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bstract

The large size of the hyperspectral datasets that are produced with modern mass spectrometric imaging techniques makes it difficult to analyze
he results. Unsupervised statistical techniques are needed to extract relevant information from these datasets and reduce the data into a surveyable
verview. Multivariate statistics are commonly used for this purpose. Computational power and computer memory limit the resolution at which the
atasets can be analyzed with these techniques. We introduce the use of a data format capable of efficiently storing sparse datasets for multivariate
nalysis. This format is more memory-efficient and therefore it increases the possible resolution together with a decrease of computation time.
hree multivariate techniques are compared for both sparse-type data and non-sparse data acquired in two different imaging ToF-SIMS experiments
nd one LDI-ToF imaging experiment. There is no significant qualitative difference in the use of different data formats for the same multivariate
lgorithms. All evaluated multivariate techniques could be applied on both SIMS and the LDI imaging datasets. Principal component analysis is
hown to be the fastest choice; however a small increase of computation time using a VARIMAX optimization increases the decomposition quality

ignificantly. PARAFAC analysis is shown to be very effective in separating different chemical components but the calculations take a significant
mount of time, limiting its use as a routine technique. An effective visualization of the results of the multivariate analysis is as important for the
nalyst as the computational issues. For this reason, a new technique for visualization is presented, combining both spectral loadings and spatial
cores into one three-dimensional view on the complete datacube.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The development of spectroscopic imaging techniques over
he last few decades has created many possibilities for the
nalysis of complex systems in chemistry, biology, physics,
ngineering and geology. Applications range from airborne
r satellite analysis of features in large land zones for agri-
ulture [1], climate research [2] and military [3], to various
icroscopic techniques, including imaging Fourier transformed
nfrared spectroscopy (FTIR) [4–6], Raman spectroscopy imag-
ng [7] and imaging mass spectrometry (MS) [8–10]. These
echniques result in hyperspectral imaging datasets that typi-
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ally contain anywhere between a few tens and a few millions
f spectral variables for each image pixel. Recent technologi-
al developments allow spectroscopic imaging at higher spatial
esolution, shorter acquisition times, larger surfaces and higher
pectral resolution. Further sophistication of the measurement
echniques and instrumental design has made various imaging
echniques more accessible for the routine user.

Because of the large amount of data that is produced with
hese microspectroscopic techniques, data analysis can get very
omplicated and automated data mining techniques are required.
n many cases, the measurement is not the most time-consuming
art, but post-acquisition analysis becomes more elaborate due

o the large amount of data obtained. Nevertheless, one would
ike to be able to efficiently analyze all acquired data and both get
complete overview of the data and find trace features. More-
ver, when a comparison between different samples needs to

mailto:heeren@amolf.nl
dx.doi.org/10.1016/j.ijms.2006.11.014
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e made, computational routines would speed up the search for
orresponding spectral and spatial patterns. In order to match
aterial-specific spectral or spatial patterns between different

atasets, they need to be decomposed into profiles that are
pecific for the various chemical components. Multivariate anal-
sis techniques can be used for this purpose. Once the data is
ecomposed into components that each represent one specific
ombination of properties (e.g., a compound-specific spectrum),
lso database-matching is possible.

Multivariate statistical methods, and especially principal
omponent analysis (PCA), are established ways to efficiently
xtract information from large multidimensional datasets [11].
ombined with different preprocessing and visualization meth-
ds, they form a powerful analytical tool for the analysis of
yperspectral datasets. Using these techniques, chemically rel-
vant spectral features can be extracted from large datasets.
ost of the current multivariate analysis methods, however, still

equire a considerable amount of operator input [12].
One of the fields of science, in which data complexity is

ecoming an increasing problem, is imaging MS. Imaging MS
s becoming an indispensable analytical tool in many differ-
nt disciplines, such as organic geochemistry, plant sciences,
olymer research, biology, biomedical sciences and proteomics.
his broad applicability is the driving force behind the numer-
us instrumental developments that are underlying the current
ata-explosion. A typical imaging MS measurement results in a
hree-dimensional datacube, containing a position on the sample
nd a mass spectrum. Different cross-sections of this cube give
ither mass-specific images or location-specific mass spectra.
o make these cross-sections, either spectral or spatial features
eed to be known in advance or extracted from the datacube.
owever, when one relies on pre-existing knowledge, it is very
robable that certain features are not remarked. This is what
ultivariate statistics could be helpful with. Various multivariate

tatistical methods are currently being used to computationally
xtract features from imaging time-of-flight secondary ion mass
pectrometry (ToF-SIMS) [13–15] and matrix assisted laser des-
rption/ionization time-of-flight (MALDI-ToF) imaging [16]
atasets. ToF-SIMS measurements result in a microscopic image
f a sample surface of which every single pixel comprises a full
ass spectrum. Thus, an image can be created for each mass-

umber. The resulting intensity map is usually visualized using
pseudo-color map. The number of measured points in a full

atacube makes it impossible to be processed at the highest pos-
ible resolution with the computers that are currently readily
vailable. A full data-matrix using 2,000,000 channel numbers (a
ommon measurement unit for flight-time in ToF measurements)
nd a 256 × 256 pixels image would result in a matrix contain-
ng over 131 billion datapoints, mainly containing zeros. Storing
hese datasets in such a way that zero values are left out is pos-
ible when a matrix format is used that only stores the non-zero
alues. For highly sparse data, this reduces the amount of mem-
ry needed when the data is processed and thus yields a much

ore efficient memory use. The same holds for MALDI-ToF

maging data, which can be processed in a similar way.
Due to the computational constraints that are encountered

hen imaging mass spectrometric datasets are analyzed, mul-

v
t
d
o

ass Spectrometry 260 (2007) 222–236 223

ivariate decomposition methods have only been reported to
e executed on either peak-selected datasets (using nominal
asses) or on highly binned datasets (typical bin-sizes of not

ess than 0.5 amu). Only selected parts of the datasets were ana-
yzed using full available resolution [13,17], which did indeed
esult in increased chemical resolving power.

