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Lipid II is an essential cell-wall precursor required for the growth and replication of both 
Gram-positive and Gram-negative bacteria. Compounds that use lipid II to selectively target 
bacterial cells for destruction represent an important class of antibiotics. Clinically, 
vancomycin is the most important example of an antibiotic that operates in this manner. 
Despite being considered the ‘antibiotic drug of last resort’, significant bacterial resistance 
to vancomycin now manifests itself worldwide. In this paper we review recent progress 
made in understanding the lipid II-associated antibacterial characteristics of various 
naturally occurring compounds, with particular focus on the lantibiotic peptides.

Antibiotics revolutionized medicine in the early
20th Century and continue to be a cornerstone
in the battle against infectious disease. The accel-
erated appearance of drug-resistant bacteria over
the past two decades, however, presents a serious
threat to human health and fuels the demand for
the development of new antibiotics. The
sequencing of the first complete bacterial
genome in 1995 heralded a new era of hope for
antibacterial drug discovery. Despite the promise
for genomic approaches, useful antibiotics have
not emerged using these strategies [1]. This has
led to a renewed interest in natural products as a
source for antimicrobials. This review examines
antibiotics derived from natural sources, specifi-
cally compounds belonging to the lantibiotic
family that utilize lipid II in their antibacterial
modes of action.

Bacteria synthesize peptidoglycan, starting
from the common building block, lipid II.
Peptidoglycan is the continuous, covalent,
macromolecular structure that provides the
strength and rigidity to the cell walls of both
Gram-positive and Gram-negative bacteria
(Figure 1). This polymeric network is comprised
of alternating amino sugars, N-acetylgluco-
samine (GlcNAc) and N-acetylmuramic acid
(MurNAc) [2]. These glycan polymer chains are
cross-linked by a pentapeptide, typically with the
sequence L-alanyl-γ-D-glutamyl-diaminopimelyl
(or L-lysyl)-D-alanyl-D-alanine, which is attached
to the MurNAc sugar. The glycosidic linkages in
peptidoglycan are generated by bifunctional high
molecular weight penicillin binding proteins
(PBPs) or monofunctional transglycosylases. Two
of these high molecular weight PBPs have recently
been characterized at the structural level [3,4] and
represent an, as of yet, unexploited target for

antibiotic development. Alternatively, the
enzyme activity responsible for cross-linking the
pentapeptide units in peptidoglycan has histori-
cally been among the most important antibiotic
targets. The penicillins, cephalosporins, carba-
penems and monobactams all operate by
inhibition of the peptidoglycan-cross-linking
transpeptidases [5]. 

As mentioned above, lipid II is the funda-
mental building block from which bacteria
synthesize peptidoglycan. Each lipid II mono-
mer contains the GlcNAc–MurNAc disaccha-
ride and pentapeptide as well as a C55 carbon
chain attached to the disaccharide via a
pyrophosphate linkage (Figure 2). 

The pathway by which lipid II is biosynthe-
sized has been the subject of previous reviews [6,7]

and is here described in brief (Figure 3). Lipid II
assembly occurs on the cytoplasmic side of the bac-
terial cell membrane, where the UDP-MurNAc-
pentapeptide is coupled to the membrane associ-
ated C55 lipid-phosphate by the action of the
membrane protein MraY, to yield the intermedi-
ate lipid I. Addition of a GlcNAc sugar to lipid I
is catalyzed by the membrane-associated enzyme
MurG, providing lipid II. At this stage the intact
lipid II monomer is translocated across the
plasma membrane and is delivered to the peri-
plasmic (exterior) side of the bacterial cell for
incorporation into the growing peptidoglycan
network. While the mechanism by which this
translocation occurs is unknown, recent evidence
has shown that it is not a spontaneous process
and may be coupled to transglycosylation on the
periplasmic cell surface [8]. 

The cell wall of Gram-positive bacteria
contains multiple layers of peptidoglycan (∼20)
while Gram-negative bacteria require a thinner
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cell wall, estimated to be 1.5 layers thick [9].
Despite the need for a continuous supply of
lipid II, there exist approximately only
2000 intact molecules of this essential building
block in a Gram-negative cell at any given time.
This is likely due to the limited amount of
C55 phospholipid (estimated to be
2 × 105 molecules per cell [10,11]) available for
lipid II synthesis inside the cell and transport
across the bacterial membrane. This suggests

that the process by which lipid II is syn-
thesized and incorporated into peptidoglycan
is dynamic with respect to the C55 phopho-
lipid (turnover rate for lipid II incorporation is
estimated to be 1–3 transfers/sec/C55 phos-
pholipid [12]). Given that bacteria rely on a rela-
tively small amount of available lipid II, the
targeted exploitation of this cycle presents a
promising avenue for antibiotic discovery and
development. In the subsequent sections we
describe those antibiotics known to act by inter-
fering with the lipid II cycle, as well as the adap-
tive resistance mechanisms that bacteria have
developed to compensate.

