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Abstract

The temporal evolution of nearshore sandbars (alongshore ridges of sand fringing coasts in water depths less than 10 m and of paramount
importance for coastal safety) is commonly predicted using process-based models. These models are autoregressive and require offshore wave
characteristics as input, properties that find their neural network equivalent in the NARX (Nonlinear AutoRegressive model with eXogenous input)
architecture. Earlier literature results suggest that the evolution of sandbars depends nonlinearly on the wave forcing and that the sandbar position
at a specific moment contains ‘memory’, that is, time-series of sandbar positions show dependencies spanning several days. Using observations
of an outer sandbar collected daily for over seven years at the double-barred Surfers Paradise, Gold Coast, Australia several data-driven models
are compared. Nonlinear and linear models as well as recurrent and nonrecurrent parameter estimation methods are applied to investigate the
claims about nonlinear and long-term dependencies. We find a small performance increase for long-term predictions (>40 days) with nonlinear
models, indicating that nonlinear effects expose themselves for larger prediction horizons, and no significant difference between nonrecurrent and
recurrent methods meaning that the effects of dependencies spanning several days are of no importance.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The hydrodynamic and sediment transport processes that
operate in the nearshore, defined as the innermost region of
the coastal ocean with water depths less than 10 m, are highly
nonlinear, causing a nontrivial response of the sediments on the
sea bed. The most obvious example thereof is the organization
of sandy bed material in spatially quasi-periodic patterns known
as alongshore sandbars, 0.5–3 m high submarine ridges of
sand located approximately parallel to shore and occurring
singularly or in multiples of up to four or five bars. The cross-
shore oriented dynamics of sandbars constitutes an important
part of the morphological dynamics of the entire nearshore
zone and comprises variability on timescales of a few days to
years (e.g., Gallagher, Elgar, and Guza (1998), Plant, Holman,
Freilich, and Birkemeier (1999), Ruessink, Wijnberg, Holman,
Kuriyama, and Van Enckevort (2003)).
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The desired ability to predict temporal variability in sandbar
characteristics on all relevant timescales drives much of the
present-day fundamental research in coastal processes and is
also an important issue in coastal management. Sandbars are the
last natural line of defence against the attack of storm waves on
the coasts and, accordingly, human measures to combat coastal
erosion often involve changes in sandbar height or position
by means of sand nourishments (Hamm et al., 2002). The
prediction of the evolution of sandbars is required to plan and
evaluate the effectiveness of nourishments in mitigating coastal
erosion.

Most existing nearshore bathymetric evolution models are
based on knowledge of nearshore water motion (waves and
currents) and sediment transport (Roelvink & Brøker, 1993).
Existing knowledge is incomplete and, accordingly, process
models struggle to reproduce natural bar behavior on timescales
of a few days to weeks (Plant, Holland, & Puleo, 2004;
Van Rijn et al., 2003) and have uncertain skill on longer
scales (Roelvink, Meijer, Houwman, Bakker, & Spanhoff,
1995; Van Rijn et al., 2003). While most models are, to
some extent, capable of predicting the rather rapid offshore
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Notation

cg wave group velocity
γ breaker parameter
EΘ parameter vector of a process-based model
θ̂ parameter estimate
G parameter update function
g gravitational acceleration
Hrms root-mean-squared wave height
Hb breaker height
I model input
M autoregressive model order
M process-based model
N exogenous model order
N neural network
p statistical significance level
Tpeak peak wave period
t time
φ wave direction relative to the shore normal
U model state, model output
W weight matrix of a neural network
X̄ alongshore average observed sandbar position
ztide astronomical tide

sandbar migration under breaking waves (1–20 m day−1),
they fail to reproduce the subsequent recovery of a beach
profile (e.g., onshore bar migration, <1–5 m day−1) under
relatively quiescent wave conditions, possibly because of
missing relevant processes. Therefore, it appears appropriate
to investigate the suitability of other model types, such as
data-driven models, to predict sandbar behavior. In contrast to
process models, data-driven models need no process knowledge
to operate, but are constructed by establishing statistical
relations in field data. Until the mid- to late 1990s such data
were rare, but they are now becoming available through the
high-resolution (hourly), long-term (years) monitoring of the
nearshore zone with automated video systems (Aarninkhof &
Holman, 1999).

