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Abstract

We formalise natural deduction for first-order logic in the proof assistant
Coq, using De Bruijn indices for variable binding. The main judgement
we model is of the form I' - d [;] ¢, stating that d is a proof term of
formula ¢ under hypotheses I'; it can be viewed as a typing relation by the
Curry-Howard isomorphism. This relation is proved sound with respect
to Coq’s native logic and is amenable to the manipulation of formulas and
of derivations. As an illustration, we define a reduction relation on proof
terms with permutative conversions and prove the property of subject
reduction.

1 Introduction

We represent intuitionistic predicate logic in Coq [Coq99], an interactive proof
construction system that implements the calculus of inductive constructions
[Wer94], which is a type theory that provides inductive definitions. We adopt
a two-level approach in the sense that the native logic of the system is the
meta-language in which we define and reason about our object-language. The
object-language consists of a deep embedding of first-order terms, formulas and
derivation terms representing natural deduction proofs. Derivation terms and
formulas are related on the meta-level by definition of a deduction system for
hypothetical judgements " F d [:] ¢, that encapsulate their own evidence; d
inhabits ¢ given context I'.

The major contribution of our work is that we design an object language
representing first-order logic, which can be used as a ‘tool’” for the manipulation
of formulas and proofs. Moreover, via the so-called reflection operation and the
soundness result, it’s possible to reason about the first-order fragment of the
native logic itself. The complete development is formalized in Coq and can be
retrieved from URL: http://www.phil.uu.nl/ hendriks/coq/prfx.

The paper is organized as follows. In the remainder of the present section
we spend some introductory words on type theory and the system Coq, explain
the idea of reflection, and motivate our design choices with respect to variable
binding mechanisms and the format of hypothetical judgements. In Section 2
we introduce first-order terms, first-order formulas and derivation terms. In
Section 3 the definition of substitution is given along with an operation called
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‘lifting’; this section makes clear how the De Bruijn binding mechanism works.
The inference rules (constructors) for hypothetical judgements are presented in
Section 4. In Section 5 we give an example of how a certain tautology can
be deduced. In Section 6 we define the translation from object level formulas
to their meta-level counterparts. Section 7 presents thinning and substitution
lemma’s about this translation function, necessary for the proof of soundness
with respect to Coq’s logic, given in Section 8. In Section 9, we specify a function
which infers the type of (correct) proof terms. In Section 10 this function is
proved correct w.r.t. the outlined inference system. As a corollary, derivation
terms have unique types (Section 11). Section 12 is devoted to the operations of
lifting and substitution of both term variables as well as assumption variables in
derivation terms. Section 13 serves as an example of how the defined machinery
can be used to manipulate/transform proof terms; Prawitz’ proof reduction
rules are defined. Sections 14 through 16 list some basic algebraic properties of
the defined De Bruijn operations, inversion lemma’s and admissable rules (for
the relation t) respectively. In Section 17 we present soundness of types for the
defined proof reduction, the property known as Subject Reduction. Finally, we
conclude and discuss future work.

Type theory and Coq

Type theory offers a powerful formalism for formalizing mathematics and in
particular for formalizing meta-theory of deduction systems. Definitions, rea-
soning and computation are captured in an integrated way. The level of detail
is such that the well-formedness of definitions and the correctness of deriva-
tions can be verified automatically. In a type-theoretical system, formalized
mathematical statements are represented by types, and their proofs are repre-
sented by A-terms. The correspondence between natural deduction proofs and
typed A-terms is referred to as the Curry-Howard-(De Bruijn) isomorphism.
The relation between a proof and the statement it verifies, can be viewed as
the membership of an object in a set. The problem whether a is a proof of
statement A reduces to checking whether the term a has type A. An expression
is in effect a program annotated with additional information (types), which is
used for verification (type checking).

The logical framework of Coq is well-suited for an investigation of the meta-
theory of deduction systems such as natural deduction. Useful are the common
proof techniques of structural induction, pattern matching and primitive re-
cursion. The user is allowed to extend the type theory with inductive types.
Dually, the reduction rules can be extended in a flexible way. An inductive type
provides a principle of structural induction, a A-term automatically generated
by the system. Functions whose domain is an inductive type, can be defined
using case analysis over the possible constructors of the object and recursion.

The basic sorts in Coq are #P and *°*. An object M of type #P denotes a
logical proposition and objects of type M denote proofs of M. Objects of type
*° are usual sets such as the set of natural numbers, lists etc. The typing relation
is expressed by t : T, to be interpreted as ‘¢t belongs to set 77 when T' : %°, and as
‘t is a proof of proposition 77 when T : *P. The primitive type constructor is the
product type Ilz:T.U and is called dependent if x occurs in U; if not, we write
T — U. The product type is used for logical quantification (implication) as
well as for function spaces, witnessing the Curry-Howard isomorphism. Scopes
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of II’s, X’s and other binders extend to the right as far as brackets allow (—
associates to the right). Furthermore, well-typed application is denoted by
(M N) and associates to the left.

In Coq, connectives are defined as inductive types, the constructors being the
proof formators. For example, conjunction AA B is defined as the inductive type
inhabited by pairs (a,b), where a : A and b : B. The corresponding induction
principle is inhabited by A;,q4, a lambda term generated by the system.

Ning : TIA,B,P:x*.(A—- B — P)—> AAB— P

which can be used to eliminate the A. For instance, a proof of AANB — BA A
can be constructed as follows.

(Ninda A B (BANA) (Aa:A.\b:B. (b,a)))

Two-level approach, reflection

The universe *P includes higher-order propositions; in fact it encompasses full
impredicative type theory, which is too large for our purposes. Moreover, Coq
supplies only limited computational power on *P; every connective is defined as
the inductive set of proofs of propositions with that connective in the head. We
need a way to grasp first-order formulas and natural deduction proofs, so that
they can be subject to syntactical manipulation. Moreover, we want the ability
to reason about such objects, and prove logical properties about them.

A natural choice then, is to define formulas and proof terms as inductive ob-
jects, equipped with the powerful computational device of higher-order primitive
recursion.

Object-level formulas (type o) are related to the meta-level by means of an
interpretation function [] : 0 — #P. Given a suitable signature, any first-order
proposition ¢ : *P will have a formal counterpart p : o such that ¢ is convertible
with [p], the interpretation of p. Thus, the first-order fragment of % can be
identified as the collection of interpretations of objects in o.

Proof terms are also defined as syntactical objects in an inductive set. The
main judgement is of the form I' F d [:] ¢; it is of type *P. The structure of the
proof of T' - d [:] ¢ is similar to the structure of d, as will be pointed out in
the sequel. Furthermore, we prove that if I' - d [:] ¢, then [I'] — [¢], in other
words we construct a A-term sound of the following type.

sound : (T'Fd [:] ¢) — [T] — [¢]

One could say that an object d reflects the A-term (sound Hy Hr) : [¢], where
H;: (THd[] ¢) and Hr : [T7].

One of the design choices to be made is whether to use a deep or shallow
embedding of the objects we need. When syntax and meaning of a language are
described separately, the language is said to be deeply embedded. Sometimes
it’s more economic to use a shallow embedding, where representation and de-
notation of objects are identified (in other words: the interpretation function
is the identity function). The disadvantage of a shallow embedding is that the
syntactic structure cannot be exploited.! We choose for a deep embedding of

!In [Hen98] and[BHNOO] a shallow embedding is used for first-order terms. In combination
with the use of higher-order abstract syntax to represent quantifiers, this gave rise to several
difficulties. For example, it’s not possible to prove syntactical correctness of the described
formula transformation in a formal way.
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terms, formulas and of derivation terms, giving us full control over the defined
constructs.

