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Abstract

The large size of the hyperspectral datasets that are produced with modern mass spectrometric imaging techniques makes it difficult to analyze
the results. Unsupervised statistical techniques are needed to extract relevant information from these datasets and reduce the data into a surveyable
overview. Multivariate statistics are commonly used for this purpose. Computational power and computer memory limit the resolution at which the
datasets can be analyzed with these techniques. We introduce the use of a data format capable of efficiently storing sparse datasets for multivariate
analysis. This format is more memory-efficient and therefore it increases the possible resolution together with a decrease of computation time.
Three multivariate techniques are compared for both sparse-type data and non-sparse data acquired in two different imaging ToF-SIMS experiments
and one LDI-ToF imaging experiment. There is no significant qualitative difference in the use of different data formats for the same multivariate
algorithms. All evaluated multivariate techniques could be applied on both SIMS and the LDI imaging datasets. Principal component analysis is
shown to be the fastest choice; however a small increase of computation time using a VARIMAX optimization increases the decomposition quality
significantly. PARAFAC analysis is shown to be very effective in separating different chemical components but the calculations take a significant
amount of time, limiting its use as a routine technique. An effective visualization of the results of the multivariate analysis is as important for the
analyst as the computational issues. For this reason, a new technique for visualization is presented, combining both spectral loadings and spatial
scores into one three-dimensional view on the complete datacube.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction cally contain anywhere between a few tens and a few millions
of spectral variables for each image pixel. Recent technologi-

The development of spectroscopic imaging techniques over cal developments allow spectroscopic imaging at higher spatial

the last few decades has created many possibilities for the
analysis of complex systems in chemistry, biology, physics,
engineering and geology. Applications range from airborne
or satellite analysis of features in large land zones for agri-
culture [1], climate research [2] and military [3], to various
microscopic techniques, including imaging Fourier transformed
infrared spectroscopy (FTIR) [4—6], Raman spectroscopy imag-
ing [7] and imaging mass spectrometry (MS) [8—10]. These
techniques result in hyperspectral imaging datasets that typi-
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resolution, shorter acquisition times, larger surfaces and higher
spectral resolution. Further sophistication of the measurement
techniques and instrumental design has made various imaging
techniques more accessible for the routine user.

Because of the large amount of data that is produced with
these microspectroscopic techniques, data analysis can get very
complicated and automated data mining techniques are required.
In many cases, the measurement is not the most time-consuming
part, but post-acquisition analysis becomes more elaborate due
to the large amount of data obtained. Nevertheless, one would
like to be able to efficiently analyze all acquired data and both get
a complete overview of the data and find trace features. More-
over, when a comparison between different samples needs to


mailto:heeren@amolf.nl
dx.doi.org/10.1016/j.ijms.2006.11.014

L.A. Klerk et al. / International Journal of Mass Spectrometry 260 (2007) 222-236 223

be made, computational routines would speed up the search for
corresponding spectral and spatial patterns. In order to match
material-specific spectral or spatial patterns between different
datasets, they need to be decomposed into profiles that are
specific for the various chemical components. Multivariate anal-
ysis techniques can be used for this purpose. Once the data is
decomposed into components that each represent one specific
combination of properties (e.g., a compound-specific spectrum),
also database-matching is possible.

Multivariate statistical methods, and especially principal
component analysis (PCA), are established ways to efficiently
extract information from large multidimensional datasets [11].
Combined with different preprocessing and visualization meth-
ods, they form a powerful analytical tool for the analysis of
hyperspectral datasets. Using these techniques, chemically rel-
evant spectral features can be extracted from large datasets.
Most of the current multivariate analysis methods, however, still
require a considerable amount of operator input [12].

One of the fields of science, in which data complexity is
becoming an increasing problem, is imaging MS. Imaging MS
is becoming an indispensable analytical tool in many differ-
ent disciplines, such as organic geochemistry, plant sciences,
polymer research, biology, biomedical sciences and proteomics.
This broad applicability is the driving force behind the numer-
ous instrumental developments that are underlying the current
data-explosion. A typical imaging MS measurement results in a
three-dimensional datacube, containing a position on the sample
and a mass spectrum. Different cross-sections of this cube give
either mass-specific images or location-specific mass spectra.
To make these cross-sections, either spectral or spatial features
need to be known in advance or extracted from the datacube.
However, when one relies on pre-existing knowledge, it is very
probable that certain features are not remarked. This is what
multivariate statistics could be helpful with. Various multivariate
statistical methods are currently being used to computationally
extract features from imaging time-of-flight secondary ion mass
spectrometry (ToF-SIMS) [13—-15] and matrix assisted laser des-
orption/ionization time-of-flight (MALDI-ToF) imaging [16]
datasets. ToF-SIMS measurements result in a microscopic image
of a sample surface of which every single pixel comprises a full
mass spectrum. Thus, an image can be created for each mass-
number. The resulting intensity map is usually visualized using
a pseudo-color map. The number of measured points in a full
datacube makes it impossible to be processed at the highest pos-
sible resolution with the computers that are currently readily
available. A full data-matrix using 2,000,000 channel numbers (a
common measurement unit for flight-time in ToF measurements)
and a 256 x 256 pixels image would result in a matrix contain-
ing over 131 billion datapoints, mainly containing zeros. Storing
these datasets in such a way that zero values are left out is pos-
sible when a matrix format is used that only stores the non-zero
values. For highly sparse data, this reduces the amount of mem-
ory needed when the data is processed and thus yields a much
more efficient memory use. The same holds for MALDI-ToF
imaging data, which can be processed in a similar way.