The increase of computer power, as well as the availabil-
ty of eigenvalue-analysis methods that are suited for large, but
parse, datasets expands the possibilities to perform multivari-
te statistics at much higher (spectral) resolution. In this paper,
e evaluate different current multivariate analysis methods

pplied on ToF-SIMS and laser desorption/ionization time-of-
ight (LDI-ToF) imaging datasets. Standard PCA as carried out
n full matrices, as well as a MatLabTM implementation for
CA on sparse matrixes were evaluated. These two PCA meth-
ds were combined with an optimization method using variance
aximization (VARIMAX) rotation. A comparison was made
ith parallel factors analysis (PARAFAC)-analyzed data, which

s a completely different multivariate analysis method. Eventu-
lly, the usefulness of these different multivariate methods was
valuated by a quantitative comparison of computation time
sing different datacube-sizes. This comparison will give an
ndication of the applicability of these multivariate techniques
s a routine data-processing method in analytical laboratories.

well-chosen, fast, yet accurate method could eventually find
ts way as a widely used technique in proteomics, medicine,
olymer analysis, various industries and science, opening many
ossibilities in molecular microscopy.

. Experimental

Evaluation of the different multivariate techniques was
erformed on two time-of-flight secondary ion mass spec-
rometry (ToF-SIMS) imaging datasets and one laser desorp-
ion/ionization time-of-flight (LDI-ToF) imaging dataset. All
amples were analyzed in microprobe mode. The acquired data
as subsequently imported and processed using MatLabTM-

outines.

.1. Sample preparation

Two samples were studied for this paper using ToF-SIMS
maging: a purely synthetic sample containing well-defined
hemical components and an embedded hair cross-section. One
ample was measured using laser desorption and ionization
LDI)-ToF imaging: a cross-section of paint layers.

A droplet-array of a 1% polyvinylpyrrolidone (PVP-40.000,
igma–Aldrich) solution in water/methanol (1/1) was spotted on
polyvinylidene difluoride (PVDF) membrane (Bio-Rad Sequi-
lot PVDF Membrane for Protein sequencing, 0.2 �m). The

potted array was created using a CHIP-1000 Chemical Inkjet
rinter (Shimadzu Biotech) at 100 pL droplet volume, deposit-

ng 20 runs of five droplets at a time, resulting in a total droplet

olume of 10 nL solution per spot. The incremental time between
he 20 runs was chosen such that the droplets did not completely
ry during the process. The pitch between the space-filling array
f droplets was set at 250 �m, resulting in a minimum distance
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etween the centers of the droplets of 176 �m. The choice of
hese two well-characterized polymers offers a good reference
n the comparison between different techniques.

The embedded hair cross-section was created by embedding
rown Caucasian human hair in Technovit 2000LC embed-
ing resin and light-cured for 40 min. The hair was embedded
n as-received condition. Cross-sections were made using a
lass-knife microtome cutting off 10 �m slices until an almost
ongitudinal cross-section surface was obtained. The bulk block
as then gold sputter-coated (1 nm) to enhance the SIMS signal

18,19].
A sample of stacked paint layers was cross-sectioned with

surgical blade and subsequently gold sputter-coated (5 nm)
or LDI imaging charge compensation. The sample con-
isted of alternating layers of two different Liquitex acrylic
aints (Lefranc & Bourgeois, Le Mans, France), containing
htalocyanine blue (C32H16N8Cu) and phtalocyanine green
C32Cl16N8Cu) pigments. The alternating layers had an approx-
mate thickness of 100 �m.

.2. Data acquisition

The droplet-array sample was analyzed using an IonTof
ToFSIMS IV’ time-of-flight secondary ion mass spectrome-
er (IonTof GmbH, Germany) with a Bismuth primary ion gun,
sing the Bi32+ clusters. The Bi source was run in “high cur-
ent bunched” mode. The primary ion energy was set at 20 keV.
he primary ion current was 0.095 pA, with a pulse-width of
.8 ns at 200 ns cycle time. The total ion dose was kept well
elow the static limit [20] (maximum dose was no more than
012 ions/cm2). The beam diameter was between 3 and 4 �m
n a sampled area of 500 �m × 500 �m measured at 256 × 256
ixels. The analysis was done in positive ion mode. An electron
ood gun was used for charge-compensation.

ToF-SIMS analysis of the cross-sectioned hair was done
sing a Physical Electronics (Eden Prairie, MN) TRIFT-II (triple
ocusing time-of-flight) ToF-SIMS, using an 115In+ primary ion
ource at 15 keV. The primary ion dose was kept well below
he static limit. The sampled area was 150 �m × 150 �m at
56 × 256 pixels. The analysis was done in positive ion mode.

LDI-ToF imaging MS was performed on an extensively mod-
fied Physical Electronics (Eden Prairie, MN) TRIFT-II (triple
ocusing time-of-flight) mass spectrometer equipped with a
hosphor screen/CCD camera optical detection combination as
escribed in detail by Luxembourg et al. [21]. This set-up, which
as originally designed for MALDI-imaging purposes, offers

he possibility of both microscope and microprobe MS imaging.
he time-of-flight data is recorded using a digital oscilloscope
s described by Luxembourg et al. [21]. LDI microprobe imag-
ng was performed on the paint-layer cross-section using a diode
umped solid-state Nd-YAG laser source, at 355 nm wavelength
nd 2 ns pulse duration (BrightSolutions, Italy). Seven linescans
ere made in the direction perpendicular to the layer alternation

ith an interval of 80 �m/linescan. The scan speed was 50 �m/s

t 10 Hz laser frequency. With a laser spot-diameter of approx-
mately 200 �m, this resulted in a microprobe-scanned image
f 240 × 7 laser shots, representing an area of approximately
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300 �m × 680 �m. Each microprobe pixel represents an area
f the spot-size of the laser, therefore there is an overlap between
he data recorded at neighboring sample points.