Vancomycin: the pre-eminent 
lipid II-binding antibiotic
The first identified and most studied example of
an antibiotic with a lipid II-specific mode of
action is vancomycin (Figure 4a). Discovered in
1956, vancomycin was isolated from the soil bac-
terium Amycolatpsis orientalis and has been shown
to have a broad spectrum of activity [13].
Vancomycin, and the structurally similar teico-
planin (Figure 4b), belong to the glycopeptide family
of antibiotics and have been approved for human
clinical use. Both contain a nonribosomally
synthesized peptide aglycone as well as a number

Figure 1. Peptidoglycan layer in the bacterial cell wall.
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of associated carbohydrate groups (and a C10 lipid
in the case of teicoplanin). The aglycone of each
contains the unnatural amino acids hydroxyphe-
nylglycine and dihydroxyphenylglycine, the bio-
synthetic details of which have recently been
described [14]. Cyclization of the peptide backbone
was also recently shown to be the result of three
unique enzymatic oxidative couplings [15,16]. The
resulting polycyclic scaffold provides vancomycin
and teicoplanin with a structural rigidity that con-
tributes to their lipid II-binding ability [17–19].
Interaction of vancomycin with the D-Ala–D-Ala
moiety of the lipid II pentapeptide (as illustrated
in Figures 2 & 4a) was first observed using chromato-
graphic, electrophoretic and differential ultraviolet
spectral approaches [20,21], and this was later con-
firmed by nuclear magnetic resonance spectros-
copy [18,22]. These experiments employed small
fragments of the lipid II pentapeptide and recent
investigations using a more representative lipid II
species have suggested that there may be additional
complexity to the interaction [23]. 

As illustrated in Figure 4a, vancomycin binds
to the sequence D-Ala-D-Ala through a specific
network of five hydrogen bonds. By doing so,
vancomycin effectively sequesters lipid II and
prevents its normal incorporation into the
growing peptidoglycan network, which ulti-
mately leads to cell death. In response, certain
bacteria have adapted to this mechanism of
action and are capable of mutating the terminal
D-Ala residue to D-lactate in the lipid II pen-
tapeptide [24]. This mutation greatly reduces the
affinity of vancomycin for lipid II and leads to a
resistant strain [25–27]. In response, drug makers
are now developing new semisynthetic glyco-
peptides including dalbavancin [28], telavancin
[29] and oritavancin [30]. While retaining the
vancomycin aglycone, these second generation
glycopeptides are elaborated with various
hydrophobic groups on the disaccharide moi-
ety, rendering the compounds active against
otherwise resistant organisms. In addition, a
small number of novel, nonribosomal peptide

Figure 3. Lipid II biosynthesis and incorporation into peptidoglycan.
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antibiotics have recently been described, includ-
ing the ramoplanins [31–33], mannopeptimycins
[34,35], plusbacins [36,37] and katanosins [38].
While these compounds have all been described
as lipid II-binding antibiotics [39], they will not
be discussed in further detail here with the
remaining focus of this review being the
lantibiotic class of antibiotics. 

Lantibiotics
In addition to conventional small molecule anti-
biotics, another family of lipid II-targeting anti-
microbial agents, the lantibiotics, is rapidly
gaining recognition. Lantibiotics are small
(2–6 kDa) ribosomally synthesized bacterial
defense peptides that contain extensive post-
translational modifications [40,41]. The discovery
of the first lantibiotic, nisin (Figure 5), in
1928 [42], predates Flemming’s discovery of peni-
cillin and, to date, approximately 50 different
lantibiotics have been identified from approxi-
mately 30 different bacteria. Over the past
20 years there has been an increasing interest in
such compounds as possible preservative agents
for food and as potential supplements or replace-
ments for currently used antibiotics. Many lanti-
biotics show promising activity towards a variety
of pathogenic bacteria including methicillin-
resistant Staphylococcus aureus (MRSA) and

vancomycin-resistant Enterococcus (VRE) [43].
Detailed descriptions pertaining to the activity
spectra and therapeutic potential of lantibiotics
have been previously described [39,44–48].