Due to the computational constraints that are encountered
when imaging mass spectrometric datasets are analyzed, mul-

tivariate decomposition methods have only been reported to
be executed on either peak-selected datasets (using nominal
masses) or on highly binned datasets (typical bin-sizes of not
less than 0.5 amu). Only selected parts of the datasets were ana-
lyzed using full available resolution [13,17], which did indeed
result in increased chemical resolving power.

The increase of computer power, as well as the availabil-
ity of eigenvalue-analysis methods that are suited for large, but
sparse, datasets expands the possibilities to perform multivari-
ate statistics at much higher (spectral) resolution. In this paper,
we evaluate different current multivariate analysis methods
applied on ToF-SIMS and laser desorption/ionization time-of-
flight (LDI-ToF) imaging datasets. Standard PCA as carried out
on full matrices, as well as a MatLab™ implementation for
PCA on sparse matrixes were evaluated. These two PCA meth-
ods were combined with an optimization method using variance
maximization (VARIMAX) rotation. A comparison was made
with parallel factors analysis (PARAFAC)-analyzed data, which
is a completely different multivariate analysis method. Eventu-
ally, the usefulness of these different multivariate methods was
evaluated by a quantitative comparison of computation time
using different datacube-sizes. This comparison will give an
indication of the applicability of these multivariate techniques
as a routine data-processing method in analytical laboratories.
A well-chosen, fast, yet accurate method could eventually find
its way as a widely used technique in proteomics, medicine,
polymer analysis, various industries and science, opening many
possibilities in molecular microscopy.

2. Experimental

Evaluation of the different multivariate techniques was
performed on two time-of-flight secondary ion mass spec-
trometry (ToF-SIMS) imaging datasets and one laser desorp-
tion/ionization time-of-flight (LDI-ToF) imaging dataset. All
samples were analyzed in microprobe mode. The acquired data
was subsequently imported and processed using MatLab™.-
routines.

2.1. Sample preparation

Two samples were studied for this paper using ToF-SIMS
imaging: a purely synthetic sample containing well-defined
chemical components and an embedded hair cross-section. One
sample was measured using laser desorption and ionization
(LDI)-ToF imaging: a cross-section of paint layers.

A droplet-array of a 1% polyvinylpyrrolidone (PVP-40.000,
Sigma-Aldrich) solution in water/methanol (1/1) was spotted on
apolyvinylidene difluoride (PVDF) membrane (Bio-Rad Sequi-
Blot PVDF Membrane for Protein sequencing, 0.2 wm). The
spotted array was created using a CHIP-1000 Chemical Inkjet
Printer (Shimadzu Biotech) at 100 pL droplet volume, deposit-
ing 20 runs of five droplets at a time, resulting in a total droplet
volume of 10 nL solution per spot. The incremental time between
the 20 runs was chosen such that the droplets did not completely
dry during the process. The pitch between the space-filling array
of droplets was set at 250 wm, resulting in a minimum distance
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between the centers of the droplets of 176 wm. The choice of
these two well-characterized polymers offers a good reference
in the comparison between different techniques.

The embedded hair cross-section was created by embedding
brown Caucasian human hair in Technovit 2000LC embed-
ding resin and light-cured for 40 min. The hair was embedded
in as-received condition. Cross-sections were made using a
glass-knife microtome cutting off 10 wm slices until an almost
longitudinal cross-section surface was obtained. The bulk block
was then gold sputter-coated (1 nm) to enhance the SIMS signal
[18,19].

A sample of stacked paint layers was cross-sectioned with
a surgical blade and subsequently gold sputter-coated (5 nm)
for LDI imaging charge compensation. The sample con-
sisted of alternating layers of two different Liquitex acrylic
paints (Lefranc & Bourgeois, Le Mans, France), containing
phtalocyanine blue (C3,HsNgCu) and phtalocyanine green
(C32Cl1¢NgCu) pigments. The alternating layers had an approx-
imate thickness of 100 wm.

2.2. Data acquisition

The droplet-array sample was analyzed using an IonTof
‘ToFSIMS IV’ time-of-flight secondary ion mass spectrome-
ter (IonTof GmbH, Germany) with a Bismuth primary ion gun,
using the Bi3>* clusters. The Bi source was run in “high cur-
rent bunched” mode. The primary ion energy was set at 20 keV.
The primary ion current was 0.095 pA, with a pulse-width of
0.8 ns at 200ns cycle time. The total ion dose was kept well
below the static limit [20] (maximum dose was no more than
10'2 jons/cm?). The beam diameter was between 3 and 4 pm
on a sampled area of 500 pm x 500 wm measured at 256 x 256
pixels. The analysis was done in positive ion mode. An electron
flood gun was used for charge-compensation.

ToF-SIMS analysis of the cross-sectioned hair was done
using a Physical Electronics (Eden Prairie, MN) TRIFT-II (triple
focusing time-of-flight) TOF-SIMS, using an '3 In* primary ion
source at 15keV. The primary ion dose was kept well below
the static limit. The sampled area was 150 wm x 150 pm at
256 x 256 pixels. The analysis was done in positive ion mode.

