorem 3.3.1 Suppose that M6-embedding= 'tt(T) >-4-- tt(T) is given together
with the two lattices.-' Then the visible -structure- of T is completely determined.

Strictly speaking we do not need the entire lattice of semi-tight relations, but this
way the theorem is better stateable. 'Observe. that this theorem is correct in this
formulation because a CRis_minimally tight exactly if it is minimally semi-tight;
hence,-.from the embedding of the semi-tight relations into the command relations
we_can read off the minimal tight relations of &(T).,

p °.final: point:- to note about command relations is :that in, many cases there is ._an
additional ands b only if neither dominates the other.
[Ba 90] have argued in the case-of Langackers-S-corm iand--t-ht :the°condition that
as must precede b takes care of this condition and they intend this argumentation to
:carry=over to C=command and other command relations: There are, however, formal
means of dealing with this clause.- Say that the core R` of a command relation R
is defined `by

-Then a S-commands b in the sense of Langacker if and only if (a, b) is in the core
of r51.. 'A *or-* there is no reason why the condition excluding, domination should
be excluded from the definition; even more so,,,sinc taking cores is a well.-behaved
'function namely a lattice h_omomorphism.:

Proof. For a proof let a E-T.

ores and Mates3.4

R4=Ra-(TaUIa)

Theorem 3.4.1 (-)` is a lattice homomorphism.



3.4 Cores and Mates

(R U S)a =-(R U S)a - (T aU- I a)-
(Ra U Sa)-- (T aU J, a)
(Ra-(TaUJ.a))U(Sa-(T
RQUSa

(RnS)a =(RnS)a-(TaU J. a)
=(Ran Sa)-(TaU J, a)

=(Ra--(TaUIa))n(Sa-(TaUJ-a))-

=Ran Sac.

Finally we turn to mate-relations. Although we'have -cast" some doubts- as to
whether mate relations are good relations, they nevertheless behaves better from
an algebraic point of view than co-headness or co-footness, for which we have not
been able to establish any algebraic properties. It is not hard-- to see that mate
relations are generally not command relations. For example, the mate relation
corresponding to IDC`-command holds in a binary branching tree only between sister
nodes. But if x,y--are sisters and z < y, then x IDCI-commands z but z does not
IDC-command x. Hence, the two are not mates. Since (R n S)=1 = R-1 n S-1 we
get MR n ms = MRns; so, mate relations are closed under intersections. Moreover,
each command- relation -defines a- different -mate relation. For a command relation
R is -characterized uniquely by the- pairs (a, c) -EE R where a < c. For such pairs,
(a, c) E MR if and only if (a, c) E R since (c, a) E R is always satisfied. From- the
mate relation M R recovered, for letting Ra = U( J. c M,: E.:.°a) we
get MR =, M. To use algebraic terminology again, if (M(T), n) is the semilattice
of mate relations on T, the map R - * MR = R n R-1 is an isomorphism from
(CT(T), n) to (M(T), n). To see that the union of mate-relations need not be a
mate relation it suffices to show that R H MR does not preserve set theoretic
unions, -since if MR U Ms "= : MT for some : T, T_° = ` R U S We will however give a
counterexanplet.o both claims. For T take

Fig.4

and R =-Rf, S =:s where f 1, F - > 2,3 H. 5, - g : 1 H 5X 3 H° 4. Then `(1, 3)'V- R;
(3,1) E R whence (1,.3) V Mn. Likewise (1, 3) E S, (3,1) V S. and so (1, 3) Ms.

19

=
au. a))

= (Ra - - au j

(a, c) E c

5

2 4

1 + + 3

:
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Consequently, (1,3) V MR U Ms. > Biut'since (Y,.3), (3,1) E R'U S, we get (1,3)'C
MRUs This shows MR U Ms MRus In order to prove that MR U Ms is not a mate
relation, observe that (1, 5) E Ms U MR and (3,5) E MR U Ms. If MR U Ms = MT
for some T, we had (1, 5), (3,5) E T, whence (1,_3) =E T and (3,1) E T showing
(1, 3) E MT, a contradiction.

3.5 Small Print.-,,,

There is an interesting connection between cores and C-command. Consider anode
a, Then there is a command relation, R such that Ra 0 exactly if _there is a
branching node strictly above a. Moreover, if B denotes the relation C-command
then Ba = .J, b for the lowest branching" node b dominating, a. Now in the lattice of
cores -of quasi. command relations, ,a relation A` is an atom, exactly if Aa 0 for
one and only one a < r-. -Consequently, B` is the union. of all atoms in the lattice
ofcores_ of quasi command relations. Equivalently, it is the least command. relation
assigning a nonzero core domain to each a < r, if there is. one at all.. (This is the
lattice dual of a definition often encountered in. general algebra;, there one, considers
the intersection. of all maximal elements. This yields the set of- non-generators of
an alge]ira

4. Internalizing :Definitions

The study of a logic of_ command relations ;seems far fetched; yet; :there is a, natural
way to make this meaningful. Consider the ease when a CR R -is_ defined_an the
following ,,way from two CRs S and T.

aRb iff aSb and aTb

This definition involves in addition to known symbols -also-the logical word `and'.
If grammatical processes are regulated by domains we may ask ourselves whether
or not it is possible to make the word `and' disappear. In the present case this is
easy. Just let "R be the intersection S n T and the above is automatically fulfilled.
This strategy to replace a complex definition of a domain by a single domain that
encodes -this-definition we call internalization. As it stands, we have been able to
internalize `and' by `n'; the reason for this is that CRs are closed under intersection
and thus -R defined in this -way --is again a GR. By similar =arguments we see that
a. definition =of . R via 3 :-

y

7

:
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4.1 Internalizing,Definitions,

yields R = S U T and thus "or is internalized by `U' There are, however, -definitions
that resist internalization. To take a-real example, consider the conditions" [A] and
[B] of the binding theory.

CONDITION [A] An anaphor must be bound inside its governing -category.

CONDITION [B] A pronoun must be free in its governing category.

If we assume that we know how to define .the set GC" of governing, categories the
two conditions can be accurately rephrased as follows.

CONDITION 5[A] If x is an anaphor, then x GC-commands its antecedent:.,

CONDITION [B] If x is a.pronoun, :then x-does--no"t GC-command any of its ante-
cedents.

Condition [B] is exactly the opposite or negation of Condition [A]. Thus the..'domain'
in which a pronoun may find an antecedent according to this definition is exactly
the complement of the domain for [A], namely- GC-command. However, it is easily
seen that such a relation can never qualify as a CR in our. sense since it ,violates
WELL--INCLUSION by excluding x from its own domain.-Maybe, this is the reason for
the rather ill-fated history of Condition [B]. It exemplifies an a definition
of the type

aRb -iff- not aSbi-

Such a definition is not-good as '-it._,does.not define aiC R -equivalently, we may.classify
the notion of boolean negation by saying that `not' is not internalizable. Similarly,,
a definition

aRb iff, a.Sb implies aTb

yield a CR given that both S and T are CRs._ Yet there ,are ;definitionsfails to
that do correspond in some way to negation and implication, which can also =be
internalized. For example, let R be the largest CR such that S n R C T; then this
can be checked "to be, a CR and internalizes some notion of `implication'.--

The..following .-section is= meant to give some",formal credibility to It has= a
status since: "we are not-=intending to view the new types of negations "or

21

aRb iff aSb or aT b
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implications as intrinsically useful for-gramrr ar;_ in. fact, -that they lack MONOTONY
disqualifies them immediately. Nevertheless, we believe that the detour through
logic. will pay off in providing us with a good epistructure in --which formal results
of significance can be proved among which Theorem 4.2.1 which will play a, central
role in decidability proofs.

The Intuitionistit Nature of Command Relations

We have described the lattice of command relations and have seem that `it is dis-
tributive. By -standard knowledge of -lattice theory, a finite distributive lattice is-
a' heyting algebra, that Is, for every a, b there exists a largest element c such that
O a n c < b; and this element is "denoted by- a -* b. For if we take c to be the
union of all elements satisfying ($), we can prove that c itself satisfies ($) using

af1d-<b-,-a:.7e,<b4.l(dLie).=a-Fd.1i.ane <b- ,

For infinite lattices this fails unless we have full distributivity.- In our case, since it
is checked that an infinite disjunction or conjunction of command relations is again
a com indeed- a lieyting algebra of CF s no matter whether
the tree is infinite or not. ° (Note that if the tree is infinite, the set= °a is a-well-(Irder
and'that`-accounts for this fact here-)- Let us denote='the heyting algebra of CRS
over a tree T by (Cr(T),1 1, L7; -3, L) Note that 1 is'by least
element -of the =lattice and is- nothing but IDC--command. - It is not difficult to see
that` i fa distributive lattice`s is` a direct product -(Ei then seen as a" heytirig
algebra it decomposes in the same way. In our context we can then use our-structure
theorem for the lattice of CRs. Let h (n) _ ({ 1, 2,... , n}, min, max, imp, denote
the heyting algebra of n- elements then

The table for imp is easily exhibited using ($). Since h(n) is linear, we have either
a < bor, b < a, If a < b then imp(a,b) = n, the top element, which we might denote
by T. However, if a > b then imp(a, b) = b since b is really-, the largest element that
can intersect with itself and give b.

A lot of things are known about linear heyting algebras, see for example [Pa 79]
For- example, the logic of linear heyting 'algebras, which is denoted by Lit, is stron-
ger than intuitionistic logic but weaker than classical logic. Such logics are called
intermediate or -sometimes superintuitionistic. Lit" can be characterized over
the intuitionistic calculus Li by the iom =-p _q q = .: p. Lit has the inter-
pail=ati® roperty if, ' E Lit, then- there-, exists a Q_ with

4

4.2

distributivity.

--, V

-> R
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var(Q) C_ var(P) fl var(R) such that P Q E Lit and Q ---* R E- Lit-.,- (Q is -called
an interpolant.) Lit.-is- pretab-ular, --which means that every logic that is stronger
is determined by a finite algebra i.e. one of the 0(n), while Lit itself .obviously. is :.not.
(For example, classical logic is -characterized by 0(1).) But the most interesting fact
for our investigation is the fact that the variety of linear heyting- algebras is locally
finite; that is, every finitely generated linear HA must be finite, and moreover, we
can give upper bounds for the n-generated linear HAs. What this means here is that
from a given finite set of command relations there are only finitely many command
relation that can be composed using the connectives 1, n, V, -*. In addition, we
will be able to see what sort of relations are definable from others and which ones
are not.

Recall that the intuitionistic calculus can be -modelled -i:rr partially- ordered
sets, posets for short, which are sets ordered by a relation < satisfying the axioms

(rf) x<x
(tr) x<y,y<zx<z'
(as) x<y,y<x=x=y.

Given -a poset;:P = (P, <) , and a set of variables V we-define=`a°-valuation to be. a
function --y`: V :--* P such that -y(p) = T y{_p) ° This has for _ consequence for each
variable -p there is a x E P such that;y(p), =. T-x. A -anodel is -a triple (P,-y, x) witl 1
x E P -being a' point. Truth of -a formula in, a -'model .(P, - , .x-) is defined as follows.'