Existing analyses of time-series of cross-shore sandbar
position have suggested a nonlinear dependence of sandbar
migration on various environmental factors, such as the height
of the incident waves at breaking, see, for instance, Plant
et al. (1999). Furthermore, ‘memory’ is sometimes suggested
to be present in time-series of sandbar position, meaning
dependencies in sandbar position spanning longer time periods
which might even exceed the duration of individual storms.
An example of modeling such temporal dependencies can be
found in Wright, May, Short, and Green (1985), who use
hydrodynamic forcings weighted over several days to provide
for a measure of relaxation time in predicting the evolution
of sandbar variability. Based on cross-shore sediment transport
modeling, Plant, Ruessink, and Wijnberg (2001) also suggested
that the response time of beach profiles is exceedingly long
compared to the timescale of the variability of the offshore
wave forcing. O’Hare and Huntley (2006) later on debated
this suggestion, indicating that, while it may be true for
quiescent wave conditions, the morphological timescale under
storm conditions might be of the same order as the nearshore
hydrodynamics. This would imply that the storm response
of a sandbar would not depend on previous wave forcings
and sandbar characteristics but is determined by the storm
characteristics solely.

The autoregressive nature of process models as well
as their forcing with offshore wave information finds its
equivalent in the NARX (Nonlinear AutoRegressive model with
eXogenous inputs) neural network architecture. In addition, this
architecture is known to be capable of representing nonlinear
dynamics as well as long-term dependencies in time-series
data (Lin, Horne, Tiño, & Giles, 1996). The aim of the
present paper is to identify to what extent these claims of
nonlinear dynamics and long-term dependency apply to time-
series of sandbar position by constructing a NARX neural
network model and by comparing its performance to other
less sophisticated data-driven models. The applied data are
observations of an outer sandbar collected daily for over
seven years at Surfers Paradise, the Gold Coast, Australia, and
concurrent measurements of offshore wave parameters (height,
period, direction) and water level.

2. Observations

The sandbar data set used in the present work is acquired
with an Argus coastal imaging station located at the double-
barred Surfers Paradise, northern Gold Coast, Queensland,
Australia (Turner, Aarninkhof, Dronkers, & McGrath, 2004).
The station consists of four cameras pointed obliquely along
the beach, providing 180◦ uninterrupted coverage of the beach
and the nearshore zone. Each daylight hour, the cameras acquire
a time-exposure image (Fig. 1(a)), created by averaging over
1200 consecutive images collected at 2 Hz. This smooths
out moving objects such as ships, vehicles and people, and
averages the individual breaking waves to reveal one or more
smooth white bands of breaking waves. These bands serve as
a reasonable estimate for the submerged sandbars (Lippmann
& Holman, 1989; Van Enckevort & Ruessink, 2001). The
four oblique images are rectified (Holland, Holman, Lippmann,
Stanley, & Plant, 1997) and merged to yield a single plan-
view image (e.g., Fig. 1(b)). As detailed in Van Enckevort and
Ruessink (2001), the crest lines of the inner and outer bar
are extracted from these plan-view images by the automated
alongshore tracking of the intensity maxima across each bar
(Fig. 1(c)). The alongshore average of a crest line, in the present
work based on plan-view images with an alongshore extent of
3000 m, is referred to in the following as the barcrest position
X̄ . The actual (in situ) bar position, however, is known to
deviate from the position of the breaking waves by a factor
of O(10) m, and varies in time and alongshore distance with
the wave height, the water level, and the bathymetry (Van
Enckevort & Ruessink, 2001).

To eliminate the time-varying nature of the difference
between the measured and the actual bar position caused by
several factors, the data set is reduced to a single observation
each day, at the lowest tide of that day (when the breaking
patterns are most pronounced in the images). Occasionally, the
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(a) Time-exposure Argus images of all cameras; the high-intensity bands in each image are due to persistent
wave breaking on the sandbars.

(b) Merged plan view image.

(c) Tracked outer (solid) and inner (dashed) barlines in plan view.

Fig. 1. Argus camera images, merged plan view and tracked barlines.
bar position cannot be computed due to poor image quality (fog
or rain droplets on one of the camera lenses), conditions when
waves were too low to break, or the malfunctioning of the video
acquisition system. To create a continuous time-series data set,
the gaps are filled with observations from the last breaking-
based observation, assuming that bar migration is insignificant
under low-energy conditions.