LDI-ToF imaging MS was performed on an extensively mod-
ified Physical Electronics (Eden Prairie, MN) TRIFT-II (triple
focusing time-of-flight) mass spectrometer equipped with a
phosphor screen/CCD camera optical detection combination as
described in detail by Luxembourg et al. [21]. This set-up, which
was originally designed for MALDI-imaging purposes, offers
the possibility of both microscope and microprobe MS imaging.
The time-of-flight data is recorded using a digital oscilloscope
as described by Luxembourg et al. [21]. LDI microprobe imag-
ing was performed on the paint-layer cross-section using a diode
pumped solid-state Nd- YAG laser source, at 355 nm wavelength
and 2 ns pulse duration (BrightSolutions, Italy). Seven linescans
were made in the direction perpendicular to the layer alternation
with an interval of 80 wm/linescan. The scan speed was 50 pm/s
at 10 Hz laser frequency. With a laser spot-diameter of approx-
imately 200 pm, this resulted in a microprobe-scanned image
of 240 x 7 laser shots, representing an area of approximately

1300 pm x 680 wm. Each microprobe pixel represents an area
of the spot-size of the laser, therefore there is an overlap between
the data recorded at neighboring sample points.

2.3. Data preprocessing

The data was read from .GRD-files (Generic Raw Data) or
.RAW-files for IonTof data and TRIFT data, respectively, using
MatLab™ (Version 7.0.4, R14, SP2, The MathWorks, Natick,
MA). Reading in the full data files ensures inclusion of all infor-
mation recorded during the analysis. It also reduces operator
time as no peak-picking is necessary. From the data read-in, a
list is created containing the position as a one-dimensional rep-
resentation, the channel number, ¢ (which is linearly related to
the flight time), and the number of counts (n) for that respec-
tive occurrence. This dataset, which represents a datacube, can
subsequently be converted into an x x y by ¢ unfolded datacube
containing the number of counts for each spectral and spatial
combination.

The LDI-ToF spectra were imported into a MatLab™ envi-
ronment for further analysis. This resulted in an x xy by ¢
unfolded datacube in which ¢ represents the time-of-flight. After
time-of-flight calibration a mass-spectrum is obtained for every
shot and every position. No smoothing or background thresh-
olding is applied for further analysis.

Several matching spectral and spatial components can be
extracted using the different techniques for multivariate anal-
ysis on the same unfolded matrices. Commonly, the resolution
that can be used during the analysis is limited by the amount of
memory that is available to store a partial solution, for instance
the covariance matrix in a PCA. Therefore it is necessary to
use a matrix that stores the information as memory-efficient as
possible, yet with a resolution high enough to obtain accurate
results. Imaging MS data is generally very sparse (it has large
spectral areas with zero counts), the use of a sparse matrix for-
mat is therefore an obvious choice when using MatLab™. This
data-type uses a Harwell-Boeing format which leaves out the
storage of zero-counts in the mass spectrometry data without
loss of information. Therefore it saves memory space and thus
increases the size of the dataset that can be processed.

Although the sparse matrix format allows much larger
datasets to be processed, the matrix size has to be reduced due to
memory limitations. This data-reduction was done by binning.
Binning also reduces computation time.

Binning of the ToF-SIMS data in the ToF dimension was
done on channel numbers instead of the mass scale most com-
monly used. This binning was done by summing the counts of
a certain consecutive number of channels. All further analysis
was performed on the (binned) channel numbers. Using the 32-
bit integer channel numbers instead of mass-numbers, avoids
round off-errors that are made when these would be converted
into floating-point m/z values. Using the channel integers also
ensures that the spectral resolution of the decomposed data is
the highest at positions where the original measurement had its
highest resolution. Channel-wise binned data therefore gives a
higher resolving power at lower masses, which is advantageous
for height-mapping purposes [17] and when compounds with
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the same nominal mass need to be resolved [13]. The mass reso-
lution at higher masses is lower, but the resolution can still easily
be kept high enough around m/z 500, so that nominal masses can
still be resolved.

Spatial binning is used to enhance the imaging signal-to-
noise ratio for lower abundant species and to increase image
contrast [22]. This also reduces the amount of memory needed
and decreases computation time during analysis. The spatial
binning is done with a factor of 2 in each direction, so that
neighboring pixels are added and no fitting between pixels is nec-
essary. Although binning results in a decrease in spatial detail, it
has turned out to be very effective in increasing image contrast,
especially for images with highly sparse features [14].

The LDI-ToF imaging data was spectrally binned with a fac-
tor of 50. No spatial binning was necessary as the full dataset
only contained 2030 mass-spectra.

Apart from spectral and spatial binning, other preprocessing
techniques are not evaluated in this article. The effectiveness of
most of the common techniques like mean centering, spectral
averaging and various de-noising techniques is either question-
able, or not very useful for SIMS imaging at all. Some of them
also take too much computational power or operator interaction
to be routinely used [14,23-26]. It is beyond the scope of this
article to involve in a discussion on these methods. It is very well
possible to combine various preprocessing techniques with the
techniques presented here. We would only like to mention that
mean centering would be not appropriate in our case, as data-
processing is performed on full datasets and not only on peaks.
The use of spectral mean-centering would then result in nega-
tive values for mass-numbers that actually give zero counts and
therefore the interpretation of the spectral profiles that result
from PCA would be much more complicated. The advantage
of the sparse format would be lost as every spectral parameter
would give a certain number of mean-centered spectral counts,
resulting in almost no zeros in the matrix.

3. Methods for multivariate analysis

Data decomposition can be performed, using various dif-
ferent multivariate techniques. Most of these techniques use
implicit statistics to compress, de-noise or decompose data by
extracting statistical features. A well-known method is PCA
which can be applied to compress an image, but more gen-
erally to discover patterns in high-dimensional data. PCA is
therefore well-suited to be applied on hyperspectral datacubes
[27], because they have both a spatial as well as a large spec-
tral dimension. The need for a method that can automatically
extract features from spectral data increases with the increasing
resolution of the datacubes resulting from ToF-SIMS.