(v.)
(A)

` (F,-Y,x)
(P, x)

p-
P A Q

"

if x E y(p)
if (P', Y, x) P and X)

(V) (F, y, x) P V Q if (IP, y, x) P or (IP, -y, x) = Q
x) j P -* Q if for ally > x - (IP,.'y,y) y) Q

(1) y, x) 1

There is an alterriatii-vc,foi=mulat on rt-'a- finite ,poset P ;we have the set- of upward
cones ,,uco(P) on which we can .base=,a= he-yting algebra,_ since it is =a .distributive-
lattice:% These naturally ddefined, operations (intersection, union, implication) allow
us to lift. the map -y into a homomorphism denoted by ry from- the term algebra
of propositions- into. the algebra, To (P) of upward cones. Thus, for:-;every formula.
P the set 7y(P) = {xI (P, -y, x) j P} is upward closed. But we can prove an even
better result in presence of the fact that our models are not only posets but linear
posets, which are the same as totally ordered sets. In that case we can prove
by induction that for- every P there, exists a t(P) E`. var(P),,U such that--
y=(P)

y(t(P))..

This- goes aszfollows. If P is a variable or a constant, we are
done. If P = Qi A Q2, we take e(P) to be e(Qi) or e(Q2) depending on whether
y(t(Qi)) or y(t(Q2)) is maximal, if P = QA V_Q2 then, _we-let t(P) be-such-that-
y.(t(P)_) = min{y(t(Qi)),'Y(t(Q2))}. If P = Qi - Q2 then if y(t(Qi)) < 'y(t(Q2))
we let e(P) T and in the other case t(P) = t(Q2). The claim that =y(P) = -IMP))
is now verified by induction-._ We .refer to this strategy as literal reduction. ,_ _ _ .

->

F=

y, -- Q

y, P =- (P, y,
(P, .

IT, 11
= y(t(P)).

V

=
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Thus,= using .the connectives has not added too =much strength to generate new
command_,. relations. But- it is =of :,.course not .true-that ==for every P -there exists = a Pc
such that P- +-4. c is a theorem.-

On the two models pictured above we have p A q once equivalent to q and once
equivalent to p. But nevertheless the above result allows us to show that each linear
model (P,-y, x) is basically equivalent to- a model (Q, 8'y) where aQ < 1 -f- gvar(P).
For suppose that x immediately precedes y, that is, suppose that x <_ y but for all z
with-,x <-z<ywe have z=xor z=y=. Theniffor-allpE-V,x E--y(p) yEy(p),
then we can drop x`from the model because for every formula in the variables from
V we will have x E 7(P) y E y(P) just because x E y(P) q x_ E y(t(P)) a
y E y(t(P)) y E y(P). Let -then -Q be be the set of ally such that there is a
p with y V y(p) but for all z > y, z c -y(p). Such elements we call critical. And
let <,bethe same. order as in P, just, reduced to the critical elements. Finally, put
b(p) 7(p)fl Q. Then- if =for some x-.(Px)- H P- then there is a critical y > -x
such that: IPA(; y, y to be the least critical
poant,aboee-x) TThen (P&, y) H,F-,.. And it is easily checked that pQ < 1_-}-gvar(P) -

Theorem 4.2.1 The freely n-generated Lit-algebra contains at ,ele-
inents.

Proof. We have seen that each model for a set of n variables is equivalent to one
of length at most n ={- 1. (For modal logicians: the refined model contains at most
chains of.-length- n- +Each-variable gets associated with a point in that chain-,
namely that point x for Fwhich- -y(p) =-,T x:= -We have n variables, so we have at most
(n+1)n assignments atthus-as,-many linear--components.- Thus the underlying frame
consists of (n + 1)-x:-(n -}- 1)' (n-+ 1)("+i) elements.-An- element of the algebra
is.i an: upward--set, and therefore -determinesi on `each .cliai.n a unique -cone._ There -are
thus at=-most, supward-sets._`

5A: Labelled fees

We -assume- n-o that we have a finite or 4uratably infinite stock LB of_ labels:: A
labelled- tree is- -nothing but_ w -pair '(T, t)- where -T -is 4 tree and £-.:' T 4t B-

a

= x (P,-y, x)
=

=

2(n+l)('}1)

5 Command Relations in Labelled Trees

->
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a- function -assigning to each node -its-- (unique) label. Given_ such a labelled tree,
-the -extensio.n of a label .L E LB is- the nodes -having the label- L. - We
write (T,1, x) H -L if indeed e(x) = L. The set- ILI naturally defines the relation

QLF which. we- call L-command. We will also write L for_ the .relation L-command.
In this manner;. every label= can be associated with a TIGHT command relation in
(T, l). -Using "union, -intersection and-- the other intuitionistic connectives we can
then construct new command -relations -out -,of them.- To this, end, we first define the
language R(LB)-.

If a,, b E 1(LB) then also-_] ,T, a A b, a V. b; a -, b_ E 11(LB)

(µ) Nothing else is in ][(LB).

Any labelled tree (T,i) defines 'a homomorphism f ][(LB)
way.

fj(T) in the following

t(1) 1
e(T), T

e(a,A'b), 2(a) n f(b)
a V b) -= t(a) U f(b)

For a selected subset A C -L)-T-, -,A, V, -*} we writes TA(LB) for- the sublanguage
of" CRs- where only the logical: symbols of A may occur other than the labels. With
these languages we connect the notion--- of, .definability in the following way.

Definition 5.1.1 Given a-class ;C of labelled trees and an abstract relation R defined
over every individual member of T, that is, given an indexed collection (R(T t)I (T, f) E
`, )", we, say that R, is in lly if .there is a b E 11(LB) su , that
for. all. (T, t): from-`. (7,1) H R = b. If b c RA(LB), R is said; to be
cally) A-.definable.

Degrees of efn=ability

The first question `is-th-at°of of the notions of definab lity. Let`u's for
the -moment assume that -we`have just Li and not the stronger Lit - Then- we-know
that the V,_ , `are independent, that is any subset of {A, V, , =}

defines a different class of relations. T, I introduce some complications here since for

(0) LB C F(LB)

: --+

=
=

I(L) _ rQLD,
=

i(a --, b) _ Z(a) -> i(b)

5.2

->
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example T = p _==> p: and -,-p = p'-* LSO that there is not a complete independence
between all. six connectives. For reasons that- will become clear later, the -picture we
have to -draw_.he-re-looks--quite different from the intuitionistic case. Namely, we-will
always that: there are 0,1- E LB such that 1 = t(1) and T. =1(0) and moreover
for each -L, ME :LB .there be a xL=h M E --B.such ,that-:£(L--U M) t (L) r1 t(MM).

Thus,-: under circumstances 10(=LB) )IT Thus= as_1[j we
have : :=- I[=,; {: As, concerns. -matters are more complex.
We expect that the relative notions of definability are also independent given-- the
caveat that RA = ][ and that I[, C ]I, We have IIV,A(LB) = 1Iv(][A(LB)) = lIv(LB)
by distributivity; but 1[,,A 1. need not hold. In general, 1[A,,, = if in every
formula in IA,A(Zb) conjunction can be pushed inside i.e. if 1A,,, = 1[A o IA- This
leaves us-with the following- picture consisting of 10 languages rather than 16 in the
-case of=complete independence.

By -earlier results, anxnngith :tionistic lly-Rdefinsfile- Clls {1, T, A1-
.definable relationsh are.=,'TIGHT<and ;the {1, T, n, V}-,definable relations are -MONO=
TONE. But does the converse hold as well? The answer is not -known{to='us =Fi-
nally, let us look at definable in presence of linearity. There the picture does not
change significantly. Although we:, do now have De Morgan's laws -j(p V q).
.-1p A -iq,-i(p A q). H V -iq the absence of double' negation =p (which
we cannot have since it immediately implies Peirce's law and so we have clas-
sical rnarr s that neither _o_fF A --_t V: ;can .b --;f educed:- to ,the :other° with

.however it;turns. out that ..V is definable` with the help- of -- ands n
p.V q (p ,,q j .=q) (q . :.p) _and-thus_1- ,A 1C. Thus total
- diagram is£ therefore .reduced :by one- point.

5

_
_ = R0,

1,

=

1

H

and

H -4 -- n -> _



5.3- Formulae with one Variable

5.3 Formulae with one ..Variable

The intuitionistic formulae of one "variable are well understood. Ordered by impli--
cation they form a lattice which is-called- the Nishimura-Rieger lattice. This
lattice is infinite in the intuitionistic "case but in presence of the linearity axiom this
lattice reduces to a six element lattice.

p A -ip

Thus T = -gyp V - -ip-and --,p -> p = p V -gyp. This can be checked using models,
but we omit that here. Instead we want to see what sort of domains can be defined
using these formulae. A good description can be obtained from their corresponding
functions

Ap

p
mother
next p strictly above
r if mother is p; else mother
mother if mother is p; else r
r if mother is p; `else next p strictly above
r

It is also: worthwhile-' to see-which of these relations satisfy TIGHTNESS. or
MONO-

TONY. This will also destroy some conjectures that one moray have concerning the
relation between MONOTONY and. monotony in logic. This time we omit the- trivial
relations;

27
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Although in this case, TIGHTNESS is the -same as MONOTONY-, this is ,not true
in general. The relation p V q, being a union of TIGHT relations, is MONOTONE
but not itself TIGHT. Failure of MONOTONY is not hard to demonstrate for these
relations. Let c be immediately above b immediately above a. Let c , p, b ff p.
Then f p(a) = r, fp(b) = c. However, if c f - p, b J p then f -sp(a) = r, f-p(b). c.
For the non-monoton-icity- off; V -p we have to produce a more complex model:

sr

Then fpv,p(x) = r but fpV-p(y) = z. Non TIGHTNESS is harder to demonstrate: To
show that we must glue some different branches together:

In -each of- these cases we have, b E- Ra, fR(a) but Rb Z Ra.

5

MON TIGHT
P yes yes-,p

no no

--l-'P no no

PV -p no no

=

z

y

x

(i) (ii) (iii)

a p af`.
+b +

a /\\\\-p p

b b
PV -,p
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e&.4 Formulae with: Two, oar _-More Variables

The number of formulae over a finite set - of n -variables- which are inequivalent over
linear models grows -quite fast as n increases.-But to get- a complete overview
of the possibilities it- is enough to look at those formulae which are conjunctively
irreducible, that is, formulae P which cannot be written as Q1 A- Q2 over the same
variables :such that neither Q1 nor "Q2 is equivalent to P. The number of irreducible
formulae can be estimated by _ f (0) = 2, f (n + 1) < 2f (n) + 1, a rather harmless
upper bound. Moreover, it is irrelevant how the variables are named so that pV -q is
essentially the same as q V -,q modulo renaming variables. To, see. how this. reduces
the problem we look at the -formulae over two variables.- There are according to
calculations by L. Hendriks, 342 different formulae. But there are only f(2) = 1i(!)
different irreducible formulae.

