‘ I ‘ Journal of Chemical Theory and Computation
pubs.acs.org/JCTC

SQUEEZE-E: The Optimal Solution for Molecular Simulations with
Periodic Boundary Conditions

Tsjerk A. Wassenaar, ** Sjoerd de Vries,* Alexandre M. J. J. Bonvin,* and Henk Bekker®

"Molecular Dynamics Group, Groningen Institute for Biotechnology and Biomolecular Sciences, University of Groningen,
Nijenborgh 7, 9747 AG, Groningen, The Netherlands

'TBijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

§_]ohann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, POB 800, 9700 AV, Groningen, The
Netherlands

ABSTRACT: In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid
spending computational resources on uninteresting solvent—solvent interactions. As a consequence, periodic boundary
conditions are commonly used, with a simulation box chosen as small as possible, for a given minimal distance between images.
Here, we describe how such a simulation cell can be set up for ensembles, taking into account a priori available or estimable
information regarding conformational flexibility. Doing so ensures that any conformation present in the input ensemble will
satisfy the distance criterion during the simulation. This helps avoid periodicity artifacts due to conformational changes. The
method introduces three new approaches in computational geometry: (1) The first is the derivation of an optimal packing of
ensembles, for which the mathematical framework is described. (2) A new method for approximating the a-hull and the contact
body for single bodies and ensembles is presented, which is orders of magnitude faster than existing routines, allowing the
calculation of packings of large ensembles and/or large bodies. 3. A routine is described for searching a combination of three
vectors on a discretized contact body forming a reduced base for a lattice with minimal cell volume. The new algorithms reduce
the time required to calculate packings of single bodies from minutes or hours to seconds. The use and efficacy of the method is
demonstrated for ensembles obtained from NMR, MD simulations, and elastic network modeling. An implementation of the
method has been made available online at http://haddock.chem.uu.nl/services/SQUEEZE/ and has been made available as an
option for running simulations through the weNMR GRID MD server at http://haddock.science.uu.nl/enmr/services/
GROMACS/main.php.

B INTRODUCTION originally reported, the volume of the simulation system can be
In order to avoid surface effects in molecular simulations, greatly reduced, with an average of 55% for a random series of
periodic boundary conditions (PBCs) are commonly used. proteins, as compared to the corresponding rhombic
PBCs allow mimicking an infinite system, taking a single dodecahedron box set up with the same minimal distance,
simulation system or unit cell and surrounding it with replica resulting in a speed-up factor for the simulations of about 2.5.
cells in a space-filling way. With respect to the computational But next to reducing the simulation volume, the NDLP method
cost, it is desirable to choose an optimal unit cell. In this regard, also inherently yields a system with a regular distribution of

optimal is usually interpreted as minimal in total volume, under
the condition that a prescribed minimal distance exists between
any two periodic images. Alternatively, optimal could also be
considered as having a maximal separation between periodic
images, given a certain volume of the system. This would in
effect minimize direct self-interactions as well as indirect self-
interactions mediated by water ordering and allow larger
conformational changes.

solvent in between periodic images. Irregularities of the solvent
distribution have been suggested to account for the differences
observed in simulations performed in different box types,” and
this would be alleviated by choosing PBCs having a regularized
distribution, such as the rhombic dodecahedron and the NDLP.

Removal of the rotational degrees of freedom requires the
implementation of a constraint algorithm. Mathematical proof

For a solute which is approximately spherical or which can has been given that rotational degrees of freedom can be
rotate freely, the optimal simulation cell is based on a rhombic removed without affecting the statistical mechanical ensemble,
dodecahedron: the packing of the circumscribed sphere. and it has been demonstrated that the use of an NDLP unit cell
However, when rotational degrees of freedom are removed, it in conjunction with rotational constraints does not lead to
is also possible to use the molecular geometry of a detectable changes relative to simulations performed in a
(nonspherical) solute to determine an optimal simulation cell. thombic dodecahedron.?

Using the so-called near-densest lattice-packing (NDLP)"
method, almost all redundant solvent can be removed, where
redundancy is defined as being further away than half the
prescribed minimal distance from any of the periodic images of Received: January 30, 2012
the solute. Such a simulation cell offers two advantages. First, as Published: May 28, 2012
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Unfortunately, the NDLP method is slow and memory
demanding. Especially for large molecules, the time to compute
the simulation cell is significant, even though it is not
comparable to the speed-up of the simulations. In addition,
the NDLP method determines a minimal volume unit cell
based on a single structure, represented as a set of points, and
any significant deviation from that structure during the
simulation is likely to cause violations of the minimal distance
required between periodic images. Although this is a concern
with all simulation cells, it is more profound with a tight-fitting
NDLP unit cell.