A balance has to be found between the accuracy and the time
it takes to produce the results for different methods. We com-
pare some common methods for multivariate analysis with their
performance on imaging mass spectrometry data of different
resolution and acquired with different acquisition methods. Per-
formance depends on many variables such as available memory,
data complexity and the implementation of the algorithm. An
indication of this performance is given by relative comparisons

of the time it takes to do the calculations. The qualitative per-
formance will be judged based on the contrast in the spectral
profiles and the feature-contrast in the image planes.

3.1. PCA

One way to find the principal components in an unfolded dat-
acube X is by eigenvector decomposition. Both the spectral and
the spatial dimension are decomposed into uncorrelated spectral
and spatial components. Eq. (1) describes the PCA decompo-
sition which can be solved by finding the eigenvectors of the
covariance matrix of X.

X=v. PT' (1)

The first dimension of X contains the locations in of the unfolded
datacube, and the second dimension describes the channels.
The columns of P contain the orthonormal loading vectors and
columns in Y the score vectors or spectral profiles in this case.
Together, these components describe the original datacube in
principal components and can be used to compress the datacube
or extract correlated spectral and spatial features.

The resulting component images contain the spatial distribu-
tion of the corresponding spectral profiles. The components are
sorted according to their variance expressed by the eigenvalues
from the eigenvector decomposition. The first components con-
tain the largest contribution to the original datacube and the last
components mostly contain the remaining noise. Each spectral
and spatial component can contain both positive and negative
values which make interpretation not very intuitive. One way
to deal with these negative values in Y is by splitting them in
a positive and a negative counterpart. Each of these parts will
create loading vectors that result in positive-only score images
when they are multiplied with the transposed original matrix X.

Using the sparse matrix format within MatLab™ saves mem-
ory space, computation time and allows larger datasets to be
analyzed. MatLab™ also provides a sparse implementation to
find the eigenvectors and eigenvalues of a sparse matrix. It uses
the FORTRAN library ARPACK [28] which uses an implic-
itly restarted Arnoldi iteration to solve the eigenvector problem
for a sparse matrix [29]. One input parameter is the number of
eigenvectors that have to be found. Other parameters control the
convergence, number of iterations or model-specific solutions.

Using this function, the two most important limitations in
eigenvalue analysis of large datasets can be largely circum-
vented. Firstly, the amount of memory needed is considerably
smaller than the memory needed to store the same data in a full
matrix. Secondly, the calculation time can be decreased as the
implicitly restarted Arnoldi method only makes an estimation
of the first (user defined) number of eigenvectors. The fact that
only a few eigenvectors are calculated, implies that the result-
ing set of eigenvectors does not form a complete orthonormal
basis for the original dataset. This means that if this method is
used for PCA, the resulting principal components form only the
most important part of the original dataset (whereas the PCA
results obtained with the use of traditional eigenvalue deter-
mination methods give a complete basis and can therefore be
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back-transformed into a dataset that is exactly the same as the
original data). In practice, this does not give any problems as
hyperspectral datasets generally contain only a few predomi-
nant principal components. Therefore, within the first 20 (or
even less) principal components, almost all original data can be
described. From a data-compressing point of view, this is suf-
ficiently accurate as well, as usually only a limited number of
principal components are stored, still containing more than 99%
of the information from the original dataset.

3.2. PCA and VARIMAX

Additional optimizations can be done after a PCA. One
method is an additional fitting of the principal components to
maximize the variance expressed in each component. There are
a number of maximization criteria but the VARIance MAXi-
mization (VARIMAX) from Kaiser [30] is the most common. It
can be used as a post-processing step after a PCA. By rotation
of the orthogonal axis, more simple structures, and components
with a higher contrast are created. The expression in Eq. (2) can
explain the relation with PCA.

X=Y -R-R'.pPT )

X is again the original unfolded datacube, with Y the scores
and P the loading vectors. The VARIMAX algorithm tries to
find an orthonormal rotation matrix R so that the variance of
the squared spectral components is maximized. The value of
minimum relative increase of the objective function to keep on
iterating is kept on the default of 10~>. The spectra belonging to
the different principal components are then plotted as R~!-PT.
Related images are scores of this rotated vector.

3.3. PARAFAC

A more generalized decomposition method in this study is
using the PARAllel FACtors (PARAFAC) model of Harshman
[31]. Its exact model was independently proposed by Carroll and
Chang [32] as CANonical DECOMPosition (CANDECOMP).
This model uses fewer degrees of freedom to fit the data on a
simple model for decomposition. It gives a unique solution for
the decomposition and makes it possible to put constraints and
weights on the resulting components. These constraints can be
orthogonality, non-negativity or unimodality with implicit non-
negativity. Eq. (3) gives a representation of PARAFAC that can
be compared with the model used in PCA.

Xy=Y Dy-PT 3)

Xk is again the unfolded datacube that is decomposed in loading
vectors in P and score vectors in Y. Dy is a diagonal matrix giving
aunique weight to each component. The user has to set the num-
ber of components in which X, has to be decomposed. We used
the fast and optimized iterative implementation described by Bro
[33] to decompose the datacube with only the non-negativity
constraint on matrices ¥ and P. An orthogonality constraint
could not be applied together with the non-negativity constraint.
The convergence criterion was the default value of a relative

change in fit of less than 107%. The MatLab™ implementa-
tion that was used is able to handle sparse matrices using the
same computational algorithm. This enables us to compare the
components from a common and sparse PCA with the extracted
components from the PARAFAC model.