.3. Data preprocessing

The data was read from .GRD-files (Generic Raw Data) or
RAW-files for IonTof data and TRIFT data, respectively, using

atLabTM (Version 7.0.4, R14, SP2, The MathWorks, Natick,
A). Reading in the full data files ensures inclusion of all infor-
ation recorded during the analysis. It also reduces operator

ime as no peak-picking is necessary. From the data read-in, a
ist is created containing the position as a one-dimensional rep-
esentation, the channel number, c (which is linearly related to
he flight time), and the number of counts (n) for that respec-
ive occurrence. This dataset, which represents a datacube, can
ubsequently be converted into an x × y by c unfolded datacube
ontaining the number of counts for each spectral and spatial
ombination.

The LDI-ToF spectra were imported into a MatLabTM envi-
onment for further analysis. This resulted in an x × y by t
nfolded datacube in which t represents the time-of-flight. After
ime-of-flight calibration a mass-spectrum is obtained for every
hot and every position. No smoothing or background thresh-
lding is applied for further analysis.

Several matching spectral and spatial components can be
xtracted using the different techniques for multivariate anal-
sis on the same unfolded matrices. Commonly, the resolution
hat can be used during the analysis is limited by the amount of

emory that is available to store a partial solution, for instance
he covariance matrix in a PCA. Therefore it is necessary to
se a matrix that stores the information as memory-efficient as
ossible, yet with a resolution high enough to obtain accurate
esults. Imaging MS data is generally very sparse (it has large
pectral areas with zero counts), the use of a sparse matrix for-
at is therefore an obvious choice when using MatLabTM. This

ata-type uses a Harwell–Boeing format which leaves out the
torage of zero-counts in the mass spectrometry data without
oss of information. Therefore it saves memory space and thus
ncreases the size of the dataset that can be processed.

Although the sparse matrix format allows much larger
atasets to be processed, the matrix size has to be reduced due to
emory limitations. This data-reduction was done by binning.
inning also reduces computation time.

Binning of the ToF-SIMS data in the ToF dimension was
one on channel numbers instead of the mass scale most com-
only used. This binning was done by summing the counts of
certain consecutive number of channels. All further analysis
as performed on the (binned) channel numbers. Using the 32-
it integer channel numbers instead of mass-numbers, avoids
ound off-errors that are made when these would be converted
nto floating-point m/z values. Using the channel integers also
nsures that the spectral resolution of the decomposed data is

he highest at positions where the original measurement had its
ighest resolution. Channel-wise binned data therefore gives a
igher resolving power at lower masses, which is advantageous
or height-mapping purposes [17] and when compounds with
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he same nominal mass need to be resolved [13]. The mass reso-
ution at higher masses is lower, but the resolution can still easily
e kept high enough around m/z 500, so that nominal masses can
till be resolved.

Spatial binning is used to enhance the imaging signal-to-
oise ratio for lower abundant species and to increase image
ontrast [22]. This also reduces the amount of memory needed
nd decreases computation time during analysis. The spatial
inning is done with a factor of 2 in each direction, so that
eighboring pixels are added and no fitting between pixels is nec-
ssary. Although binning results in a decrease in spatial detail, it
as turned out to be very effective in increasing image contrast,
specially for images with highly sparse features [14].

The LDI-ToF imaging data was spectrally binned with a fac-
or of 50. No spatial binning was necessary as the full dataset
nly contained 2030 mass-spectra.

Apart from spectral and spatial binning, other preprocessing
echniques are not evaluated in this article. The effectiveness of

ost of the common techniques like mean centering, spectral
veraging and various de-noising techniques is either question-
ble, or not very useful for SIMS imaging at all. Some of them
lso take too much computational power or operator interaction
o be routinely used [14,23–26]. It is beyond the scope of this
rticle to involve in a discussion on these methods. It is very well
ossible to combine various preprocessing techniques with the
echniques presented here. We would only like to mention that

ean centering would be not appropriate in our case, as data-
rocessing is performed on full datasets and not only on peaks.
he use of spectral mean-centering would then result in nega-

ive values for mass-numbers that actually give zero counts and
herefore the interpretation of the spectral profiles that result
rom PCA would be much more complicated. The advantage
f the sparse format would be lost as every spectral parameter
ould give a certain number of mean-centered spectral counts,

esulting in almost no zeros in the matrix.

. Methods for multivariate analysis

Data decomposition can be performed, using various dif-
erent multivariate techniques. Most of these techniques use
mplicit statistics to compress, de-noise or decompose data by
xtracting statistical features. A well-known method is PCA
hich can be applied to compress an image, but more gen-

rally to discover patterns in high-dimensional data. PCA is
herefore well-suited to be applied on hyperspectral datacubes
27], because they have both a spatial as well as a large spec-
ral dimension. The need for a method that can automatically
xtract features from spectral data increases with the increasing
esolution of the datacubes resulting from ToF-SIMS.

A balance has to be found between the accuracy and the time
t takes to produce the results for different methods. We com-
are some common methods for multivariate analysis with their
erformance on imaging mass spectrometry data of different

esolution and acquired with different acquisition methods. Per-
ormance depends on many variables such as available memory,
ata complexity and the implementation of the algorithm. An
ndication of this performance is given by relative comparisons
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f the time it takes to do the calculations. The qualitative per-
ormance will be judged based on the contrast in the spectral
rofiles and the feature-contrast in the image planes.