Image data at the Gold Coast station is available for over
seven years starting at July 15, 1999. During this period, five
different sandbars can be distinguished (Fig. 2(a)). The life
cycle of a bar at the Gold Coast begins close to the shore as an
inner sandbar. When the existing outer bar disappears, the inner
bar moves seaward and becomes the new outer bar. After one or
more major storms (high wave energy conditions in Fig. 2(b))
the outer bar moves further offshore than usual (e.g., early 2006
in Fig. 2; see also Castelle, Turner, Ruessink, and Tomlinson
(2007)), after which it disappears, and a new cycle begins. As
the outer bar decays, the beach is particularly prone to erosion
(Castelle et al., 2007), highlighting the relevance of sandbars as
a natural defence mechanism.

The predominant exogenous inputs for driving sandbar
variability in process-based models are the offshore waves,
which can be represented by their root-mean-squared wave
height Hrms, peak wave period Tpeak and wave direction relative
(a) X̄ for the different bars; the black parts indicate the data used in the
experiments.

(b) Hydrodynamic data.

Fig. 2. Overview of the variables in the data set.

to the shore normal φ. To reduce the number of inputs for the
models, these variables are combined into the wave height at
breaking (Plant et al., 1999):

Hb =

(
γ

g

) 1
5 (

H2
rms · cg · cos(φ)

) 2
5
. (1)
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The offshore group velocity cg is computed using linear wave
theory involving Tpeak and the water depth at the location of the
offshore wave measurement. The gravitational acceleration g is
9.81 m s−2 and the breaker parameter γ is set to 0.4, a typical
field value (Thornton & Guza, 1983). The variables Hrms and
Tpeak are obtained every 30 minutes from the Gold Coast
waverider buoy, located approximately 2 km offshore of the
study area, in 16 m water depth. Directional information φ, is
collected hourly by the Brisbane waverider buoy located some
10 km offshore in 70 m water depth, about 100 km north of
the study area. The Hb values are computed from the observed
values of Hrms, Tpeak and φ, and are then averaged to yield
a single value between two subsequent sandbar observations.
The time-averaged Hb value is given the same time index as
the second observation. Missing Hb values are filled by linear
interpolation between adjacent points in time of the 7-year data
set. The time-series of the hydrodynamic data are depicted in
Fig. 2(b).

As shown by Van Enckevort and Ruessink (2001), the
magnitude of the difference between the video-observed and
the actual sandbar position depends on the tidal water level
ztide. Because our observed sandbar positions are collected at
different tidal levels (Fig. 2(b)), this creates artificial sandbar
migration, that is, migration due to varying tidal levels rather
than due to actual sandbar migration. The artificial day-to-day
migration rate depends linearly on the water-level difference
between the two images (e.g., Van Enckevort and Ruessink
(2001)), and can therefore be removed easily from the data
by projecting each observed sandbar position on a fixed water-
level. Here, the average low-tide value (approximately 0.5 m
below mean sea level) is used. This approach is similar to that
described in Alexander and Holman (2004).

3. Models

3.1. Autoregressive models

The presently most common approach to the modeling of
nearshore bathymetry is by means of process-based models
(Roelvink & Brøker, 1993). A formal description of these
models can be given in terms of inputs, outputs, model states,
functions and parameters. In discrete time, the internal state
of the model at a certain time t , called the system state Û (t)
depends on the states of the model in the past and the external
forcing I (t) to the model at time t :

Û (t) = M(Û (t − 1), . . . , Û (t − M);

I (t), . . . , I (t − N )| EΘ), (2)

where M represents the model’s process knowledge, EΘ the
adjustable model parameters, M the autoregressive order of the
model state, and N the order of the external forcings. Because
process-based models are based on first-order time differential
equations, the autoregressive and exogenous terms always span
one time step (M = 1 and N = 0, given the definition in
Eq. (2)). The parameters EΘ must be determined by calibration
from observed model behavior or the literature.

The general name for linear data-driven models in which
previous model states are fed back into the model together with
additional inputs, is AutoRegressive models with eXogenous
inputs (ARX). The parameters of the ARX model can be
determined by an algorithm that finds the values for which the
sum of the squared differences between all samples in the data
and the model output is minimized. It must be noted that other
methods exist in which several assumptions about the nature of
the data are relaxed (Draper & Smith, 1998), which will not
be dealt with here. Another way in which the parameters can be
determined is to apply a recursive algorithm in which parameter
updates are computed iteratively for each sample. In the general
case the parameter update rule can be written as:

θ̂ (t) = θ̂ (t − 1) + G(t)(U (t) − Û (t)), (3)

where θ̂ (t) is the parameter estimate at time t , U (t) is the
observed value at t and Û (t) is the model output at time t , which
might have been influenced by different model parameters at
earlier time steps. G(t) is the factor that determines how the
difference between the model output and the observed data
affects the parameter update, and is often based on the gradient
of Û (t) with respect to θ̂ (t). The model is adjusted each time
step and can adapt to variations in the properties of the observed
data over time, making it suitable for online model estimation.
Furthermore, the recursive parameter estimation method for
ARX models is very similar to other algorithms that iteratively
compute parameter updates (such as neural network training
algorithms), and can often be written in terms of such models.