3.4. Three-dimensional visualization of extracted features

Broersen and van Liere [34] describe a technique to visualize
correlated spectral and spatial features in a three-dimensional
volume using PCA. The main characteristics of the scores and
loadings of an extracted principal component are highlighted
in the original hyperspectral datacube using opacity maps. This
enables a user to select a principal component and interactively
view the spectral and spatial contribution within the three-
dimensional representation of the datacube. Instead of looking
at a solid cube filled with ion-counts, an opacity map gives more
‘insight’ to the data by hiding specific regions using PCA. The
opacity map of each component can be adjusted by changing
a threshold which controls the amount of data points that is
shown. The resulting principal components after the VARIMAX
post-processing and the extracted components of PARAFAC
have similar properties as those of the PCA. These components
can also be used to create three-dimensional opacity maps to
automatically create highlights within a datacube and reveal
correlated features.

4. Results

PARAFAC and PCA, along with VARIMAX post-processing
were applied on the two datasets described earlier. PARAFAC
gave the best separation of chemical components. Therefore the
assignment of different chemical components in the samples will
be done using the PARAFAC results. After that, a comparison
is made between PCA with and without post-processing, along
with a comparison with PARAFAC. It is very difficult to perform
an exact quantification of the quality of a multivariate analysis
unless done on a synthetic dataset, which was not done here as
it is ambiguous how a synthetic dataset representative for a real
sample would look like. We therefore qualitatively assigned the
methods and compared the different implementations (for sparse
and non-sparse matrix formats) of the various methods within
the same dataset. As a quantitative comparison, the computation
time of different methods was compared to give an indication
on the usefulness in routine analysis.

4.1. PARAFAC

A PARAFAC analysis was done on the full acquired dataset
of the PVP-droplet sample, with a spectral binning factor of 1024
and a spatial binning as a factor of 2 (resulting in 128 x 128 pixel
images). The dataset was cut-off at the 1250th binned channel
(which corresponds to m/z 345). This reduction of the dataset
was necessary to prevent out-of-memory errors during this com-
putationally demanding method. In this case, the restriction of
the dataset to a maximum of m/z 345 does not influence the
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Fig. 1. Score plots and loading vectors for 14-component PARAFAC analysis of +SIMS analyzed PVP spots on PVDF membrane. Only positive scores are possible
due to the non-negativity constraint that was used in the analysis. Each image is scaled to its maximum (absolute) intensity.

results of the statistical analysis. In some cases, it may be nec-
essary to either perform an additional analysis within the higher
m/z region or to increase the binning factor. PARAFAC was then
done using 7, 14 and 21 decomposition variables (factors). This
number of factors was chosen arbitrarily, based on the conve-
nience of the seven-color plotting scheme in MatLab™ whilst
assuring a wide enough range to cover all components. A non-
negativity constraint was put on the components, so that only
positive scores on the channel numbers were allowed for each
variable. The numbered order of the different decomposed com-
ponents is arbitrary. Therefore, based on the order of the resulting
component-spectra, no conclusions can be drawn on the abun-
dance of the corresponding factors. That means that factor 11
could be more abundant than factor 2, which is an important
property to recon with when the analysis is done. The random
order of the factors is aresult of the random initialization that was
chosen. Therefore, the order of the factors could vary between
different PARAFAC runs on the same dataset.

A few chemical components gave one specific factor in
PARAFAC, irrespective of the number of chosen factors to be
resolved. These included the “salt rim”, which is the result of
transportation of salts to the edge of a drying droplet, and the
PVP droplet itself (factors 9 and 6, respectively, in the 14-factor
PARAFAC analysis, Fig. 1). This can also clearly be seen from
the corresponding spectra (Fig. 2): factor 9 gives a very high
score at m/z 23 (Na*), a low but distinct peak for Li* (m/z 7)
and only minor scores for other species. Na* is highly abun-
dant in factor 6 as well; in any other factors, its presence can be
neglected, showing that the Na* indeed comes from the solu-
tion used during the spotting procedure. Factor 6 shows peaks at
positions that are specific for PVP [35], along with the peak at
m/z 133, which seems to be present in almost all factors (closer
examination of the unbinned spectrum shows that this nomi-
nal mass indeed contains multiple peaks with different exact
masses). Assignment of the various peaks in the spectra belong-

ing to factors 6 and 9 is indicated in Fig. 2. Factor 10 and, to a
lesser extent factor 14, show distinct structures. These localized
components represent a contamination on the PVDF membrane
that was introduced when the membrane was attached to the
substrate. The inner side of a polyethylene bag was used to
tighten the membrane onto the substrate and factor 10 results
from erucamide (CH3(CH,)7;CH=CH(CH,);;CONH,), which
is commonly used as a slip agent for polyethylene. A distinct
[M +H]* peak for erucamide was seen at m/z 338. It is striking
how well this low-abundant surface component is resolved.

Special attention needs to be paid to the different ways the
signal from the PVDF membrane is decomposed into various
factors. These factors can be identified by the typical 20 or
38 amu separated peaks due to, respectively, HF and 2F mass
difference between the fragments. This PVDF-related chemical
component is divided into various factors for PARAFAC using
14 or 21 factors, all containing a different combination of PVDF-
specific peaks. However, for the seven-component analysis, the
substrate membrane was only divided into a few components
(most of which seemingly represented different height zones,
as can be concluded from a comparison with the PCA analyses
where similar images have height-specific spectra). The division
of this single chemical component into multiple factors is aresult
of the orderless factorization, which seeks for a fixed number of
components that have no specific order of importance.

