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In this paper, we describe the way to set up the floppy-box Monte Carlo (FBMC) method [L. Filion,
M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Phys. Rev. Lett. 103, 188302
(2009)] to predict crystal-structure candidates for colloidal particles. The algorithm is explained in
detail to ensure that it can be straightforwardly implemented on the basis of this text. The handling
of hard-particle interactions in the FBMC algorithm is given special attention, as (soft) short-range
and semi-long-range interactions can be treated in an analogous way. We also discuss two types
of algorithms for checking for overlaps between polyhedra, the method of separating axes and a
triangular-tessellation based technique. These can be combined with the FBMC method to enable
crystal-structure prediction for systems composed of highly shape-anisotropic particles. Moreover,
we present the results for the dense crystal structures predicted using the FBMC method for 159
(non)convex faceted particles, on which the findings in [J. de Graaf, R. van Roij, and M. Dijkstra,
Phys. Rev. Lett. 107, 155501 (2011)] were based. Finally, we comment on the process of crystal-
structure prediction itself and the choices that can be made in these simulations. © 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4767529]

. INTRODUCTION

The prediction of crystal structures for atomic, colloidal,
and nanoparticle systems, based solely on knowledge of the
inter-particle interactions, is of primary importance in guid-
ing the development of new materials. This problem has re-
ceived a lot of attention over the past few decades,! but there
still remain many unanswered questions concerning the effi-
cient prediction of crystal structures. Commonly used tech-
niques rely on simulated annealing,>> genetic algorithms,*?>
or Monte Carlo (MC) basin hopping.® However, these meth-
ods do not work well for systems that have a large entropic
contribution to the free energy. Hard-particle systems pose a
particular problem, since the entropy is the only factor that
imposes the crystal structure at a fixed pressure, tempera-
ture, and particle shape. These entropy-driven systems can
in principle be studied using an ergodicity search algorithm’
or a metadynamics method,® but both approaches have their
limitations. Other methods which start with a guess of the
crystal structure (from, e.g., experiments) have also been
used.’

Interest in the subject of crystal-structure prediction has
intensified over the past few years due to the remarkable ad-
vancements made in colloid and nanoparticle synthesis.'®!!
Not only can spherical particles be synthesized with a high
level of precision and reproducibility, but also a wide variety
of convex (faceted) shapes, such as cubes,'?>~'* octahedra,'>~!”
tetrahedra,'®2° and many more.?'~?> Perhaps most remark-
able of all is the level of control that has been attained
over the synthesis of nonconvex, irregular, and even punc-
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tured particles. Branched colloids and nanocrystals, such as
octapod526‘30 and tetrapods,31’32 have been created, as well as
other nonconvex shapes, e.g., nanostars'>3*> and colloidal
caps.’®3% Moreover, there is a better understanding of the way
to achieve phase behaviour that is dominated by entropic con-
tributions in experimental systems.?*+?

To address the problem of crystal-structure prediction at
finite pressures, for systems that are mostly entropy driven,
the method of floppy-box Monte Carlo (FBMC) was recently
introduced.* It is based on Monte Carlo simulations and uses
compression from the fluid to determine candidate structures.
The FBMC technique was used successfully on a wide va-
riety of systems consisting of, for instance: spheres that in-
teract via a combination of hard and attractive pair poten-
tials, binary mixtures of hard spheres, star polymers which
have semi-long-range soft interactions,* as well as direc-
tionally anisotropic pair potentials (i.e., “patchy” particles).*
Truly long-range dipole-dipole interactions, for which Ewald
Sums were employed to determine the total energy of the sys-
tem, were also considered.*> Moreover, the FBMC algorithm
was applied to determine a lower limit to the packing frac-
tion of the densest configuration for highly shape-anisotropic
solids.* Employing the FBMC technique in this way con-
nects the field of materials science with fields as diverse as
discrete geometry, number theory, and computer science.*¢->°
We only briefly go into this here and refer the reader to
Ref. 45 for a discussion of the recent developments in
analysing densest packings. The FBMC technique led to the
discovery of a wide variety of new crystal structures*>4-3!

© 2012 American Institute of Physics
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and it has proven itself to be a remarkably efficient and
robust method. However, to date a fully comprehensive article
describing in detail the implementation of the method has not
been published.

In this paper, we describe the elements required to set
up a FBMC crystal-structure-prediction algorithm, as imple-
mented in Refs. 43 and 45. We assume only basic familiar-
ity with thermodynamics and simulation techniques, such that
this text can be used as a self-explanatory recipe. In Sec. II,
we discuss the components that define a FBMC simulation.
This is followed by an introduction of the MC trial moves
and acceptance rules that we employ in Sec. III. Section IV
presents a way to efficiently check for particle overlaps in the
system, which is based on minimizing the number of periodic
images that have to be taken into account. This, as we will
show in Sec. IV, is a nontrivial problem due to the size of
the box in comparison to the range of the interaction between
the particles. Two types of hard-particle overlap routines are
explained in Sec. V, by which simulations of (nonconvex) ir-
regular faceted particles can be performed. The technique of
lattice reduction, which is essential to prevent unphysical dis-
tortions of the simulation box, is introduced in Sec. VI. We
briefly comment on soft interactions and external fields in
Sec. VII, before we examine the way to use the FBMC al-
gorithm to allow for efficient crystal-structure prediction in
Sec. VIII. In Sec. IX, we discuss the properties of our algo-
rithm and give a brief comparison to other hard-particle algo-
rithms developed to predict dense structures. We also mention
some results for the crystal structures we obtained by apply-
ing the FBMC algorithm (see the supplementary material,>
which contains the structures corresponding to the results in
Ref. 45) in relation to other work in the field. We conclude
with an outlook in Sec. X.