The ARX model is based on establishing linear relations
between the different variables. In case the transfer functions
of the model are nonlinear such a model is called a
Nonlinear AutoRegressive model with eXogenous input
(NARX). Although a linear ARX model might be a good
starting point to study several features of observed data, it is
suspected that because of the nonlinear nature of the nearshore
dynamics only nonlinear models will be able to represent the
characteristics of such a system to their full extent.

While ARX models are fairly easy to create, the construction
of nonlinear models is less straightforward. As described
by Narendra and Parthasarathy (1990) various methods exist
to build nonlinear data-driven models. One method that has
become very popular in recent years is the use of neural
networks. Whereas nonrecurrent neural networks can be
used to model nonlinear relations, recurrent neural networks
are also able to model temporal dependencies in the data
(Rumelhart, Hinton, & Williams, 1986). Because of the
supposed nonlinearity and temporal dependencies in the
sandbar system, a recurrent neural network known as the
NARX neural network will be used here. The NARX neural
network is equivalent to autoregressive process-based models
by replacing the process knowledgeM in Eq. (2) by a neural
network N and the adjustable model parameters EΘ by the
weight matrix W of the neural network:

Û (t) = N (Û (t − 1), . . . , Û (t − M);

I (t), . . . , I (t − N )|W). (4)

The transfer functionN is now a neural network and the weight
matrix W is to be determined by learning from the data, as is
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the case for data-driven models. The autoregressive terms in
Eq. (2) are represented by recurrent connections (connections
going back from the output to the input layer), which can now
be employed by a recurrent training algorithm to learn temporal
dependencies in the data.

3.2. Parameter estimation for ARX and NARX models

While backpropagation (Rumelhart et al., 1986) is a com-
monly used technique for training feedforward neural networks
such as the MultiLayer Perceptron (MLP), several interpreta-
tions exist for the application of this method in recurrent neu-
ral networks. RealTime Recurrent Learning (RTRL) and Back-
Propagation Through Time (BPTT) (Rumelhart et al., 1986;
Williams & Peng, 1990) are well-known training algorithms.
Whereas RTRL is of more theoretical interest, BPTT is the
algorithm that is used to train the NARX neural network ar-
chitecture (Lin et al., 1996). When BPTT is applied for train-
ing a NARX neural network, the recurrent connections are un-
folded in time and the resulting network is treated as an MLP
with injected errors. Instead of unfolding the temporal opera-
tion of a network into an MLP that grows by one layer each
step, as is common practice in BPTT (Rumelhart et al., 1986),
in the NARX architecture the entire network is unfolded at the
recurrent connections. In the unfolded network, the recurrent
connections appear as jump-ahead connections, providing for a
shorter path for backpropagating the error through the network,
thus diminishing the problem of the vanishing gradient (Lin
et al., 1996). After presenting the data to the network, the error
is backpropagated through the unfolded network. In the output
units of the recurrent network, the local error is computed and
added to the backpropagated value from the subsequent input
unit. As the error in the present time step is reduced while tak-
ing into account the errors made in the future, the NARX neural
network is able to learn long-term dependencies in the data.

Because in its basic form the BPTT algorithm is very
computationally intensive, the number of time steps h over
which the recurrent connections are unfolded (or the number
of network states that is saved) can be reduced, which is called
truncated BPTT. Furthermore, the algorithm can compute
weight updates for each step, but the updates can also be
delayed an additional number of steps h′. The application of
both changes to the BPTT algorithm will reduce computation
time, while still following the true gradient closely (Williams &
Peng, 1990). This efficient algorithm called BPTT (h; h′) will
be used in the present work and is exactly the same as batch-
wise BPTT if h is chosen to equal h′. Since the time-series
data of alongshore average positions of the sandbars are not
naturally segmented into independent batches, the batch size h
(which is now equal to h′) must be carefully chosen. If the batch
size is too small, any temporal dependencies that span a longer
period than the selected batch size cannot be learned, and if it
is too large the algorithm converges slowly.