(1). - (p A q)
(2) -iq V (p
(3) : -'p V (q p)(4)

-(q -* p) V (q V P

'(10) -ip -a (q V -q)
(11) ((p V q) -* (p A q)) (p.Y -ip)

Among- the listed formulae, (2) and (3),.(=4_) and and_(7) as- well- as (9)
and-- (10) are -pairs where.=one:results. from the other by swapping the variables.--. -

Lttributes versus -rammars

We now want to -enter a realistic account of domains in natural language:' To
this end We need to consider first` some definitions and facts about context free
grammars. Recall that a quadruple G = (START, NT T E, R) is called a context
free grammar (CFG) if START E NT, NT and TE are finite and and disjoint
sets and R is a finite, subset of NT -x -(NT U T E)+ - START is called the start
symbol- and NT the set of r onterminal symbols; TE is the set of terminal
symbols and finally R- the set of rules of G. A rule is normally written as A`-* r

-' q)

(p -' q) V (p V -q)p - q
q -' -p
--,(p V q)

q (P V -P)

(5), (6)

6 Grammars with
with Labels

6.1 Boolean Grammars
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where A E NT and r is "a non empty sequence of terminalsfinals and: nonterminals. The
importance of grammars (and context free grammars in particular) is that although
G is finite it, may -generate an, ;infinite number. of syntactic trees. Formally, we first
define a labelled tree to be a structure IT, t) where I : T NT UTE is a function
from the nodes of T into the set of, symbols of G. We say that, IT, I) is generated
by cG or that. it -satisfies G if the following holds. ---,(We write ti for. the string of
nodes immediately dominated by t. Note that this -requires that they ,are linearly
ordered.-- -If this is not so, -:any- ordering, may--=be- chosen to -satisfy theK clause. (nt_)
below.)

(r). £(r) = START-
(nt) e(t)`- t(t1) E R for all t E T which are riot leaves-
(t) TE for all leaves.

(nt) implies that if t is not a leaf then e(t) E NT; otherwise- no rule can, apply
to At). If IT, t) satisfies G we write G » (Ti)., For what is to follow <we will
simplify the notion of a context free grammar a bit. The terminal labels;=are, as
far as grammar is concerned, only decoration. The way context free grammars are
normally written for natural language the lexical items are classified into -certain
syntactic categories such that each terminal symbol can be substituted for another
symbol of the same category salva accept abilit ate. Each category is -represented by
a prelexical symbol X and there is a rule X --* x for each lexical item x of category
X. There are then no rules expanding X to anything other than a single occurrence
of a lexical item of its category. This effectively allows to ignore the particular choice
of lexical items for X. We thus replace all terminal symbols uniformly by STOP.
In addition, we want to treat START and STOP on- an equal basis. Both are
considered as symbols not belonging to the `real grammar'. We want that- START
occurs strictly to the left of a--rule just, as -STOP.occurs strictly to the right. This
can always be made true in an ordinary CFG by introducing a symbol START*
which satisfies START* V NT and by "adding to R-a rule START* --5 P for every
rule START F -already in. R. As there -are.. no.. real nonterminal symbols we want
to speak of the former iionterminals as labels. Therefore, in future a CFG is taken
to be a quadruple (START, STOP, LB, R) where START, STOP -V LB_ and R is
a finite subset of ({START} U LB) x ({STOP} U LB)+. Thus, labels are assigned
only to interior nodes; START is reserved for r and STOP for the leaves.

ModernModern syntactic theories do, however, not take the syntactic labels of context
free grammars as unanalyzable. Indeed, in tandem.-.with the inflation of rules due
to the unravelling of conditions. on derivations or well-formedness' (once believed to
be non-context free) into context free rules, the attention has focussed -more on the
internal structure of category ;labels- than on the formulation of the rules themselves.
In GPSG and in its extreme form' -in--HPSG a rather rich theory of these labels better
known,as. attribute, value, .:structures has been developed and employed. In order not
.to introduce too much structure we have chosen to admit into our discussion only the

--+

1(t) E

-->
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boolean part of attribute value structures, :which certainly is the most unproblematic
,and the least controversial part since any syntactic theory will sooner or later accept
boolean constructions albeit implicitly as in most GB work.

Definition 6.1.1 A boolean context free grammar is a quadruple
BAG = (START, STOP, .Cb, R) where £b = (LB, 0, -, f1, u) is a finite,
boolean algebra, START, STOP V LB and R a, finite subset of
({START} U LB) x ({STOP} U

Together with the notion of grammar we also have to adapt our notion of a labelled
tree. A partially labelled tree is a pair (T, t) with e : int(T) - LB. If .x E int(T )-
we write (T, t, x) = a if .fib = t(x) < a. The reason .we call this labelling partial is
that it is no longer true that either (T, t, x) = a or (T, t, x) H -a; thus we have lost
bivalence, a hall-mark of classical logic. Nevertheless, we use classical logic-, but the
labels now express only part of what is or may be true of a node. A (fully) labelled
tree is a partially labelled tree in which for every x -the label t(x) _is an atom of ,fib.
A partially labelled tree is generated by ]HG for all t either t is a leaf or there is
a rule A --> t E R such that t(t) <_ A and 1(ti) < [ (if taken componentwise); or
t = r, in which case we require t(tl) < F for some rule START -- F. Intuitively,
this makes sense as follows. Given a partially labelled tree (T, e) and a node -t _E, T
we write (T, t, t) B to say that in the labelled tree x is a node of type B. This
is formally the case if .fib £(t) < B. Now whenever we have e-a rule A -+- r_ it is
understood to mean that any node of type A immediately dominates a sequence ti
of nodes of type F.

The first result to be proved here is that a boolean CFG is effectively a CFG.
To this end one should note that a boolean rule p = A - r effectively abbreviates
a set of rules, namely all precisifications of p. To also be precise, o- = B -* 0 is
a precisification of p, v < p, if £b j B < A, A < t, sequences being compared
item-by-item in their respective order. (Of course, A must be of equal length with-
F.) Each tree in which a rule p is used at a point t instantiates a precisification of
p in the sense that e(t) -+ t(tl) precisifies p. Since in .a CFG all -labels are mutually
exclusive, we must take as labels of the grammar all maximal precisifications of .Zb,-
in,other words the atoms of £b. Each element b E LB is uniquely determined by
the set b* of all atoms below it. Thus if (START, STOP, Zb, R) is a boolean CFG
let LB* be the set of atoms of £b. Now replace a rule- p = A -> t by the set of
atomic precisifications of p p* = {B --> L JB < A, A < r, B E LB*, A C LB*};
and define R* = U(p*jp E R). Then G* = (START, STOP; LB*, R*) is a CFG.
The two grammars are equivalent in the sense that they admit the same trees with
labels from LB*

=
=
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6.2 Presentations of Boolean Grammars

Boolean grammars might be well defined and suitable for abstract purposes but in
practise one never has the boolean algebra £b as .such; rather there exists a des-
cription of ,Cb in terms of generators and equations. The generators are primitive
properties of nodes such as CAT : N or BAR : 2; things that can be true or false (or
perhaps undefined) on nodes and are unanalyzed: But we want to neglect the inter-
nal structure of these descriptions in terms of attributes and values and we assume
two-valuedness. Even with these simplifications there is a lot to be done. First, as-
sume that we have a stock F = {fi li E m} of elementary properties of nodes. Then
one can define the algebra of boolean terms ` mia,(F) = (TmB(T), 0, -, fl, u)
which consists of all terms that can be written down using the symbols of F and
the connectives 0, -,11, U. Then define an` equivalence by P = Q _ F PaQ
where PAQ P D Q. fl Q J P, P J Q : -P U Q, and` put [P] _ {QIP Q}
[P] is the equivalence class of P modulo =. It is standard from universal algebra
that this equivalence relation is also a congruence which in this context means that
in propositional logic we can always neglect the difference between equivalent for-
mulae. Thus, we may define boolean operations on the classes instead of formulae
via -[P] = [-P]-, 0 = [0], [P] fl [Q] _ [P fl Q]- and [P] U [Q] = [P U Q]. The algebra
of equivalence classes with operations as just defined is written TmB(F)/ -. This
algebra is the free boolean algebra over F. We denote it by B(F). Given
that F has melements, the free algebra has 2'_ elements and is "isomorphic to the
boolean algebra of subsets of 2m as can be proved `using normal forms. For every
formula using symbols of F can be` written as a disjunction U(Qc(t) li E n) where
all 'C(i) C F and QD = n(f f E D) nn (= f f

,V
D) for any D C F. (This is called

the disjunctive normal form.) As there" are 2'n choices for subsets C(i), there are
=22 sets of such set

Now as it turns out, the labels -F are mostly not independent, in most cases
there is some interdependence, for -example, a relation fo = fl U f2 or f3 < f4.
These relations- can always be given the form P = 1 for some P E ;mj(F)_
any in-equation P '< Q is equivalent to P Q = 1 and any equation P = Q
is equivalent to PAQ = 1. - We are not actually interested in- the completely free
algebra on these generators but in a boolean algebra in which some relations and
no more hold; such an, algebra comes in the definition of a factor algebra.-- Given
a boolean - algebra- 2t and some -seta 0 = Jai- = III E £} of relations we can 'form
the -algebra Qt/A which makes exactly the ai equal to- 1 plus whatever necessarily
follows from that. The conclusions of type P = 1 from a set of equations of the
same type can be computed- as follows. (The, symbol denotes . as usual the fact
that two structures are isomorphic.)uc

(f>A) -a=land b=1iffaflb=l
(f <) a = 1 and a <.b implies b-= -1 -

-

:)

set =
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A set of elements of 2t satisfying (f n) and (f -<) is called a filter.' It can--be
shown that if F is a filter then 2t/F = a = b iff 2t atb c F.

All this motivates the following definition, which is standard in universal algebra.

Definition 6.2.1 Let X be a finite set and T a finite set of terms over, X.__. The
pair (X, T) is called a finite presentation of 2[, if 2t ati5(X)/T.=

Finally, -we- are in a posiiion' o'define- the following notion of -a grammar that will
be relevant in the subsequent chapters of this essay. It consists- simply in replacing
the boolean algebra £b by a finite representation- -of it.

Definition 6.2.2 A quintuple R (START STOP, F, EQ, R)_ is- called it pre-
sented boolean CFG if START, STOP Z F, EQ- is a finite set of boolean terms
over-.F-and R a finite subset of ({START} U TmB(F)) x ({STOP}_-U_Tma(F),)±

The notions of labelled trees etc. remain intact with the modification that ,fib is
replaced by i mB(F)/EQ. It is not difficult to pass from the .presented grammar
H to an equivalent boolean grammar.. Namely, with R as above, define RO
(START, STOP,,eb, RP) as follows. Put £b- 3rB(F)/EQ and let rs_: ari5(F) - +
Cb be the canonical homomorphism. (This homomorphism is surjective, whence
the double arrow.) Then RA = {rc(p) lp E R}.-- Thus -a presented -grammar may`be
compiled into `a context free grammar but we do not want to `think of a presented
grammar as coding a somewhat more complex CFG, but rather as a grammar in
its own right. But this is not a question. pertaining to formal details in any way.