A naive approach to solve this problem is to take an estimate
of the ensemble, e.g, as provided by NMR or obtained from
elastic network modeling, and use the combined atom positions
to determine the NDLP. However, the large resultant point set
in practice poses problems and will not actually yield an
optimal packing with respect to the ensemble. To illustrate this
last point, it should be borne in mind that, when using PBC,
any conformation observed in one unit cell is by definition
surrounded by identical copies. This means that for two
possible conformations A and B one does not need to consider
the possibility that B occurs in a unit cell neighboring one
containing A. The mathematically optimal simulation cell thus
is the one with the minimal volume which holds that for every
conformation at least the prescribed minimal distance exists
between neighboring periodic images. In contrast, determining
the NDLP from a combined point set would not only consider
the cases of identical neighbors but would also encompass all
possible combinations of different neighbors.

Mathematically, the problem can be summarized as follows:
Given a set of shapes, determine the set of vectors with a
minimal determinant that form a base for a lattice, such that
none of the shapes has overlaps with its periodic images. The
solution to this computational geometrical problem and the
implementation of the algorithms form the main topic of this
work, presented within the context of its application:
determining optimal volume cells for increased efficiency of
molecular simulations with minimal overhead.

As is explained in detail below, the solution requires the
calculation of a surface of contact for each shape. This
commonly involves the calculation of an a@-hull by Delauney
triangulation, which makes the procedure slow. To reduce the
computational cost, we here introduce a new approach to
efficiently determine a contact body. This approach involves
scaling the vertices of a preset triangulated surface to the
surface of contact.

The article is structured as follows: First, the mathematics
involved in constructing a contact-body for an ensemble is
given. Then, the practical implementation is described,
involving the (fast) generation of an approximate a-hull with
a predefined number of boundary points, and the search
algorithm for determining the base vectors of the optimal
lattice. Finally, the efficacy of the method is demonstrated, and
examples are given for setting up a simulation unit cell for an
(estimated) ensemble of structures.

For simplicity, most of the figures are representations in two
dimensions. The principles described in the text and depicted
in these illustrations apply equally well to three dimensions.

B MATHEMATICAL BACKGROUND

Construction of the Contact Body. For any two bodies A
and B with a fixed relative orientation (i.e., angular position), it
is possible to define a surface at which B can be placed relative
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to A (by translation) such that the two bodies touch, but do not
overlap (Figure 1). This surface is called the contact surface and
is a central concept in setting up a near-densest lattice packing.'

A®-B-{A} (A}

2 8

Figure 1. Contact surfaces. (a) For two bodies A and B, the contact
surface follows from the outline of the shape obtained by tracing the
inverse of B over the outline of A or vice versa. (b) A molecular shape
m and its inverse —m. (c) The contact body n of m is obtained by
tracing —m over the outline of m. (d) A translated copy of m placed
on the contact surface will exactly touch but not overlap with the
original. Furthermore, a second translated copy placed at the
intersection of the contact surfaces of the original body and the first
translated copy will touch both without overlapping with either of
them.

The contact surface can be obtained as follows: Consider A
and B to be two sets of points and let —B denote the set of
negated points of B, i.e, —B = {—x: x € B}. Then, if for each
combination of points from A and —B the sum is taken, the set
formed by these sums forms the contact body N:
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N=A@®-B={a+b:a€ A be —-B} (1)

This operation, denoted by the symbol @, is called the
Minkowski sum. If A and B are identical, the contact body is
symmetric and centered at the origin.

Now, let m denote the solute for which an optimal packing
should be defined, given a minimal distance d, between
periodic images. If m is first dilated with half the distance d,,,
forming a shape M, it can be easily verified that the surface of
the contact body

N=M®&-M ()

comprises all points over which m can be translated such that
the translated body m; is separated by exactly a distance d,,
from the original (Figure 2).

