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Polarons in extremely polarized Fermi gases: The strongly interacting SLi-**K mixture
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We study the extremely polarized two-component Fermi gas with a mass imbalance in the strongly interacting
regime. Specifically we focus on the experimentally available mixture of °Li and “°K atoms. In this regime
spin polarons, i.e., dressed minority atoms, form. We consider the spectral function for the minority atoms,
from which the lifetime and the effective mass of the spin polaron can be determined. Moreover, we predict the
radio-frequency (rf) spectrum and the momentum distribution for the spin polarons for experiments with °Li and
40K atoms. Subsequently we study the relaxation of the motion of the Fermi polaron due to spin drag.
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I. INTRODUCTION

In many condensed-matter systems the response to a
single impurity determines the low-temperature behavior of
the system. Probably the most famous example hereof is a
single electron moving in a lattice. Local lattice distortions,
i.e., phonons, interact with the electron and together they
form a quasiparticle that is known as the polaron because
of the local change in polarization [1]. Another well-known
impurity problem is that of an immobile magnetic impurity
in a metal causing an enhanced resistance below a certain
temperature due to the Kondo effect [2]. The multichannel
version of this effect has especially received much interest
in the past because it leads to the formation of a non-Fermi
liquid [3].

Here we study an impurity problem in a two-component
atomic Fermi gas. An important motivation to use ultracold
atoms is the unprecedented experimental control in these
systems. They offer the interesting possibility of not only
changing, for instance, particle numbers and temperature, but
also the interaction strength. Via a Feshbach resonance the
bare interaction can be tuned all the way from being weakly
attractive (BCS regime) to strongly attractive (BEC regime),
where in the intermediate regime the scattering length is much
larger than the average interparticle distance. This so-called
unitarity or strongly interacting limit is the regime we focus
on in this paper.

We consider a mixture at zero temperature consisting of
two (spin) species of fermions, where there is one minority
particle immersed in a noninteracting sea of majority particles.
The mass-balanced Fermi gas with high spin polarization
has been studied extensively, both experimentally [4-6] and
theoretically [7—14]. At the unitarity limit the minority particle
gets dressed by a cloud of majority particles forming a
quasiparticle similar to the polaron. This quasiparticle is
often referred to as a spin polaron, because its formation
is due to interactions between particles in different spin
states, or as a Fermi polaron, because it consists of fermionic
atoms. Recently, the imbalanced spin-dipole mode [6], the
radio-frequency (1f) spectrum of the spin polaron [4], and its
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energy and effective mass [5] that are different from those
of the bare minority particle, have all been measured in this
case.

An intriguing new possibility for experiments is having a
mass imbalance between the minority and majority particles by
mixing two different atom species. A very promising mixture
in this respect is one of SLi and “°K atoms. These atoms
together have already been trapped and cooled to quantum
degeneracy [15], and moreover, several Feshbach resonances
were identified [16]. Theoretically, the phase diagram of the
6Li-**K mixture has been determined [17,18], and it differs
greatly from the phase diagram of a spin-imbalanced mixture
by having not only a superfluid but also a supersolid region,
depending on the sign of the polarization. We show here that
already, the two limiting cases of this mixture, i.e., a single
light impurity in a sea of heavy atoms and vice versa, turn out
to differ qualitatively in a manner that reflects the underlying
asymmetry of the phase diagram.

Indeed, in the solely spin-imbalanced case, having a |o)
or a | — o) minority particle results in the same impurity
problem, while with two different atom species there are
two fundamentally different impurity problems. Thus, by
introducing a mass imbalance, not only does the question
of whether dressed impurities still represent the ground
state of the system arise, but so does the question of what
is the difference between a heavy and a light impurity.
Here, because the different atom species act as a pseu-
dospin, the same many-body mechanism causes the dressing
of the minority atom as for the solely spin-imbalanced
case. Therefore, we also call this quasiparticle a spin polaron.
In this paper we study for the two mass-imbalanced cases
both a molecular bound state and the spin polaron. We show
that although it does not form the ground state, the molecular
bound state virtually plays an important role in the system.
In addition, we study the dissipation of kinetic energy of the
minority particle due to interactions with the majority cloud
that lead to spin drag [19].