A boolean grammar differs from an ordinary grammar in that it allows for genera-
lity or perhaps imprecision. Although the -rule. schema N -_ .N Y was --successfully
reduced to a single rule in a boolean grammar, this does not' meannthat"t effectively
allows for the use of variables as do the so-called definite clause grammars; these are
grammars which are characterized as boolean grammars in which the rules may con-
tain boolean variables. For what boolean grammars cannot do is share information
across the symbols occurring in a rule. The schematic rule X -> X Y in X-syntax,
which covers the case of our rule concerning N cannot likewise be reduced to a single
rule - although it certainly can if we allow variables. Under the assumption that
we have only finitely many nonterminal symbols, an assumption which is true for
GPSG for example, such a rule schema anyway represents only finitely many rules,
which can-of course simply be listed. Thus these devices do not exceed the power
of CFGs -under -this assumption:: Thus from our standpoint boolean grammars- are

--

^'

=

=
=
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sufficient, because we are not interested in questions of expressing generalizations.
Boolean grammars are here not for- the purpose of expressing generalizations but
because they are suitable in this context. This should be born in mind also for with
respect to the internal structure of category symbols. We are in no mood to face
detailed -questions about the exact make-up of categorial symbols or attribute value
structures -and it does not seem -to matter.- All that matters for our purposes is
whether attribute value structures- are` feasible whether the logic of the -admis-
sible attribute value structures is decidable. This question is answered affirmatively
in [Kr 89] for the system of [Ga 88] and by [Ka 90] for the system of Kasper and
Rounds -as well, as [BI -91] for the system of Kasper and Rounds with negation.- --

Domains in Boolean Grammars.

7.1 The Language of Domain -Specification

We will now return to the subject of Section 5 where we -considered CRs constructed
from tight command relations. There the labels were considered unanalyzable. Ho-
wever, this is not an adequate way to formalize the domains that arise in linguistics.
We should consider the labels to be members of TmB(F), the set of boolean terms
over some set F of features. Thus the language of domains D(F) over F consists of:

s- variables pt, i E w

Ae constants fs, i E n

connectives for labels 0, -, n, U

With this language we first define the set 1L`(F) of labels by induction:

(0) pi E 1L(F),---f; E L(F).

(-+) If p, q E L(F) then 0,-p,pnq,pUgE L(F

(µ) Nothing else is in IL(F). '_

On -top of 1L(F) we define D(F) 1[(1L(F)) as in Section` 5.-= Here it -pays off to
have .made a careful- distinction between the symbols, for >labels and the symbols
for domains. Note that in -the.same way- that. 1[ can- :be=parametrized with respect

i. e.

7

connectives for domains 1, T, -, n, V,

=
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to the symbols we can parametrize IL -=and ,D and- thus create a number of sub-
languages of D depending on the connectives we allow to occur: In D we refer to
the connectives 0, -, r , U as the boolean or the inside connectives and to'the others
as the intuitionistic or outside connectives. The former= characterization =refers to
their logical behaviour whereas the latter refers :to :their intrinsic -character --,'inside.'
means operating inside anode -whereas `outside' means operatingacross_ nodes.:

Given a labelled tree"(T,t) and a 0 E D(F) we define the interpretation !(t) by
induction in the obvious way. First we let IL --> 2T be the function that assigns
.to each b e L(F) the set of nodes, satisfying b, i.e. Qb] _ {xl,Cb t(x) < b}.

Next we do induction over )I- as- defined in -Section 5. There is, -however; `a
problem in that partial labellings do not give rise to unambiguously defined CRs.
Just consider the notion of S-command in a tree where no node is positively or
negatively S. Then in this tree S-command can for example be I or T depending
on the chosen precisification. In order to continue at this point we therefore assume
to have labellings that are not -partial at least for the occurring symbols;- :what
happens in the purely partial case is then up-to ones personal choice. We might, for
example, let t be undefined if it is not unique for all precisifications. Given x-E T
we write (T,t,-x) t if !(D)- = t(T), and we write (T,t) H :t if t(t) = t(T).
Moreover, we write (T,t,x) = e if e(t)., = t(e)-, and again (T-, I) rJ = e_if
t(a) = e(e). The domain theory of (T,t) is ThD((T,t)) n { -01. For a
set T of labelled trees the domain theory of : is the common theory of all members

of-. and that is ThD(T) = n(ThD((T,t))I(T,1) E T). Notice that (T, 1) tJ ={e iff
(T, t) e"iff -0 H e e T hD((T , t)) and thus no additional benefit is gained by
introducing the equational theory of domains as long as H is a definable symbol-.
Finally, given, a boolean grammar (G over the same set _F of symbols we write (G a
(G t = e) if-for all labelled trees G > (T,t) we have (T,t)
Thus the theory ThP(G) is simply the common'theory of its trees.

7.2 The Formal Context of Grammars, Trees and Domains

this is a' digression into a less = well-knowntopicof lattice theory that may shed
some more light- on-. the formal properties' of the things that we are dealing with
The general sources -for the mathematical details aree[Wi 90] and [Da 91].- Following
[Wi 90-]., a -triple (O, A, R) is called a formal conteact'if R _C O x A is °a' binary
relation. Nothing more is required; this seems rather weak but the interest lies
in the things that will be defined in due course. The members of O are called
objects and the members of A attributes. R simply specifies which attribute
holds of which object. To let-:matters be concrete, we=take O == the set
of boolean CFGs over F, A = D(F) and R =j, the satisfaction relation. Then
(BG(F),D(F), j) is indeed- a- formal context.. With each `object=o E 0 we can

Q- :
--

[--
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I=- [= D ((T, I) -- D = e).
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associate the set o^ = {a E AI oRa} of its attributes and with each attribute a E A
we can associate a-.set av =-{o E OjoRa}. Similar definitions, -can be made for sets,;
we let X^ {a E AI (`do E X).(oRa)} for a set X C O and' Yv {o E O1(Va E
Y)(oRa)}. The most important notion in the theory of formal contexts is the notion
of a concept. A concept is_ a, pair C = (X, Y) of -sets X C O, Y- C A such that
X^ = Y and Yv = X. X^ is. called the intent of C and Yv the content of C.
Thus in C X and Y form an ideal pair of sets of objects and sets of attributes that
is married in such a way that Y is the set of common attributes of X and X the set
of common objects of Y. In our specific case we ask for sets of boolean CFGs and
sets of definable CRs that define each other in' this way. From' the following list of
facts .we-will show that such concepts -are quite easily, constructed.

Proposition
_(1). X1 C_ X2 implies Xl D XZ for X1, X2 C O.
.(1 '). Yi C_ Y2. implies Yv D Y2 for Y1.,Y2 C A.-

-.-

X C X^"` and X^ = X^v^ for;X _C O.(2)
(2) Y C Yv^ and Y` = Yv^v for Y-C_ A.

(U(XliEI))"f(X; JiEI).,X=CO,iEI.-
(3') (U-(YIiEI))v=f(YviiEI),YCA,iE:I

The Preader will find a'proof in. {Wi 90] if he- cannot be bothered to do -it.by.himself.
Especially- (2) and (2') giveauss a hint of how to find concepts.

Proposition 7'.2-.2 ' Concepts are of '.the form (-X^v,,X^) and (Yv, Yv^) for some

Proof. If (X, Y) is a concept then Y X ^ and `X
and Y = X A = yVA, as required.

.
XAV. Similarly X = Yv

A concept .(A, B) is completely determined by either A or B and if we let (A, B) <
(A', B') iff A C A' then concepts are ordered and the order is a complete lattice
according to (3), _(3').

For our particular example there are two things to look at; (a) for a set B of
boolean. grammars,==study the domains D ,such that B =cb; in other words-- B^ is
nothing. but. the domain, theory ThD(B) of B. (b) -For set D -of -domain axioms
study the set of grammars is such thatE D. For want of a better name.we slightly
abuse the terminology and call this set the, extent of. a set of, domain- axioms. We
write. Ext(10)..,. _ : .

7.3y The- Domain. Theory o Grammars

There=are a number of easy results that we can collect about Th'.

= =

(3)

= = Yv =

=
a

=
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Proposition 7.3.1 T hD(1) - is closed under -modus po:nens and substitution. More-
over, every, Lit theorem ,is in Tha(B).

Proof. SupposeB 'P£and B P ->} Q."Then if B » (T, t) we have
1(P)

=- (T')
-* T) by which :t(Q) _t(T) follows since for. ever xand t2(P Q) t'(

_ = Y=- fP(x) _
r, fp.q(x)-= r so that by definition of -> fq(x) = r. Hence B iQ-, which had to
be proved. For closure under substitution observe that features are represented by
constants and so cannot be substituted; only variables can. Now if a is a substitution
replacing each variable pi by the formula Pi = o(pt) then assume (T,t,y) r7 for a
particular assignment y : Var 2T of the variables. Now the map o-o-y : Var, --*,2T
is also a valuation and (T, t, y) -o-(D) iff (T, t, co-y)- -0 the latter being guaranteed
since (T,). The last- claim in the proposition is, straightforward from earlier
discussion.

Thus the external part of Th(B) extends Lit by some `axioms.:,Th1(B) =
is mostly the case but cannot be concluded if B generates only trees of bounded
depth. In fact, the equation holds iff there is no upper bound on dept..of trees; that
H generates. Moreover, if B generates trees of depth n. +1 .then Th(B) contains
an axiom that guarantees size at, most n (!)...

Theorem 7.3.2 T hD(l) contains the following axioms.

a for every a c L(F) such that 13ri(F)/EQ -= -a

a --+ b for every pair a, b E L(F) such that 3rB(F)/EQ = b <

Proof. Recall that_rB (F)/EQ is the algebra of labels ycf l So if.z.B(F,)IEQ: --11

then no node satisfies a .whence it -.generates;the_.relation, T. And° if jjrB(F)/EQ
b < a then nodes satisfying b are nodes satisfying.- whence the 'relation generated
by a is included in the relation generated by b.

This concerns the inside part of Th'(
inside and outside.

). The lasttheorem'-innhis series connectsR

Recall also the following fact about definability'

Proposition' ,.3.4 D (F) = Pi.(F),Dr(F).= ®o(F),Dn(_F). 11

= i(P)
=

[--

- >

--

Lit

<

a

--

a,

Theorem 7.3.3 p U q. +-> p n q c TV'( R

_
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7.4 The- Extent of a ..Domain Axiom.

The converse question of what classes of grammars are defined by a certain domains
axiom is not a usual type-of question and requires some rather unusual methods,
too. To approach it we first deal with 'grammars which are domain" equivalent. Two
boolean CFGs B, C are called domain equivalent, in symbols B - C, if TIP(B)
Th'(C). 'It' will turn" out- that there are only finitely many equivalence classes
of this relation. Each equivalence class contains a unary grammar. A grammar
is called unary if all rules are of type A r with or = 1; unary grammars
generate linear strings rather than trees, or in other words, they generate non-
branching trees. For' each grammar- B-. (START, STOP, F, EQ, R) we put 10
(STAR ',STOP, F, EQ, Re) with- R = {A -, B1(3F, A) (A -+ F B, A E R}, or
alternatively, `R {A U F A - I' R)}, with Or = U(BJB E F).