.1. PCA

One way to find the principal components in an unfolded dat-
cube X is by eigenvector decomposition. Both the spectral and
he spatial dimension are decomposed into uncorrelated spectral
nd spatial components. Eq. (1) describes the PCA decompo-
ition which can be solved by finding the eigenvectors of the
ovariance matrix of X.

= Y · PT (1)

he first dimension of X contains the locations in of the unfolded
atacube, and the second dimension describes the channels.
he columns of P contain the orthonormal loading vectors and
olumns in Y the score vectors or spectral profiles in this case.
ogether, these components describe the original datacube in
rincipal components and can be used to compress the datacube
r extract correlated spectral and spatial features.

The resulting component images contain the spatial distribu-
ion of the corresponding spectral profiles. The components are
orted according to their variance expressed by the eigenvalues
rom the eigenvector decomposition. The first components con-
ain the largest contribution to the original datacube and the last
omponents mostly contain the remaining noise. Each spectral
nd spatial component can contain both positive and negative
alues which make interpretation not very intuitive. One way
o deal with these negative values in Y is by splitting them in
positive and a negative counterpart. Each of these parts will

reate loading vectors that result in positive-only score images
hen they are multiplied with the transposed original matrix X.
Using the sparse matrix format within MatLabTM saves mem-

ry space, computation time and allows larger datasets to be
nalyzed. MatLabTM also provides a sparse implementation to
nd the eigenvectors and eigenvalues of a sparse matrix. It uses

he FORTRAN library ARPACK [28] which uses an implic-
tly restarted Arnoldi iteration to solve the eigenvector problem
or a sparse matrix [29]. One input parameter is the number of
igenvectors that have to be found. Other parameters control the
onvergence, number of iterations or model-specific solutions.

Using this function, the two most important limitations in
igenvalue analysis of large datasets can be largely circum-
ented. Firstly, the amount of memory needed is considerably
maller than the memory needed to store the same data in a full
atrix. Secondly, the calculation time can be decreased as the

mplicitly restarted Arnoldi method only makes an estimation
f the first (user defined) number of eigenvectors. The fact that
nly a few eigenvectors are calculated, implies that the result-
ng set of eigenvectors does not form a complete orthonormal
asis for the original dataset. This means that if this method is

sed for PCA, the resulting principal components form only the
ost important part of the original dataset (whereas the PCA

esults obtained with the use of traditional eigenvalue deter-
ination methods give a complete basis and can therefore be
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ack-transformed into a dataset that is exactly the same as the
riginal data). In practice, this does not give any problems as
yperspectral datasets generally contain only a few predomi-
ant principal components. Therefore, within the first 20 (or
ven less) principal components, almost all original data can be
escribed. From a data-compressing point of view, this is suf-
ciently accurate as well, as usually only a limited number of
rincipal components are stored, still containing more than 99%
f the information from the original dataset.

.2. PCA and VARIMAX

Additional optimizations can be done after a PCA. One
ethod is an additional fitting of the principal components to
aximize the variance expressed in each component. There are
number of maximization criteria but the VARIance MAXi-
ization (VARIMAX) from Kaiser [30] is the most common. It

an be used as a post-processing step after a PCA. By rotation
f the orthogonal axis, more simple structures, and components
ith a higher contrast are created. The expression in Eq. (2) can

xplain the relation with PCA.

= Y · R · R−1 · PT (2)

is again the original unfolded datacube, with Y the scores
nd P the loading vectors. The VARIMAX algorithm tries to
nd an orthonormal rotation matrix R so that the variance of

he squared spectral components is maximized. The value of
inimum relative increase of the objective function to keep on

terating is kept on the default of 10−5. The spectra belonging to
he different principal components are then plotted as R−1·PT.
elated images are scores of this rotated vector.

.3. PARAFAC

A more generalized decomposition method in this study is
sing the PARAllel FACtors (PARAFAC) model of Harshman
31]. Its exact model was independently proposed by Carroll and
hang [32] as CANonical DECOMPosition (CANDECOMP).
his model uses fewer degrees of freedom to fit the data on a
imple model for decomposition. It gives a unique solution for
he decomposition and makes it possible to put constraints and
eights on the resulting components. These constraints can be
rthogonality, non-negativity or unimodality with implicit non-
egativity. Eq. (3) gives a representation of PARAFAC that can
e compared with the model used in PCA.

k = Y · Dk · PT (3)

k is again the unfolded datacube that is decomposed in loading
ectors in P and score vectors in Y. Dk is a diagonal matrix giving
unique weight to each component. The user has to set the num-
er of components in which Xk has to be decomposed. We used
he fast and optimized iterative implementation described by Bro

33] to decompose the datacube with only the non-negativity
onstraint on matrices Y and P. An orthogonality constraint
ould not be applied together with the non-negativity constraint.
he convergence criterion was the default value of a relative

(
w
p
t
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hange in fit of less than 10−6. The MatLabTM implementa-
ion that was used is able to handle sparse matrices using the
ame computational algorithm. This enables us to compare the
omponents from a common and sparse PCA with the extracted
omponents from the PARAFAC model.

.4. Three-dimensional visualization of extracted features

Broersen and van Liere [34] describe a technique to visualize
orrelated spectral and spatial features in a three-dimensional
olume using PCA. The main characteristics of the scores and
oadings of an extracted principal component are highlighted
n the original hyperspectral datacube using opacity maps. This
nables a user to select a principal component and interactively
iew the spectral and spatial contribution within the three-
imensional representation of the datacube. Instead of looking
t a solid cube filled with ion-counts, an opacity map gives more
insight’ to the data by hiding specific regions using PCA. The
pacity map of each component can be adjusted by changing
threshold which controls the amount of data points that is

hown. The resulting principal components after the VARIMAX
ost-processing and the extracted components of PARAFAC
ave similar properties as those of the PCA. These components
an also be used to create three-dimensional opacity maps to
utomatically create highlights within a datacube and reveal
orrelated features.