The dilation itself can be written as the Minkowski sum of m
and a sphere R with radius equal to d,,/2 (Figure 2A), allowing
a rewrite of eq 2

N=(m@® Rdm/z) ®-(md® Rdm/z)

=m€B—m®Rdm (3)

given that the Minkowski sum is commutative and R is
symmetric. From eq 3, it follows that it does not matter
whether m is dilated first or the dilation is performed on the
contact body n = m @ —m. This is an important note for
generating a contact body for an ensemble of structures, as it
allows avoiding unnecessary computational steps.

The Contact Body for an Ensemble. To derive the
contact body for an ensemble of structures, consider a molecule
with p atoms in k configurations (see Figure 3 for k = 2). Let r;
denote the position of atom i in configuration j, and let m; be
the set of p points in 3D space given by

=y’
m; = Ui_, r;

4)

such that m; represents configuration j of the molecule. For
determining the contact body, and subsequently the NDLP, of
the ensemble, a single point set has to be generated from the
different configurations. A naive approach would be simply to
take the union of all k configurations:
— |k

M= Ujey my (s)
This procedure yields a set of pk points in total. Note that for a
given point in M it cannot be determined from which of the k
configurations it originates. Accordingly, the contact body N’
derived from M using

N=M&-M

(6)

consists of p’k* points in total. But, as explained before, the
combination of points from different configurations in general
leads to a nonoptimal packing. To avoid this, instead of
calculating a single contact body from the set of points
combined, a set of k contact bodies N; is calculated first,
according to

N=m& -

m (7)
Each of these contact bodies consists of pz points. Combining
them into a single contact body N using

—
N=Ui N (8)

yields a points set of size p’k. This set consists only of points
resulting from the combination of pairs of atom positions from
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Figure 2. Surface of specified distance and the derived lattice. (a)
Dilated body M, obtained by taking the Minkowski sum of m and a
sphere R, and the inverse of the dilated body, —M. (b) Contact body
N obtained by tracing —M over the outline of M. (c) Any translated
copy of m placed on the surface of N will be separated by a distance
equal to the diameter of R. Furthermore, a second translated copy
placed at the intersection of the contact surfaces associated with the
original and the first translated copy will be separated from both of
these by the distance specified. (d) The points of intersection v, and v,
of a contact body and a translated contact body placed at the surface
point u form a triple such that u = v; + v,. Any pair of these three
vectors can be used as a basis for a lattice satisfying the minimal
distance criterion.

identical configurations, according to the requirements for
obtaining an optimal packing.

To introduce dilation, recall from the previous section that
the contact body for a point set dilated by a distance d,,/2
equals dilating the contact body for the original point set by a
distance d,,. Therefore, any dilation need only be performed
once, after obtaining the contact body for the ensemble of

structures m;:

— k
Nt =R, © UL N

)

From the foregoing it can be verified that the resulting
contact body N* has the property that for the set of translated
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Figure 3. Surface of specified distance for an ensemble of shapes. (a) A shape m, and the corresponding contact body n,. (b) A shape m, and the
corresponding contact body n,. (c) The union of m; and m,, m; U m,, and the corresponding contact body n,;my encompassing both contact
bodies n; and n, (in gray), as well as additional regions (in black). As the black areas arise from the combination of m; and m,, they are redundant
and should be excluded when determining an optimal packing for an ensemble of shapes. (d) The contact body n; U n,, and the vector

approximation to the surface of minimal distance. For each of a series of vectors s;

; starting from the origin, the end point is determined as the

maximum point of intersection of the vector with a sphere placed at the surface of the contact body n; U n,.

bodies m; placed at its surface there is at least one that is
separated by exactly a distance d,, from its original placed at the
origin.

Vector Approximation of the Contact Surface. The
surface of the contact body can be considered as the set of
vectors allowed for translation of m;. Since the contact body is
symmetric and located at the origin, and considering that
crevices or holes should in general not be considered for
placement of a neighbor, a simple, effective approach can be
introduced to approximate the contact surface:

Let s be a vector starting at the origin. Then, let the length of
s be set such that the end point lies on the contact surface of N.
As is illustrated in Figure 3d, this is equal to stating that the
length of s is the maximum length for which the distance
between the end point and any point from n = m @ —m is
equal to the distance d,,. The (triangulated) contact body can
thus be approximated by taking a set of vectors, forming a
triangulated polyhedron centered at the origin, and scaling each
of these accordingly.