Variable binding

The are several ways to represent the needed variable binding operators (quan-
tification of first-order terms, binding of assumption variables), of which we
mention: naive naming, higher-order abstract syntar and De Bruijn indezxing.
Much of the discussion on the differences between naive naming and represen-
tation via De Bruijn indices is based on [Per96].

In informal practice, the so-called wvariable convention plays a crucial role;
expressions that differ only in the names assigned to their bound variables are
to be identified; V. ¢(x) is said to be a-equivalent to Vy. ¢(y). In mathematical
contexts bound variables are chosen different from free variables. In the process
of substitution this means the (silent) renaming of bound variables.

Formalizing bindings via the naive naming approach—where, like in infor-
mal mathematics, names (e.g. natural numbers) are used to encode the link
between a binder and the bound variable—is technically hard work. On top of
the ‘natural’ definition of formulas one needs to define explicitly a-equality. As
pointed out in [Per96], the (unavoidable) use of side-conditions in the definition
of substitution is problematic when it comes to computation. As the unfolding
of definitions proceeds, the number of side-conditions increases exponentially.
Another difficulty is that there is no canonical choice of a fresh variable, neces-
sary for e.g. satisfying the eigenvariable condition in the inference rules V* and
3. Moreover, for many applications one needs a way to distinguish free and
bound variables.

As for the representation via higher-order abstract syntax, the advantage is
that several binding operators are handled by A-abstraction. Identification of
a-convertible formulas now comes for free. Substitution on the object level is
supported by [-reduction in the meta-language. One problem of this representa-
tion? is that it generates a class of terms that contains too much. We encountered
this problem in [BHNOQQ], where we had constructors 3,V mapping propositional
functions of type ¢ — o to propositions of type 0.? If o is an inductive set, it is
possible to construct anomalous objects (that no longer fit in the intendend lan-
guage) by making use of a case construct, e.g. v (Az:0.Case z of ...). Several
possibilities have been explored to overcome this problem (apart from rejecting
higher-order abstract syntax altogether), but many of them seem to harm the
‘directness’ of induction principles.

We choose the third option of representing variable bindings by the use of
De Bruijn indices. The major advantage is that inductive definitions can be used
in a direct way. The freely generated (structural) equality of inductively defined
objects is the natural equality satisfying a-convertibility. Another advantage is
the computational nature of the involved algorithms. Surely, there’s more work
for the programmer, but that’s no reason not to do it.*

2A related problem is the conflict between higher-order abstract syntax and inductive
definitions. A constructor of type (0 — 0) — o cannot be accepted in an inductive definition,
because of the negative (leftmost) occurrence of o. This problem is absent in the case of
representing a first-order language.

3There, first-order terms are shallowly embedded, the domain of discourse o, being a
parameter set.

40n the contrary, Coq is the best game in town; it’s fun!
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The idea is to get rid of names altogether and replace a variable occurrence
by a pointer to the corresponding binder. A variable is represented by a natural
number which indicates the number of binders between the variable and its
binder. For example, V3¢ (v, vg) reads as Vz. Jy. ¢(z,y).°

Analytic versus synthetic judgements

Another design choice to be made is whether to localize derivations themselves.
In the terminology of Martin-Lof, this is the distinction between analytic and
synthetic judgements. Synthetic judgements are of the form I' - ¢ as opposed
to analytic judgements I'  d : ¢, which carry their own evidence d. Objects d
can be seen as \-terms and formulas ¢ as classifying those A-terms. Given our
objective of building a ‘tool’ for manipulation of first-order proofs, the choice for
analytic judgements is obvious. The advantage of analytic judgements is that
we get more control over proofs and that such judgements are decidable, as will
be shown in the sequel. We are able to perform computational proofs of lemma’s
about judgements, because instead of induction over a logical hypothesis ' - ¢,
we can use structural recursion on a proof object. It has to be noted that, in
the case of synthetic judgements, it’s possible to view the constructors of - as
constituting a A-calculus. But those constructors have I' and ¢ as arguments,
which make them less practical to reason about or to manipulate. Throughout
the paper we are somewhat loose in our use of syntax; application is sometimes
written (f xo ... ), sometimes f(zg,...,Tn).

2 Objects

A logic is usually defined with respect to a signature determining its sorts, func-
tion symbols and predicate symbols. In our formalisation of intuitionistic predi-
cate logic, we choose to deal with one sort only. Given our objective of building
a ‘tool’ for proof manipulation, multiple sorts are not that interesting and we
therefore freed ourselves of the technical care they would demand. However, as
is well-known, sorts can be built-in artificially, by using unary predicates.

The sets 7 (terms), o (formulas) and 7 (proof terms), defined in the present
section, depend on the signature—constituted by two arbitrary but fixed lists
of natural numbers, representing function and relation arities. This dependence
remains implicit in the sequel. We start by giving some preliminary definitions.

DEFINITION 2.1 Given a set o and a list L : (list o), its index set Ir, is defined
by the equations:
=0l =1+Iv

where () is the empty set (i.e. without contructors), 1 the unit set (with one sole
inhabitant) and A + B is the disjoint sum of sets A and B. We write |L| to
denote the length of L. For the sake of readability we set Iy, ={0,...,|L| —1}.
Furthermore, we write L(i) for the element indexed by i : I,

5De Bruijn counts from 1, we start counting from 0, consistent with the definition of IN.
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Terms

Assume a list of natural numbers, representing function arities.
Lun : (list IN)

DEFINITION 2.2 The set T of syntactic objects representing first-order terms is
inductively defined by:
T 1= Up ‘ fi(tla N ,tk)

where n 2 N, i : I, k = lpun (i) and ty,...,t : 7. It is to be understood that
Ljun () computes the arity k of f; (if k =0, then f; is a constant).

Formulas

We assume a second list of natural numbers, representing relation arities.
Lrer : (list IN)

DEFINITION 2.3 The set of objects o representing predicate logical formulas, is
defined by the following abstract syntax, where i : Ij,,, k = le1(1) and ¢, : o.

o=T|L|Riti,...te) | ¢ =0 [dAv [V |Ve |3
As usual, we write ~¢ as shorthand for ¢ = L.

In the sequel, when we write f;(¢1,...,tk) or R;(t1,...,ty), we implicitly as-
sume:
7 Ilﬂm lfun(l) =k j : Ilm lml(j) =m

Derivations

We now turn to the definition of derivation terms, which can be seen as linear
notations for two-dimensional proof trees.