Il. CHARACTERISATION OF THE METHOD

The FBMC algorithm is based on an ordinary MC simu-
lation in the isothermal-isobaric ensemble, i.e., with the num-
ber of particles N, pressure P, and temperature 7 fixed during
the simulation. There are four properties that turn an ordinary
NPT MC simulation into a tool for crystal structure predic-
tion.

(i) The number of particles N is small, typically N < 12.

(i) The three vectors that span the simulation box are al-
lowed to vary independently of each other in both their
length and orientation. This is the origin of the term
floppy box, which was adopted to emphasize that the box
does not have a fixed shape. It is a variable-box-shape
method, which is in common use in computational stud-
ies of colloids.®>* However, by the adjective “floppy-
box” (MC) we refer to the whole of the technique to pre-
dict crystal structures, rather than just the fact that the
box shape is variable. Note that an NPT variable-box-
shape simulation is essentially an isothermal-isotension
simulation,>® for which a special form of the imposed
stress tensor is used. This tensor only has diagonal ele-
ments, which are all the same and are directly propor-
tional to the pressure, i.e., according to the hydrostatic-
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pressure assumption. Hence, we prefer the wording
“isothermal-isobaric” or NPT ensemble.

(iii) To predict crystal structures the NPT part of the simu-
lation is preceded by a compression from a dilute phase
(gas or liquid), which is accomplished by increasing the
pressure to drive the system towards higher densities.

(iv) To effectively predict crystal structures, it is necessary to
perform FBMC simulations for the same system many
times with different random seeds, initial conditions,
compression paths, etc.

The first two properties — that the number of particles is
small and that the box can deform — essentially allow the box
to act as a unit cell for the crystal structures we are interested
in. The periodicity of the boundary conditions, in combination
with the small number of particles, ensures that the end result
is a crystal. Fast and efficient exploration of crystal-structure
candidates is made possible by choosing the method of com-
pression (iii) and the way in which the algorithm is repeatedly
applied (iv).

There is, however, a computational bottleneck that has
to be overcome for any FBMC simulation to obtain such fast
and efficient sampling: determining the number of periodic
images that has to be checked. A particle in the unit cell of a
crystal (simulation box) interacts with its neighbours, which
are its own periodic images in the FBMC method. For in-
stance, a single particle in a cubic unit cell is surrounded by
a layer of 26 neighbours, followed by another layer that con-
tains 98 (secondary) neighbours, etc. If a particle has an in-
teraction range larger than the dimensions of the box, which
is typical for FBMC simulations, it will notice the particles
in one or more adjacent layers. When the particle is trans-
lated or rotated, the interaction between it and all these neigh-
bours/images has to be checked to determine whether the
move is accepted or rejected. Even worse, the number of rel-
evant image layers may have increased when the box is de-
formed. Each additional layer that has to be considered in-
creases the number of interaction computations quadratically,
which quickly leads to unreasonable computational overhead
even for simple interaction potentials.

However, it is often not necessary to check all images in
a layer, e.g., a sphere centred in a cubic box with a diame-
ter slightly larger than the box length can only interact with
6 of the 27 images in the next layer. As we will show, deter-
mining a small, yet sufficient number of images to be taken
into account, is not straightforward in general, especially for
very deformed boxes. In Sec. IV, we explain a procedure to
obtain these images in a fast way. We shall first discuss the
case where there are only pairwise hard-core interactions in
a system of shape-anisotropic particles, before discussing the
particles with soft-interactions.

lll. THE ENSEMBLE AND MONTE CARLO MOVES

We assume that the system of interest consists of N par-
ticles at positions r;, of which the orientation is specified by
orientation vectors (;, where j is an index that runs from 1 to
N. The particles are contained in a box spanned by the three
box vectors v;, with i = 1, 2, 3. In this description, the vertices
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of the box are given with respect to a standard Cartesian coor-
dinate frame and one of them is located at the origin. The set
of rj gives the location of the particles’ centre of rotation, also
with respect to this coordinate frame. The orientation of the
Jjth particle is obtained by applying the rotation matrix gen-
erated by q; to a predetermined initial orientation.” Let the
volume of the jth particle be given by V; > 0. The packing
fraction is then ¢ = (1/V) Zj V;, with V = |v; - (v2 X v3)]
the volume of the system. Each particle has an outscribed
sphere, of which the centre is located at the rotation point r;
and the radius is given by Ro ;. Note that this sphere does
not necessarily satisfy the mathematical definition of the min-
imum outscribed sphere. The radius of the largest outscribed
sphere of all N particles in the system of interest is denoted Ro
= max jRo, ;. Finally, U gives the total energy of the system,
which implicitly depends on the sets v* = {v;}, rV¥ = {r;},
and ¢V = {q;}, i.e, U=UM, r", q"). For a system with
only hard-particle interactions U assumes two values: U
= 0, when there are no overlaps, and BU = oo, when there
are overlaps.