From eq 9, it follows that for an ensemble of structures the
correct contact surface is obtained by determining the
maximum length for each vector over all shapes m,
Consequently, the approach presented here allows for a
determination of the contact body for an ensemble without
explicitly calculating a contact body for any structure and
avoiding the need to perform calculations on a combined point
set.
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Searching an Optimal Lattice Base from a Set of
Vectors Forming a Contact Surface. Having a representa-
tion of the contact surface, the next objective is searching for
three vectors forming a basis for a near-optimal lattice, with
minimal volume and no overlaps. The standard procedure for
this is to iterate over the vertices of the triangulated surface,
calculating the line of intersection of the surface placed at the
origin and a surface placed at the vertex. Then, for each node
on the intersection line, a second copy of the contact surface is
placed, and the limited set of points where all three bodies
intersect is determined. Each set of three vectors thus obtained
defines a lattice in which all direct neighbors touch but do not
overlap. From these combinations, the one having a minimal
determinant is sought, which corresponds to the optimal
packing.

In this section, we present a method for determining the
optimal lattice vectors directly from the set of vertices
comprising the contact surface, without calculating intersec-
tions. First consider that, in the case of two dimensions, the
intersection points v, and v, of the symmetric contact line S,
placed at the origin, and its copy S, placed at a vertex u on S,
are the points on S, for which v, + v, = u (Figure 2d). Any two
of these points can then be used to define the lattice in the
plane for that configuration, but only one of these usually
corresponds to a reduced lattice, in which the relative
projection of one vector on the other is less than or equal to
0.5. We can thus determine a set of valid, reduced 2D lattices by
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a. b.

Figure 4. Generation of a three-dimensional contact body. (a) Generation of half sphere approximations starting from a half octahedron, with zero
to four triangle division cycles. The half sphere approximation obtained by two triangle division cycles is shown in orange, positioned at the center of
a protein (PDB ID: 1A32°). (b) Selection of boundary atoms, retaining only those atoms for which at least one of the vectors of the half sphere
approximation has its exit point on the sphere with a specified radius, placed at the coordinates of the atom. The boundary atoms are highlighted in
yellow and displayed with larger radii. (c) The contact body obtained by scaling the vertices of the half sphere approximation. Only the front half,
shown transparent, needs to be determined, as the other half, shown in a darker shade, follows by reflection in the origin.

Figure S. Determining the NDLP and deriving a molecular shaped box. (a) Configuration of four instances of a protein, such that (i) the first
translated copy (yellow) lies on the contact body of the original (white), placed at the origin, (ii) the second translated copy (orange) lies on the line
of intersection (green) of the contact bodies of the original and the first translated copy, and (iii) the third translated copy (red) is placed at a point
of intersection of the contact bodies of the two foregoing translated copies and of the original. (b) The configuration of four instances corresponds to
a lattice arrangement, from which a triclinic unit cell can be inferred. (c) If a triclinic unit cell is carved out from the lattice arrangement, the original
body may appear broken, and in some cases it will be impossible to translate the system such that the body will entirely fit within the triclinic cell. (d)
By carving out the unit cell as the Voronoi region of the protein in the lattice, the “molecular shaped box” can be shown, exemplifying that the body
is both whole and entirely surrounded by solvent.

searching proper combinations of vectors comprising S, for (u,v), (w,w), and (v,w) itself defines a two-dimensional lattice.
which either the sum or the difference vector also lies on S, Thus, for obtaining a lattice in three dimensions, we only need

In three dimensions, the aim is finding three independent to search the combinations of two vectors, such that for the pair
vectors u, v, and w, together forming a basis for the optimal (u,v) a third vector w is sought, for which (u,w) and (v,w) are
lattice. Yet in a three-dimensional lattice, each combination also valid lattices. Subsequently, the validity of the lattice
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defined by such a combination needs to be assessed by
checking that none of the linear combinations of u, v, and w
result in a point lying in the interior of Sy. From the set of valid
triples of vectors, the one having a minimal determinant
corresponds to the near optimal lattice packing.

B IMPLEMENTATION

The original implementation' for calculating the contact body
involved the initial construction of the a-hull* of M = m@R,

taking the Minkowski sum of that shape and its inverse, and
then calculating the a-hull of the resulting point set to yield the
contact body. These operations are costly, even when a grid-
based reduction of points is used first, as the a-hull algorithm*
is quadratic in the number of points. Then, considering that for
an ensemble the filtering and determining of the outer hull
twice has to be performed for each element, calculating the
contact body in this way becomes unacceptably costly.