DEFINITION 2.4 The syntactic class m of proof terms is defined by the gram-
mar:

m o= T | L7(d¢) | =T (¢,d) | =7 (d,e)
| A(dse) | A () | AZ(d) | Vi (d) | V(e d) | VT (dse, £,9)
| VE(d) | V7 (td) | 3F(,t,d) | 37(d.e, )

wheren :IN, de, f :mw, ¢:0andt:T.
As an example, we depict the construction V™ (d,e, f,¢) in traditional ND-

format:
_ (1] [
t(d) () i (f)
Y1V 9 ¢
¢

Note that some constructors carry an argument of type o. Some constructors
(L=, =%, v, v;t, 3% and 37) carry such an argument in order to have proof
terms uniquely determine natural deductions, as will be shown in the sequel

V-elim
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(see Section 9). Would we have omitted the formula argument in e.g. =71, a
term —7(ho) would be ambiguous in the sense that it serves as a proof term
for ¢ = ¢ for any ¢ : 0. Thus, we use explicit Church style typing. Note that
V™ carries the formula it proves, although it can be inferred from its subproofs;
this was done in order make the definition of one of the permutative conversions
(rule PC3V in Definition 13.1) easier; see Section 13.

In Section 5 we give an example of a proof term, and demonstrate that
it ‘inhabits’ a certain tautology according to the deduction system defined in
Section 4. First, we have to define substitution and some related operations.

3 Lifting and substitution

The representation of variables by De Bruijn indices requires an extra operation
called lifting.% Lifting increments the free variables in a formula. Variables can
only be ‘grasped’ if we know at what binding depth they reside. Therefore,
functions dealing with terms (and formulas and proof terms) need an additional
argument to store the binding depth.

We start with defining the operations of lifting and substitution, using side
conditions. The implementation uses computationally more efficient definitions,
as listed thereafter.

DEFINITION 3.1 We define term lifting T,t by structural recursion on t : T,
where n : IN is the so-called binding depth. The first n variables, vg, ..., Vn_1,
are assumed to be bound (this information being imported from functions calling
1,t) and remain unchanged.

fou = V; ifi<n

nVi = Vit+1 if 4 2 n
Tofilty,ote) = filTpte, o Tote)

We write 1t to denote the lifting of all variables in t, shorthand for T,t.

We need iterated lifting for the definition of substitution.”

DEFINITION 3.2 Iterated term lifting.

Tnt =t
e = (1,

DEFINITION 3.3 Substitution of ¢ for v, in ¢, notation t[t']", is defined by re-
cursion on the structure of t. Again, n is the depth count, present in order to
deal with substitution under binders. Thus, the first n variables should remain
untouched. The term t' is lifted such that capture by binders is avoided. In-
dices greater than n are decremented, because substitution removes the original

61n the literature on explicit substitutions (e.g. [BB+96]) the operation we call lifting here
consists of two more primitive operations: lifting {} of substitutions and the shift substitution
7, which increments the indices in a term. Our 1,, actually corresponds to 1" (7).

7This is only needed for Definition 3.3, not for the actual implementation.
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variable v, .
V; ifi<n
vift]" = 0t ifi=n
Vi—1 if 4 >n

fi(talt]™s .o teft]™)

filte, .. te)[t]™
We set t[t'] = t[t']°.

As aforementioned, the side-conditions (if ¢ < n etc.) in the above defini-
tions are inefficient. As the unfolding of definitions proceeds, the side-conditions
are left as proof obligations and their number increases exponentially. The im-
plemented lifting and substitution functions are defined recursively and have no
side-conditions (so that 3di-reduction does the job); 1, ¢ is encoded as lift_trm(n,t)
and t[t']" is encoded as subst_trm(n,t,t').’

Lift(0,3) = i+1
lift(n +1,0) = 0
liftn + 1,0 +1) = lift(n,i) + 1
lift_trm(n,vi) = Vup(n,)
lift_trm(n, fj(t1,...,tx)) = fi(liftitrm(n, t1), ..., lift_trm(n, tx))

subst(0,0,t) = t

subst(0,i+1,t) = w;

subst(n +1,0,t) = wo

subst(n +1,i 4+ 1,t) = lift_trm(0, subst(n,i,t))
subst_trm(n,v;, t) = subst(n,i,t)
subst_trm(n, f;(t1,...,te),t) = fj(subst_trm(n,t1,t),..., subst_trm(n,ty,t))

Next we define the lifting and substitution operations on formulas.

DEFINITION 3.4 The lifting of ¢ : o for binding depth n, notation 1, ¢, is re-
cursively defined as follows. Note the increment of the depth counter when a
quantifier is passed.

W7 = T
.1 = 1
TRt te) = Ri(T,ti,..-, Tate)
TW(AAB) = 1,AA1,B
T.(AVB) = 1,AV1,B
WA=-B) = 1,A>1,B
Tn(VA) = V.Tn-‘rlA
Tn(zl A) = 3 Th14

Let T¢ abbreviate Ty¢, the increment of all free variables in ¢.

8We found these definitions in [Per96], where they are attributed to Altenkirch [A1t94].
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DEFINITION 3.5 Substitution of ¢ : 7 for v,,” in ¢ : o, notation @[t]", is defined
by recursion on the structure of ¢. Again, as in Definition 3.4, n is the depth
counter which increments when a quantifier is encountered during the recursive
descending of the formula.

Ti™ T
i = L
Ri(ty, ..., t)[t]" = Ri(ti[t]",... te[t]")
(e =>v[" = olt]" = oft]"
(@AD" = ot Av[t]"
eV Y™ = ot volt]"
Vol = Vel
o)l Fo[t]" !

We define ¢[t] = ¢[t]°.

Note that, for the lifting and substitution operations, the same pattern re-
peats in similar cases: e.g. T,(AoB) =1,A01, B for o one of A,V,; or, even
more general (binary connectives in prefix notation):

1.(@M) = QT M for Q=V,3
TW(MN) = 1,M1,N for M not a binder
1,0 = oforo=T,1 R,AV,>

In the sequel (Section 12), we will encounter even more repetitions of the same
pattern. The question of the implementational possibility of such a uniform
and polymorphic (as there are three levels: 7,0 and 7) definition remains unan-
swered.

For the inference system introduced in the next section, we also need the
lifting and substitution operation on contexts. Contexts are formalized as lists
of formulas, written in reversed order.

DEFINITION 3.6 Lifting of all free variables in context I', given that the first n
variables are bound, notation 1,1, is defined by:

Tl =[]

Again, we write 1T for T, and T[t] for T[t]°.

9The n + 1-th free variable ‘as seen from the outside’.
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3.1 Free variables, finitely versus infinitely many

Note that, different from type theory where variables have to be declared in
the environment, in our representation we have infinitely many variables (IN is
the index set of variables). Therefore, we shall need a default value in order
to have a total evaluation function (see Definition 6.2). Alternatively, we could
have chosen to parameterize the sets of terms, formulas and proof terms over a
natural number n indicating the number of free variables an object is allowed
to contain (enforced by definition via dependent types). Variables would then
be indexed over IN,,, defined as follows (think of IN,, as {0,...,n}).

]NO:Q] ]Nn+1:]l+]Nn

The set 7, of first-order terms containing n free variables would then be defined
as follows; let m : IN,, and t1,...,t : Tn.

Tn = Um | fi(t1, ..., tk)

The constructors ¥V and 3 of on then should be typed 0,41 — o0,, as they
bind the first free variable of their argument. The definition of lifting should
be such that, given ¢ : 7, the application T,,t is typed 7,41 (a fresh variable
U, is introduced) and that m < n is enforced. Given k,m : N, ¢ : Teqrmi1
and t' : 75, t[t']™ should be typed Ti4m. Apparently, such an extra parameter
means a considerable complication of matters and we chose to do without it.
As a consequence, in order to be able to define a V : IN — A for the evaluation
of objects, one needs a default value in A.