In this paper we consider a homogeneous gas of atoms,
while experiments are always done in a trap. Still, when 1/ kg
is much smaller than the size of the cloud, where kr is the
Fermi momentum of the majority atoms, the gas can locally
be considered homogeneous and all our results apply. In this
manner the appropriate averaging over the trap can be fully
taken into account.
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II. MOLECULAR BOUND STATE

In the unitarity limit the minority particle interacts strongly
with the Fermi sea of majority particles. Due to the low
densities in ultracold atomic systems two-body processes
represent the dominant scattering mechanism, where the
minority particle can scatter off a majority particle an arbitrary
number of times. Taking this into account in diagrammatic
language results in an infinite sum of ladder diagrams, the
so-called ladder sum. For the extremely imbalanced case at
unitarity the bare interaction with the complete ladder sum
added, i.e., the many-body 7 matrix, obeys

1 [ dk [ N(Erg) — 1 1 }
Tone J QuYAQ —&x—& kip 26k]

with 7ip and 722 denoting the total momentum and energy
of the two incoming particles and 1 ({) denoting a majority
(minority) particle. The distribution for the majority particles is
the Fermi-Dirac function N(x) = 1/ [eX/%sT 4+ 1], with T the
temperature and kg Boltzmann’s constant. The distribution
for a single minority atom can be taken equal to zero in
the integrand. The energy of an atom in the state |o) is
&k = €ox — Mo, Where g, = h2k2/2ma and p, are the
kinetic energy and the chemical potential. The kinetic energy
ek = (64 x +€,x)/2 is associated with twice the reduced
mass. Throughout this paper we take 114 equal to the Fermi
energy er, while the chemical potential of the minority atom
is determined self-consistently from the self-energy [10],
wy, =hX(0,0), defined later in Eq. (2).

A pole in the T matrix corresponds to a bound state, where
the real part of the location of the pole is its energy and the
imaginary part is inversely proportional to its lifetime. In the
above many-body T matrix the pole physically corresponds
to a Feshbach molecule dressed by the Fermi sea, which we
here refer to as a molecular bound state. The energy Ey;(p) of
this bound state at zero temperature, divided by the majority
particles Fermi level ¢, is shown as a solid line in Fig. 1. Up
to some momentum pp,y it is a stable molecular state, while
for larger momenta the imaginary part is nonzero and thus the
bound state acquires a finite lifetime. A minority and a majority
atom cannot scatter off each other if their combined energy lies
below a certain level due to Pauli blocking of the Fermi sea.
Above this energy level there is a continuum of scattering
states. This continuum of particle-particle excitations is also
depicted in Fig. 1.

From the molecular dispersions it already becomes clear
that a light impurity is very different from a heavy one. Fitting
the dispersion of the molecular state for small momentum
to Ey(p) =h?p?/2my + Ep(0) shows that for the light
impurity the stable molecule has a negative effective mass,
my =~ —0.13my, and has an energy Ey(0) =~ 4.4sp. The
dispersion is qualitatively the same as for the mass-balanced
case, where the stable molecule also has a negative mass,
namely, m y 2 —3.9m,. In contrast to the light impurity, with
a heavy impurity the stable molecular state has a positive ef-
fective mass my >~ 0.96m4 and an energy Ey(0) >~ —0.2¢F.
Interestingly, it is also the part of the phase diagram with a
minority of heavy particles that differs qualitatively from the
mass-balanced case and contains a supersolid phase [17,18]. In
all cases the continuum of particle-particle excitations pushes
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FIG. 1. Dispersions of the molecular bound states ¢ =hw + u,
at T = 0, scaled by the Fermi energy e = h*(6m%n4)*?/2m of the
majority cloud, as a function of the momentum %p = 7i|p| of the
molecule, scaled by fiky = ,/2m,er. The grey area in both panels
is the continuum of particle-particle excitations above the Fermi sea.
The solid lines are the dispersions of the stable (decaying) molecular
state when it lies below (in) the continuum. Panel (a) corresponds to
one °Li atom in a sea of “°K atoms, panel (b) to one “°K atom in a
Fermi sea of SLi atoms.

the molecular state down, which is a consequence of level
repulsion as in the more simple case of an avoided crossing of
two energy levels. For the light impurity this repulsion results
in a negative effective mass for the molecule. For the heavy
impurity the effective mass is positive, but smaller than one
would obtain in the absence of the continuum.