In a NARX neural network it is possible to disregard
the long-term dependencies by not backpropagating the error
over the recurrent connections. In such a network the errors
made in the future are not considered in the computation of
the current weight updates, meaning the network will not be
able to learn any long-term dependencies. This nonrecurrent
training algorithm for a recurrent neural network can be
seen as an autoregressive MLP that still uses the previously
predicted outputs as input, but does not backpropagate any error
information over the autoregressive terms. The importance of
long-term dependencies in the data can be studied empirically
by comparing the results of an autoregressive MLP that is
trained with a nonrecurrent method and a NARX neural
network that is trained using the BPTT algorithm.

As discussed in Section 3.1, the parameters of an ARX
model can be established by least-squares linear regression, but
also with recursive methods. The recursive method has much in
common with the backpropagation training method for neural
networks, but can also be implemented as a recurrent training
algorithm that is equivalent to BPTT. When the NARX neural
network employs only one layer with units that have linear
transfer functions instead of one or more layers of units with
nonlinear functions, the network is reduced to a linear ARX
model, while the BPTT algorithm can still be used to compute
iterative weight updates. The equation for this ARX model
becomes:

Û (t) = θ0 +

M∑
i=1

θiÛ (t − i) +

N∑
j=0

θ(1+ j+M) I (t − j), (5)

where θ1 . . . θ(M+N+1) are the model parameters which
correspond to the connections between the input and output
layer, and are determined by the recurrent learning algorithm
that is now based on the gradients of the parameters with respect
to model outputs over multiple time steps. Note that in this
definition the ARX network also includes a bias term θ0 that is
not present in the original ARX formulation. Using BPTT for
estimating ARX models enables such a model to learn temporal
dependencies, and allows for a fair comparison between other
linear and nonlinear ARX models.

In summary, four different data-driven models will be
used to test the claim of nonlinear dynamics and long-
term dependencies in time-series of sandbar positions from
an empirical point of view: an ARX model solved with
nonrecurrent parameter estimation to test for linearity in
absence of temporal dependencies, an ARX model solved
with BPTT representing a linear method that can learn
temporal dependencies, an autoregressive MLP that can
model nonlinearities, but no temporal dependencies and a
NARX neural network trained with BPTT that can model
both nonlinear and long-term dependencies. Because of
its computational efficiency, the ARX model solved with
least squares is used to determine optimum values for
the autoregressive model and exogenous input order (see
Section 4.3 below), assuming that these optimum values also
apply for the other model types.

4. Experiments

4.1. Setup

For the purpose of the present work, we focus on the cross-
shore behavior of the outer bar. As described in Section 2,



514 L. Pape et al. / Neural Networks 20 (2007) 509–518
the outer bar occasionally decays following an extreme storm
event, after which the inner bar migrates offshore to become the
new outer bar. In a time-exposure image a decaying bar shows
up as a series of discontinuous, vague white blobs from which
an accurate alongshore average position cannot be estimated.
Furthermore, Castelle et al. (2007) noted that the behavior of a
decaying bar (e.g., its response to subsequent minor storms) is
different from a well-developed bar. Therefore, outer bar data
starting at the major storm after which the bar started to decay
are discarded. The offshore migrating inner bar is considered to
be a new outer bar, when it migrates beyond 350 m from a local
baseline (the approximately most shoreward position of a well-
developed outer bar, see Fig. 2(a)). Given these considerations
and the availability and quality of the image data set, a total of
2131 days of alongshore average outer bar positions is selected,
as indicated by the black lines in Fig. 2(a). This data set,
comprising the tide-corrected positions and associated wave
breaker heights with a resolution of one day, is scaled to zero
mean and unit variance for the experiments with the data-driven
models.

All four models described in the previous section use the
same input and output data structure. The alongshore average
bar position X̄ is to be predicted at time t :

U (t) = X̄(t). (6)

The input to a model consists of the model’s output during the
past M time steps, together with the forcing factors at present
and the previous N − 1 time steps, which are the wave forcings
represented by Hb:

I (t), . . . , I (t − N ) = Hb(t), . . . , Hb(t − N ). (7)

Note that Hb(t) is defined here as the mean wave forcing
corresponding to the time between observations of X̄(t − 1)

and X̄(t).
During the experiments the data set is divided into 20 sets

of approximately 100 days each. The performance of the four
models is tested on each of the 20 sets, while one randomly
permuted set is used as validation set, and the remaining 18 sets
are used as training data. The performance of a model is tested
by running the model starting with observed conditions at the
first time step and model outputs during the next 10 time steps.
This process is repeated each 10 samples where the observed
values preceding those samples are used as initial values. The
root-mean-squared difference between 10-step-ahead model
predictions and observed values, averaged over the 20 sets is
taken as the performance measure in all experiments, unless
noted otherwise. The choice for 10-step-ahead predictions is
motivated by the observation in the data that on this time span
notable changes in bar position take place during both high
(storm) and relatively low Hb values. The sensitivity of our
results to this particular choice is discussed in Section 4.5.