Theorem -7--`

)Proof. Recall that T h'(B) n (T 1P((T , t)) I B » (T ,'i)) : Moreover, if ,0 is' a
branch, then e induces `a labelling' on Q which we also denote by t. Now' the- crucial
observation is T hD((T , t)) = (l (T hD((0,1)))10 a -branch of T).` It is easy to verify
that-0 generates the set of all branches of trees generated by B. Hence

TV( l(T hl'((,, t)) 10 a branch of T
= n(ThP((Q,t))1B ?>

ThD(IB'). -

H

For the sake of concreteness let us take X-syntax over two labels, S and N; it consists
of the equation S = -N and the rules listed below. (We are assuming a head-final
language here,' we allow for `recursion on non branching symbols and we also exclude
pruning (X--- X)-. This is of course only for the purpose of illustrating our point.)
We write: X(SIA)-for-this grammar.

START-
S n BAR:2-
S n BAR:2
S n BAR:1
S n BABA
N n BAR:2
N n BAR:2
N n BAR:1
N n BAR:1
B=A R: O

BAR1 'S n BAR: -
,S n (BA.R:2:U BAR:1)
BAR:2 S n (BAR:2 U BAR:1)
-S n-(BAR:1 u BAR:O)
BAR:2 ° S n (BAR:1'u BAR:O)
N n (BAR:2 U BAR:1)
BAR:2,, N.n (BAR:2 u BAR1
N n (BAR:1 U BAR:O)
BAR:2 N n (BAR:1 U BAR:O),
STOP

_

-*

_ =

= --+ I E

H

=

(Q,))
H
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This amounts to :a total of 28- rules in ran-ordinary: CFG. Now the unary companion
X(S, N )b;has the equation S_-r£ -N and, the_-rules

START -= BAR:2. u .S n-B`AR:

BAR:1 U BAR:2 -> BAR:2
IBAR:O ;STOP

.:S n BABA ,mot. S n (BAR:1 U,BAR O)
N n BAR:2 --,-x N n-BAR:1 n .»
NnBAR:1 --> N n (BAR:1 U BAR:O)

S n BAR:2 S n BAR:1

This amounts to a total of 19 rules. Unary .grammars can also be represented in a
transition diagram. or.a: directed graph-.

An immediate corollary of Theorem 7.4.1 is that over a finite set _ F there exist
,only finitely many distinct classes of

Corollary 7.4.2 Suppose that OF n. ;==Tk°en af.mostt2(2 1i2
grammars which are not domain equivalent.

Proof. It suffices to count :the number of ,unary gra-mmars.; .Over n-aabets
at;aa}ost,=2"- atoms in ,the Boolean; algebra. of A -unary C.-FG over, 2" symbols is
-b sicall a-- directed.graph-overthese. symbols plus START, STOP: As =START is
always at the start of an arrow -always.at the end, we may for the purpose

-
->

STOP

-.

= < 222n}1
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of counting unary:gramrnars conflate START and -STOP in a single symbol. Then
there are at most as many unary grammars as:there-arebinaryrrelations=on-a°1-i- 2"-
element sets This number =is -2(0°+i.)(2 +1) 2[2 2 +2.2 +i] 2 . 2[22°+2 1] < 2z2..+1

LJ

Write B C if ThD(B) C_ T hD(C). Then B'_' C if both B C and C B.
Also, if 'D E ThD(B) then also a E ThD(C) by definition and hence intents of domain
axioms are -upward closed with respect to <..

Theorem 7.4.3 Suppose that B = (START, STOP, F, EQ, R) and
CC = (START, STOP, F, EQ*, R*). Then if EQ C EQ* and R* C R,

Proof. Suppose first R = R*. If EQ C EQ* every'precisification of a' uie=p
of is a-precisification of the same rule p of B. Thus every tree generated by C is
a tree generated by B. This holds a fortiori if R D R*. Thus T hD() C T IP(C).

Now that we have reduced the question of domain equivalence to`unary gram-
mars we should also remember the technique of literal reduction 4). We can
summarize the effect of literal reduction by saying that every command relation
D E D(F) locally tight. We take this to mean that for every labelled tree (T,1)
and every x E T there is a e c DA,T,1(F) = Do,,,, (F) such that (T,1, x) = e.
It should be clear that -cD is -completely determined if we can name e depending on
(T, e, x). To determine e for a -0 E D(F) we need not look at the entire tree; rather,
suffices to take the position T-x. Moreover, we may omit from that part of the up-
ward cone of x all nodes which are not critical (see § 4) i.e. all nodes m for which
there is a n such that m > n > x and m and n have the same label(s). Let us agree
to call such a reduced. substructure a string: If 1I is a boolean grammar, we call
the set o-(B) of all strings derived from trees generated by Is the B-strings. Note
that a B-string has at most. 2'-+ 2 nodes if OF = n.

Proposition 7.4.4 If and C have the same strings then

Corollary 7.4.5 Let Is be -a unary grammar;. put
with R° = R -'{A -* A I A E IL(F)}. Then 11 -1

B (START, STOP, F, EQ, R°)

Thus immediate loops can be dropped-. To continue our example;' not only is X(S°
domain equivalent with its unary companion X(S, N)b" 'but also with ' the' grammar
X(S,-N')b°' where the one element loops (i. `e.- immediate
This grammars has only °15 rules and can- be written asfollows

202 - =_ <

-,< -,<

is
-- D

H H C.

_

N)



_Gonditions.Expressed by One-.:and. Two Letter Formulae

=TART _-S n BAR:1.-u-=:N n BAR: 2
_B A S n BAR: 1. u=.N n_;BAR: 2.

S n'BAR:1 *._=S n-BAR:O. u .BAR: 2
N n BAR.2 -> N n BARD. U .S n BAR: 2
N n BABA -> N n BAR:O: u. n-BAR;_-2= :

= BAR0-

41-

Corollary '1'.4.6 - 11 cC' is decidable;_ moreover; it is possible to lzst=all.equivalences
classes infinite- time.

Proof' The notation `Is--- (C' is used to denote the problem whether or not li ti C.
Now anyt E D(F) is locally tight.--.Hence -there=exist only-finitely many distinct
D(F). The problem `B = t- is. also -decidable by first computing the
and then deciding 'o-(B) = W, which is a problem that requires only finitely -many
computations. -Hence, by all this `ls C' is decidable and so is-` - C"S,.To calculate
the equivalence classes we only look at the unary representatives.

7.5 ` Conditions E_ presse by One- -and Two-Lette
Formulae

Recall that there are on -a single=letter=p..Below we tiia-Z-

condition 1 xp essed= by s= r}h1 :also say= that we "give a~

7.5

-
S n

-> STOP

START

S

STOP

An essential corollary of all this is the following.

-,<

single letter p.
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description of the extent. of these- axioms: (Temporarily, :we u`se X -H- Y° to, denote
the fact that there is,-w, rule p of F YA is a.precisification for some F; A.
X *):+ Yr is the transitive closure of"this relation.)

AxoM- EXTENT
N. not: START --.>*+ N

N not: START --o+ -N
-IN not: START -N
NV-N if START + N then not: N-»-N

The reasoning -is- as follows. If ll$_ N then (T ; e, x) H .N for all ]s > (T, i) and all
x E T. This is true only if N actually never occurs. On the other hand, ]B -N
means that the mother of x must be a N; this -being true for all x means -N can
never occur. For ]s = --iN, x may not have a mother node satisfying N since
then f,; j"(x) is its mother. Thus, -IN and - -,N have the same extent! Finally,
-(T, t) .J N V N means that x can have a mother N, but if not, there is no N node
above X.." Any, rule N -» -:N will violate this because the node satisfying- - N has a
daughter. It is crucial to have the caution if START ->++ N' to make sure that the
rule N =)+,-N is actually used.

These axioms are rather weak and they also show that there is no obvious way
to tell the extent of -a domain axiom. But clearly, the axioms of type N do express
something relevant in grammar, namely that non-occurring labels define the total
domain. Moreover, N V -,N has a natural interpretation when we look at BAR: 2.
Obviously, BAR: 0 V-BAR: 0 is an axiom that is valid in X-syntax!

- For two constants S, N we, get the ,following table. This time we drop the
condition. `if START + X'. We assume that-we-are only talking about grammars
in, which both symbols occur "at least in one-generated tree.

- Axiom; EXTENT
(S A-N)- -Nn-s=1

not::- N: S if; there is a rule S -w -N 'n -`
andifS<N -

5_, N.V.(SV-N)= not. START +Nif there is arule
N N n =-Sx and if= N < -

-,N` - -is not, START -»+ N if N < -S
(N V S) N < -S
-S - (N V ---IN)
(NV S. -> .N A S). --+,7.N V -N _

- - - 4 , . +not.
N,-- N,n_-.S-and N < S.

Here- we meet a number of -known axioms. Of course, -i(N A S) (N- U S) so that
the extent is that of a one-letter formula.- Most of the axioms allows us

7

=
=

-

we are

,SV(N-S) _,,+

N -N

=
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a transition from'-one' node N to a node S is never possible, =not even indirectly. It
is hard to -see how such properties can be put to use; thus' we are warned now that=
the correspondence between domains and their extent is rather intricate.

8 Domains for Movement

8.1 Movement in Boolean Grammars

Let us now concentrate on one central aspect of transformational grammar - that
of movement. Although modern versions of transformational grammar `are more
complex the essential- problem of the movement transformation can be illustrated by
looking at the transformations that lead from D-structure to S-structure. Thus we
ignore the levels LF and PF but without implying any theoretical consequences. We
say that a bistratal theory consists of a boolean grammar B over a set F of features
- the so-called base component, a set of tree-to-tree rules called transformations
and, finally, a set of conditions together with a specification of the level at which
they have to be met. Al level zero are.-all those trees that are generated 'by B; they
are called D-structures. Now levels are defined inductively; if (T, t)- is a tree of
level n and I a transformation then T((T, t)) is a tree of level n + 1. Conditions are
classified into three groups. Group (a) consists of all those conditions that have to be
met at level zero, i.e. by the D-structure, Group (t) consists of conditions that have
to be fulfilled by trees of all levels. The Group (w) consists of those conditions which
define an S-structure. They need only be satisfied when we want to. stop. applying
transformations. An S-structure then necessarily satisfies conditions of type t and
W. One may: wonder about the-necessity to have conditions of type a when in fact
they have to be satisfied by the D-structures. There are.: two reasons, first, the
idea is that the burden of generating `correct' D-structures- is -shared between the
base component and the a-conditions in the hope to make both individually small
and attractive, and second, there might be conditions that cannot be'-guarantee to
hold by using a context-free grammar and so they have to be added explicitly.