For a FBMC simulation we consider four types of trial
moves to sample phase space: translation and rotation of the
particles and scaling and deformation of the box, see Fig. 1.
These moves must satisfy the acceptance criterion for de-
tailed balance in the NPT ensemble, which is based on the
Metropolis algorithm.>*3* We write the probability of a move
to be accepted as acc(o — n), where “o0” and “n” are the la-
bels for the old and new state, respectively. Translation, rota-
tion, and scaling moves are performed according to Ref. 53,
where we apply Ref. 55 to construct the random perturbation
of the orientations. The acceptance criterion for these moves

o 4 X4
@
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[ @ ©
a4 4
B
(€) ) =
& 4
FIG. : two-dimensional (2D) representation of the 4 types of Monte Carlo
(MC) trial moves that we consider for the floppy-box Monte Carlo (FBMC)

simulations. (a) Translation and rotation of the particles. (b) Uniform scaling
of the box. (¢) Box deformation.
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is given by

acc(o — n) = min (1, exp [ —ﬂ(Un —-U,+ PV, — V(,))

+(N+1)log<%):|>, (1)

where the subscripts indicate the new and old values, P is
the pressure, and V is the volume of the system, as before.
Here, we assume logarithmic steps in V for the scaling moves,
hence the natural logarithm in Eq. (1) is preceded by the factor
(N + 1).53 For the deformation moves, we select one element
of one of the box vectors at random. This element is perturbed
by a small number, which is chosen from a uniform prob-
ability distribution over an interval symmetric around zero.
These moves also satisfy detailed balance for the NPT ensem-
ble, when the acceptance rule

acc(o — n) = min (1, exp [ —B(Uy = U, + P(V, = V)

+ N log <%) }) 2)

is used.’>® It is easy to verify that Eq. (2) holds for this
type of move using properties of the cross- and dot-product to
show that the deformations described above allow for pertur-
bations of the volume that scale linearly with the perturbation
of the box vectors.

We introduced two types of moves that change the vol-
ume of the box — scaling and deformation — because we found
that the combination of the two typically led to faster equili-
bration and exploration of phase space than using deformation
moves only. The scaling moves essentially create space in the
system for deformations to be more readily accepted at high
volume fractions. The order in which we apply these moves is
chosen at random and satisfies the following probability dis-
tribution. For N = 1 particles, we only require deformation
and scaling moves, but sampling is sped up by also allowing
rotation moves. We do not make any assumptions concern-
ing the orientation of the box here. A commonly used choice
for variable-box-shape simulations is to have one of the box
vectors along the x axis, another vector in the positive part of
the xy-plane, and the third in the z > O half space. However,
this choice necessitates the use of rotation moves for N = 1
in order to fully explore phase space. We found that roughly
70% rotation, 15% scaling, and 15% deformation trial moves
yields relatively efficient sampling. For N > 2 we typically
used 35% translation, 35% rotation, 15% scaling, and 15%
deformation trial moves. The ratio assigned to the volume
moves may appear to be somewhat high, when compared to
typical (N > 10) MC simulations, for which they are usually
applied with probability ~1/N <« 1. However, these values
are not unreasonable, since there are only a few particles in
the box and deformation plays an important role in sampling
possible structures.

IV. CONSTRUCTION OF THE IMAGE-LISTS

In the following, we do not make any additional assump-
tions on the composition of the system other than the ones
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specified in Sec. III: mixtures of highly shape-anisotropic par-
ticles are allowed. When there are only hard-particle interac-
tions in the system, the acceptance criteria of Egs. (1) and (2)
are substantially simplified. Translation and rotation moves
are always accepted when they do not result in overlaps. How-
ever, as explained before, checking for overlaps in even the
simplest of systems can be time consuming due to the strong
influence of periodicity. For scaling and deformation moves it
is even more expensive, since the minimum number of pe-
riodic images that has to be taken into account also needs
to be redetermined. Hence, we first verify that such a move
is not rejected on the basis of the pressure/volume part of
acc(o — n) [Egs. (1) and (2)] before checking for overlaps.
It is also convenient to use the packing fraction ¢ as an early
out at high densities, since ¢ < 1 must always hold.

In order to check for overlaps, as well as perform the var-
ious moves, it is convenient to introduce a set of scaled co-
ordinates in analogy to the procedure outlined in Ref. 53. Let
s; €0, 1)3, withj =1, ..., N an index, denote the scaled po-
sition coordinates of the particles. There is a bijective func-
tion that relates these scaled coordinates to the real-space
positions of the particles in the box, i.e., M : [0, 1)} — R3,
r; = Ms;. Here, M is the matrix generated by the box vectors:
M = (vyv,v3), where it is understood that the box vectors are
the columns of the matrix. This function is bijective when the
volume of the box V > 0, since this implies that det(M) # 0.
The scaled coordinate frame allows us to determine the num-
ber of periodic images of the box that we need to check for
overlaps in order to confirm that there are no overlaps in the
entire system. Here, we use the fact that checking for overlaps
in the entire system is equivalent to checking for overlaps be-
tween a particle in the box and

(i) another particle in the box,
(i1) its own periodic images, and
(iii) other particles’ periodic images,

for all particles in the box. It is efficient to first carry out
step (i) for all particles, making sure not to double check,
then step (ii) for all particles, and finally step (iii). For N
= 1 the algorithm reduces to step (ii). It is computationally
favourable to only check for overlaps between a particle and
a minimum number of periodic images. However, obtaining
this minimum number of images should not go at the expense
of the overall speed of the algorithm, since volume changes
occur frequently. Hence, we construct the lists of images as
follows.