Also the cross-sectioned hair was analyzed with PARAFAC.
Decomposition into seven factors gives one factor that is specific
for the embedding medium. All other factors seem to be non-
specific, suggesting that there are no other chemical components
present in the analyzed dataset. However when 14 factors are
allowed, a specific spot is resolved, spectrally corresponding to
a peak at m/z 39, which results from K*. More close analysis
of the factors showed that also the very low-abundant Na* (m/z
23) is specifically localized at this position and only present in
this certain factor (Fig. 3). This once more shows the power
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Fig. 2. The loading vectors of PC 6 (top) and PC 9 (bottom) as obtained from 14-component PARAFAC analysis of +SIMS analyzed PVP droplets spotted on PVDF

membrane.

of computational analysis as this feature would not be resolved
without the use of statistical data analysis.

LDI-ToF microprobe imaging data was analyzed with
PARAFAC. The two known components (phtalocyanine blue
and phtalocyanine green) were clearly resolved by PARAFAC,
irrespectively, the number of chosen factors (Fig. 4). Phtalocya-
nine blue is seen as M*® ion at m/z 575 and as M»™* at m/z 1150.
Phtalocyanine green shows a 35 m/z spaced profile from m/z
1127 (M*®) down to 915 ([M — 6CI]*). Each spacing of approx-
imately 35 m/z represents a chlorine loss. Overestimation of the
number of factors results in the splitting of single chemical com-
ponents into different factors, as can be seen from the 14-factor
analysis of the LDI-analyzed paint-sample. Factors 3 and 13
(phtalocyanine blue), as well as 4 and 14 (phtalocyanine green)
show very similar localization but are nevertheless represented
as different factors. This is not necessarily an artifact from the
high number of factors, and could as well result from correlation
between various measured ions within one layer.

Conclusively, PARAFAC was able to extract chemical fea-
tures into single components. However, pre-knowledge is
favorable as it will factorize the data into a certain, user defined,
number of factors. In essence this number can be made high
enough to surely exceed the number of actual chemical compo-
nents. However, this will lead to the factorization of one actual
component into a number of factors, as can be seen from the 14-
factor analysis. This over-factorization cannot always be avoided

as was shown for the extraction of the salt-crystal in the hair
cross-section.

4.2. PCA on sparse datasets

PCA was done using an in-house developed toolbox based
on standard library functions in MatLab™. PCA was done on
the PVP array spotted on PVDF membrane. All decompositions
were restricted to the first 20 principal components, unless men-
tioned otherwise. This number of PCs was chosen after analysis
of higher PCs, which only yielded non-specific spectra and fea-
tures. The preferred spectral and spatial binning factor should
be chosen dependant on the character of the dataset (which in
turn depends on the measurement circumstances), the type of
compounds of interest and the intensity of the signal. A trade-
off has to be made between these parameters and the amount of
memory that is available for the analysis.

A complicating factor of the comparison with PARAFAC is
that no model information can be used during PCA. Therefore
a non-negativity constraint cannot be used, which implies that
one PC can actually contain two chemical components, if they
are anti-correlated. This means that in a two-phase system, all
chemical information could be contained in a single PC. In
the case of the PVP droplet array on PVDF, this was seen as
a combination of a PVP-specific loading vector, together with
an anti-correlated PVDF spectrum because the PVP partially
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Fig. 3. SIMS images of the cross-section of hair embedded in a methacrylate embedding medium. The total ion image (top left) does not give any indication for the
salt crystal as shown with the images at m/z 23 and m/z 39 (top-middle and -right, respectively). The bottom images show the score images of the major resulting
factors from the three investigated methods. The different color maps are chosen for visibility reasons: a “hot” color map as used in the top images would not be

appropriate in the PCA score images because of negative values.

covers the PVDF membrane and therefore absence of PVDF
comes together with presence of PVP. For the cross-sectioned
hair, just like with PARAFAC, the only chemical components
that were resolved was the salt crystal (seen in one of the higher
PCs) and the embedding medium. This implies that PCA is
a suitable technique to resolve small features as long as the
chosen number of components is high enough.

The spectral features specific for the Liquitex layered-paint
sample that was measured using LDI, were decomposed into
more than two principal components by PCA. When 20 PCs
were chosen, both the phtalocyanine blue and phtalocyanine
green are found in various PCs, often as anti-correlated features.
This results in PC score-images that give very little localization
(Fig. 8a).

The results obtained with PCA using the implementation
for sparse matrixes were compared with PCA as done on
full matrixes for the PVP droplet-sample. A comparison was
made by calculating the average of g;, = pfn / pl-Sn in which
pS, is the nth sparse-type PC result and pf the nth standard
(full-matrix) result in the ith spectral dimension. For identical
datasets this would give g;, =1 for any i, n. For datasets that
are not correlated, the variation in values for g;, would be very
high. The average values as well as the standard deviation for
the first 100 PCs are plotted in Fig. 5, together with the first 10
maximum values of |g;,| for each n and their average. This plot

shows the high correspondence of the results of the two PCA
methods, as can be concluded from the few high values for g;,.
This is confirmed by the average of all g;, values, which is close
to 1 (only a little bit smaller due to a few g;, values that are equal
tozeroduetoa pi, = 0; p3 # Oforalli, | <n<100). Larger
standard deviations are more common at higher PC numbers.
This is explained by the fact that higher PCs represent less
chemical information. This can result in a different PC order
for different computational methods as well as a less-exact
definition of the PCs by themselves (actually noise is compared
with noise). Ill-defined PCs result in high values for g;, in some
cases. Fig. 5 indeed shows that up to PC12 the two methods
give identical results, with increasing PC number, this error
also increases, as well as the variance in the highest 10 values
for giy.