°Weiave extensively dealt with the base component. We will now-'h attack the
problems- that are-cteated by the transformations: -It is currently assumed that them
is only one transformation called Move-a. Although its action is. mostly described-
as move =anything anywhrre- this slogan is not quite =-accurate. --In `fact, Move-a is a
conglomerate- of two rules -only one-_-6f, which deserves this name. We --dub the-- rules
Substitute-a-and- Adjoin=a. The idea-of Substitute- a is to take a constituent I-x_
and -tag it onto another` constituent in the existing tree. The idea of -Adjoin -a -is
to take any constituent and Chomsky°adjoin it to- an- existing node. -Both actions
are pictured below:- It is agreed- that =both transformations leave behind an a-trace
bearing- an ind=ex= ideintjcal. to. theindex=tagged onto them- ov=ed-constituent:
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The way` the notation is designed is as follows.' We have put a prime onto every
node that- has been moved somewhere in the tree and a star onto a node that is
newly created from an existing one. Note that it might be convenient to view
substitution as a transformation where two constituents, change places. It is. then
apparent that substitution never results in a tree that has more nodes than the
original one. But for conceptual reasons it is better not to think this way. There
are a number of additional details to be filled in as concerns the labels for the
nodes. We will generally assume that a transformation will relate a certain node
z with - a certain node z' and- that .A(z) _ t(z'). Exceptions are only made with
the nodes marked in the. picture. e always denotes a terminal node, so it has no
label, likewise e. First substitution. Central are and x`. We will take it= that
x and y are somehow merged into one. node and consequently e'(x') .=.t(x)_fl e(y).
(cf. the discussion below-) . For. x' there seems to be. no immediate solution; i
that case we opt -for t'(x*) = e(x). Now for -adjunction,.. Here it-is. clear that

£'(x') = e(x) and that t'(n') _ £-( *) _ e(n). However, there are now extra
features to be distributed. The first is the feature TR indicating, that an element has
been emptied by a ,transformation. One might think of TR as a flag set to inhibit,
further movement into this .e.mpty:sp_ace., 'Second,-_the:moyed_consti-tuent_ and the

H

e

Substitute-a

x

e*

Adjoin-a

L-

x'

e'(x') =
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trace both receive an identical index- IN E w.- Ac=lthough. both` TR and I N-D:='n
are features, they are not seen as features which are assigned by B. There might be
reasons- to incorporate TR into the base-component, but definitely indices are out
since they immediately create non-context freeness. But we will not dwell on that
issue here. Let -us just -picture the resulting trees with the appropriate labellings.-

Note that this indeed allows movement ;from.: anywhere into :any -empty cons.iir
ent. However, an NP may not move into an empty VP position and so there clearly
are restrictions. This particular movement is in fact ruled out by a requirement
that all new assignments are consistent. Moreover., we will force a stronger condi-
tion which we call the as-if-principle. The idea is that as regards the features of
F (i.e.- excluding TR, IND: n, and possibly others) the tree that is the output of the
transformation is` such -that it could have been generated by the base-component:
To formalize this principle= let f fl F denote the- assignment which gives- as- output
for x exactly l(x) fl F

[As-IF] For every tree-(T,t)-of.level n e w the tree (T,.1-(1 F)-is-a.D-str-ucture-,-.that
is, B » ,(T,,tn F_)_= 1 _ . . _i,_

Substitute-a

anbnIND: n

anTRnIND: n

e

Adjoin-a

A
anTRnIND: n

e
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This` implies among other

[CONSISTENCY] For every -tree (T,-1) of level n 9E,_ w and any x E T, 1' H (F)./EQ _I

8.2 Interaction of Movement- with Domains

We are now in a position to-derive. some-basic facts about the way in which domains
are manipulated in a. tree by movement. We take it that we have a tree (T,1)
of level n and a -transformation : : (T,t) - (T, t'). T is either- Substitution
or Adjunction. For the purpose of exposition we might think of each of these
transformations: as consisting of two steps, namely Remove-a and Insert-a. (Thus
we cover all instances of the rule -Affect-a which we take from '[Ch 91].) There are,
of course-, two ways to insert. It is not hard to see that removing a constituent does
not affect domains at all.

Proposition 8.2.1 Let a E D(F) and (T, t) a labelled tree. If (T', t') is nothing
but (T,I) minus a constituent, then for every x' E T' ff(x') = (fi(x))'.

Inserting a constituent may be dangerous. Let thus (T'-, t') be the result of inserting
a constituent into (T,1). In the case of substitution, if z' is not within the new
constituent J, x, then the upper cone of z '' is -isomorphic to the upper cone of z and
hence nothing changes. In the case of adjunction, things almost as well-behaved. If
z 54 n', n* then by local tightness we can ignore the fact that n has been doubled
since .n' turns out to be eliminable (non--critical).

Theorem 8.2.2 Let 0 E D(F). Let (T, t) (T', t) be a substitution of 1 x to n.
Then-if z V J, x, ff(z') _ (fo(z))'. If, however, z E J. x and fe(z) E J, x as well, then
also _ff(z) (f, (z)).

-claim needs to be investigated. It follows from the next lemma.

Lemma 8.2.3. Let (/J, ,Q be aposition. _,Suppose that
Now let -y = [x, y] be an interval Then f (x r fa(x).

'Proof. By induction. on_- ti we prove. fa (x) = .f11(x) if fa (a) <_ y;. and- fa (x) = .y
else. This certainly holds for the primitives L,_L-- E -L(F) and so also for T, 1. If
tl = an b then fa (x) = min { fQ (x), f6 (x)}. Assume that fA(x) = fQ (x) < y. Then
by induction hypothesis f. '(x) = f.(x);. If fn (x) < fQ (x) then fs"(x) = ff (x) which
contradicts our assumptions.. Thus fa (x) < f( x) and so fo (x) = fA.(x). Finally,
assume fa (x) > y. Then both fQ (x),. f b-(x) > y from. which fQ (x:);- fa(x) = y both

8

-t(x).

-^,

=

Proof. The last

f0 '9(x) < y for some D, x, y.
=
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-follow by induction hypothesis and=the- Now let =a V --b If f (x) <-,,y
.then both f. '(x); fb (x)- < y-and so-by IH fa (x} fa (x), fb (x)-w= f6(x) and` the
conclusion -follows.: However, .if fa (x) _> y then for at least one-of- the two, say
=u, f,(x) > 'y from `which by IH- fQ (x) = y and so fa (x)- = y -as well. --Finally,
=c = a --> b. Suppose first fa (x) < y. Then obviously fa (x) = 3(m) < y and
-by -IH fb(x) = fb (x) < y. fa (x) < fb (x) will lead to a contradiction since then

Q (x) = fb (x). Consequently, fa (x) = f''(a) = fb (x) = faf (x), as required. If on
the other hand fo (x) > y then either fb(x) < y and so fa (x) < fb (x) < y and
.by IH fa (x) <_ fb(x) whence fa (x) = y or indeed fa (x), fb (x)° > y from which
f-(x)==fb(x) =yand fa(x)=yas well.-`

This lemma presents an-important property- of definable CRs, namely that if the
value of the generating function for some .x -is z then- everything --above z can -be
changed with impunity with respect, to z; thus. the computation ;can be carried of it
-quite locally..

-Theorem 8.2.4 Let D E D(F) and (T, f)- (T', t') an adjunction of Ix'to n. Then
if z V J, x and z n, fa(z'.} .= (fe(z))'. If z E -1 z _as well as f,(z) then also
far(z') = _(fa(z))'.

.

To cut this story short, movement is only problematic for those domains which go
across the moved constituent. It is, however, in presence_of;;somethin rlike a_strrc#-
cycle condition not -necessary to recompute all domains since they will-not- all-
needed.

In [Ch 86], Chomsky considers- a revision of the GB theory via a notion.of-a `barrier
that -should do multiple duty in defining domains. The idea is that in general the
ideal domains for movement are those in which no barrier is crossed and that things
get worse the more barriers intervene- As we =will -see ,_subjacency is undefinable
and thus- any domain which allows crossing an inherent barrier does not fit= well
our framework.- In the next -:chapter we will investigate this -situation.. - For-- now
we will put to test- the notion of O sub jacency. - We will - restrict` our discussion -to
inherent barriers as they can be defined in absolute terms, that is;_ not relative to
ones position in a tree. Following Chomsky, any blocking category different from -I=P
-is=an inherent barrier.- Introducing a feature BC helps to_defirre the inherent harriers
as IBR = BC El =IN-E.L. That we may mot cross an.inher nt .arri-ers._meEtns::in.rloxnain
terminology that. -the d rear 3_for, movement is =1B-R command. -A-transfo-rmation
-Substitute-a, or Adjoin-a. respects this, domain if fit substitutes or adjoins x_-to
-and n is in- the_domain. of-x_;=:in- the.present.case this means that x -inherent-barrier=
commands n. - The< original conception was that :thosesba r ers are quite frequent;

8.3 47

fl (x) = y. 0

=

, I x
E x
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,most -maximal-`projections-turn out to be barriers,., But a constituent. ay- escape
such a barrier by -adjoining to it; this is spelled out in the notion of inclusion.
Adjunction -`stretches' the n into n' and n* which "have= equal .label ing- and- thereby
count as one let us say -that _a? maximal convex subset n such that all -x E n have
the same labelling is a. uaai-mode. Azrcl let us say,that -n=_ ncludes m - in symbols
m < n- if for all, m E m and for all n- E n m < n; and that n excludes; m if for no
rn mand- no E n- we have m < n. Then if x 'is adjoined to-h,, tlie quasi-node
containing, n', Y does =not include the quasi-node of x'- and thus -does not count
as a_ barrier for' .-is -reminiscent of `tunneling' in quantumnmechanics Where
although a black hole constitutes an absolute, death threat to all, particles, they may,
due-to their part-time character of waves still escape.) Such an analysis as proposed
by Chomsky is not internalizable- in this system of domains for the simple reason
that -'the node= x' 'does not have any access to information about n' since n.
Thus x' can "only judge from n* where it can go. (See also next chapter:)' But now,
as barriers are defined purely in terms of labels, n* has the same label as n' and
hence inherits barrierhood from n. Now x' could still adjoin to n* - only to find
out that the :newly ,created n-,- is again a barrier ''In this -way, no constituent ever
stands=. chance of escaping a-=barrier. Let us state-this rather, explicitly by defining
first that a -CB, is absolutely tight if, it cannot be escaped by substitution nor
adjunction.

Theorem g= 3. A command relation -is TIGHT if and- only if it is ABSOLUTELY

This theorem states explicitly that the idea of a inherent barrier being a barrier
only half-way is not viable. We will, for the sake of comparison, nevertheless sketch
a way to circumvent this dilemma. This solution comprises in giving up the As-IF
partly;- we assume that in the -base-component every node is given the label BASE
and that the effect of `=adjunction will be to leave the labelling of n' intact but to
redefine the label` of n* as being --BASE. Then a barrier can only be a node which
carries the -label -BASE. By adjunction the moved constituent is dominated b a
lion-base node which -cannot be a- barrier for that constituent _any'more.. _3 =

But` there are also more problems with the barriers :approach. As [Li 88] point
out., --its - success rests on a number of assumptions on- adjunction. We must in
particular assume that we may not adjoin more than once an N P to a VP and that
we may not adjoin to certain nodes etc. -But -if. movement is freely applicable, what
processes are-:'there -to:: stop adjunction from being repeated? --In particular, if one
assumes that transformations need- as input all ;and-only the information that -is in
the tree-we-need something in the tree -that stops adjunction=. But in- our-formulation
there is_, nothing that does so. =For =the VP there is help if we forbid adjunction to
-VP;and generate an-extra empty node: to which .N-Ps->may be substituted. But that
leaves us with the problem: of banning adjunction when. we do, not want .it. One
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may use- the As-IF principle,- but that will be -rather desastrous for VP "as it is clear
that we do want at least base-generated VP-adjuncts.