3.2 Free variables and substitution

The De Bruijn representation works elegantly for bound variables, there is no
renaming and the structural equality on De Bruijn terms corresponds to the
intented identity of terms. However, as pointed out in [MP93], there is a slight
inconvenience in the way free variables are treated. The point is that the order
of free variables matters, not their names.

A function V : IN — A (see the interpretation functions defined in Section 6)
has to be taken into account. The subtle point about an expression ¢[t']" is
that the first n variables are assumed to be bound. Let V : IN — A be such
that V(0) = y and V(1) = z (i.e. y is introduced later than x), then we can
make a substitution that transforms e.g. R;(z,y) into R;(z,z), as illustrated
below. Note that, for any V', if ¢ is interpreted under V', then ¢[t'] has to be
interpreted under 77)’, because the original occurrences of vy in ¢ that pointed
to V'(0) have been removed, and the other variables have been decremented.
We have 17V(0) = V(1) = = We have:

[[Ri('UhUO)HV =Ri(z,y)

and . .
[Ri(v1,v0)[vo]]"” = [Ri(vo,v0)]""” = Ri(z, )

However, we cannot make a substitution that transforms R;(z,y) into R;(y, y).
The reason for this is that z corresponds to v; and if you want to replace
this, it is assumed that vy (pointing to y) is bound so that the variables in the
substituent are lifted.
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The substitution functions are meant for use only in combination with the
removal of a binder; ¢[t] is called to instantiate Vq’) with ¢ or to give t as a witness
for 3 ¢. A third possible binder is the variable mapping V as exemplified above.
We maintain the term “substitution” par abus de langage.

4 Judgements

In this section we introduce judgements of the form ' I d [:] ¢!V, stating that
d is a proof term of formula ¢ under hypotheses I'. Alternatively, the object d
can be seen as a A-term of type ¢ given variables h; of type I'(¢) for 0 < ¢ < |T|.

DEFINITION 4.1 The relation (I' & d [] ¢) : *P is inductively defined by the
following clauses. A context T : (list 0) is a list of formulas, as usual written
in reversed order (i.e. the rightmost element has rank 0), d,dy,ds, e1,es : w are
proof terms, t : 7 is a first-order term, and ¢, ¢1, P2, : 0 are formulas.

Tk h; [
Tiobho 1] ¢ Tiob hipr [0
FFd[] L
CETH[]T 'EL17(d,o)[] ¢
Tiobd[:] o F'Ed[]¢ =% Trel]o
I'E—=%(¢,d) []¢ = I't—"(de)[]¥
TEdi[[]¢1 ThHds[] @2 THd[] g1 A ¢ THAd[] ¢1 A po
T+ AT (di,d2) [] g1 A ¢2 LA (d) [ ¢ L= AZ(d) [:] ¢2
THdl[] ¢ T'Hd[:] ¢o

DV (¢2,d) [:] ¢1 V ¢ L'E Vi (o1,d) [] 1V o2

TEAY1 Ve Tipiber[[]¢ Tiabes[]o
'k V_(d,€1,€2,¢) [] ¢

_Crdile PEd[]ve
T+-vYr(d)[:] Ve I'v=(t,d) [] ¢[]
T+ d[] o[t] THd[]3y Tiykel] 16
I'H3t(s,t,d) [] 3¢ IE37(de o) [] ¢

In contrast to a formalisation with named variables (see [Per96]), there is a
canonical choice of a fresh variable in the setting with De Bruijn indices, as e.g.
needed in the rules V™ and 3=. We simply lift all free variables (of T in the case
of V¥, and of T and ¢ in the case of 37), so that vy becomes fresh.

Note that, because intuitionistic predicate logic has the structural rules
of weakening, exchange and contraction, the formulation of natural deduction
above is logically equivalent to one which mentions (possibly) different contexts
in rules with more than one premiss. Given the structural rules (shown to be
derivable in the meta-theory in Section 16), e.g. the following formulation of

10We use this notation in order to distinguish ‘[:]’ from :’, which is reserved for the typing
relation of Coq.
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the rule for —~ is acceptable. Here proof terms d’, e’ are obtained from d, e
respectively, by swapping and lifting of assumption variables so that they still
refer to the same assumptions as they originally did. See sections 12 and 16 for
these operations.
F'Fd[]og>v Arel]o
TAER == (d,€e) [[] ¢

In Section 8 we show soundness of the deduction relation defined in 4.1,
with respect to Coq’s native logic. The next section illustrates the outlined
constructions so far.

5 Example

Let le; = [1,1]. This means that we have two unary predicates available, Ry
and R; both typed 7 — o. Consider the following object 6 : 0.1t
0= (3Ro(v0)) V (3R1(v0)) = IRy (vo) V Rolvo)
With named variables this reads as follows.
(Fz. Ro(z)) V (Fy. R1(y)) — Fz. R1(2) V Ry(2)

We demonstrate how to construct an object d : 7 such that - d [:]  holds.!?
We use the following abbreviations.

Y (3Ro(v0)) V 3 Ri(wy))  Tu
P Rl (7)0) \/ Ro(vo) FQ

7#;5:'30(110)
;3 Ry (vo)

I'1; Ro(vo) = ho [:] Ro(vo)
I'1; Ro(vo) - Vi (R1(vo), ho) [] p
Ty +ho [} 3Ro(vo) T; Ro(vo) F 3 (p,v0, Vi (R (v0), ho)) [:] 3 p
Iy k37 (ho, 3" (p,v0, ViF (R (v0), ho)), 3p) [] 3 p
d
T'y; Ry1(vo) F ho [}] R1(vo)
Ta; Ri(vo) F Vi (Ro(vo), ho) [:] p
Ty ho [:] IR1(vo) Ta; Ri(vo) F 3T (p,v0, Vi (Ro(vo), ko)) [[] 3p
Ty 37 (ho, 3% (p, vo, Vi (Ro(vo), ho))3 p) [] 3p

da

Note that, as there are no free variables in I'y, ', 3 p, we have that:
Ti=T1 Te=Ty 1(3p)=3p
and so both 37 inferences are valid.
YEho ]y Tibkdi[]3p Tokdy[]3p
YV~ (ho,d1,dy,3p) [:] Tp
F =T, v (hoodi,d2, 3 p) [ & = Fp

11 As usual, we let V bind stronger than —+. The scope of quantifiers extends to the right as
far as brackets allow.
12Empty contexts are omitted.
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6 Translation to Coq’s native logic

In this section we define the translation of object level statements (i.e. the

objects defined in Definition 2.3) to meta-level statements (i.e. in the language

of the framework itself). This translation will be referred to as interpretation.
First we introduce some operations on mappings V : IN — A for some set A.

DEFINITION 6.1 Given n : IN, we define 1))V as follows.
WY =V V=T Vp+1)
Forn:N and a: A, V[n :=a] is defined as follows.
V[0:=a](0)=a V[0:=al(m+1)=V(m)
Vln+1:=a](0)=V(0)  V[n+1:=al(m+1)=(11V)[n:=al(m)

DEFINITION 6.2 Assume an arbitrary domain of discourse A : x° and a function
V : N — A to interpret (free) variables. Next we declare a parameter F, a family
of functions indexed over I, , used to interpret function symbols, where AF s
the cartesian product of k copies of A.