. Results

PARAFAC and PCA, along with VARIMAX post-processing
ere applied on the two datasets described earlier. PARAFAC
ave the best separation of chemical components. Therefore the
ssignment of different chemical components in the samples will
e done using the PARAFAC results. After that, a comparison
s made between PCA with and without post-processing, along
ith a comparison with PARAFAC. It is very difficult to perform

n exact quantification of the quality of a multivariate analysis
nless done on a synthetic dataset, which was not done here as
t is ambiguous how a synthetic dataset representative for a real
ample would look like. We therefore qualitatively assigned the
ethods and compared the different implementations (for sparse

nd non-sparse matrix formats) of the various methods within
he same dataset. As a quantitative comparison, the computation
ime of different methods was compared to give an indication
n the usefulness in routine analysis.

.1. PARAFAC

A PARAFAC analysis was done on the full acquired dataset
f the PVP-droplet sample, with a spectral binning factor of 1024
nd a spatial binning as a factor of 2 (resulting in 128 × 128 pixel
mages). The dataset was cut-off at the 1250th binned channel

which corresponds to m/z 345). This reduction of the dataset
as necessary to prevent out-of-memory errors during this com-
utationally demanding method. In this case, the restriction of
he dataset to a maximum of m/z 345 does not influence the
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ig. 1. Score plots and loading vectors for 14-component PARAFAC analysis o
ue to the non-negativity constraint that was used in the analysis. Each image is

esults of the statistical analysis. In some cases, it may be nec-
ssary to either perform an additional analysis within the higher
/z region or to increase the binning factor. PARAFAC was then
one using 7, 14 and 21 decomposition variables (factors). This
umber of factors was chosen arbitrarily, based on the conve-
ience of the seven-color plotting scheme in MatLabTM whilst
ssuring a wide enough range to cover all components. A non-
egativity constraint was put on the components, so that only
ositive scores on the channel numbers were allowed for each
ariable. The numbered order of the different decomposed com-
onents is arbitrary. Therefore, based on the order of the resulting
omponent-spectra, no conclusions can be drawn on the abun-
ance of the corresponding factors. That means that factor 11
ould be more abundant than factor 2, which is an important
roperty to recon with when the analysis is done. The random
rder of the factors is a result of the random initialization that was
hosen. Therefore, the order of the factors could vary between
ifferent PARAFAC runs on the same dataset.

A few chemical components gave one specific factor in
ARAFAC, irrespective of the number of chosen factors to be
esolved. These included the “salt rim”, which is the result of
ransportation of salts to the edge of a drying droplet, and the
VP droplet itself (factors 9 and 6, respectively, in the 14-factor
ARAFAC analysis, Fig. 1). This can also clearly be seen from
he corresponding spectra (Fig. 2): factor 9 gives a very high
core at m/z 23 (Na+), a low but distinct peak for Li+ (m/z 7)
nd only minor scores for other species. Na+ is highly abun-
ant in factor 6 as well; in any other factors, its presence can be
eglected, showing that the Na+ indeed comes from the solu-
ion used during the spotting procedure. Factor 6 shows peaks at
ositions that are specific for PVP [35], along with the peak at

/z 133, which seems to be present in almost all factors (closer

xamination of the unbinned spectrum shows that this nomi-
al mass indeed contains multiple peaks with different exact
asses). Assignment of the various peaks in the spectra belong-

a
o
2
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S analyzed PVP spots on PVDF membrane. Only positive scores are possible
d to its maximum (absolute) intensity.

ng to factors 6 and 9 is indicated in Fig. 2. Factor 10 and, to a
esser extent factor 14, show distinct structures. These localized
omponents represent a contamination on the PVDF membrane
hat was introduced when the membrane was attached to the
ubstrate. The inner side of a polyethylene bag was used to
ighten the membrane onto the substrate and factor 10 results
rom erucamide (CH3(CH2)7CH CH(CH2)11CONH2), which
s commonly used as a slip agent for polyethylene. A distinct
M + H]+ peak for erucamide was seen at m/z 338. It is striking
ow well this low-abundant surface component is resolved.

Special attention needs to be paid to the different ways the
ignal from the PVDF membrane is decomposed into various
actors. These factors can be identified by the typical 20 or
8 amu separated peaks due to, respectively, HF and 2F mass
ifference between the fragments. This PVDF-related chemical
omponent is divided into various factors for PARAFAC using
4 or 21 factors, all containing a different combination of PVDF-
pecific peaks. However, for the seven-component analysis, the
ubstrate membrane was only divided into a few components
most of which seemingly represented different height zones,
s can be concluded from a comparison with the PCA analyses
here similar images have height-specific spectra). The division
f this single chemical component into multiple factors is a result
f the orderless factorization, which seeks for a fixed number of
omponents that have no specific order of importance.