Recall that the largest outscribed-sphere radius is given
by Ro. When any two particles/images are a distance of 2R
apart, they do not overlap. However, it is difficult to determine
how many layers of images we need to take into account in
each direction such that every image-point inside this sphere
is considered. We first present the calculation of the number
of “self-images” [for step (ii)]; the other case [step (iii)] for
which a second image list is required, will be addressed af-
terwards. We may assume, without loss of generality, that the
particle in the box is located in the origin. We pick a plane
that goes through the origin and that is orthogonal to the vec-
tor v; + v, + v3, to bisect the sphere of radius 2R, see Fig.
2(a). By choosing the plane orthogonal to the sum of the box
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FIG. 2. The construction of the self-image list in two dimensions; the three-
dimensional (3D) case is analogous. (a) The simulation box (black parallelo-
gram), the particle’s position (blue dot), the coordinate frame (grey lines), the
periodic images (dashed black lines), the outscribed circle of radius Ro (solid
magenta), and double-radius circle (dashed magenta). The solid red line in-
dicates the point-symmetry axis: all images relevant for the overlap check
are indicated with green dots. An axis-aligned cyan square envelops the 2Ro
circle. (b) In the scaled coordinate frame a bounding rectangle [Ny, Ni]
X [—=Na2, Nz] (dashed red line) can be constructed. (c) The red bounding rect-
angle can be mapped back to the original frame and gives an upper bound to
the number of images that have to be checked in each direction.

vectors we can (usually) avoid it intersecting image points.
We only consider images that are on one side of the plane or
that lie in it. This is justified because of point-symmetry as
can be easily understood by considering Fig. 2(a). Take any
one of the green points in Fig. 2(a) and mirror it in the ori-
gin. This image interacts with the particle at the origin in the
same way as the particle at the origin interacts with the image
located at the original (green) point, because the orientation
of all images is the same. That is to say, the periodicity al-
lows us to translate the entire crystal by the distance vector
between the two points and this translated structure coincides
with the original. Hence, we have to check only one of the
two point-symmetric possibilities.

A sufficiently large list of self-images is constructed by
considering a cube with vertices ¢, = 2R (£X £+ y £ Z) with
n=1,...,8and X, y, and Z the Cartesian unit vectors. This
cube envelops the sphere at the origin with radius 2Rg, see
Fig. 2(a). By applying the inverse matrix M~! to the eight ¢,
vertices of the cube, we obtain eight vertices that span a par-
allelepiped (Fig. 2(b)), say p, = M~'¢,. Using the vertices
P the upper bounds to the number of images that need to be
checked in each direction can be constructed

Nl = |—m’?-x (pn : xA)—|’
N = Tmax (p, - $)T: 3)
N3 = [max (p, 21,
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respectively, where [ - | indicates the ceiling function, i.e., [x]
is the smallest integer larger than x. Since the parallelepiped
is symmetric around the origin, the positions of the relevant
images in the scaled coordinate frame are located in the rect-
angle [—N;, Ni] x [—Nz, N2] x [—N3, N3] (Fig. 2(b)). For
images that fall outside of this rectangle we can be certain
that they do not overlap with the particle at the origin. Us-
ing the matrix M, we may now establish the equivalent set
of images in the regular coordinate frame P, = {iv| + jv»
+ kvs}, with i = —Njy, ... N3 j=—N,, ..., Ny; k= —N;3,
....N3;and i+ j+ k # 0, see Fig. 2(c).

The list Pj,, can contain many elements which are irrel-
evant to the overlap check — i.e., points which fall outside
of the halfsphere with radius 2Rp — when the box becomes
strongly deformed or the particle has an “odd” shape. We em-
ploy the following steps to remove these images. Using the
dot-product of a vector in Pj, with the normal of the point-
symmetry plane, we can efficiently eliminate all images that
are not on the right side of this sphere-bisecting plane. Points
that have a distance to the origin greater than 2R are also re-
moved from the list by simply calculating the length of the
position vector. Inscribed-sphere checks between the parti-
cle at the origin and a particle at a lattice-site in the reduced
set of images P,y are used to confirm that there are no situa-
tions where two particles clearly overlap, before switching to
a more computationally expensive overlap algorithm. Here we
employ a “concentric approach” to check for overlaps. That
is, we first consider all images for which [i| + |j| + k| = 1,
followed by the set of images for which |i| + |j| + |k| = 2, etc.
If there are overlaps it is far more likely that they are encoun-
tered close to the original particle, rather than further away. If
there are no overlaps detected in the entire system — having
checked steps (i), (ii), and (iii) — the reduced list is accepted
and can be used to check for overlaps until an attempted vol-
ume move (scaling or deformation) requires a new self-image
list to be constructed.

Checking for overlaps between a particle in the box and
another particle’s images [step (iii)] is a simple matter of ex-
tending the above reduced self-image list. We add 1 layer of
images in the positive v; directions to the set P... It is eas-
ily understood that it is sufficient to check up to this range
in periodic images. The list Py, already contained all relevant
image points with a distance 2Rp and the distance added by
considering two particles in the box is at most one box length
in each v; direction. The fact that the problem is no longer
point symmetric is overcome by checking one particle with
another particle’s images and vice versa.

V. HARD-PARTICLE OVERLAP ALGORITHMS

In this section, we briefly discuss two hard-particle over-
lap algorithms, the method of separating axes and a triangular-
tessellation-based technique, which can be used in combina-
tion with the FBMC technique to study crystal structures for
faceted (nonconvex) particles. These algorithms were recently
employed to great effect in Refs. 28 and 45. The two routines
are predominantly used in computer-game and engineering
applications.’’° However, such methods have gained popu-
larity in the physics and mathematics communities and show
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great promise for future studies, especially with the emer-
gence of the graphics card as a powerful platform for particle
simulations and image processing.®®-%> Moreover, there has
been a marked increase in the ability to synthesize a stunning
array of faceted (nonconvex) particles,'>26:27:31-35 a5 well as
a large improvement in the level of control with which such
particles can be prepared.”® This has led to particular inter-
est from the materials science community in these overlap al-
gorithms to perform simulations on nanoparticle and colloid
systems.“‘71

A. The method of separating axes

The method of separating axes is an overlap algorithm
that can be applied to convex particles. This technique is
based on the (Hahn-Banach) separating-hyperplane theorem
for convex sets in Euclidean space.”> The theorem implies
that for two disjoint convex sets there exists a plane between
these sets that does not intersect either. That is, one of the
particles is in one of the halfspaces defined by the separating
plane and the other particle is in the opposite halfspace, re-
spectively. Any axis orthogonal to the separating plane is re-
ferred to as a separating axis, because orthogonal projections
of the convex sets onto this axis are disjoint, also see Fig. 3.
Therefore, the problem of determining if two objects overlap
can be reduced to finding a separating axis: if there is such
an axis, the objects do not overlap; if there is no such axis,
they do. The procedure to find a separating axis for two ar-
bitrary convex particles cannot be performed in a finite time,
since an infinite number of directions may result in a possible
separating axis. However, it can be shown that for two convex
three-dimensional (3D) polyhedra, only a finite number of di-
rections has to be checked.’”” This makes it possible to turn the
separating-hyperplane theorem into an efficient algorithm.