F: Hi:]lfm.Alf“"(i) — A

We write F; for (F i). Given such a family, we define the evaluation function
for terms of type 7.

[[”n]]v = V(n)
[filts, .. t0)]Y = F(t], ..., [t]Y)

Next, we define the canonical interpretation of objects of type o.

DEFINITION 6.3 Again, let A: %* andV : IN — A. Assume a family of relations
indexed over I ,.

R M-I, Al — P
We write R; for (R ).

[ A¢]” = [4]

[o vyl = 61"V Iwl”

o =91Y = [4)” — [¥]”
NVel© = Ta:A[¢]V""
Bel” = 3u:A[g]"

Weuse T, L, A,V, 3 for Cog’s predefined logical connectives. Note that ‘—’ (and
‘II’) is used for both (dependent) function space as well as for logical implication
(quantification); this overloading witnesses the Curry-Howard isomorphism. We
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don’t have to worry about name conflicts when adding a new z : A to the
variable interpretation function V (quantifier cases). Coq’s binding mechanisms
are internally based on De Bruijn indices (with a user-friendly tool showing
named variables on top of it).

DEFINITION 6.4 The interpretation of a context is the conjunction of its inter-

preted elements.
Y =T 6" =1 A 91"

7 Thinning and substitution lemma’s

It is possible to insert free variables to the mapping V of the interpretation
function given in definitions 6.2, 6.3 and, if the argument is appropriately lifted,
keep the same interpretations. This is called thinning and can be compared
to weakening (see Lemma 16.2); the latter is about assumption variables, the
former about term variables. First we define some auxiliary lemmas.

LEMMA 7.1
(VIn == 2])[0 := y](m) = (V[0 :=y])[n + 1 := z](m)
T\\/)[O::z]n + 1(m) = Tvn(m)
[t = "
ForallV,V:IN— Aandt:t

(In. V(n) = V'(n)) — []" = []"

(M. V(n) = V'(n)) — [p]” < [p]”
LEMMA 7.2 Thinning lemma. Let V :IN — A, a: A and n : IN.
[1” = [0
R I

The proof of the thinning lemma makes use of the following lemma’s.
T/ TV
Similarly we need [t[t']]Y = [[t]]v[o'f[[t]] ], We need induction loading, no

longer assuming that [t']" is the last added element.

LEMMA 7.3 Substitution lemma.

Ht[t/]n]]v _ ﬂt]]v[n::[[t,]]Tvn]

i) - [
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8 Soundness with respect to Coq’s native logic

THEOREM 8.1 For each ' : (list 0), d: 7, ¢ : 0 we have that:
THd[]¢—TV:N— AT — [¢]”

PROOF. By induction on the proposition T' F d [:] ¢. Quantification over
Y : IN — A is necessary to get the appropriate induction hypotheses for cases
v+ and 3~. We sketch the proof for some representative cases.

Case I'F —T(¢1,d) [:] ¢1 = ¢o. Assume Hp : [I']Y. We have the following
induction hypothesis.

IH : [[;61]" — [$2]”
Note that [[;¢1]Y = [T] A [¢1]". It suffices to prove:

[61]" — [¢2]”

Assume Hy, : [[¢1]]V, then IH applied to the pair'® (Hr, Hy, ), is a proof
of [¢a]”.

Case I'F Vv~ (d,e1,e2,0) [}] ¢. Assume Hr : [[F]]V. The proof obligation is [[gi)]]v.
We have three induction hypotheses, originating from the three premisses
of the V™ -rule.

IHd . [[F]]V — |I1/)1 \/ 1/)2]]V
IHel : IIFa wl]]v - [[¢]]V
IHez : [[Fa 1/)2]]V - [[¢]]V
We get [1h1]Y V [¢p2]" from IH, and Hr.
e Suppose Hy, : [[@bl]]v7 then (IH., (Hr,Hy,)) : [[(;5]]V.
e Suppose Hy, : [1h2]Y, then (IH., (Hr, Hy,)) : [¢]".
Case I'FV*(d) [] V¢. Let V:IN — A and Hr : [I]V. We have:
IHq: 1] = []”

We have to prove:
Iz: A. [[QS}]V[O:ZI]

Assume an arbitrary x : A. From Lemma 7.2 and Hr, it follows that
[TV =) Then, IH, for V[0 := 2] and the proof of [TTT"*=", proves
H(bHV[O::x] .

Case I' - 31 (¢, t,d) [] J¢. Let Hr : [[l_‘]]v. We have:

IHy: [TT" = [ol]
BIfa: Aand b: B, then (a,b) : AN\ B.
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We have the following proof obligation.
Jx: A. [[qﬂ]v[o::x]

Give [[t]]v as witness for this existential statement, so that our goal becomes
R v
[[QS]]V[O'_[[t]] ], which—by Lemma 7.3—is implied by:

%
[6[¢]
which in turn follows directly from IH 4 and Hr.

Until now, proof terms played no particular role. An analogous soundness
result could have been obtained for judgements of the form I' - ¢. See the
discussion on analytic versus synthetic judgements in the introduction. In the
sequel it becomes clear how proof terms can be subject to manipulation.

9 Type checking function

Given a context I' and a proof term d, it is possible to determine whether d
reflects a correct proof and, if it does, to synthesize the type of d.
First we define the set opt of so-called options; let p : o.

opt := value(p) | error

We define check(I',d) : opt by recursion on d. For any recursive call on a
subterm, it is checked whether it gives a value or an error. Thus, unlike other
programming languages, errors have to be propagated recursively. The proviso’s
are defined by case analysis on the recursive calls on substructures and by using
a (decidable) boolean equality relation on formulas. If these conditions are not
satisfied, error is returned. The canonical cases for the constructors A*, A,
Ay, VL Vv are left out.

Let us explain why the 3~ -constructor expects an argument of type 0.'* In
order to infer the type (an o-object) of a term 37 (d, e), say ¢, we need the type
of the subterm e, say ¢. We know that ¢’ must be the lifted version of the
formula we’re looking for (if not, we are dealing with a term not corresponding
to a correct deduction). So, we have to check that ¢’ = ¢ and that is why the
J7-constructor carries the extra argument ¢. Consequently, the V™ -constructor

4 There is an analogous explanation for the constructor 3.
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carries an o-argument too; otherwise we cannot define — (see Section 13).

check(T, Tt) = walue(T)
check(T,h;) = walue(T(7)) if i < ||
check(T, L=(d,¢)) = wvalue(o) if check(T',d) = value(L)
check(T,—%(¢,d)) = walue(p = ) if check([T; @], d) = value(t))
check (T, d) = value(¢p = 1)
check(T',—~(d,e)) = wvalue(v)) if < check(T,e) = value(¢)
b=o
check(T', d) = value(py V p2)
check([T'; p1], e1) = value(p1)
check(T,V~(d,e1,e2,0)) = value(¢p) if < check([T; pa], e2) = value(ps)
o1 =10
_ P2 =10
check(T,Vt(d)) = wvalue(V ) if check(1T, d) = value(¢)
check(D,V~(t,d)) = walue(d[t]) if check(T,d) = value(V $)
check(T, 3t (¢, t,d)) = wvalue(3 ) if { Z/le:CngE]’ d) = value(¢)

check(T, d) = value(31))
check(T,37(d,e,d)) = wvalue(p) if ¢ check([1T;4],e) = value(d’)
¢ =10

10 Correctness of check
THEOREM 10.1 For alld: «w, T : (list 0) and ¢ : o, we have that:
check(T,d) = value(¢) < T Hd[] ¢

PROOF. (—) By induction on d. («) By induction on I' - d [] ¢.