To increase the efficiency of the procedure, it was desirable
to relieve the dependency on the a-hull algorithm. To achieve
this, a different approach was taken, involving the vector
approximation of the contact surface. In brief, the procedure
consists of the following steps (Figure 4): (1) generation of a
triangulated sphere, (2) filtering points from m, and (3) scaling
the vertices to the contact surface.

For an ensemble of shapes, steps 2 and 3 are repeated for
each shape, and the maximum length of each vector is stored,
according to the description in the previous section. The
different steps are explained in more detail below. Note that
determining an approximate a-hull for a point set using this
procedure scales linearly with the number of points.

1. Generation of a triangulated sphere. The contact body is
approximated by scaling the vectors of a triangulated
sphere. In fact, because of the symmetry of the contact
body, it is sufficient to start with half a sphere. This half-
sphere S is obtained from successive subdivision of the
triangles forming an octahedron, using simple linear
interpolation. Although a better approximation to a
sphere can be made,” this description suffices for the
purpose.

Filtering boundary points of m. With both m and S placed
at the origin, each vertex of S is scaled from the origin to
the maximal length for which the vertex is a distance d,,
away from any point from m or —m. The points of m
involved, ie., the boundary points m*, are stored, while
the other points are discarded.

Calculating the contact body. Having extracted the
boundary points, each vertex from S is scaled from the
origin to the maximal length for which the vertex is a
distance d,, away from the difference vector of any
combination of two points from m*.

The resulting triangulated contact surface is searched for the
three translation vectors corresponding to the near-densest
lattice packing, which form the basis for the optimal simulation
cell (Figure S). The whole algorithm can be represented by
pseudocode given below. Note that in this summary, the
triangulated sphere S is in fact a half-sphere, as the contact body
is symmetric. This is also reflected in lines 8 and 9, where K—J
and J—K correspond to the symmetric pair of combinations of
two points, of which one will lie in the hemisphere
corresponding to S. At the end of the routine, the lengths of
the vectors comprising S will be set such that S will
approximate half of the contact body, with the other half
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1 GENERATE Triangulated Sphere Approximation S
2 FOR each structure M in ensemble DO

3 FIT structure to reference

4 FILTER surface points of structure M

5 FOR each vector I in S DO

6 FOR each surface point J of M DO

7 FOR each surface point K of M DO

8 LET R1 be a sphere centered at J-K
9 LET R2 be a sphere centered at K-J
10 IF I has exit point P on R1 or R2 THEN
11 IF length P > length I THEN
12 SET I equal to P

13 END IF

14 END IF

15 END LOOP // K loop

16 END LOOP // J loop

17 END LOOP // I loop

18 END LOOP // M loop

19 DETERMINE Near Densest Lattice Packing from S

following from the symmetry. As S is already triangulated, it can
be directly used for determining the NDLP, according to the
three-dimensional search routine developed previously."

B RESULTS

Comparison between the Original and Revised NDLP
Methods. The results obtained using the new implementation
are summarized in Figure 6. Figure 6a shows a comparison of
unit cell volumes obtained for the proteins in the PDB in a
cubic, a rhombic dodecahedron, or an NDLP unit cell, using a
distance between periodic images of 2.5 nm. It is clear that the
NDLP unit cell yields the smallest volume at all times. In
addition, the results for the rhombic dodecahedron show a
large spread in resulting system size for a given solute size,
whereas this spread is much smaller for NDLP system sizes.
This can be explained from the diversity in solute shapes. A
rhombic dodecahedron always relates to the largest diameter,
whereas the NDLP adapts the cell to the solute geometry. Note
that, for clarity, the y-axis scale is truncated to a volume of 10*
nm”.
The decrease in size is further exemplified in Figure 6b,
which shows the volume of the NDLP unit cell relative to the
corresponding rhombic dodecahedron as a function of the
number of atoms in the structure, given on a logarithmic scale
to account for the uneven distribution of protein sizes in the
PDB. This figure gives an indication of the relative computa-
tional cost of simulations set up in either type of box. The
horizontal lines indicate the deciles. The top line shows that
more than 90% of the structures yield a 40% decrease or more
in volume when using an NDLP box instead of a rhombic
dodecahedron. This corresponds to a speed-up factor of more
than 1.6. In more than half of the cases, the decrease is greater
than 50%, more than doubling the simulation speed. It is noted
that this increase in efficiency in explicit solvent simulations is
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Figure 6. Squeeze-E efficacy. (a) Cell volume against protein size.
Gray, rhombic dodecahedron; black, NDLP. (b) Volume ratios
between NDLP and rhombic dodecahedra. The horizontal lines
indicate the deciles, with the thick central line showing the median of
the distribution. (c) Time required for determining a rhombic
dodecahedron unit cell with Gromacs (gray) or an NDLP cell with
Squeeze (black), using five subdivisions, against protein size. The inset
shows the structure of a helix coil, for which the calculation of the
NDLP takes an atypically long time (36 s, marked in the plot with a
circle).