III. SPIN POLARON

The presence of a molecular bound state does not neces-
sarily mean that a molecule is the ground state of the system,
because some other state can have a lower energy than the
molecule. We therefore now consider the dressed impurity,
the spin polaron, and compare its energy with the molecule
to determine the ground state of the system. The energy
and lifetime of the quasiparticle can be obtained from the
spectral function p, = —Im[G ]/, where G| is the Green’s
function describing the minority particle in the presence of
the Fermi sea. To obtain the latter a self-energy is added
to the bare inverse Green’s function via GII =G, 1 - X.
At zero temperature and in the many-body 7 matrix or
ladder approximation, which has been very successful for the
mass-balanced case [10], we have

. dk
hE(q07) = | S5 Tk+qnot+£,N(Er k), 2)

2m)?
with ™ = w + i0. Because the relevant momentum of the
minority particle at zero temperature is much smaller than
the Fermi momentum of the Fermi sea, we take its momentum
equal to zero first. Then the spectral function, for both impurity
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FIG. 2. Spectral functions p, (¢) of the minority particles at zero
temperature and with zero momentum as a function of the energy
& = hw + . Panel (a) depicts the light impurity, panel (b) the heavy
impurity. The § peak in both figures corresponds to a stable polaron
with energy Ep.

problems, has at the energy E p a §-function peak (see Fig. 2),
which corresponds to the energy of a stable quasiparticle, i.e.,
the spin polaron. After comparing this energy with the energy
of the molecular state E;(0), we conclude that for both cases
the quasiparticle has lower energy and thus forms the ground
state of the system.

Apart from the energy of the dressed particle, the quasi-
particle residue Zp and the effective mass m* can also
be determined from the spectral function. The quasiparticle
residue is the weight of the 6 peak, and the effective mass can be
obtained from the momentum dependence of its location. For
the light polaron, a dressed Li atom, we find Ep >~ —2.2¢p,
Zp ~ 0.8, and m* >~ 1.25m , while for the dressed *°K atom
Ep ~ —0.44¢ep, Zp ~ 0.64, and m* >~ 1.16m . The energies
and effective masses are in good agreement with previous
theoretical results and Monte Carlo calculations [10,20] that
do not consider the full spectral function.

The presence of the molecular pole is very important for
the spectral functions p, (k,). In particular, the threshold of
the continuum of p (0,w) is at zero energy when the molecular
state always has a positive energy, as for the light impurity;
see Fig. 2(a). In contrast, for the heavy impurity the molecular
state can have a negative energy, and this causes the threshold
of the continuum to lie at a negative energy; see Fig. 2(b). The
spectral function at zero temperature can be approximated by
py(k,w) = Zpd(ei + Ep — ) — ho), with & = h*k>/2m*.
For both impurity problems, however, it does not capture all
the features of p (k,w), as we will see next.

A direct probe for the quasiparticle residue Zp is the
momentum distribution of the minority particles, which can
be obtained experimentally by a time-of-flight experiment.
From the spectral function it can be calculated by means of
N, (k) = fdwpi(k,w)N(a)). In Fig. 3 the results are shown,
for both the full spectral function and for the § peak only, at
zero temperature and for polarization P = 0.9. Also depicted
are the ideal gas momentum distributions for comparison. The
quasiparticle residue can be read off easily in both figures.
It can also be seen that the § peak is a good approximation
for the heavy impurities, while for the light impurities Zp
depends more strongly on the external momentum, which is
not captured by this approximation.

The energy of the spin polaron can be directly obtained from
the rf spectrum, which was recently measured for the mass-
balanced case. In an rf experiment incoming photons with
frequency w,r induce transitions from an occupied hyperfine
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FIG. 3. Momentum distributions N (k) for the spin polarons at
zero temperature and P = 0.9, where the polarization P = (n; —
n,)/(ny +ny). The solid black (gray) lines are the momentum
distributions of the polarons obtained from the full (§-peak) spectral
function, while the dashed lines are the distributions for an ideal
gas. Panel (a) depicts the light spin polaron and panel (b) the heavy
one.

state to an empty state. The fraction of transferred atoms as a
function of the photon frequency is the rf spectrum, where the
threshold of the spectrum is the polaron energy. Theoretically,
the spectrum can be obtained directly from the spectral
function by using the Kubo formula, I(w,r) o< f dkN( | x —
hop)p (K& k —horp) [22]. When using the low-
temperature spectral function the integral can be performed,
yielding

3)

s+ m*E
H(wry) & Zpy/2@,y + Ep)N (w) .

m*—m,

The rf spectra for the two mass-imbalanced impurity problems
are shown in Fig. 4 for P = 0.99 and the temperature of the
experiment with mass balance, T = 0.14TF [4]. For the light
impurity the analytic result from Eq. (3) reproduces the full
spectral function result almost exactly.