11 Unique types

Proof terms have unique types.

LEMMA 11.1 For all contexts T, proof terms d and formulas ¢, , we have that:
CHd[]¢) =T Hd[ ) —o=1

PRrROOF. Direct from double application of Theorem 10.1.

12 Lifting and substitution in proof terms

In this section we define the lifting and substitution operations in proof terms,
both for term variables (of type 7), notations 17d and d[t]?, as well as for
assumption variables (of type 7) , notations 12d and d[d']}.
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Lifting and substitution of term variables

Lifting and substitution in proof terms of term variables share the same recursive
structure; the depth counter they carry increments in the cases of ¥V, 3% and
3~ (second argument). Instead of duplicating this structure, we abstract from
what should happen to terms (g1) and formulas (g2) and define the function

Tecv(ghg?» n, d)

DEFINITION 12.1 Given g1 : N — 7 — 7 and g : N — 0 — o, the function
recy (g1, g2, n, d) is defined by the following recursive equations, where n,i : IN,
d,e1,ea:m, t:7 and ¢ : o.

recy(91,92,m, T7) = TF
Ter(ghg%”aJ— ( ) = J—i(”’ecv(glag%nad)vg2(na ¢))
recy (91,92, hi) = hy

I
l

recv(glyg%n - (¢7 )

*(g2(n, @), recy (g1, g2, n, d))
recy(g1, 92,m, —~ (d, e) ~(
)

T€Cy (glngan d) Tecv(91,92»n 6))

—

)
)
hi)
)
)
recy (g1, g2,n, AT (d,e)) = At(recy(g1,92,1n,d), recy(g1,g2,m,€))
recy(g1, 92,1, A (d)) = A (recy(91, 92,1, d))
recy(g1, 92,1, A (d)) = A (recy(g1,92,m,d))
recy (g1, 92,1,V (6,d)) = Vi (g2(n, ¢), rec (g1, g2, 1, d))
recy (g1, 92,n, Vi (0,d)) = VI(ga(n, ), recy(g1, g2, n, d))
recy(g1,92,n, V7~ (d,e1,e2,0)) = V7 (recy(g1,92,n,d), recy(g1, g2, m, €1), recy (g1, g2, n, €2), g2(n, ¢))
recy(g1,92,n, V1 (d)) = VYT(recy(g1,g2,n+1,d))
recy(g1,92,m,V" (t,d)) =V~ (g1(n,t), recy(g1, 92,1, d))
recy(g1,92,m,37(0,t,d)) = T (g2(n+1,0),91(n,t), recy (g1, 92,1, d))

T@CV(gl,QQ,n,E (d € ¢)) = J° (Tecv(gla927n7 d))recv(gthan_'_ 176)792(n7¢))

The case of 37 in Definition 12.1 may come as a surprise. Recall the cor-
responding inference rule given in Definition 4.1. The argument ¢ in term
It (p,t,d) has free variable vy (‘from the outside’), so that it can be checked
that subterm d is of type ¢[t], i.e. the first free variable replaced by the wit-
nessing t. This free variable should remain free. Therefore the depth counter is
incremented, just like the cases of ¥V and 3~ (second argument).

DEFINITION 12.2 Forn : IN and d : «, lifting of term variables in proof terms
1vd is defined as follows.

1Vd = recy(Au. Am. T, u, A\é. Am. 1., 6, n, d)

DEFINITION 12.3 Forn : IN, t : 7 and d : 7, substitution of term variables in
proof terms d[t]? is defined by:

v

d[t]y = recy(Au. Am. u[t]™, Ap. Am. $[t]™, n, d)

Lifting and substitution of assumption variables

Several proof term transformations concerning assumption variables recursively
descend in the same way. The reference depth of assumption variables is incre-
mented in the cases of —7 (second argument), V™ (second and third argument)
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and 3~ (second argument); i.e. any time an extra hypothesis is added to the
context (the inference rules of F viewed bottom up). Instead of repeating the
structure of these definitions, we abstract from the function which is applied in
the case of h;. The function recy, defined below, will be reused four times: for
lifting and substitution of assumption variables, as well as for the proof term
transformations necessary for the admissable structural rules exchange and con-
traction (see Section 16).

DEFINITION 12.4 Let g : N — IN — «, a function which returns a proof term
given two natural numbers (depth counter, resp. index of assumption variable),
n:IN, and d : 7, then recy,(g,n, d) is defined by the following recursive equations,
where i : N, d,ej,es i, t: 7 and ¢ : o.

recy(g,n, TT) = T+
Tech(gaan— ( ¢) = J-i(rech(ganad)ﬂb)
rech(g,n,hi) = g(n,i)

rech(g,n - (¢7 ) + ¢,rech(g,n+1,d))

)

9y

(
rech(g,n - ( y = —>_(7"ech(g,n,d)7rech(g,n,e))

)
)
hi)
)
)
recy(g,n, AT(d,e)) = AT (recy(g,n,d), recy(g,n,e))
rech(g,n, A (d)) = A (recu(g,n, d))
recp(g,m, A (d)) = A-(reen(g,n,d))
recy (g, n, \/l (,d)) = \/l+(¢> recy(g,n,d))
rech(g,m, V) (6,d)) = V(¢ recn(g,n,d))
rech(g,m, V™ (d,e1,e2,9)) = V (recn(g,n,d), rech(g,n+ 1,e1), rech(g,n + 1,e2), )
rech(9,m,Y"(d)) = V' (recn(g,n,d))
recy(g,n, V™ (t,d)) = V7 (¢t recy(g,n,d))
recy(g,n, 3T (¢, t,d)) = IT(o,t, recn(g,n,d))

rech(g,n, 37 (d,e,¢)) = 37 (recn(g,n,d), recn(g,n+1,¢),¢)
DEFINITION 12.5 Lifting of assumption variables in proof terms is defined by
Thd = rech(Am. Xi. higgy(m iy, 1, d)

The function lift is defined in Section 3. Define Thd = ng. The definition of
substitution below requires the definition of iterated lifting.
Tnd = d
Ittd = 17(Thd)
DEFINITION 12.6 Substitution of proof terms for assumption variables in proof
terms is defined by
d[d']} = recy(Am. Xi. h;[d'], n, d)

where

h; ifi<n

hildp =< 15d ifi=n

hi_1 ifi>n

It should be noted that h;[d']]l is encoded without side-conditions, in a similar

way as vi[t]" (see Definition 3.3). Define d[d'], = d[d']).
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13 Proof reduction

To illustrate how the defined machinery can be used to manipulate proof ob-
jects, we define Prawitz’ proof reduction rules [Pra71].!® The goal is to remove
detours, as in the following tree.

LigpFd[]y
IF—%(gd)[]¢ =9 Trkel]o
I'F—(=T(¢,d),e) [] ¥

Instead of first assuming ¢ to build a proof d of v, introduce the implication ¢ —
1 and then eliminate it immediately by plugging in derivation e, we can more
directly replace the assumption ¢ in d (represented by the first free assumption
variable) by e.