Only the set of vectors normal to the faces of the two
polyhedra and the set of vectors generated by cross-products
between two edges, one from each polyhedron, have to be

FIG. 3. A 2D representation of method of separating axes. We consider two
disjoint convex polygons. The dashed vertical line indicates a possible sep-
arating plane for these particles, and the solid horizontal line an associated
separating axis. Note that the projection of the particles on the separating
axis results in disjoint domains, as indicated by the arrows and line segments.
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checked for separation. The way in which to perform such
checks efficiently is described in great detail for 3D poly-
hedral particles, as well as for two-dimensional (2D) poly-
gons, in Ref. 73. One minor addition to the overlap routine of
Ref. 73 should be made, when applying it in a FBMC simu-
lation close to the maximum packing fraction. At these high
densities it is possible that two particles come together in such
a way that the cross-product of two of their respective edges
becomes very small. This leads to numerical instabilities in
the algorithm proposed in Ref. 73. Such instabilities can re-
sult in a separating axis being identified, despite the parti-
cles interpenetrating. We found that normalizing the cross-
product vector eliminates the problem for all the systems we
considered.

B. Triangular-tessellation-based overlap algorithms

The method of separating axes described above has the
advantage that it is very easy to implement, can be applied
without modification to a wide class of particles, and is also
computationally efficient. However, due to the algorithm’s de-
pendence on the separating-hyperplane theorem it cannot be
extended to handle nonconvex particles.

Checking for overlaps between nonconvex particles can
be made possible by approximating the shape of a particle
with a collection of spheres or rods.”®7#7"8 The respective
overlap algorithms are simple and efficient enough to jus-
tify the use of spheres and rods as building blocks for larger
objects. Such approximations give exact results is the case
of, e.g., dumbbells, which consist of two interpenetrating
spheres. However, a prohibitive number of spheres or rods
may be required to give a decent approximation, especially
when an object contains both drastic changes in curvature and
large flat parts. Only recently were the first attempts made
to study systems that contain relatively complex curved par-
ticles. Nonconvex shapes with sharp edges and smooth sur-
faces, such as superdisks,” bowls,%’ and curved triangles,”!
have also come under investigation. For bowls®® an over-
lap algorithm was devised unique to this shape. Moreover,
Ref. 81 introduced a general method to handle collision
detection for smooth (nonconvex) objects in molecular dy-
namics simulations. Unfortunately, none of the above meth-
ods are particularly suited to study nonconvex faceted
particles.

Simple nonconvex polyhedral (faceted) particles may be
broken up into convex constituents, for which the method
of separating axes can be employed. However, an alternative
to this type of partitioning exists, which is better suited to
study more complex faceted shapes. In computer-game and
engineering applications, the surface of the objects is usually
defined by a polygonal mesh.”’ Two particles overlap when
there is an intersection between a pair of polygons in the re-
spective meshes. Such intersections are easily determined on
a polygon-by-polygon basis, because of a polygon’s simple
shape, which also makes polygons ideally suited to describe
objects. The algorithms employed to search for overlaps are
often specifically designed to handle highly irregular objects
and are typically very general in their setup. Moreover, they
can usually be straightforwardly implemented, and a lot of
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effort has been put into their optimization. An example of
such optimization is the use of an oriented-bounding-box-tree
(OBB-tree)®? for high-polygon models. An OBB-tree essen-
tially breaks up the model into smaller pieces in a very effi-
cient way. The tree allows the polygon-based overlap routine
to be applied solely to parts of the model that are in close
proximity.

Due to our familiarity with approximating the surface of
an object with triangles, so-called triangular tessellation, also
see Refs. 83 and 84, we decided to base our overlap algo-
rithm for nonconvex hard particles on the Robust and Accu-
rate Polygon Interference Detection (RAPID) library.’’ The
RAPID library is designed specifically to quickly determine
if there are triangle intersections; it employs an OBB-tree for
larger objects and is easy to set up. See Refs. 58 and 59 for
some alternative overlap-detection libraries. The procedure of
performing an overlap check is as follows. Particles are tes-
sellated with triangles, according to the method of Ref. 83,
to generate simulation models. This triangular tessellation is
exact for polyhedral particles, i.e., the shape is approximated
perfectly. These models are passed to the RAPID library. To
perform an overlap check we only need to input two posi-
tion vectors and two rotation matrices in the relevant RAPID
subroutine. This subroutine returns a Boolean value that spec-
ifies whether there are triangle intersections or not. We found
RAPID to be extremely stable, even for FBMC simulations
in the high-pressure dense-packed limit, where the numerical
stability of any algorithm is put to the test. Unlike the method
of separating axes inclusions may occur, when there is a sub-
stantial size difference between particles, since the triangular-
tessellation-based algorithm only considers the surface area
of a particle. We can use an inscribed-sphere check to reject
trial moves that result in an inclusion. The RAPID algorithm
also allows for interior and even disconnected triangles to be
added to a model®’ that can be used to further prevent inclu-
sions, when the gap between a particle and its inscribed sphere
is too wide.