independent of other factors, and any other optimization can be
combined with it.

From Figure 6b, it is also evident that for some structures the
decrease amounts to more than 95%. These are mainly very
elongated structures, in particular coiled-coils, such as the one
shown in the inset in Figure 6c.

Figure 6¢ shows the times required for determination of the
NDLP unit cell against protein size. Calculations were
performed on one core of an Intel Core i7, 2.80 GHz. The
maximum time taken for any structure is 36 s. This makes a
comparison with the previous method to determine the NDLP
futile, as these calculations typically took tens of minutes to
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hours, even prohibiting processing the entire PDB database. In
fact, the time needed to calculate the NDLP is now more on
par with the time required to calculate a rhombic dodecahe-
dron, shown in gray, using the standard method of Gromacs.
The NDLP timings show two regimes, both of which have a
linear dependency on the system size. The difference between
the regimes can be related to the shape and the symmetry of
the protein. This is illustrated in the inset, which shows one of
the most pathological cases, taking 36 s to calculate the NDLP
for a protein with a modest number of atoms.

When calculating the packing for an ensemble of structures,
the difference becomes much larger even (data not shown).
Because the new implementation avoids the triangulation of
point sets and the calculation of intersections, the computa-
tional cost is diminished.

As different approximations to the contact body are used by
the two NDLP algorithms, it is worthwhile to compare the
resulting minimal distance between any two periodic images to
the distance criterion set. Both methods result in somewhat
lower distances than specified (data not shown), which is
caused by the triangulations being inscribed. The previous
method results in minimal distances about 5% (—S.15 +
2.01%) too small on a distance of 2.5 nm. In contrast, for the
method proposed here, the difference amounts to about one-
third of a percent (—0.35 % 0.04%). The difference between the
implementations can be explained from the use of a crude
approximation to the sphere (five points) used for dilation of
the molecule in the previous algorithm.

Taken together, the new algorithm is much faster, is more
accurate, and handles ensembles properly and efliciently. In the
following paragraphs, a number of examples are given for the
use of the NDLP cell for ensembles, comparing the results to a
rhombic dodecahedron unit cell.

The Ultimate Ensemble: 184 Structures of Phospho-
lamban Solved by NMR. As a first test of the efficacy of our
method, the largest ensemble in the PDB database (PDB ID:
2HYN’) was taken, which contains 184 configurations of the
unphosphorylated human phospholamban pentamer. With over
800 000 atoms, this is one of the largest files available from the
database.

Starting with a sphere approximation of 545 vertices (four
subdivisions), the calculation of the NDLP with a minimal
distance between images of 2.5 nm takes 12 s on an Intel Core
i7 930 running at 2.80 GHz. The resulting simulation cell,
shown in Figure 7a, has a volume of 543 nm?, which would
yield a total system size of 54 000 atoms when solvated. On the
same machine, determining the NDLP with a sphere
approximation of 2113 vertices (five subdivisions) takes S1 s
and yields a slightly smaller simulation cell with a volume of
537 nm?, which would result in a solvated system containing
53500 atoms. With six subdivisions, the calculation time
increases to 4 min, and the resulting volume is 522 nm”.

A rhombic dodecahedron with the same distance criterion
would yield a total volume of 650 nm® considering only a
single model, and result in a solvated system of 64 700 atoms.
Using the ensemble NDLP thus decreases the size of the
system by 17—19%, while explicitly accounting for the flexibility
that may be expected, based on the spread in the NMR models.