Both the recurrent and nonrecurrent training algorithms
update the parameter estimates with small steps each iteration,
and the data need to be presented to the network several times
(epochs) before the algorithm converges. Whereas establishing
a model with least-squares linear regression is straightforward,
a stopping criterion has to be established for the neural network
training algorithms. The basic idea of the stopping criterion
used here is that training is halted when the performance on
the validation set stops to increase. However, when training
recurrent neural networks the performance on the validation
set (and sometimes even on the training set) does not decrease
steadily, but might increase and decrease again several times
during training. Therefore the training process is continued for
a large number of epochs, during which the performance on test
and validation sets is constantly monitored. The performance
on the test set that corresponds to the best performance on the
validation set is taken as the outcome of an experiment.

The nonrecurrent backpropagation and BPTT algorithms
as well as the neural networks have a number of parameters
that need to be adjusted to the task at hand. Since training
recurrent neural networks takes a considerable amount of time,
several experiments were performed to find reasonable settings
for the network architecture and training algorithm. We found
that a network with one hidden layer containing four sigmoid
units yields a reasonable balance between learning speed and
performance. Furthermore, we used a learning rate of 10−6, a
momentum factor of 0.2 and performed the training process
over 106 epochs. Optimum values for the batch size and
for the autoregressive model and exogenous input order are
determined in the next two subsections. While nonrecurrent
neural networks might not need to be trained for such a large
number of epochs, the fact that the best performance during the
entire training process is used, ensures that comparable results
are achieved.

4.2. Batch size

The batch size in the BPTT(h; h′) algorithm needs to
be carefully chosen because it determines the length of the
temporal dependencies that can be learned. The computation
time for the BPTT algorithm decreases as the batch size
increases, but this comes at the expense of a reduction in
the learning speed; the optimum batch size has, therefore,
to be determined empirically. A number of experiments
was performed to investigate the effect of batch size on
the performance and learning speed of the NARX neural
network. Training and testing were performed as described in
Section 4.1, with M = 1 and N = 0. Fig. 3 shows the course of
the error for several batch sizes during the first 0.5×106 epochs.
Because for batch sizes larger than approximately 20 the size
does not affect the performance or learning speed anymore, a
batch size of 25 is used in all further experiments.

As becomes clear from Fig. 3, training a network takes
a large number of epochs before it converges. Because
Fig. 3 shows only average performances over 20 networks
while individual networks might need even more epochs for
convergence, all networks in further experiments are trained
for 106 epochs. While other learning methods using second or
higher order derivatives or approximates, such as quasi-Newton
methods, can improve learning speed, they also decrease the
learning capacity of recurrent architectures because of fast-
vanishing gradient information over recurrent connections (Lin
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Fig. 3. Error during training on all test sets as a function of batch size.

et al., 1996). Because the ability of the NARX neural network to
learn long-term dependencies is studied, we only use gradient
descent based on the first-order derivative.

4.3. Model orders

Whereas process-based models always use one autoregres-
sive term (M = 1) and one exogenous term (N = 0), data-
driven models might benefit from additional information on
past observations and model outputs. For most data-driven
models performance will improve with increasing model or-
ders, but this comes at the cost of additional parameters and
learning time. Several information criteria exist (e.g., AIC and
MDL) to determine optimal model orders, however to allow for
a fair comparison between the four different models, the orders
of all models are set to the same values.

Because of its computational efficiency the least-squares
solved ARX model can be used easily to test a large number
of different model orders. First the effect of changing the
autoregressive order is tested with M = 1 . . . 10. Each of
the 20 sets is used once as test set, while a model is fitted
to the remaining 18 training sets in the same fashion as is
done in the neural network experiments (no validation set is
used). We found that the root-mean-squared error (RMSE)
averaged over all sets for 10-step-ahead predictions yields
no significant performance difference for each additional
autoregressive order. Therefore an autoregressive order of unity
is used in all experiments.