'k d[e]h [] w

The removal of such a direct detour is called a proper reduction. There are
seven such rewrite rules, where on the left hand side an introduction of a cer-
tain connective is immediately followed by an elimination of that connective.
Sometimes, proper redexes are hidden by intermediate V~ and/or 3~ rules.
Such hidden detours are made direct by a sequence of so-called permutative
conversions. These conversions pull out the V~ and 3~ rules. After the follow-
ing definition, we give an example of such a permutative conversion. The proof
of Theorem 17.1 demonstrates why the various lifting operations are necessary
to keep correct proofs.

DEFINITION 13.1 Immediate proof reduction is defined by the following rewrite
rules. The left hand sides are called (proper, permutative) redexes and the right
hand sides immediate (proper, permutative) reducts.

Proper reductions.

-7 (=T (¢,d),e) + dle]n (PR-)
/\l_(/\+ (dl, dg)) = d1 (PR/\1)

Ay (AT (dy,da)) —  do (PRA2)
vi(v;r(d)a d),€1,€2,1/1) = el[d}h (PR\/l)
\/_(\/;j_((b, d)7€1362;7~/}) = 62[d h (PR\/Q)
Vo (,VT(d) —  d[t]y (PRV)

3 (3 (o, t,d)e) — (elth)ldn  (PRI)

15We actually follow [Pol96], pages 85-88.
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Permutative conversions.

L= (v (d,er,ea,1),¢) = V7(d, L7 (e1,0), L™ (e2,0), 9) (PCVL)
- ( (d 617627¢ w)vg) = \/_(d7_> (el?Thg)vﬁ_(e%Thg)vw) (PC\/—))
/\l ( (d 615627¢A ¢)) = VT (d7 /\l ( ) (62)a¢) (PC\//\l)
A (VT(dser,ea, 0 A)) = V(A AL (en), A (e2),9) (PCVA2)
VT(VT(d er,e2,01 V ¢2), 9, h,) = VT(d, V(e 17T197 Wh,), V= (e2, 119, 110, 0),0)  (PCVV)
v~ (t, vV~ (d, e1, ez, gb)) — VT (d,V(t,e ) “(t,e2), o[t]) (PCVV)
Eli(\/i(d 61762a3¢) ﬂ/’) = Vo (d’a (elaTlga )33 (627T}119,¢)7¢) (PC\/H)
L= (de, 1),0) — 3F7(d, L (e, 10 ) ?) (PC3L)
( “(doe, 6> 0), f) = 3(d, = (e, 11V ), ¥) (PC3—)
N 37 (die,d AY)) = 37(d, A (€), ) (PC3IAL)
A3 (de,d AY)) = 37(d, A7 (e),9) (PCIN2)
V=@ (dye,61 V o), frg:¥) = 37(d, V(e 17V ), 1 (1Y 9), 19), ) (PC3V)
V’(t,EI*(_d,e,Vqﬁ)) — 37 (d,V~(Tt,e), p[t]) (PC3aV)
3737 (d,e,39), f,4) = 37(d,37 (e, 17(11/), 19).¢) (PC33)

As an example, consider the following reduction sequence, consisting of rules

PCv3 and PRA.

- (\/_(da 3+<¢7ta 61), 6273.

' (d7 37(3+(¢7 t, 61)7 T11197 TP),
EI7(623 T}llga ’l/}))

 (T29)[1) lean,

— VvV (d

0),9,%)
37(627 T}Ilg7 ¢)7 ¢)

Let’s depict the corresponding proof trees, starting with the permutative redex.

L;p1 ey [2] o[t]

F"d[:]pl\./pg

Tipi b 37(p,ter) (]3¢ Tipatex[] 39

TV (d, 3T (¢, t,e1),e2,30) [] T

Tiobgl] 19

3= (v(d, 3"

(¢7ta 61)7627 E|¢)’ng) [] ¢

The previously hidden detour is made direct, as shown in the following tree,
corresponding to the permutative reduct.

THd[:]p1Vpa

T T

T'F V= (d, 3~ (3" (¢, t,e1), 109, 0),

Where 7; denotes
Lipi b 3F(o,t,e1) [] 3¢

37 (e2,119,%), %) [] ¥

T(Tsp);o b 159 [ 19

F7 f1 = 3_(E|+(¢at7

and 75 denotes

61), T?g,lﬁ) H (0

Tipobea ]3¢ T(Tip2);o b 11g [] 19
T;po b 37 (e2, Mg, 00) [] 0

Now 77 contains a direct detour, which reduces to:

o1 (1)t ealn [ &

DEFINITION 13.2 We define t> as the closure of — under the construction rules

of m. In other words, d 1> d' holds if d’

can be obtained from d by replacing a

subterm of d by an immediate reduct of it.
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14 Properties of De Bruijn operations

We present some basic algebraic properties of the operations introduced in Sec-
tion 3. Similar properties can be found in [BW97].16 All five lemma’s are proved
for both ¢ : 7 as well as ¢ : 0. Furthermore t',t1,t5 : 7 and n,m : IN.

LEMMA 14.1 Permutation of lifting.

LEMMA 14.2 Simplification of substitution.
(T =t
LEMMA 14.3 Commutation of lifting and substitution. Proof uses Lemma 14.1.
T (") = (1T if m<n
LEMMA 14.4 Distribution of lifting over substitution. Proof uses Lemma 14.1.

Tm+k(t[tl]m) = (Tm+k+1t)”kt/]m
LeEMMA 14.5 Distribution of substitution. Proof uses Lemma 14.3.

(tfta]™) 2] ™ = (tlt2] ™) [t [t2] )™

15 Inversion lemma’s

Derivation trees (Def. 4.1) and derivation terms (Def. 2.4) have the same shape.
Given a judgement I' - d [:] ¢, the structure of the proof term d tells us how
the judgement must have been derived. The inversion lemma’s state that the
inference rules of F can be inverted. Consequently, a subterm of a well-typed
term is well-typed.

Coq provides a tactic Inversion for such situations. This tactic applied
to a term of type (P f), where P is an inductive predicate, derives for each
possible constructor ¢; of (P t) the necessary conditions that should hold for
the instance (P f) to be proved by ¢;. Although this tactic is very useful,
the proof terms it builds are relatively large, which is the reason to use the
following lemma’s (proved by using the Inversion tactic) instead, and use them
as opaque constants in other proofs (e.g. in the proof of Subject Reduction, see
Section 17).17

16Where they are attributed to [Hue93].

17We experimented with both options; one proof of SR using the Inversion tactic, and
another using the inversion lemma’s listed here. Once compiled, the latter proof is a factor 7
smaller than the former one.
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LEMMA 15.1

hil]o — L
F¢"h0[]¢ - 9=1
Dipbhiga [ — TEh[]o
T-T+[]é¢ — ¢=T
¢ =1
reenie - {P0L
TE—=(de) ]y — 3¢ o{iiin_’qﬁ
=1 A ¢
F l_ /\+(d1,d2) H d) — 3@1,@1)210. F l_ d1 H ¢1
I'Fdy [:] ¢2
TEA(d)[]¢ — F:oTHd[] oAy
TEAZ(d) ]y — Fp:0.THd[] oA 1/)
THvHGnd) []6 — 3ér:o. ?fjh@?