Ensemble Estimates from Molecular Simulations.
Obviously, one of the most common ways to obtain an
estimate of the conformational space accessible in a simulation
is the simulation itself. When a simulation has been performed
in a more conventional unit cell, the method proposed here
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Figure 7. Optimal solutions for ensembles determined by Squeeze-E.
(a) The optimal unit cell for the 184 member NMR ensemble of the
human phospholamban pentamer (PDB ID: 2HYN”). The ensemble
is represented as a set of spheroids, depicting the anisotropic C,
variances. The solvent is shown as the molecular shaped box
representation, illustrating the distribution around the protein. (b)
The optimal unit cell for the 100 member ensemble of the Lac
Repressor (PDB ID: 1EFA®), as obtained from a 40 ns MD simulation.
(c) The optimal unit cell for the 100 member ensemble of the
hemagluttinin—hemagluttinin antibody complex (PDB ID: 2VIR®) as
estimated by elastic network modeling. Again, the ensemble is
represented as spheroids, depicting anisotropic C, variances.

may be used to decrease the volume for replica simulations,
while ensuring that all conformations sampled in the original
simulation will fit in the new unit cell. In addition, this method
can be used to resolvate a system in which interactions between
periodic images occurred during the simulation. As an example,
a simulation of the Lac Repressor was performed in its free
form, unliganded and not bound to operator, initially using a
NDLP cell in its original form." It was found that during the
simulation the DNA binding domains dispatched from the core
part of the protein (unpublished data) and through the flexible
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linker regions made contact with a periodic image. Using the
ensemble resulting from this simulation to set up a new
simulation system using the method proposed here, it could be
ensured that such large deformations would fit in the simulation
cell for subsequent simulations, avoiding interactions over the
periodic boundaries.

The simulation cell thus obtained, shown in Figure 7b, had a
volume of 661 nm?, yielding a total simulation size of 62 700
atoms. This volume is considerably larger than that obtained
from the original structure, which measured 421 nm® and
contained 38 600 atoms. However, a rhombic dodecahedron
determined from the starting structure would already yield a
volume of 1131 nm’, corresponding to a total size of 109 300
atoms. In this case, the use of an ensemble NDLP unit cell thus
still offers a reduction of 42%, thereby taking conformational
changes observed previously into account.

Ensemble Estimates from Elastic Network Modeling.
Although fairly robust, performing simulations to obtain
ensemble estimates for setting up a more efficient system is
rather expensive. An alternative approach is to estimate the
conformational freedom from the elastic properties of the
protein, using elastic network modeling (ENM) or related
methods. Such runs typically take several hours and are easily
performed using one of a number of ENM Web-based services.
This approach is illustrated here by a simulation performed on
an antibody—antigen complex.

Complexes of antibodies and antigens are typically large and
nonregularly shaped. Whereas the size poses limitations on the
simulations, the shape is expected to allow a significant decrease
of the simulation volume when using an NDLP method. As an
example, consider the complex of the influenza virus
hemagluttinin in complex with a neutralizing antibody (PDB
ID: 2VIR®). This complex contains a total of approximately 700
amino acids, and the radii of gyration about the x, y, and z axes
are 3.3, 2.7, and 2.7 nm, exemplifying the elongated shape of
the complex. Solvating this complex in a rhombic dodecahe-
dron unit cell with a minimal distance between images of 2.0
nm would yield a system with a total size of approximately 230
000 atoms. To obtain an estimate for the conformational
freedom of the complex, it was submitted to the elNémo server
using default parameters.'” From the results of that run, the
extreme projections on the first 10 eigenvectors were used to
form an ensemble, which was subsequently used as the input
for calculating the ensemble packing. With five divisions for the
sphere approximation and a distance between periodic images
of 2.0 nm, this ensemble results in a system with a total volume
of 540 nm’, shown in Figure 7c, corresponding to a fully
solvated system of approximately 49 000 atoms. This means
that for this complex, the simulation volume can be decreased
by almost 80%, while explicitly accounting for some conforma-
tional change.

B DISCUSSION AND CONCLUSION

In the foregoing, a method has been described for determining
an optimal unit cell for single structures and ensembles, for
setting up molecular simulations with periodic boundary
conditions.