4.3. VARIMAX post-processing

VARIMAX rotation was used to enhance the spectral contrast
of the PCs. This axis-rotation results, as expected, in higher con-
trast not only in the spectra, but also in the images. The resulting
PCs do not necessarily correspond with the original PCs. This is
shown for the PVP droplet-array, where the loadings vector of
PC3 looks completely different after VARIMAX rotation. The
rotation did indeed increase both spectral and image contrast, as
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layers.

can be seen from Fig. 6 (before optimization) and Fig. 7 (after
optimization). Especially, the predominant chemical features
that were mentioned earlier in the PARAFAC analysis were rep-
resented by single components. After VARIMAX, PC2 contains
only the PVP-specific spectral features (as negative peaks) with
a few anti-correlated components (as positive peaks) whereas

many other peaks were observed before optimization. The opti-
mized PC6 shows hardly any peaks apart from the Na* signal at
m/z 23 whereas it was hardly resolved before VARIMAX.

The representation of height differences, which is typically
observed in the PC-spectrum as the combination of both a posi-
tive and a negative peak within the same nominal mass-number
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is concentrated into two PCs (1 and 7) that only contain this type
of peak. The rough PC result showed these peaks in a mixture
with other peaks (PCs 3 and 7).

VARIMAX done on the cross-sectioned hair did not improve
the chemical contrast. Although image contrast improved, the
specificity for the observed salt crystal decreased (Fig. 9). Chem-
ical features were resolved in a comparable way as those found
with PCA. The image contrast was improved and used to identify
the sharp boundaries of various spatial features.

The LDI-ToF PCA results optimized with VARIMAX show
a tremendous increase in contrast when compared with the PCA
results without VARIMAX optimization (Fig. 8b). Although the
two different paints are found in various PCs, VARIMAX proves
to be a very powerful tool in the optimization of PCA-aided
analysis of this microprobe LDI dataset, giving phtalocyanine
blue (combined PCs 2, 4, 5 and 19) and phtalocyanine green (PC
7)-specific spectral profiles.

4.4. Computation time versus results

As mentioned in Section 1, computational power is one of
the main aspects for multivariate data analysis. An estimate
of computation time was made for the studied methods. All
time-measurements were done on the same computer (single

processor 32bit AMD Athlon, 2.2 GHZ, 1 GB of memory),
using MatLab™ 7.1 with the N-way toolbox 2.11 [33] and
VARIMAX implementation. Calculations were done in a 32-
bit environment. This limits memory allocation (and therefore
the maximum size of the analyzed dataset) to 4 GB. The use of
a 64-bit environment would circumvent this memory problem
and therefore make the use of larger datasets possible. How-
ever this would also increase calculation time. The size of the
quantitatively analyzed datasets was chosen such that the total
calculation could be done without the need of virtual memory.
Using virtual memory would dramatically increase the total cal-
culation time because hard disk access is much slower than RAM
access. This would not give a representative measure when the
algorithms are compared.

Computation time was evaluated for all three datasets men-
tioned earlier (Table 1). Two different datacubes were used for
the ToF-SIMS datasets: one with a large spectral dimension and
one with a large spatial dimension (datacubes were unfolded
into x X y by ¢). The number of components was varied from 7
to 14-21. The LDI-ToF imaging datacube was analyzed at full
spatial resolution (7 x 290) and with 1850 spectral variables.

The standard PCA method first calculates the full and exact
PC decomposition and then restricts the resulting dataset to the
requested number of components. PCA performed on sparse
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matrixes produces an approximation by itself, not giving a full
representation of the original datacube, but only resulting in
the requested number of PCs. This difference in methodology
contributes to the time-reduction that is involved in the use of
sparse matrixes. The continuous nature of the LDI data, with
a non-zero entry at almost each sampling point resulted in an

increased computation time when the sparse matrix format was
used. This can be explained from the fact that the in-memory
size is larger for the sparse-type matrix than for the full matrix,
which inevitably leads to larger processing times.

VARIMAX as a post-processing optimization step after PCA
results in only a small increase in calculation time. This justifies

Table 1

Table with an indication of computation time in s using various methods on various samples

Set Components Dataset size PCA PCA (sparse) PCA + VARIMAX PARAFAC PARAFAC
(x 10%) (sparse) (x 10%)

Hair 7 300 x 256 x 256 3 3 +0.15 35 2

Droplet 7 300 x 256 x 256 3 3 +0.15 12 6.5

Hair 14 300 x 256 x 256 3 3 +0.25 6 5

Droplet 14 300 x 256 x 256 3 3 +0.25 40 50

Hair 21 300 x 256 x 256 3 5 +0.35 14 13

Droplet 21 300 x 256 x 256 3 4 +0.35 160 85

Hair 7 5053 x 64 x 64 5% 102 25 +0.2 0.9 1

Droplet 7 5053 x 64 x 64 5% 107 20 +0.2 0.7 0.6

Hair 14 5053 x 64 x 64 5% 102 25 +0.3 35 3

Droplet 14 5053 x 64 x 64 5% 107 20 +0.3 9 8

Hair 21 5053 x 64 x 64 5% 102 30 +0.4 6 4

Droplet 21 5053 x 64 x 64 5% 107 20 +0.4 30 27

LDI 7 1850 x 290 x 7 30 35 +0.15 52 55

LDI 14 1850 x 290 x 7 30 35 +0.30 214

LDI 21 1850 x 290 x 7 30 35 +0.40

The VARIMAX processing time is given as the time added to PCA.
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Fig. 10. An alternative representation of the complete hyperspectral datacube of the embedded hair with an overlay using PC1 (a) and PC13 (b) and the PVP droplet

series with the 6th PARAFAC factor (c).

the use of VARIMAX after PCA in any case to increase chemical
contrast in both PC images and spectra, as shown in previous
sections.