The moral is that,adjunction is da-ngerous._i_n.-that it may overgenerate and has
therefore be out on leash. But what is more, -there is the empirical -question of
how we are going to prove that the traces left behind by adjunction can be attested.
Can there be decisive evidence that proves that elements must adjoin ;toeach barrier
rather than moving to their eventual landing site in one fell swoop? It appears here
that the original attraction of GB in explaining phenomena of non-extractability
is lost. It was assumed then that there is a limited -number of escape hatches
which elements may substitute into on their way out, thereby blocking the same
possibility for other elements by leaving a trace. Such arguments are not available
for adjunction, since adjunction creates its own -escape hatche s.-__Thus-we should
be aiming at a definition of domains- for movement which do not create the need
for intermediate adjunction. Such a domain is available in the present case; we
just have to define a barrier in the new sense to be any barrier in the old sense to
which adjunction is ruled out. This leads more or less to the system of relativised
minimality in -[Rz 90], the difference being that movement may not go further than
to the next governing node. Later we will show-how to handle this requirement as
well.

8.4 Small Print

The definition e'(x'-) = t(x) fl t(y) .seems "-to°be,-probleiriatlici-n the `cash of head-
movement. For example, if a V moves into IN FL we= should expect as` a result a label
V fl IN FL and not -En FL

*

--Thiscertainly - disappoints some -of the expectations `about
movement but it is not altogether 'unreasonable. The LLptoblem lies here precisely in
the fact that: category labels are assumed to be mutually exclusive and so for example
hd=attrlbut-e 1/ fi I N FL is contradictory and- so V-to-1-movement is disallowed on the

basis of CONSISTENCY. -BUt=srecisely the assumption that category labels exclude
each other is questionable; _It= might be correct with respect to major: categories
such as N and V - so that indeed transformations- such as - N-to-V-movement are
excluded --; but it certainly is problematic .with respect to I:N FL and =V since -I N F L
exists for theory internal reasons and thus there is no a_priori reason to force 1NFL
to be inconsistent with V even less so when, they -can be co-inst.antiated in a---single
lexeme. Even though this may hurt other theories -it is quite plausible. to assume
that only lexical categories are exclusive while there is still some choice as to which
functional categories may co-occur and which of them can co-exist with which lexical
category. Such assumptions naturally constrain the choices for head-movement. A
-lexical head can move to only t-o a lexical -head position of identical category- and
furthermore it may visit some functional: head positions.
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- This- discussion is based on the =assumption that -CONSISTENCY holds which we
derived from AS-IF. As-concerns,As-IF, it is explicitly rejected in [Ch 86]: `The X-
bar constraints are satisfied at D-structure, but not at either levels of representation
if adjunction has taken place in a derivation.' (p. 3.) Given our discussion it seems,
however, that rather than adjunction only head- to-head-movementiis a prima facie
violation of As-IF. Incidentally, in [Ch 91] Chomsky seems to think that As-IF is

cturet least til S td di ).eas un -s run ee vaka

Prdb1e ;--s with Subjacency

-.1 Outline -ofSubjacenc

So far we' have created the impression that :-definable relations are the type of
'relations to which all linguistically relevant notions of nearness are reducible. There
are, however, clear cases where this is not so. Let us take an arbitrary example of
a definition of subjacency, in this case from [vR 86]:

[SUBJACENCY CONDITION] No rule can relate X, Y in the structure

...X...[a..:[p,..Y... (or: ...Y;. ]p ]

where a and 3 are bounding nodes.

,X )

This rather crucial condition -has been reformulated several times; quite thoroughly
so.-i-n,[Ch- 86] where a rather sophisticated definition of subjacency is given which
we will examine below. For now we stick to the one given above. This definition
presents an instance of counting intervening nodes; calling x n-subjacent to y if
the n + 1"t bounding- node strictly, above x dominates. y then. the SUBJACENCY
CONDITION says that a rule can only relate x and y if one is at least 1-subjacent to
the other. Let us rephrase this in our terminology of relations by introducing a label
BD which is true of exactly the bounding -nodes; then under standard assumptions
for English :BD, _, BAR.: 2 rl (N U COMP)..- We now, define a CR N-SUB via its
associated function fn. For every node x, f picks the n + 1"t .B-D-node strictly
above (else r). -

[SUBJACENCY CONDITION
commands y.

What remains to be investigated is the CH N-SUB. -It is quite clear that N-SUB
is locally tight if and only if n -_0 in which case. we haveia --relationbetter. known

9

-

9

x

If a rule relates x,y in a structure then x 1-SUB-
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as KOMMAND (see [La 76]). The other relations- among- which we find our :do- red
1-subjacency - are thus not iI-definable. It is therefore necessary to have formal
means to generate these relations as well. The most sobre construction is that of
relational composition.- -Given two binary relations, R,S-e Re2(T) we define the
composition R o S tobe_the_set of pairs (x, y) such that there is a z with xRz and
zSy. Before we engage in a formal analysis let us see how this fixes our problems-.
The key is to observe that fn can be recursively defined by_

fo(x) fBD,(x)
f.+1(x) = fBD(fn(x)) (AD M(x)

Here, fBD o fn denotes the composition of the associated functions; which is defi=-
ned in exactly the same way. The next step is to show that the composition of
the associated functions is indeed the associated function. of the likewise composed
relations; this, proof will _be given below. Thus we get.-,

fBDM:

f N-S-U B;B1iY
-mar_31 4

-Proposition .9.J1 1 The relations- N-SUB are recursively d

O-SUB =BCC

1V F 1--SUB-S=UB_o_BD.

Using exponential -notation we might write D"+1 to denote the n fold composition
of BD with itself.

-9 2 Barriers

The power and simplicity of our s domain language will" be d'emonstrated', with. an
example which for many people is the prime example of an-unformalizable- theory
that of barriers as introduced in [Ch 86]., Below we will list the definitions of that
book which define barriers. (At least these are the initial.. definitions; the proposal
in [Ch 86] consists in a series of alternative definitions) which can all be treated in
a similar way.)

(26) -y is a-barrier for- -iff either {a) -or=(b):
a. ry immediately dominates ::-8- b a ' B-G fo
b: -y is a BC for Q lP:

=
= o

A
fn+l

= f0-SUB = fBD
= fBD o fn =

by

=

-

3
3,
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(2-5) -y is a BC for /3 iffy not L-marked and y -dominates- ;Q.

"We understand y in (25) and (26) to be -a maximal projection, and we understand
"immediately dominate" in. (26a) to be a relation between maximal projections
(so that -y immediately dominates` b in this sense even if a nonmaximal projection
intervenes). (p. 14 - 15 loc.: cit.) The use of barriers lies `in the notion of n-
subjacency which is defined as follows

(59) 3 is n-subjacent to a iff there are fewer than -barriers, for, that exclude

(1=7) a excludes, if no.--segment of a dominates 0,

Segment here means `element- of the quasi-node' as -defined `earlier. - Now' given a
labelled tree we first explicate (59). Barriers -are quasi-nodes; but we want (59)" to
speak of nodes m, n and ultimately also reduce barriers to nodes rather than quasi-
nodes. Consider then first the case where quasi-nodes are nodes. Then exclusion
is non-dominance; (59) reduces to saying ;that-,3 is n-subjacent to a if the n + 1'e
barrier for 3 dominates a. That sounds like the original definition of subjacency;
but -it is not for the reason that barriers cannot be reduced, to bounding nodes. To
see what, it in fact means we have to unpack (26).' Consider a label BC true" of
blocking categories. Then (25) tells us that BC = -LM fl BAR: 2, where LM selects
the L-marked nodes. Then, according to (26), the barriers for a node m are found
as follows. Either (b) a node is =a BC n -IN FL, in which case it is a barrier for m; or
(a) the node is the next BAR: 2-node above a blocking category strictly dominating
m. The generating function for 0 SUB is therewith defined and yields the following

effect:`.

($) 0-SUB = BC fi -IN FL A (BC o BAR: 2).

This concludes a strict definition of 0-subjacency; for the general. case it is better
to have some .more notation. Let us denote by i the relation BC (1 -INFL ("in-
herent barrier command") and by u the relation., BC o BAR: 2 ("inherited -barrier
command Then as ($) shows the first barrier is defined by i A u, the second, by
i o i A-i 'o u n u o. i A u o u, as can, be. checked. Thus n-sub j acency in the new formulation
is

N-SUB = A(o(0) 0;0(1) o ..-o u(n)Io-(i) E {i,uj).

If we now come back to quasi-nodes-, ;-we; meet, ea rather -.unexpectedt:difficulty
with (17). Consider the case of ih being 0-subjacent to n when the irext=-barrier is
inherent.

9

is
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effect:



9.2 =Barriers

-With the quasi-node a as depicted we have that a does not exclude n the quasi-node
of n but it does not include it either; and thus m does not inherent barrier command
n. Our definition ($) fails to be adequate. Likewise the situation below characterizes
a 0-subjacent -m for n when both quasi-nodes a, b are inherent barriers.

This does-'not- follow: from the -above=definitions. but is clearly intended (in [Fa 87]
.the necessary adaptations: are-made to -cover -this case). It can be' demonstrated
that 0-subjacency is not M-definable; for if it were, it would be defined by a d with
fg(D) < A. Now consider the situation where a has more than A segments; then
{m, n) i(a).- If that is so, there seems little that -we can do but leave it for the
linguists to decide the consequences of this.

One might ask whether we just' have not given ourselves enough power= to define
the: relevant dd ains-, --1Vdaybe=there-=are'some connectives that can achieve an in
ternalization of- cr iers with .quasi-nodes. But. here-w&_ e t a Tether=s-tr-ret -dictum-
that-tells- us =that` domains in 'r=-sense are not° able to define _ he. domains the>

barriers -system -no- matter=what:: connectiveswe--grant oursel-ves
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[LOOK UPWARDS] The domain of a node in a tree depends only on the isomorphism
type of its position.

By position we understand T x. This principle says. no-more- than that a node can
decide its domains by just looking_ up - whence the- name. In the pictures below
we have two trees in which the positions of m as are;isomorphi-c as labelled objects.
Yet if° we assume that a, -b are inherent barriers, m is 0-subjacent to n only in the
second tree not in the first.

An explanation for the fact that the barriers system is unanalyzable with our theory
lies in the way Chomsky treats the tree structures formally. In_ the book, he is not
using trees any more but something that might be called vague trees . In vague
trees, a:nodem can either include another node n or-exclude _n or--neither include
nor exclude n. In the latter case we might say that m vaguely includes or vaguely
excludes n. The- third case does not ;arise in base generated structures but is created
by adjunction;, under this analysis adjunction does not yield. the structure .(a) butt
something like (b);

(a)

The dotted line denotes- vague inclusion. The vague tree contains less 'information'
than (a) and thuone-might-wonder,whether this .is an adequate rendering of the
structures of Barriers. But it -seems that in -,this-theory the, relative C-command
relation between two adjoined nodes does not play a role at all- -For vague trees,
however, the theory as,--presented here does not work at all since- the relation- of
dependency between two node is assumed to be-strictly>bivalent., :_ .x

C

(b)

n

b a* a' b a*



9.3> Constructing Domains with Composition

9.3 _ Constructing Domains_wit _ Composition

In a completely parallel way we- define the language -DP-(F), which has as the only
extra over D(F) the relation composition o whose interpretation is given by

e(a) o 1(b)

(x,y)I (Iz)((

Most results proved for Ddefinable domains are not valid for D°-definable ones. To
give just one example, there is no a priori bound for the number of DP -definable
relations over a given finite set of features; nevertheless, the addition of composition`
does not at all mean that any-relation can now be -generated: Consider the tree-(3a)
of §-2;

The only tight relations are T and 1 and they combine- under composition as
given. We can see that they- are--closed under composition and so in this example

Zl_

the only D -definable relations are T and I. Another, less trivial example 'is the
fact that within X(S, N) (the `first branching' interpretation of) C=command is not
DP -definable.