To find optimal values for the exogenous model order N ,
values from zero up to four were tested using a least-squares
linear regression ARX model in the same fashion. As shown in
Fig. 4, the largest performance increase for ARX models takes
place with an increase from N = 0 to N = 1. To investigate
whether this also holds for the neural network models, the
experiments were repeated with a NARX neural network that
is trained with BPTT. As becomes clear from Fig. 4, in the
BPTT NARX model the error also shows the largest decrease
when the exogenous order is increased from N = 0 to N =

1. Moreover, in this model the error increases for exogenous
orders larger than 1. Because the best performance on the
validation set in the NARX model is always achieved within
106 epochs, a possible reason for decreasing performance for
N > 1 might be the relatively small number (four) of hidden
units. However, in an additional experiment with 10 hidden
Fig. 4. Error on all test sets for different models as a function of the exogenous
model order.

Fig. 5. Boxplots of the error distribution for 10-step-ahead predictions for
different models, the asterisks represent outliers.

units, the performance also reduced for N > 1. It might
be that NARX neural networks with even larger numbers of
hidden units benefit from exogenous model orders larger than
1, but training such networks would require considerable extra
computational effort. Because both models tested here benefit
most from increasing the exogenous order from zero to one, the
latter value is used in all further experiments.

4.4. Recurrent versus nonrecurrent and linear versus nonlinear
models

As discussed in Section 3.2 the parameters of linear and
nonlinear methods can be estimated using BPTT, allowing
the model to learn temporal dependencies, or by nonrecurrent
training methods that do not employ any information on
temporal dependencies. Now that all parameter settings for
the neural networks are established, the performance of the
four different models can be tested on the sandbar data set.
The models are trained as described in Section 4.1, and
the performance is tested using the RMSE on 10-step-ahead
predictions. As can be inferred from Fig. 5 there is a large
variability between the results of the models on different parts
of the data. Further investigation reveals that the outliers, with
values that can be three times as large as their corresponding
mean, are found in the same parts of the data in all experiments.
These anomalies are caused by different statistical properties of
the involved parts resulting in bad generalization capacities for
the neural networks. A possible way to circumvent the problem
of abnormalities in the data, might be to leave out the parts
that deviate most from the rest of the data. Although there is
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Fig. 6. Error on all test sets for different models as a function of the prediction
horizon.

no significant (p = 0.05) difference in performance between
any of the models, removing the largest outlier reveals a
significant better performance of nonlinear over linear models,
but still no significant difference is found between BPTT and
the nonrecurrent parameter update rule. Apparently, long-term
dependencies are not relevant to the 10-step-ahead predictions
of the outer sandbar position.

4.5. Prediction horizon

Whereas the performance of the four models in the previous
experiments was tested on 10-step-ahead predictions, it is
suspected that the differences between the models become
more pronounced for larger prediction horizons. Therefore the
performance of the models is tested on several step-ahead
predictions from 1 up to 60 (which is the size of the smallest
continuous part of the data). During the training process the
performance on the test and validation sets is monitored for
each prediction horizon, and the performance on the test set that
corresponds to the minimum error on the validation set is used
for each prediction horizon separately. Fig. 6 shows the average
performance over all sets (including the outliers) for the four
models as a function of the prediction horizons. As suspected,
the performance decreases with increasing prediction horizon
and the differences between the four models grow likewise.

Whereas the differences between the autoregressive MLP
and the BPTT NARX remain small for prediction horizons
up to 30, larger values show that the performance of the
NARX model is consistently better than that of the MLP.
Due to the large variability in the results, this difference
remains insignificant. The performance differences between
other models are also very small for short prediction horizons,
but for prediction horizons larger than 40 steps the difference
between nonlinear and linear methods becomes significant
(p = 0.05). This indicates that modeling the cross-shore outer
bar migration benefits from the use of nonlinear methods, at
least for long-term predictions.

Surprisingly, the BPTT ARX model performs worse than its
nonrecurrent counterpart. The BPTT ARX model is trained to
minimize the errors over 25 steps, but even on the 25-step-ahead
prediction its performance is worse than the nonrecurrent ARX
model. In both models the networks are trained for 106 epochs.
While the BPTT ARX model slowly converges during its
Fig. 7. Observed (solid) bar position versus model output (dotted) over a long
time period (>2 years).

training for 106 epochs to a (local) optimum, the nonrecurrent
ARX model converges much faster (<105 epochs), and then
starts to oscillate (due to the momentum factor) around an
optimum or between several optima. The performance on
the test set that corresponds to the best performance on the
validation set during the entire training period is taken as the
outcome of an experiment. Therefore the chance that the BPTT
training algorithm finds a better (local) optimum is much lower
than in the nonrecurrent ARX, which might cause the latter to
perform better.