VI. UNPHYSICAL DISTORTIONS AND
LATTICE REDUCTION

In the above discussion, we did not take into considera-
tion that by allowing the box to deform, especially when com-
pressing from a dilute phase, it may become very distorted.
That is to say, the box can become very flat or elongated, when
the angles between the lattice vectors become large or small.
This slows down our algorithm, since an enormous number of
periodic images needs to be taken into account in order to de-
termine whether a move is accepted or not. Moreover, it can
be difficult to determine whether two states actually have the
same structure if one or both of the simulation boxes is/are
heavily distorted. To improve the efficiency and to facilitate
recognition of the structures that the FBMC algorithm pro-
duces, we require lattice reduction.

Lattice reduction is the process by which a set of basis
vectors for a lattice is replaced by an equivalent set of basis
vectors, which are shorter and more orthogonal. That is to say
the surface-to-volume ratio of the box is minimized. In Ref. 4,
an algorithm is proposed to accomplish this lattice reduction
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in a 3D system. We modify this algorithm as follows. We mea-
sure the distortion of the simulation box using the function

1
C(vi,v2,V3) = 5 (vil + [va] + [v3])

(Ivi x vao| + [v1 x V3| + |v2 X v3])
. “4)

Vi - (V2 X V3)

with | - | the vector norm. This function is obtained by multi-
plying the average box-vector length with the size of the box’s
surface, dividing by the total volume of the box, and normal-
izing this quantity such that C = 1 for a cube. It can be shown
that C > 1, when the box is not cubic. We empirically estab-
lished a criterion for lattice reduction: if C < 1.5 the box is
sufficiently orthorhombic and we do not perform lattice re-
duction; this number may be tweaked to better suit a partic-
ular system. When C > 1.5, we follow Ref. 4 and generate a
set of 12 lattice combinations

{vi £ vo, va, v3}, {vi £v3, v, v3},
{vi,va vy, v3}, {vi, va £v3, v3}, (5)
{vi, v, va £ vi}, {vi, va, v3 £ vy},

We calculate the surface area for each of these potentially
more orthorhombic boxes and select the one with the smallest
surface area. For this new box, another set of 12 combina-
tions is constructed according to Eq. (5) and the procedure is
repeated. This process is terminated when the smallest sur-
face area among these 12 candidates is greater than the sur-
face area of the box in the previous iteration. See Fig. 4 for an
illustration of the procedure.

Full lattice reduction is always accomplished within a
finite number of steps, but it is prudent to impose a cutoff
at roughly 10 iterations. We found that the algorithm con-
verges quickly, typically taking no more than 3-5 iterations,
for boxes with 1.5 < C < 10. When the fully lattice-reduced
box is found the particles are placed back in the box. Note that
the number of particles in the box is preserved under lattice
reduction. In addition to lattice reduction, one can also imple-

00 -
oo oo

FIG. 4. Illustration of the lattice-reduction procedure. A 2D binary crystal
of disks is shown, as well as three possible unit cells for this crystal. From
top to bottom the lattice vectors of the unit cells become more orthogonal and
shorter. The lattice vector that is modified is shown in grey. The one by which
it is reduced, is indicated using a dashed grey arrow. The lattice-reduced unit
cell has a square geometry.

uononpay aome
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ment a simple constraint on the angles that the box vectors can
make with each other, see Ref. 43. However, we did not im-
plement this constraint to predict the crystal structures for the
hard faceted particles as the lattice-reduction procedure effi-
ciently removes any unwanted box deformations. Moreover,
an angular constraint might bias the simulation for particles
that have a highly anisotropic shape.

VIl. SOFT INTERACTIONS AND EXTERNAL FIELDS

Hard-particle FBMC simulations, for which a suitable
overlap routine is chosen, can be performed using the above
combination of acceptance criteria, image-list generation, and
lattice reduction. Introducing soft interactions into the sys-
tem requires extending the above approach as follows. The
method of truncation and tail correction described in Ref. 53
is employed to determine the contribution to the system’s to-
tal energy for short-range and semi-long-range interaction po-
tentials. That is, soft interactions which decay faster than r3,
with r the inter-particle distance. Here we assume a radially
symmetric cut-off distance of R¢, which allows us to construct
similar image lists as for the hard-particle interaction. A ver-
sion of the FBMC method was also successfully applied to
systems with long-range interaction potentials,** for which
Ewald Sums®>%3 are required to compute the energy contri-
bution. Interaction with an external field can also be easily
introduced, since such a term only couples to the particles in
the box in the expression for the total energy. It depends on
the specifics of the system whether it is advantageous to first
consider acceptance of the scaling and deformation moves on
the hard-particle part of acc(o — n) or on the soft-interaction
part. Of course, additional constraints on the box vectors will
have to be introduced, because the external field is either pe-
riodic in the direction(s) the field varies, or the system has a
fixed, finite extent in one or more directions.