Also the cross-sectioned hair was analyzed with PARAFAC.
ecomposition into seven factors gives one factor that is specific

or the embedding medium. All other factors seem to be non-
pecific, suggesting that there are no other chemical components
resent in the analyzed dataset. However when 14 factors are
llowed, a specific spot is resolved, spectrally corresponding to

peak at m/z 39, which results from K+. More close analysis

f the factors showed that also the very low-abundant Na+ (m/z
3) is specifically localized at this position and only present in
his certain factor (Fig. 3). This once more shows the power
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embrane.

f computational analysis as this feature would not be resolved
ithout the use of statistical data analysis.
LDI-ToF microprobe imaging data was analyzed with

ARAFAC. The two known components (phtalocyanine blue
nd phtalocyanine green) were clearly resolved by PARAFAC,
rrespectively, the number of chosen factors (Fig. 4). Phtalocya-
ine blue is seen as M+• ion at m/z 575 and as M2

+ at m/z 1150.
htalocyanine green shows a 35 m/z spaced profile from m/z
127 (M+•) down to 915 ([M − 6Cl]+). Each spacing of approx-
mately 35 m/z represents a chlorine loss. Overestimation of the
umber of factors results in the splitting of single chemical com-
onents into different factors, as can be seen from the 14-factor
nalysis of the LDI-analyzed paint-sample. Factors 3 and 13
phtalocyanine blue), as well as 4 and 14 (phtalocyanine green)
how very similar localization but are nevertheless represented
s different factors. This is not necessarily an artifact from the
igh number of factors, and could as well result from correlation
etween various measured ions within one layer.

Conclusively, PARAFAC was able to extract chemical fea-
ures into single components. However, pre-knowledge is
avorable as it will factorize the data into a certain, user defined,
umber of factors. In essence this number can be made high

nough to surely exceed the number of actual chemical compo-
ents. However, this will lead to the factorization of one actual
omponent into a number of factors, as can be seen from the 14-
actor analysis. This over-factorization cannot always be avoided

c
t
a
a

ponent PARAFAC analysis of +SIMS analyzed PVP droplets spotted on PVDF

s was shown for the extraction of the salt-crystal in the hair
ross-section.

.2. PCA on sparse datasets

PCA was done using an in-house developed toolbox based
n standard library functions in MatLabTM. PCA was done on
he PVP array spotted on PVDF membrane. All decompositions
ere restricted to the first 20 principal components, unless men-

ioned otherwise. This number of PCs was chosen after analysis
f higher PCs, which only yielded non-specific spectra and fea-
ures. The preferred spectral and spatial binning factor should
e chosen dependant on the character of the dataset (which in
urn depends on the measurement circumstances), the type of
ompounds of interest and the intensity of the signal. A trade-
ff has to be made between these parameters and the amount of
emory that is available for the analysis.
A complicating factor of the comparison with PARAFAC is

hat no model information can be used during PCA. Therefore
non-negativity constraint cannot be used, which implies that
ne PC can actually contain two chemical components, if they
re anti-correlated. This means that in a two-phase system, all

hemical information could be contained in a single PC. In
he case of the PVP droplet array on PVDF, this was seen as
combination of a PVP-specific loading vector, together with

n anti-correlated PVDF spectrum because the PVP partially
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Fig. 3. SIMS images of the cross-section of hair embedded in a methacrylate embedding medium. The total ion image (top left) does not give any indication for the
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alt crystal as shown with the images at m/z 23 and m/z 39 (top-middle and -ri
actors from the three investigated methods. The different color maps are chos
ppropriate in the PCA score images because of negative values.

overs the PVDF membrane and therefore absence of PVDF
omes together with presence of PVP. For the cross-sectioned
air, just like with PARAFAC, the only chemical components
hat were resolved was the salt crystal (seen in one of the higher
Cs) and the embedding medium. This implies that PCA is
suitable technique to resolve small features as long as the

hosen number of components is high enough.
The spectral features specific for the Liquitex layered-paint

ample that was measured using LDI, were decomposed into
ore than two principal components by PCA. When 20 PCs
ere chosen, both the phtalocyanine blue and phtalocyanine
reen are found in various PCs, often as anti-correlated features.
his results in PC score-images that give very little localization

Fig. 8a).
The results obtained with PCA using the implementation

or sparse matrixes were compared with PCA as done on
ull matrixes for the PVP droplet-sample. A comparison was
ade by calculating the average of qin = pF

in/p
S
in in which

S
in is the nth sparse-type PC result and pF

in the nth standard
full-matrix) result in the ith spectral dimension. For identical
atasets this would give qin = 1 for any i, n. For datasets that

re not correlated, the variation in values for qin would be very
igh. The average values as well as the standard deviation for
he first 100 PCs are plotted in Fig. 5, together with the first 10
aximum values of |qin| for each n and their average. This plot

P
s
P
r

spectively). The bottom images show the score images of the major resulting
visibility reasons: a “hot” color map as used in the top images would not be

hows the high correspondence of the results of the two PCA
ethods, as can be concluded from the few high values for qin.
his is confirmed by the average of all qin values, which is close

o 1 (only a little bit smaller due to a few qin values that are equal
o zero due to a pF

in = 0; pS
in �= 0 for all i, 1 ≤ n ≤ 100). Larger

tandard deviations are more common at higher PC numbers.
his is explained by the fact that higher PCs represent less
hemical information. This can result in a different PC order
or different computational methods as well as a less-exact
efinition of the PCs by themselves (actually noise is compared
ith noise). Ill-defined PCs result in high values for qin in some

ases. Fig. 5 indeed shows that up to PC12 the two methods
ive identical results, with increasing PC number, this error
lso increases, as well as the variance in the highest 10 values
or qin.