The lantibiotic peptides can be classified
based upon a number of features including size,
shape, charge and mode of action [40,49] and have
traditionally been subdivided into two major
groups – the type A and B lantibiotics – that
comprise peptides with straight-chain and glob-
ular structures, respectively [50]. Additionally, a
third class, the two-component lantibiotics, is
now gaining recognition wherein two structur-
ally different peptides act synergistically to kill
target bacteria. In the following sections we
describe the progress made in understanding the
biosynthesis and modes of action of the major
subgroups of lantibiotics.

Lantibiotic biosynthesis
Nisin is the most thoroughly studied lantibiotic
and contains a number of unique post-trans-
lational modifications common to all lantibiot-
ics (Figure 5) [51,52]. These include the
dehydration of Ser and Thr residues to dehy-
droalanine (Dha) and dehydrobutyrine (Dhb),
respectively, with subsequent cyclization by
conjugate addition of Cys residues to Dha and
Dhb, generating the thioether cross-links

Figure 4. The glycopeptide antibiotics vancomycin and teicoplanin.

 

(A) Vancomycin and its specific interaction with the D-Ala-D-Ala moiety of the lipid II pentapeptide (nuclear magnetic resonance structure 
determined using N-acetyl-D-Ala-D-Ala as shown). (B) Teicoplanin.
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lanthionine (Lan) and methyllanthionine
(MeLan), respectively. These latter structures
have given lantibiotics their family name [53].
Lantibiotics are ribosomally synthesized as pre-
peptides and then enzymatically modified fol-
lowed by proteolytic removal of a leader
peptide to generate the active species with con-
comitant export from the cell [41]. Recently, the
biosynthetic details of a number of lantibiotics

including nisin have been investigated [54,55].
This work has shown that in the biosynthesis of
nisin, two separate enzymes carry out the dehy-
dration (NisB) and cyclization (NisC) reac-
tions, prior to export and leader peptide
removal by translocase (NisT) and protease
(NisP) enzymes. Analogous enzyme systems
have also been reported for a number of other
lantibiotics [56–59]. 

Figure 5. Biosynthesis of nisin. 

 

The ribosomally produced nisin prepeptide is enzymatically modified to yield the mature lantibiotic containing the unnatural amino acids 
Lan, MeLan, Dha and Dhb. 
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Lantibiotic mode of action
Nisin & the type A lantibiotics
Nisin is comprised of 34 amino acids and at
physiological pH bears a net positive charge
(+4). Of the five lanthionine-based rings in the
peptide core of nisin, the A, B and C rings are
separated from rings D and E by a flexible
‘hinge’ region (residues 20–22). Despite being
the oldest known antibiotic, the precise mode of
action by which nisin operates has only recently
been brought to light. It was initially suggested
that nisin killed bacteria via binding to lipid II in
a manner similar to that described for vanco-
mycin [60,61]. However, unlike vancomycin, nisin
was later shown to cause the rapid outflow of
small cytoplasmic compounds such as amino
acids, ATP or preaccumulated rubidium, as well
as the collapse of vital ion gradients, when
administered to Gram-positive bacteria [50,62].
These results supported a mode of action involv-
ing perturbation of the plasma membrane. Fur-
ther experiments, focusing on the interaction of
the cationic nisin with model membranes con-
taining anionic lipids found in the plasma mem-
brane of Gram-positive bacteria [63–66], led to a
perplexing observation: while the concentration

of nisin required for membrane perturbation in
model experiments was in the micromolar range,
the concentration at which nisin was able to
effectively kill bacteria was in the nanomolar
range. These results were ultimately reconciled
by experiments that showed nisin has a twofold
mode of action whereby it uses lipid II as a
‘docking molecule’ to form pores in bacterial
membranes in a targeted manner and with high
efficiency [67,68]. It has also since been shown that
the pores formed by nisin in membranes con-
taining lipid II are much more stable than pores
formed in the absence of the receptor [69–72].
Furthermore, two independent approaches have
demonstrated that lipid II is a constituent of the
pore complex [73,74], the stoichiometry of which
is four lipid II molecules and eight nisin
molecules (Figure 6) [75].

Recently, NMR investigations have provided
molecular-level insight into the interaction of
nisin with lipid II [76]. This work showed that
nisin has a unique mode of binding to lipid II,
entirely different from glycopeptides (as earlier
indicated in Figure 2). A defined network of five
intermolecular hydrogen bonds between nisin’s
peptide backbone and the pyrophosphate moiety

Figure 6. Model for the target-directed pore-formation mechanism of nisin. 