It is. also not= clear that our earlier results- on,=:decidabilxty=wstill go through of-IT
th simple, reason reduction does no-t v ork--=. which in turn is :due .to`=the_
fact that the function-:of .a campositon -of.,rrlations might not in all eases
be the -composition=ofcthe associated functions. Yet, if we restrict the discussion to=-
MONOTONE relations,= things are back to

Suppo-s-e that R -and S are-
MONOTONE and ,fRoss= = .fs° o fR.

Proof. First let (v, w) E R o S. Then for some x_,, vRx and xSw; now if v v'
then are two cases. (a)- v';< x Then R is gives`

(b) x-< v'. Then v'Sw since S is -And. thus-also--l

v-'R o,Sw second claim observe ahat
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!(a o b) _
E i(a) n (z, y) E

(3a) T

0

1
T

I T
T T
T T

MONOTONE. Then R o S is again

<
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(i) fRoS(x) = maxrt{ fs(z")I z < fR x')}.

- PROBLEMS WITH SUBJACENCY

This is so since z < fR(x) is nothing but xRz and so y < max { fs(z) I z <_ fR(x)}-
means that there is a z such that z < fR(x), i.e. xRz, and zSy. Since S is
MONOTONE, fs(z) is maximal-if z is maximal. But the greatest z we can chose is
z = fR(x). Thus if S is- MONOTONE (j) reduces to fRos(x) = fs o fR(x) ..

Since it seems that syntactic domains are always MONOTONE we-feel justified to
single out a special sublanguage of IDP(F) to create only MONOTONE domains. We
let M(F) = IDo,,,V (F) with all inside connectives retained.

On MONOTONE relations there, is an-,equivalent of -literal reduction... Call a CR
chain-tight if it is a composition of TIGHT relations,. A M-definable relation is;
chain-tight if and only if itis, Imo.--definable, that is, definable with only o as outside
symbol. That M-definable relations are locally chain tight is what we are now going.;
to prove. Define first the length of an M-definable relation.

tg(a)_ = 0
_,tg(aA b) = max {tg(a),tg(b)}

Ig(a V b) = _max {tg(a),tg(b)},.
Ig(a o 0) = 1 +_tg(a) + tg(b)_

if a E D(F)

Theorem 9.3.2 For every M-definable-D, every labelled tree (T, t) and every x c T
there is a chain-tight c such that

Proof. £ Ry-induct-ion. on. the- construction.,of.=cO If D is TIGHT 4 does the job.
Now assume that O = ti A 02 or=P = c0r.V <:z,- Then by induction hypothesis., there'
are, c, such that utg(ct) < £g(Dzi) and- ff,-(x) and without loss of generality
we can-, also assume that= ff, (x) <_° f,a(x). Obviously c = cl is a good choice; and
if - = D1 V D2 then c = c2 is the right choice-.- Finally, let D _ '01 o '02- 'There is
by induction a cl with tg(cl) < tg(t1) and f, (x) = fz,,(x) = y. But there also is
a c2,,,with tg(c2) ,<a £g('02) and fra(y),= ff2(y). Putting this,-together, we get that
tg(ci o c2) < tg(t1 o t2) tg(t) and that frioca(x) - fc2(fc1(x)) A(fai(x))
f2(y):= h2(Y) = fas(fa,(x)) = fa(x) Given that c1, c2 are both chain-tight so is
C1 o c2.

-This-is-a-decisive-property of -M-de-fm- e CRs that-puts-many of the earlier results
back into ourhands; for although we- can define infinitely -many CRs from a-given-
finite F, there are only finitely many rup.to -a-given length A . By induction -it- can 3be

9

Mx) = fi(x),
Ig(c) < 400).

c = i)

= = =
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proved that any model for such it definable CR can be reduced to of size--
2A n +2, and so it is possible to introduce the notion of a a-string and to test grammars-
for producing the same a-strings; and deciding whether -they- are equivalent with
respect to MI-definable CRs of length < A. Although we believe that the study of
intents of MI-definable CRs is it profitable subject for formal language studies (rather,
than intents of the D--definable CRs) this "is-not` air enterprise that we want to start
here. But there is .a small result that we want to add here about -definability. - ---

Proposition .9.3.3 MIA,V (F) C MIO,A (F).

Proof. Recall" that -Mh,V'(F)-= MIA, (F). We consider the simplest case where a, b"
are both TIGHT and thus a = 'Qaj', b = 'Qbl,. Let c = a fl b. Then with c =
we get aob=aobAboaAc.

10:

Ml Conclusion

Even though this investigation into the mathematical theory of domains has turned-,
into a rather heavy and bulky reader with lots of solved problems, it still seems that
the main work is still lying ahead: There are on the one hand pressing questions
about further applications in linguistics and other disciplines and on the other there
are some theoretical questions about the relation between grammars with explicit
domain restrictions and -others without such overt -restrictions. We -will turn to these
questions. shortly. First, let us -do a critical evaluation of the work done so fir--:-

A theoretical -study such as=the present one may serve two purposes. It` may
establish- or isolate new concepts and develop a new°terminology= to name theme
and it may also yield insights into the theoretical possibilities and the consequences
of basic assumptions.) °We hope to have contributed to both: It is` of course at the
beginning not easy to estimate the fruitfulness of the new concepts and to see which'`
of the questions really deserve closer study. Only flAure-Rarfill-I the investigation 'itself
can tell. We might therefore be excused` for the fact that not an theorems and
considerations have a direct and foreseeable application in ` linguistics`- at least we
are-unable to name such applications. Nevertheless, we feel that the questions we
raised have an intrinsic motivation and therefore necessitate an attempt to-answer-
them. At this point we shall repeat that the following problems are stillunsolved:

QUESTION l: Is every"11-definable TIGHT _CR also -10-definable?

QUESTION 2 Is every )I-definable MONOTONE CR also 1Iv definable?

Similar problem-s arise; with --M-definability, which.:anyway.. deserves -a study of its
own. The 4-techniques.of investigation .will but the -studyof-extents.

10

future and
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of, M(L)--axioms will may well turn out to bear more fruit than the study of D(L)-
extents. In § 4.1 we have anyway stressed the point that the introduction of --* will
destroy an essential property of CRs namely. MONOTONY.

In this essay we have applied the theory exclusively to GB; the only reason for
this is that in GB, domains play a rather central role and thus GB is a rather easy,
target for our demonstrations. But .the theory of domains is itself neutral with,
respect to which' syntactic theory we use. And that might be a great advantage. It
is first of all possible to express linguistic knowledge about, say, reflexives or case
assignment without being too precise about the details of the syntactic analysis.
The minimum of structure that seems to be required is some kind of topology on
the lexical items. For. example, in,,an:. analysis of the following sentence-

John eats pizza.

we can image up to 23 = 8 sets- of lexical items and hence (functional categories
aside) up to 8 constituents. If the syntactic structure is always assumed to be a
tree then not all of them can be real syntactic constituents. We will then only have
these constituents- (the syntactic labels are only, approximations :

-
[John]rrp
[pizza] p
[eats],V

[eats.pizza]yp;: _£
John, eats pizza

But in some syntactic theories for example in Combinatorial Categorial Grammar
there is no-fixed -sentence structure -and there are. many more sets than count-, as-,
constituents in this grammar-the price being, that the- syntactic labels- turn out
to be, more exotic than in `standard' theories. Be this as it may, some notion of a-.
constituent being a. set of lexical and/or functional items is enough to open the door
for our theory of domains. We may in this way come closer to a real cross-theoretical
study between grammatical theories that might otherwise be incomparable. To,
take.- an, easy, example, let us compare GB with GPSG. At first look, they seem
to rather different as in GPSG there are no (or next to no) empty categories: and
GPSG is monostratal. Moreover, there is no overt correspondence between the,
nearness-;conditions_in the modules and some particular part of GPSG. Nevertheless,
somewhere in GPSG there must exist a mechanism that regulates the distribution
of reflexives and the distribution of case features-. The only thing that can do this
is the feature, percolation mechanism. Thus, we need to investigate way in
which nearness conditions on syntactic items is coded up into feature percolation
in.3 -GPS=G.> -This- is -indeed, possible. -And paves the-way- for a systematic -study=i of-
the -correspondence_ between GB-type and GPSG-type The additional-



-benefit will be that GB may profit -from the rather rigorous way in which= _GPSG- is
.defined and thus formal results about GPSG-type grammars might be transferrable
into formal results about GB-type grammars. Conversely, we may be able to see
-how the rather high order knowledge --about nearness can be mechanically coded
into GPSG mechanisms and we are thus freed from the burden of actually writing
-these grammars.

=Another--point worth looking at is the particular ways in which domains= get
used in the various modules. This is by no means uniform; for examples indexation
provides an ideal case where we only need MAX-command from the binder, to the
bound node. But case assignment, among other things, is less straightforwardly
phrased. There we not only., need a nearness condition one way from` -the case
assigner to the case receiver; `but also the other way around. This might have
several explanations. We prefer to think that in addition to the requirement that
the case assigner commands the case receiver there should be no other case assigner
that takes precedence (in a sense to be defined). This definitions is rather similar
to the "definitions of [Rz 90] and akin to the normal conception of government. In
our terminology, if case assignment is mediated through MAX command .(arguably)
then the case assigner may only. assign case to the corresponding MAx-cell, - not

"the entire domain. This requires that each MAx-chamber contains at most one case
assigner. This line of thinking applies also to-0-theory. It is rather different from
the usual definition, where mutual MAx-command. would be required (or indeed
mutual IDC-COMMAND')'. In' what ways these definitions differ in their consequences
and which of them is to be preferred certainly deserves attention.

I conclude with a few remarks on other uses of this theory. In the introduction, it
:was already mentioned that discourse is also structured and that many phenomena
such as availability of discourse referents are regimented by nearness= conditions.
But formal languages also make surprising use of domains. Consider the -notion
of a bound variable. Under a suitable analysis, an occurrence of x is bound if it
is' C-commanded by a quantifier expression quantifying over x. In addition, that
quantifier expression binds this occurrence of x only if it is minimal with that
property. (This again is some version of government.) We may now analyse this
situation just as with case assignment either as_ a mutual- command or as a relation
between a head unique in its, chamber and an x in a corresponding cell. Similar
considerations apply to bound `variables in programming languages when there is a
possibility to have local variables such as in- ALGOL.
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