IV. SPIN-DRAG RELAXATION RATE

At zero temperature the spin polaron corresponds to a
§-function peak in the spectral function, as we have just seen.
At nonzero temperatures we expect this peak to broaden and to
obtain a width that is proportional to 7% at low temperatures.
An immediate consequence of this nonzero width is that the
polaron acquires interesting transport properties. In particular
it leads to a nonzero spin-drag relaxation rate 1/7,,; of the
polaron moving in a Fermi sea of majority particles. The
friction of the spin polaron and the out-of-phase dipole
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FIG. 4. Rf spectra at T = 0.14TF and polarization P = 0.99 in
arbitrary units. The solid lines are obtained from the full spectral
functions, the dashed line from Eq. (3). In panel (a) the results for the
light impurity are depicted, and in panel (b) the results for the heavy
impurity are depicted.
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mode are examples of properties determined by 1/7y,. For
the mass-balanced case the latter has been studied exper-
imentally [5,6], and the transport properties of the mass-
imbalanced impurity problem have been studied theoretically
using thermodynamic arguments to calculate the effective
interaction [19].

We derive here a general expression for the relaxation rate
of one polaron moving with velocity v through a cloud of
majority particles with which it interacts, where its velocity is
small compared to the Fermi velocity of the majority particles
[v| < kp/m4h. The equation of motion of the spin polaron
then reads

d Z
= lrm -, )
t m*n, Tsd

where I'(v) is the Boltzmann collision integral, which was
linearized in the last step. For the spin-drag relaxation rate for
the impurity problem we obtain in this manner

2(|Vk.0,q|2 + |Vk,—q,q|2)

1 —Br 1
— = [ dadkg? T
Tsd 6m* (2m) sinh (ﬂaé /2)

[N = Ny - @)
8;_i0+8¢,k_<9¢,k—q ’

®)

where B is 1/kpT and N4(K) is the distribution function of the
majority particles. The on-shell effective interaction Vi kg
in general depends on the incoming momenta k and k' and
on the transferred momentum q of the scattering particles.
From the linearized collision integral, the above expression is
obtained by using a § function as the distribution function for
the dressed impurity. The result in Eq. (5) is generic for any
impurity, fermionic or bosonic, in any environment, fermionic
or bosonic.

In the impurity problem at hand we take for Nj(k)
the Fermi-Dirac distribution function. At low temperatures
only small q contribute, and the difference between the
two distributions becomes strongly peaked around the Fermi
level [21]. For the interaction we take the many-body T
matrix from Eq. (1), with an additional factor Zp to account
for the wave-function renormalization, and then ultimately

PHYSICAL REVIEW A 85, 033631 (2012)

obtain
1 pmy 7 3
— 1 P3|T(kF,eF)|2qu+
Tsd 12nhm*= (21) sinh (ﬂe;/Z)

m,\ €r T 2
Y <m7) W (r—p) ’ ©

where y (m /m4)is adimensionless function depending on the
mass ratio of the minority and majority particles. For the light
impurity we find y(0.15) ~ 8.58, while we find y(6.7) >~ 1.96
for the heavy impurity. The temperature dependence for only
one minority particle in a fermionic environment is the same
as for the spin-drag relaxation rate for equal densities of
fermions, namely, 1/7,; o< T2. This quadratic temperature
dependence is expected for a Fermi liquid; recently it was
verified experimentally for the mass-balanced case that 1 /7y,
indeed decreases as the temperature decreases [6,23]. The
result in Eq. (6) implies that at 7 = O there is no spin-drag
relaxation, which in turn implies that the spin polaron is a
stable quasiparticle in that case. As mentioned above, the
latter is consistent with the § peaks in the spectral functions in
Fig. 4 and confirms that the ladder approximation captures the
relevant physics for these mass-imbalanced mixtures.

V. CONCLUSION

We calculated a number of important observables of the
extremely polarized °Li-*°K mixture. We showed that at the
unitarity limit, although virtually the molecular state plays
an important role, polarons form at low temperatures and
dominate all physical properties of the mixture. Apart from
its equilibrium properties we also looked at the transport
properties of the spin polaron and found that the spin-drag
relaxation rate takes a universal form and scales with the square
of the temperature, as expected for a Fermi liquid.
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