Vill. COMPRESSION AND CRYSTAL STRUCTURE
PREDICTION

In order to predict crystal structures, we apply the fol-
lowing procedure to a wide variety of systems including sys-
tems with various types of interactions, i.e., hard particles,
anisotropic particles, and particles which interact via long-
range potentials. See Sec. IX and Refs. 45 and 51 for some
examples. Systems are prepared in a dilute phase by insert-
ing the particles randomly while avoiding overlaps until the
desired particle number is achieved. Next, the system is equi-
librated at a low pressure. What constitutes a “low pressure”
is strongly dependent on the system, but can easily be ascer-
tained by a few trial runs. In order to obtain the pressure P
of interest, the initial pressure is increased over a number of
Monte Carlo cycles, where one cycle is understood to be one
(translation, rotation, volume) trial move per particle. A slow
increase of the pressure, for instance, according to a geomet-
ric series of pressure steps, can be applied to allow the system
to sample more ways in which to “crystallize,” in the hope
that it chooses the optimal structure. If a slow increase of the
pressure is used, we typically find that the FBMC simulation
only has to be performed a small number of times in order to
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obtain a good understanding of the possible crystal structures
that can be found at the pressure of interest, say 25-100 com-
pression runs. It is also possible to compress the system by
rapidly increasing the pressure. In this case, effective sam-
pling of crystal structures usually necessitates a larger set of
compression runs than for the slower pressure increase, since
there is less time for the system to explore different configu-
rations before it becomes jammed in a (local) minimum of the
crystal-structure free energy. Both slow and fast compression
runs should be followed by a period of equilibration at the
desired pressure to allow the system to settle in its (locally)
optimal structure. When the fluctuations in the system are rel-
atively large, it can be useful to follow this equilibration with
a production run during which, for instance, the lattice vec-
tors, particle positions, and particle orientations are averaged
to obtain a representative crystal-structure candidate.

Increasing and decreasing the pressure several times
around the P value of interest can prove useful in helping
the system to cross free-energy barriers, thereby improving
the chance of finding the global minimum in the free en-
ergy. Allowing the MC step size to adjust to predetermined
acceptance ratios during the compression and equilibration
part of the simulation also improves the results of the FBMC
algorithm. We typically employ an acceptance ratio of 25%
for translations and rotations, and a ratio of 10% for scaling
and deformation moves. The set of crystal-structure candi-
dates, that is obtained by slow and/or fast compression, can
be analysed using a combination of software packages®® and
manually going through crystal-structure databases.®”-¥ For a
binary mixture of hard spheres this approach allowed the
crystal structures of the candidates to be determined.*> How-
ever, establishing the structure of a numerically obtained re-
sult is highly nontrivial in general. Moreover, a description
of a system by the atomic equivalent of the lattice on which
the particles’ centres of rotation reside,*>%% %88 is not always
adequate for nonspherical particles, because of the strong rel-
evance of the orientation of the particles.”” Finally, we note
that the frequency with which structures are observed in the
FBMC runs can give some insight into which of the structures
we find is stable,*’ but only free-energy calculations can give
a definitive answer.

IX. CLOSE-PACKED CRYSTAL STRUCTURES
FOR ANISOTROPIC PARTICLES

To demonstrate the strength of the FBMC method in
combination with a triangular-tesselation-based overlap rou-
tine, we used our algorithm to determine the densest pack-
ing crystal structures for 142 convex faceted particles and
17 nonconvex faceted shapes. In particular, we studied the
close packing of the 5 Platonic solids, the 13 Archimedean
solids, the 13 Catalan solids, the 92 Johnson solids, 7 regular
prisms, 7 regular antiprisms, 11 nonconvex polyhedra, and 11
(non)convex miscellaneous shapes. The miscellaneous shapes
included 4 nonconvex colloidal models: a cap, nanostar, octa-
pod, and tetrapod. In Ref. 45, we presented and analysed the
highest packing fraction we found for each of these particles.
Here, we present the complete unit cells associated with the
closed-packed crystal structures that we obtained along with
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the packing data. This includes the particle models we studied
and configurations files required to — and detailed instructions
on how to — construct the densest packing structures that we
obtained. Figure 5 shows an example of what is to be found
in the supplementary material.>?

The best packings we found for the 5 Platonic
solids and 13 Archimedean solids agreed excellently with
literature,*3-3-:65.:89.90 yie]ding results within 0.002 of the liter-
ature value. For the truncated tetrahedra, we discovered a new
crystal structure which improved upon the literature value
of the densest packing. Subsequent numerical and analytic
studies®°! showed that this value could be further improved
upon.

For many of the other structures we studied, no previ-
ous best packings were known and so the crystal structures
presented in the supplementary material®> represent the first
candidate densest packings for these shapes to date. In a re-
cent publication, Damasceno et al.® examined the assembly
of many of the same (convex) particle shapes from a dense
fluid using Monte Carlo simulations of approximately 2000
particles. A large portion of the particle shapes they stud-
ied did not crystallize, particularly the Johnson solids. Oth-
ers formed liquid crystal and plastic crystal phases. A more
complete description of the equilibrium phase behaviour of
these particles could be constructed by combining the phases
they predict (crystalline, liquid crystal, or plastic crystalline)
together with our best packed results. Our results can be
used to determine the crystal branch(es) for the equation of
state to a particular polyhedron, which in turn is required to
calculate the free energy of these phases, and drawing the re-
sulting phase diagram.

We note that the FBMC algorithm can only be used to
establish a lower bound to the packing fraction of the densest
configuration of shape-anisotropic (nonconvex) objects. Cur-
rently, several other techniques exist to estimate this lower
bound numerically.*63:65:68.71.89.92.93 The FBMC method
is similar to the adaptive-shrinking-cell (ASC) method of
Refs. 63 and 89, since both allow for a sequential search
of configurational space and lattice space using a Metropo-
lis based MC procedure. However, FBMC uses a lattice-
reduction technique” to avoid unwanted distortions of the unit
cell, unlike the ASC algorithm. In addition, FBMC drives
the systems towards its densest configuration by employing
a (gradual) pressure increase according to a NPT-MC simu-
lation, whereas ASC drives compression using the negative
packing fraction as the basis of its Metropolis acceptance
rule. The method used in Refs. 65 and 68, likely amounts
to a different implementation of the principles that underlie
the FBMC algorithm, whereas the techniques of Refs. 92-94
constitute a completely different means of determining dens-
est packings. The method of Refs. 92 and 93 is based on
a divide-and-conquer approach to achieve simultaneous sat-
isfaction of multiple constraint equations. The approach of
Ref. 94 is based on a penalty technique. It goes beyond the
scope of this paper to determine which of these techniques is
most suited to achieve densest-packed structures.