.3. VARIMAX post-processing

VARIMAX rotation was used to enhance the spectral contrast
f the PCs. This axis-rotation results, as expected, in higher con-
rast not only in the spectra, but also in the images. The resulting

Cs do not necessarily correspond with the original PCs. This is
hown for the PVP droplet-array, where the loadings vector of
C3 looks completely different after VARIMAX rotation. The
otation did indeed increase both spectral and image contrast, as
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an be seen from Fig. 6 (before optimization) and Fig. 7 (after
ptimization). Especially, the predominant chemical features

hat were mentioned earlier in the PARAFAC analysis were rep-
esented by single components. After VARIMAX, PC2 contains
nly the PVP-specific spectral features (as negative peaks) with
few anti-correlated components (as positive peaks) whereas
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Fig. 5. The average qin values with their corresponding errors (top), and
of the PARAFAC analysis of a LDI-microprobe imaged stack of Liquitex paint

any other peaks were observed before optimization. The opti-
ized PC6 shows hardly any peaks apart from the Na+ signal at

/z 23 whereas it was hardly resolved before VARIMAX.
The representation of height differences, which is typically

bserved in the PC-spectrum as the combination of both a posi-
ive and a negative peak within the same nominal mass-number

the 10 maximum values for qin as well as their average (bottom).
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Fig. 6. The first 10 principal components as obtained with sparse-type PCA on a droplet array spotted with PVP on a PVDF membrane. The pseudo-colors represent
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caled to its maximum (absolute) intensity.

s concentrated into two PCs (1 and 7) that only contain this type
f peak. The rough PC result showed these peaks in a mixture
ith other peaks (PCs 3 and 7).
VARIMAX done on the cross-sectioned hair did not improve

he chemical contrast. Although image contrast improved, the
pecificity for the observed salt crystal decreased (Fig. 9). Chem-
cal features were resolved in a comparable way as those found
ith PCA. The image contrast was improved and used to identify

he sharp boundaries of various spatial features.
The LDI-ToF PCA results optimized with VARIMAX show

tremendous increase in contrast when compared with the PCA
esults without VARIMAX optimization (Fig. 8b). Although the
wo different paints are found in various PCs, VARIMAX proves
o be a very powerful tool in the optimization of PCA-aided
nalysis of this microprobe LDI dataset, giving phtalocyanine
lue (combined PCs 2, 4, 5 and 19) and phtalocyanine green (PC
)-specific spectral profiles.

.4. Computation time versus results
As mentioned in Section 1, computational power is one of
he main aspects for multivariate data analysis. An estimate
f computation time was made for the studied methods. All
ime-measurements were done on the same computer (single

s

P
r

easons, only the low-mass part of the mass spectrum is shown. Each image is

rocessor 32 bit AMD Athlon, 2.2 GHZ, 1 GB of memory),
sing MatLabTM 7.1 with the N-way toolbox 2.11 [33] and
ARIMAX implementation. Calculations were done in a 32-
it environment. This limits memory allocation (and therefore
he maximum size of the analyzed dataset) to 4 GB. The use of
64-bit environment would circumvent this memory problem

nd therefore make the use of larger datasets possible. How-
ver this would also increase calculation time. The size of the
uantitatively analyzed datasets was chosen such that the total
alculation could be done without the need of virtual memory.
sing virtual memory would dramatically increase the total cal-

ulation time because hard disk access is much slower than RAM
ccess. This would not give a representative measure when the
lgorithms are compared.

Computation time was evaluated for all three datasets men-
ioned earlier (Table 1). Two different datacubes were used for
he ToF-SIMS datasets: one with a large spectral dimension and
ne with a large spatial dimension (datacubes were unfolded
nto x × y by c). The number of components was varied from 7
o 14–21. The LDI-ToF imaging datacube was analyzed at full

patial resolution (7 × 290) and with 1850 spectral variables.

The standard PCA method first calculates the full and exact
C decomposition and then restricts the resulting dataset to the
equested number of components. PCA performed on sparse
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f the mass spectrum is shown. Each image is scaled to its maximum (absolute

atrixes produces an approximation by itself, not giving a full
epresentation of the original datacube, but only resulting in

he requested number of PCs. This difference in methodology
ontributes to the time-reduction that is involved in the use of
parse matrixes. The continuous nature of the LDI data, with
non-zero entry at almost each sampling point resulted in an

s
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able 1
able with an indication of computation time in s using various methods on various s

et Components Dataset size PCA PCA (spa

air 7 300 × 256 × 256 3 3
roplet 7 300 × 256 × 256 3 3
air 14 300 × 256 × 256 3 3
roplet 14 300 × 256 × 256 3 3
air 21 300 × 256 × 256 3 5
roplet 21 300 × 256 × 256 3 4
air 7 5053 × 64 × 64 5 × 102 25
roplet 7 5053 × 64 × 64 5 × 102 20
air 14 5053 × 64 × 64 5 × 102 25
roplet 14 5053 × 64 × 64 5 × 102 20
air 21 5053 × 64 × 64 5 × 102 30
roplet 21 5053 × 64 × 64 5 × 102 20
DI 7 1850 × 290 × 7 30 35
DI 14 1850 × 290 × 7 30 35
DI 21 1850 × 290 × 7 30 35

he VARIMAX processing time is given as the time added to PCA.
by VARIMAX rotational optimization on a droplet array spotted with PVP on
(red) on the principal components. For clarity reasons, only the low-mass part
sity.

ncreased computation time when the sparse matrix format was
sed. This can be explained from the fact that the in-memory

ize is larger for the sparse-type matrix than for the full matrix,
hich inevitably leads to larger processing times.
VARIMAX as a post-processing optimization step after PCA

esults in only a small increase in calculation time. This justifies

amples

rse) PCA + VARIMAX PARAFAC
(× 103)

PARAFAC
(sparse) (× 103)

+0.15 3.5 2
+0.15 12 6.5
+0.25 6 5
+0.25 40 50
+0.35 14 13
+0.35 160 85
+0.2 0.9 1
+0.2 0.7 0.6
+0.3 3.5 3
+0.3 9 8
+0.4 6 4
+0.4 30 27
+0.15 52 55
+0.30 214
+0.40
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Fig. 8. Score images resulting from 20-component PCA (a) and PCA + VARIMAX (b) analysis of a layered structure of Liquitex paint. The size of the area represented
by the images is approximately 1300 �m × 680 �m, the paint layers are overlapping and show up thicker than 100 �m due to the laser spot size of 200 �m.