PARAFAC is clearly a much more demanding technique.
Although it turned out to be better at resolving certain features,
it is not suitable for routine use with the current standings of on-
desk computer facilities. It could be very helpful in very complex
systems or in systems where trace amounts of a certain chemical
components are expected. Prior knowledge, which is favorable

to make a sensible choice for the number of components to be
looked for, could be obtained using PCA. Like PCA, PARAFAC
turned out to be faster on sparse matrixes. It should be mentioned
that the random initialization as used in our PARAFAC calcu-
lations, results in a large variation in calculation time and the
order of the factors. PARAFAC is a computationally much more
demanding technique because it seeks an exact fit of the data
using optional constraints, spread over the defined number of
factors.
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4.5. Three-dimensional visualizations

The components from the different methods for multivariate
analysis yield a specific extracted spectral profile with a corre-
sponding spatial view. It is hard to give an interpretation using
only the individual spectral or spatial component. PCA was able
to extract the location of a feature in the hair, but the spectral
view revealed that it was caused by a salt-crystal. A combined
view would directly reveal the connection between both views.
Each pair of extracted scores and loadings can be combined in
one three-dimensional overview to gain more insight in the cor-
relations between spectral profile and the location. Each value in
the cube is the intensity on a certain position in a spectral plane
and is given a color using the ‘hot’-color map from MatLab™.
Because most values are zero within a MS dataset, the complete
cube would result in an image of a black box. Large parts of
this box can be discarded as they do not contain any interesting
properties. An opacity map is introduced to hide uninteresting
features within the datacube which, in this case, is created with
the extracted components from the multivariate analysis. Instead
of a continuous switch between spectral and spatial view, a com-
plete view of the cube can directly reveal this connection. A
user is able to interactively rotate the cube and instantly get an
overview of all the data in three dimensions.

The complete hyperspectral datacube of the hair is shown
in Fig. 10a and b. Only the high values in the spectral profile
and image component of PC1 are made opaque by the opacity
map. In this way PC1 is highlighted in the original datacube
which contains mostly the areas and peaks from the hair itself.
The component with the extracted features from the crystal is
shown in Fig. 10b. It clearly shows the relation between the
highlighted image plane on m/z 39 and the small group of pixels
on the location of the crystal, while other areas of the cube
remain hidden. The significant peak on 39 m/z in the spectral
component highlights the complete image plane at this spectral
position. Similarly, the high intensity of the pixels in the spatial
component results in the appearance of a ‘rod’, spanning the
whole spectral dimension of the cube. The number of points
of this feature that are shown can be adjusted by changing the
threshold in the opacity map.

This representation provides better overall insight in the data
by visualizing the direct correlation between spectral peaks and
spatial occurrences. Fig. 10c shows several isolated drops in the
spectral datacube using the sixth PARAFAC factor. The different
components or factors can be highlighted together or separately
in the same cube by combining their opacity maps. The resulting
three-dimensional view becomes more accurate and discrim-
inating when the resulting components from the multivariate
analysis contain more contrast. This advantage makes it easier
to compare the quality of results from the different multivariate
analyses.

5. Conclusions
We made a comparison between various multivariate statisti-

cal methods for the analysis of hyperspectral datasets as acquired
with ToF-SIMS and LDI-ToF imaging mass spectrometry. Obvi-

ously, the same methods used for LDI-imaging can be used in
MALDI-imaging experiments.

The use of the sparse matrix format allows larger datasets to
be handled and drastically decreases computation time. Memory
problems are circumvented because zero values are disregarded
which is a more efficient way of data storage when most values in
the datacube are zero. The sparse matrix format makes the anal-
ysis of larger datasets possible and allows them to be analyzed at
higher resolution. No significant difference was found between
the resulting extracted information of the different implemen-
tations for normal and sparse matrixes in specific multivariate
analytical techniques.

Of the methods compared in this report, PCA turns out to
offer the best trade-off between results and computation time.
Although PARAFAC gave a better overall performance, the high
amount of computational power needed, restricts this technique
to the use in specific cases. A sensible choice of the number
of components to be calculated is needed in PARAFAC, as an
excess number of components dramatically increases computa-
tion time. To make an estimation of the number of components
to be calculated in PARAFAC, pre-knowledge is needed. This
makes the technique less suitable for routine analysis. The appli-
cation of VARIMAX rotation as a post-processing technique
increases both chemical and imaging contrast when used after
PCA. The almost negligible amount of computation time needed
for this, suggest that is should be used in any case when PCA
is used. However, the original results from the PCA should
still be considered in some cases, especially for small fea-
tures, the chemical specificity may decrease when VARIMAX is
used. In most cases however, a pseudo-color plot together with
manual analysis of the spectra is sufficient to resolve the dif-
ferent chemical components. A three-dimensional presentation
of the complete datacube or selected components, was shown
to be a useful tool for quick insight into a hyperspectral dat-
acube. Although a scientific expert is still needed to analyze the
resulting components, these multivariate statistical methods are
an indispensable tool in the analysis of complex imaging MS
datasets.
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