: o=V
TEVi(¢1d) []¢ — 3o del[:] ¢22

PEd[]yr Vs
' V_(d,€1,€2,¢) [] (b - 3¢1,¢230- F;wl F €1 [] ¢

Titba ez [] 6
TRV []6 — 300, { fr—jf[’:] y
LY (td) []¢ — a¢uo.{ 0" j’ﬁlw
L L 0w
T3 (ded)[1¢ — o { p yeﬂ'ﬁw

16 Admissable rules

The following rules are admissable, i.e. derivable in the meta-theory. They
are used in the proof of Theorem 17.2. In order to prove by induction, the
statements are loaded appropriately, i.e. quantify over I', A, etc.

LEMMA 16.1 Lifting of judgement.
+d[]é
TLE1Rd [ 1,0

PROOF. Induction on the proposition ' I d [:] ¢. The proofs of cases V™ and
3~ require Lemma 14.1; cases V~ and 3T require Lemma 14.4.

LEMMA 16.2 Weakening. Analogous to Lemma 7.2.
D;ARd[] ¢
Ty AF ad [] ¢
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Proor. By induction on d and inversion lemma’s.

LEMMA 16.3 Substitution of variables v; in derivation terms.

TLiARd[] ¢
LA™ F dfe]y [] olt]"

PRrROOF. By induction on d and inversion lemma’s. Case h; is proved by induc-
tion over 7 and Lemma 14.2. Cases V™ and 3 require lemma’s 14.3 and 14.1.
Cases V~ and 3~ require Lemma 14.5.

LEMMA 16.4 Substitution of variables h; in derivation terms. Analogous to

Lemma 7.5.
FTHd[[]¢ Ti;AFel]y

;A b e[d [ v

PROOF. By induction on e and inversion lemma’s. Case h; is proved by induc-
tion over ¢ and Lemma 16.2.

Exchange, contraction

The structural rules ezchange and contraction are admissable t0o.'® First we

need the functions exch and contr. The former swaps the indices n and n + 1,
while the latter decrements all indices greater than n, where n intends to be the
reference depth of assumption variables (n = |A| in lemma’s 16.5 and 16.6).

hn_;,_] ifi=n
exch(n,i) =< hy ifi=n+1 contr(n,i) = {
h; otherwise

hi—1 ifi>n
h; otherwise

Again, the side conditions in the definitions above are avoided in the formalisa-
tion.
LEMMA 16.5 Ezchange.

Digs s AEd[]p
T; ¢;9; A F recy (exch, |Al,d) [:] p

LEMMA 16.6 Contraction.

Digis A d[]
T; ¢; A F recy (contr, |Al,d) [:] ¢

17 Subject reduction
THEOREM 17.1
d—e—THFd[]¢—>TFe[]¢

ProoOF. By induction on the proposition d +— e. The so obtained instances of
'k d [:] ¢ are inverted twice, using the inversion lemma’s given in 15.1. We
show some representative cases.

18 These lemma’s are not needed in the proof of Subject Reduction (Thm. 17.2).
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PR— The following tree is built bottom-up with the use of inversion, starting
at the given judgement I' F —~(—%(¢,d),e) [:] ¥ in the root. Inverting
the root gives I' = =1 (4, d) [:] # = ¢ and T F e [:] ¢. Inverting the former
judgement gives T'; ¢ = d [] 4.

Liobd[] ¢
IE—T(¢d) ¢y Thel]o
I'E—="(=%(¢,d).e) [] ¥
The proof obligation is T' b de]y, [:] ¥, which follows from Lemma 16.4 by
substituting the empty context for A:
I'tel]¢ Tigkd[]v
Tk dlely [:] ¥

PRY Assume I' - V7 (t,V"(d)) [:] #[t]. Using inversion, we build the following
tree.

THd[]¢
T'FYHd) [ Ve
I'EV= (v (d)) [:] oft]
We have to prove: T' b d[t]y [:] ¢[t], which follows from Lemma 16.3 and
T d[:] ¢ (take A empty and n = 0).

PCVV Assume I' - V= (V™ (d,e1,e2,%1 V ¥2),9,h,¢) [:] ¢. The proof obliga-
tion is:

D EV7(d, V™ (e1, 119, 11h), V™ (e2, 119, 11R) [ &
We use the following abbreviations.

Jy TEd[:]p1Vps

= Jo, = Dipibel[: v
AR LR AT b b
Jp = Ty bh[] ¢
After inversion, we come to the following tree.
Jd Jel J62

LEV=(d,er,ea, 1 Vo) |1 Vbo Ty Jy
CEVT(VT(d,er,e2,91 V 42), 9,0, ¢) [] ¢
The following tree demonstrates how the goal is deduced.
Ja T T
LV (d, V™ (e1, 119, 110, 6), V™ (e2, 119, 115, 6), ) [ 6

where 77 denotes the subtree:

Jeo Tipuii 119 é Tipia b 1R[] ¢
Ty bV (e, 149, 150) [1] &

and 75 the analogous deduction of T'; po F V™ (ea, T}llg, T?h, ®) [:] ¢. Now it
becomes clear why all variables h; in, e.g., proof term g for ¢ > 1 have to
be lifted: T}f g. In 77 the extra assumption p; is added to the context. The
leaves T;p1;01 F 1%g [] ¢ and T;py;eby = 18h [:] ¢ in 7; are implied by
the judgements J, and Jj, respectively, via the weakening lemma (16.2).
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PC3— Assume ' —~ (37 (d,e, ¢ = ), f) [] ¥.

THd[]3p 1Tipkel] (¢ =)
'3 (de¢o>¢)[Jo >0 I-f[]¢
I'E—=3(ded =), f) [y
The conversion PC3d— puts derivation f in the scope of the 37. In the
new situation, in order to obtain a correct deduction, f is lifted such that

it no longers contains vy and hg (now referring to the new assumption p).
We have to prove I' -3 (d, =~ (e, T*(1V £)), ¥) [:] ¥.

Tipkel] 1o~ 1¢ 1TipH 10" f) [] 10
Trd[]3p 1Tip bk = (e, (1" ) [ T
T 37(d, = (e, "1V 1)), ¥) [] ¢
Note that 1(¢ = ¢) = 7¢ = 1. Thus, all we have to show is that
5 p Th(TVf) [:] 1¢ follows from T' F f [:] . By Lemma 16.1, we have

that 1T F 1Y f [:] T¢. Then our goal follows from the weakening lemma
(16.2).

The following theorem, stating that > preserves types, follows directly from
Theorem 17.1. The proof proceeds by structural induction on the proposition
d > e.

THEOREM 17.2

de—TrFd[[]¢o—=TFel[] ¢

18 Conclusion

We descibed a formalisation of natural deduction for intuitionistic first-order
logic in Coq. This formalisation provides an object language amenable to the
manipulation of formulas and of proof objects, which is the objective of this
study. In the meta-theory we are able to reason about these syntactical objects.
The example of a proof reduction relation demonstrates how proof terms can
be subject to manipulation and to reasoning. Via the soundness (Sec. 8) of the
deduction system of hypothetical judgements (Sec. 4), we are also able to lift
object level proof terms to actual proof terms inhabiting propositions of type
xP. Thus we can reflect upon the first-order fragment of *P.

We plan to use the described formalisation for a syntactical proof of conser-
vativity of the Axiom of Choice over intuitionistic first-order logic.
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