Fig. 9. Score images (top) and loading vectors (bottom) after analysis of the cross-sectioned hair with PCA (left) and PCA + VARIMAX (right). Each image is scaled
to its maximum (absolute) intensity.
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ig. 10. An alternative representation of the complete hyperspectral datacube o
eries with the 6th PARAFAC factor (c).

he use of VARIMAX after PCA in any case to increase chemical
ontrast in both PC images and spectra, as shown in previous
ections.

PARAFAC is clearly a much more demanding technique.
lthough it turned out to be better at resolving certain features,
t is not suitable for routine use with the current standings of on-
esk computer facilities. It could be very helpful in very complex
ystems or in systems where trace amounts of a certain chemical
omponents are expected. Prior knowledge, which is favorable

o
d
u
f

mbedded hair with an overlay using PC1 (a) and PC13 (b) and the PVP droplet

o make a sensible choice for the number of components to be
ooked for, could be obtained using PCA. Like PCA, PARAFAC
urned out to be faster on sparse matrixes. It should be mentioned
hat the random initialization as used in our PARAFAC calcu-
ations, results in a large variation in calculation time and the

rder of the factors. PARAFAC is a computationally much more
emanding technique because it seeks an exact fit of the data
sing optional constraints, spread over the defined number of
actors.
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.5. Three-dimensional visualizations

The components from the different methods for multivariate
nalysis yield a specific extracted spectral profile with a corre-
ponding spatial view. It is hard to give an interpretation using
nly the individual spectral or spatial component. PCA was able
o extract the location of a feature in the hair, but the spectral
iew revealed that it was caused by a salt-crystal. A combined
iew would directly reveal the connection between both views.
ach pair of extracted scores and loadings can be combined in
ne three-dimensional overview to gain more insight in the cor-
elations between spectral profile and the location. Each value in
he cube is the intensity on a certain position in a spectral plane
nd is given a color using the ‘hot’-color map from MatLabTM.
ecause most values are zero within a MS dataset, the complete
ube would result in an image of a black box. Large parts of
his box can be discarded as they do not contain any interesting
roperties. An opacity map is introduced to hide uninteresting
eatures within the datacube which, in this case, is created with
he extracted components from the multivariate analysis. Instead
f a continuous switch between spectral and spatial view, a com-
lete view of the cube can directly reveal this connection. A
ser is able to interactively rotate the cube and instantly get an
verview of all the data in three dimensions.

The complete hyperspectral datacube of the hair is shown
n Fig. 10a and b. Only the high values in the spectral profile
nd image component of PC1 are made opaque by the opacity
ap. In this way PC1 is highlighted in the original datacube
hich contains mostly the areas and peaks from the hair itself.
he component with the extracted features from the crystal is
hown in Fig. 10b. It clearly shows the relation between the
ighlighted image plane on m/z 39 and the small group of pixels
n the location of the crystal, while other areas of the cube
emain hidden. The significant peak on 39 m/z in the spectral
omponent highlights the complete image plane at this spectral
osition. Similarly, the high intensity of the pixels in the spatial
omponent results in the appearance of a ‘rod’, spanning the
hole spectral dimension of the cube. The number of points
f this feature that are shown can be adjusted by changing the
hreshold in the opacity map.

This representation provides better overall insight in the data
y visualizing the direct correlation between spectral peaks and
patial occurrences. Fig. 10c shows several isolated drops in the
pectral datacube using the sixth PARAFAC factor. The different
omponents or factors can be highlighted together or separately
n the same cube by combining their opacity maps. The resulting
hree-dimensional view becomes more accurate and discrim-
nating when the resulting components from the multivariate
nalysis contain more contrast. This advantage makes it easier
o compare the quality of results from the different multivariate
nalyses.

. Conclusions
We made a comparison between various multivariate statisti-
al methods for the analysis of hyperspectral datasets as acquired
ith ToF-SIMS and LDI-ToF imaging mass spectrometry. Obvi-

R

ass Spectrometry 260 (2007) 222–236 235

usly, the same methods used for LDI-imaging can be used in
ALDI-imaging experiments.
The use of the sparse matrix format allows larger datasets to

e handled and drastically decreases computation time. Memory
roblems are circumvented because zero values are disregarded
hich is a more efficient way of data storage when most values in

he datacube are zero. The sparse matrix format makes the anal-
sis of larger datasets possible and allows them to be analyzed at
igher resolution. No significant difference was found between
he resulting extracted information of the different implemen-
ations for normal and sparse matrixes in specific multivariate
nalytical techniques.

Of the methods compared in this report, PCA turns out to
ffer the best trade-off between results and computation time.
lthough PARAFAC gave a better overall performance, the high

mount of computational power needed, restricts this technique
o the use in specific cases. A sensible choice of the number
f components to be calculated is needed in PARAFAC, as an
xcess number of components dramatically increases computa-
ion time. To make an estimation of the number of components
o be calculated in PARAFAC, pre-knowledge is needed. This

akes the technique less suitable for routine analysis. The appli-
ation of VARIMAX rotation as a post-processing technique
ncreases both chemical and imaging contrast when used after
CA. The almost negligible amount of computation time needed
or this, suggest that is should be used in any case when PCA
s used. However, the original results from the PCA should
till be considered in some cases, especially for small fea-
ures, the chemical specificity may decrease when VARIMAX is
sed. In most cases however, a pseudo-color plot together with
anual analysis of the spectra is sufficient to resolve the dif-

erent chemical components. A three-dimensional presentation
f the complete datacube or selected components, was shown
o be a useful tool for quick insight into a hyperspectral dat-
cube. Although a scientific expert is still needed to analyze the
esulting components, these multivariate statistical methods are
n indispensable tool in the analysis of complex imaging MS
atasets.
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