 

(A) Nisin reaches the bacterial plasma membrane and (B) selectively binds to lipid II. This is then followed by pore formation (C), which 
involves a stable transmembrane orientation of nisin. During or after assembly of four 1:1 (nisin:lipid II) complexes, four additional nisin 
molecules are recruited to form the pore complex. 
Figure reproduced with permission from [39] © (2006) Macmillan Publishers Limited. 
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of lipid II are responsible for the association
(Figure 7). Interestingly, only the first ten N-ter-
minal amino acids, containing lanthionine rings
A and B, contribute to the ‘pyrophosphate cage’
with which nisin binds lipid II. Nisin’s lanthio-
nine rings are critical to its biological activity and
likely provide a pre-ordered structure with a
lower entropic cost upon binding to lipid II [77]. 

The N-terminal A/B lanthionine ring system
of nisin is also maintained in a number of other
lantibiotics, which suggests that these peptides
also interact with lipid II in a similar manner
(Figure 8). The closest relative of nisin, subtilin,
differs at three places in the first eleven residues
of the sequence. However, these three places

are not key positions, and thus the cage
structure remains intact with only the side
chains differing. 

Members of the epidermin family of lanti-
biotics also share the nisin A/B ring system,
suggesting a lipid II-mediated mode of action.
The epidermins are highly potent antibiotics
with MIC values comparable to nisin [78]. How-
ever, these peptides are of insufficient length to
span a bacterial membrane and cannot induce
leakage from model membrane systems in the
presence of lipid II. Recent fluorescence micros-
copy experiments have suggested that the epi-
dermins functions to sequester lipid II in a
unique manner, effectively removing it from the
cell division site (septum) and blocking
peptidogylan synthesis [79].

Mersacidin & the type B lantibiotics
Mersacidin is the most studied of the type B
lantibiotics (Figure 9). While smaller and more
compact in structure, this class of lantibiotic
also targets lipid II and inhibits bacterial cell-
wall synthesis (without pore-formation as for
nisin) [80]. 

The lipid II-binding interaction of mersacidin
is different to that of nisin and includes the ter-
minal GlcNAc sugar [80]. Comparison of mersa-
cidin with similar lantibiotics reveals a conserved
sequence that comprises residues 12–18, suggest-
ing that these residues may form the core
lipid II-binding site. While the measured affinity
of mersacidin for purified lipid II is much lower
than that of nisin [80,81], it remains a potent anti-
biotic indicating that additional factors likely
contribute to its overall antibacterial mode of
action [67,81]. 

Lacticin 3147 & the 
two-component lantibiotics
The two-component lantibiotics are comprised of
two structurally unique peptides that act in syn-
ergy to provide potent antibacterial activity [82,83].
Lacticin 3147-A1/A2 (A1 and A2 referring to the
two peptides) is the best-studied member of this
class and was the first two-component lantibiotic
system to be fully characterized at the structural
level (Figure 10) [84,85]. 

In the case of lacticin 3147, both the A1 and
A2 peptides show modest antibacterial activity
when administered in isolation. When co-
administered however, a synergistic effect is
observed with the resulting antibiotic activity
many-fold greater than the sum of the individual
activities (Figure 11).

Figure 7. Hydrogen-bonding network 
between nisin N-terminal residues and 
lipid II pyrophosphate moiety. 

 

For clarity, only the pyrophosphate moiety of 
lipid II is shown, as a red and blue ball 
representation. Yellow dashes indicate 
intermolecular hydrogen bonds. 
Adapted from published coordinates [76]. 

Figure 8. A/B ring system homology between nisin and 
related lantibiotics. 

 

Red denotes homology between the nisin and epidermin families, green within 
the nisin family and blue within the epidermin family.
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Recent investigations have provided insight into
the lipid II-mediated mode of action for lacticin
3147 and show that when administered together,
the two peptides cause pore formation in bacterial
membranes in a manner reminiscent of nisin [86].
The model proposed involves a sequence of events
in which the A1 peptide of lacticin binds first to
lipid II to generate a binding site for the A2 pep-
tide. The subsequent binding of the A2 peptide
drives the system towards pore formation. 

The apparent rarity of two-component lanti-
biotics is most likely due to the fact that investi-
gators have traditionally been biased towards
looking for single active compounds. With the
identification of four new two-component lanti-
biotics in the past 2 years, seven such systems
have now been documented [87–93], suggesting
that two-component lantibiotics may indeed be
more common than previously realized.