Of the aforementioned crystal-structure prediction algo-
rithms FBMC has the advantage that it can be used to ex-
plore suboptimal packings in accordance with the statistical
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PAO04: Tetrapod

Model Parameters (d)
Model file: Tetrapod.ply
Sphericity: 0.20303
Centrosymmetric (C/NC): NC
Upper bound to the maximum packing fraction (MPF): 1.00000
Outscribed-sphere lower bound to the MPF: 0.04864
Oriented-bounding-box lower bound to the MPF: 0.10628

Unit Cell Parameters (e)
Number of particles: 2
Maximum packing fraction (MPF): 0.59207
Particles form a centrosymmetric compound (y/n/-): y

Lattice Vectors:

Particles in unit cell: (f)

v1 = {1.200440, —0.000000, 0.000000}
v2 = {-0.336253, 2.503690, —0.000000}
v3 = {—0.138403, 0.486549, 1.123920}

Index T y z

Rotation Matrix

1 0.564118 1.961490 0.292156 (0.912837

0.287425 —0.949803  0.123536
0.232588  —0.335607
0.209230  0.933867

0.290027
—0.290561

0.948728

2 0.123058  0.297707  0.025395 (—0.289587 —0.211160 —0.933569

—0.911983 —0.235217

—0.124458 )

0.336094

FIG. 5. Close-packed result for a tetrapod: (a) model of a tetrapod, (b) unit cell, (c) eight replicas of the unit cell, which demonstrate what the crystal looks like,
(d) model parameters including the name of the model .ply file, the sphericity of the model, the centrosymmetry of the model, as well as the associated upper
and lower bounds to the packing fraction, (e) unit cell parameters including the number of particles in the unit cell, the maximum packing fraction that this
lattice achieves, the formation of a centrosymmetric compound, and the vectors which describe the unit cell, () the basis particles, their location with respect
to the origin and rotation with respect to the orientation in the .ply file. Further information on the various parameters and a page like this for each particle we

studied can be found in the supplemental material.>>

NPT-ensemble at finite pressures. This is particularly relevant,
since densest-packed candidate crystal structure need not be
thermodynamically stable at all pressures for which the sys-
tem crystallizes.?® 31696795 It is important to realize that there
are strong finite-size effects for the prediction of candidates
at finite pressure. The pressure P at which we perform the
FBMC simulations only sets a range from which we sample
crystal structures. Large fluctuations in PV /kgT, where P is
the pressure, V is the volume, kg is Boltzmann’s constant,
and T is the temperature, are to be expected in general due
to the small number of particles considered. The advantage
of these density fluctuations is that they allow the system to
sample many different states at a single pressure. However,
the presence of large fluctuations likely prevents phases with
a small pressure range of stability to be discovered using our
method. Some of these phases, in particular liquid crystals,

may be found by melting, or by crystallizing a fluid.* Due
to the level of fluctuations that is expected, the FBMC algo-
rithm allows some flexibility in the precision to which soft-
interaction terms are taken into account. For example, it is
possible to ignore small cut-off corrections without incurring
a large error, since this type of correction can be absorbed as a
(small) pressure change in the acceptance rules. In this sense
the FBMC technique is quite robust, but by the same token it
is not a priori capable of attaining a high degree of accuracy
at finite pressures.

Finally, we would like to comment on the possible use
of the overlap algorithm described in Secs. II-VIII in an-
alytic studies. Our methods have thus far been applied in
a numerical context. However, using a potentially densest
crystal structure that was obtained by the FBMC algorithm,
a set of constrained (analytic) equations can be set up that
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specify the overlaps between particles and possible ways
in which they are allowed to move. The image-list and
triangular-tessellation approach can be employed to mini-
mize the number of equations that have to be simultaneously
solved. This set of equations can be subsequently subjected
to constrained optimization around the numerically predicted
structure to determine the analytic densest packing for that
particular dense crystal. As previously mentioned, similar ap-
proaches have been applied for tetrahedra®*" and truncated
tetrahedra.?®°! However, it is also possible that the numerical
results are of sufficient quality to “guess” the analytic solu-
tions which maximizes the density and verify that this struc-
ture does not give overlaps using an analytic form of our over-
lap techniques. We used this approach for rhombicuboctahe-
dra and rhombic enneacontrahedra in Ref. 45 to prove that we
obtained the densest structure for these particles.

X. SUMMARY AND OUTLOOK

Summarizing, we described in detail the way in which
a FBMC simulation,*> which allows for the prediction of
crystal-structure candidates at finite pressure, can be set up.
We also discussed two types of overlap algorithm, the method
of separating axes and a triangular-tessellation based tech-
nique, by which hard-particle simulations for (nonconvex)
faceted objects can be performed. When these overlap rou-
tines are combined with the FBMC algorithm, a powerful
simulation technique is obtained with many applications to
colloid research, as well as mathematical problems of a more
fundamental nature.

The ability of the technique to predict the structure of
low density phases, such as plastic-crystal (rotator) phases,
has to be investigated further in the near future. Moreover,
the analytic applications of the overlap algorithm described in
this paper require further study. It is our hope that our method
may eventually be used to prove some of the conjectures that
have been proposed for the properties of the dense packings
of polyhedra, e.g., Ulam’s conjecture”® and the conjectures
proposed by Torquato and Jiao in their recent paper.”’
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