This method started out as a routine optimization of an
existing algorithm to handle ensembles more efficiently but
resulted in new approaches to construct contact bodies and
bodies of minimal distance, as well as a new method to
determine the optimal packing from them, finally resulting in a
complete revision of the original algorithm. The most notable
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features are (1) a revised mathematical background, exemplify-
ing the relation between the contact body and the body of
minimal distance, as well as the possibility to construct those
correctly for ensembles, (2) the use of a preset triangulation
with fixed and well-defined topology that is scaled to the surface
of minimal distance, and (3) the search for the NDLP from the
discrete set of vectors forming the surface. These factors make
the computational overhead of setting up an NDLP unit cell
negligible.

The routines could possibly be optimized further for specific
cases, such as symmetric protein assemblies, but that seems
interesting mainly as an academic exercise, not yielding a
benefit in a practical sense.

Taken together, the renewed NDLP method appears a
suitable addition to the means for setting up and running
simulations. A practical limitation is that the use of the NDLP
unit cell requires an implementation of rotational constraints.
The implementation of the constraints developed by Amadei et
al® has thus far been limited to Gromacs, in particular to
version 3, and has only been used by a small number of groups.
A port to Gromacs 4 has been hampered by the domain
decomposition scheme,'' in which molecules may be
fragmented over processors and across box boundaries.
Fortunately, a recent effort has enabled the reimplementation
of the roto-translational constraints in the newest Gromacs
version, without compromising efficiency (manuscript in
preparation). This implementation has been made available
through the MD Web server, developed within the WeNMR
project, which also supports the use of the NDLP unit cell.

In addition to this practical issue, there are a few theoretical
issues that require reflection. First of all, it has been shown
previously that the unit cell is an integral part of the simulation
conditions and may influence the resulting ensemble.” It could
be possible that the information used to set up the NDLP unit
cell in some way results in a “memory” of that information
during the simulation, biasing the resulting ensemble. However,
if that were true, then the same effect should have been seen in
a more severe form in NDLP unit cells set up for a single
structure. Yet the opposite appeared to be the case, with the
NDLP unit cell yielding ensembles indistinguishable from those
obtained in a rhombic dodecahedron, whereas a rectangular box
and a truncated octahedron were seen to yield different
ensembles. The explanation suggested was that the water
distribution in the periodic system could play a role, which is
independent of orientation in a rhombic dodecahedron and
regularized in an NDLP unit cell. It is expected that the
distance between periodic images does play a significant role in
this respect, and future studies should resolve the dependence
of results obtained in molecular simulations, in relation to the
box type and the distance used.

A second concern with the use of an NDLP unit cell is that
conformational changes may occur that are not covered by the
input ensemble and thus still cause violation of the minimal
distance criterion. This is particularly likely when using
estimates from short simulations and extrapolations from
ENM as input for long simulations of proteins with (partially)
disordered regions or flexible linkers. Again, this is a concern
that also applies to conventional setups but may be more severe
when using an NDLP unit cell. As a general rule of thumb, one
could argue that the longer the simulation is aimed to be, the
more time one should spend thinking over the setup, including
the choice and details of the periodic boundary conditions. If
larger conformational changes or partial unfolding is to be

expected, an option is to increase the distance between periodic
images, which for an NDLP unit cell can usually be achieved
while still yielding an overall reduction in system size.

For very flexible molecules, such as proteins with
considerable unfolded/disordered regions, an additional issue
may arise. The method described determines the contact body
of the ensemble after least-squares fitting of each structure in
the ensemble to a reference. For flexible molecules, the fitted
ensemble is dependent on the reference, and thus ill-defined.
However, if the rotational constraints of Amadei et al. are used,
or a similar method which uses a reference structure to remove
rotational degrees of freedom, then this does not pose
problems, provided the same reference is used.

As a final note, the routines described here are aimed at
optimizing molecular simulations, but they may also be of
interest for other fields of science. In this regard, it is worth
mentioning that contact bodies play a role in motion path
planning for robots, and the routines presented could be
developed further for such processes.

The method has been termed Squeeze-E for its efficacy in
reducing the amount of solvent, with the E indicating its
specific usability for ensembles. The method is available at
http://haddock.chem.uu.nl/services/SQUEEZE/ and will be
made available as a contribution to the Gromacs MD package
(http://www.gromacs.org/). As mentioned, the use of this type
of unit cell is also available as an option for the weNMR MD
GRID server that is described elsewhere in this issue.
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