Lantibiotic-resistance mechanisms
Investigations into the acquired bacterial resistance
to lantibiotics have primarily focused on nisin. It
has been shown that many nisin-sensitive Gram-
positive bacteria, including clinically relevant
strains, can acquire nisin resistance upon repeated
exposure to increasing nisin concentrations
[10,44,94,95]. This type of resistance is often lost once
nisin pressure is removed [10] and is more accurately
described as a physiological adaptation, although
the nisin resistance of Streptococcus bovis was
claimed to be stable, resistant cells were rapidly
overgrown by sensitive ones [94]. Unlike vanco-
mycin resistance, this adaptive mechanism does not
involve an alteration of either the structure or

Figure 9. Mersacidin, a type B lantibiotic.
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quantity of lipid II. Rather, lipid II is effectively
‘shielded’ from nisin by a change in the cell-wall
composition [10,94,96–99]. Normally, the cell wall
of a Gram-positive bacterium is highly nega-
tively charged due to the phosphate groups of
teichoic acid, another major component of the
cell wall (Figure 12). 

Teichoic acids are either covalently linked to
the peptidoglycan layer (as in Figure 12), or mem-
brane linked via a lipid anchor. A variety of sub-
stituents can be attached to the negatively charged
phosphoglycerol moiety, one of which is D-ala.
Incorporation of D-ala into teichoic acid reduces

the net negative charge of the cell wall and has
recently been shown to be a major cause of nisin
resistance in strains of S. bovis, Lactococcus lactis
and Bacillus subtilis [94,100,101]. Strains displaying
elevated levels of D-Ala containing teichoic acids
also exhibited an upregulation of the dlt operon
which regulates D-Ala incorporation [101,102].
These results indicate that the main bacterial
adaptation leading to nisin resistance involves an
electrostatic shielding mechanism; incorporation
of positive charges in the cell wall serve to repel
nisin, preventing it from reaching lipid II.

Conclusion
Lantibiotics target lipid II in a variety of ways and
operate with several modes of action. To date, all
lantibiotics tested show promising in vitro activ-
ity against multiple-drug-resistant and vanco-
mycin-resistant strains. Lipid II is a uniquely
prokaryotic biomolecule with no known meta-
bolic role in humans, and as such represents a
promising target for the development of selective
antibiotics with low toxicity. While certain
pharmacokinetic obstacles remain to be fully
addressed, the clinical development of lantibio-
tics may benefit from the information gleaned
from the use of nisin in the food industry as a
preservative, on issues relating to formulation,
conditions of use and stability. Also, with the rap-
idly increasing body of knowledge pertaining to
the structures and of the modes of action of these
peptides, it should be possible to modify lanti-
biotics to circumvent these barriers. The clinical
development of the lipid-II-targeting lantibiotics
is likely to play an important role in future
approaches to dealing with infectious disease.

Figure 11. Complementary activity of lacticin 3147-A1 and -A2 
against Lactococcus lactis subsp. cremoris HP. 

 

The synergy of the peptides is apparent when they are spotted at identical 
concentrations side-by-side. Both peptides form an inhibition zone of 
approximately the same size, and an extra inhibition zone has become visible 
that is clearly resolved from the inhibition zones of the individual peptides. 
Herein, the two peptides have diffused towards each other, and the synergetic 
effect becomes visible. This phenomenon is not observed if the A1 or A2 
peptides are spotted next to themselves alone.

Figure 12. (A) Cell wall-associated teichoic acid structure in nisin-sensitive organisms and (B) D-Ala modified 
teichoic acid with reduced net negative charge as found in nisin-resistant bacteria.
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Executive summary

The expanding role of lipid II as a target for lantibiotics

• This review describes recent progress made in understanding the lipid II-associated antibacterial characteristics of a variety of 
naturally occurring compounds, with particular focus on the lantibiotic peptides.

Lantibiotic mode of action

• There is growing evidence to support a lipid II-associated mode of action by which lantibiotics specifically target bacteria.
• The interaction of nisin with lipid II (recently characterized at the molecular level by nuclear magnetic resonance spectroscopy) 

provides insight into approaches for targeting bacteria that are unique from those employed by conventional antibiotics.

Future perspective

• While pharmacokinetic obstacles remain to be fully addressed, the clinical development of lipid II-targeting lantibiotics is likely to 
play an important role in future approaches to dealing with infectious disease.
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