Finally, we investigated the performance of a BPTT NARX
model for even longer prediction horizons up to approximately
2 years. The result of a model that was tested on 744 days
with only the first bar position provided to the model (744-
step-ahead prediction), while the rest of the data was used
as a training set is given in Fig. 7. As demonstrated in this
figure, the model output reasonably follows the observed rapid
offshore migration (during storms) and the subsequent slower
onshore migration as well as the more seasonal variability in
sandbar position, although, admittedly, details are occasionally
predicted poorly (e.g., t = 150–200 days). It can be inferred
from this experiment that the NARX model is capable of
learning the general dynamics of the dependence of the
alongshore average bar position on the hydrodynamic forcing.
Also, the predicted positions of the models never show any
values beyond the outer bar zone (between 350 and 500 m)
while this was not imposed by the linear nature of the output
units.

5. Discussion and conclusions

In the previous section nonlinear and linear models as well as
recurrent and nonrecurrent parameter estimation methods were
applied to investigate the supposed nonlinear and long-term
dependencies in the data set of observed outer bar positions
and hydrodynamic data. We found a small but statistically
significant performance increase for long-term predictions
with nonlinear models for prediction horizons above 40 days,
indicating that nonlinear effects expose themselves for larger
prediction horizons, and no significant difference between
nonrecurrent and recurrent methods meaning that the effects of
dependencies spanning more than 2 days are of no importance.

Fig. 5 shows that the behavior of the sandbars in terms of
linear and nonlinear dependence on the hydrodynamic forcings
exhibits large differences between separate parts of the data set.
For the linear case this result was also found by Pape, Ruessink,
Wiering, and Turner (2006) who attributed it to the rather small



L. Pape et al. / Neural Networks 20 (2007) 509–518 517
spatial (1.8 km) and temporal (3.5 years) scales of observed
sandbar positions in their Gold Coast data set. Fig. 5, based on
larger scales (3 km and 6 years, respectively), implies that the
suggestion of Pape et al. (2006) is incorrect. The reason for the
different performances of the same model type on the various
data sets is not known. It may indicate that the characterization
of sandbar morphology by position alone is insufficient to
predict the evolution of future positions. Potentially, sandbar
volume and water depth above the bar crest, both of which
cannot be determined from time-exposure video images in a
straightforward manner, play a role as well. Van Enckevort
et al. (2004), for instance, suggested that the response time of
the alongshore crescentic patterns in sandbars (e.g., see Fig. 2)
to similar storms at four sites depended on bar volume, with
larger bars behaving more slowly. The water depth above the
bar crest determines the relative importance of onshore versus
offshore sediment transport. Thus, a bar located at the same
cross-shore position and subjected to the same wave conditions
may behave differently based on the water depth above the
bar. If the bar volume and water depth above the bar indeed
varied substantially during and between the data subsets, then
this might have invoked the different performances of the same
model on the data subsets.

Although the hydrodynamical and sediment transport
processes in the near-shore are strongly nonlinear, the
difference in performance of linear and nonlinear models is
significant only for prediction horizons above 40 days, but
even then RMSE differences between the nonlinear and linear
methods remain relatively small. Intriguingly, other nearshore
studies have also indicated a relatively small improvement
in performance of nonlinear models over linear models (e.g.,
Ruessink, van Enckevort, and Kuriyama (2004)) or found
reasonably accurate data-driven predictions of sandbar behavior
during and following a single storm using linear models (Plant,
Holland, & Holman, 2006). We are currently investigating how
nonlinearities in the processes that govern sandbar behavior
express themselves in time series of sandbar positions. Work of
Laio, Porporato, Ridolfi, and Tamea (2004) on rainfall-runoff
time series, for instance, demonstrates that the presence of
nonlinear processes in a system does not necessarily imply that
time series from specific variables in this system are nonlinear
themselves.

As was to be expected from the use of first-order
gradient descent methods, recurrent neural networks require
a considerable amount of computational effort (106 epochs)
for convergence. Other methods using second or higher order
derivatives or approximates, can dramatically improve the
learning speed, but also decrease the learning capacity of
recurrent architectures. Feedforward networks suffer less from
the problem of vanishing gradients because they do not employ
recurrent connections. Our conclusion from Fig. 6 that the
effect of memory on the cross-shore migration of the outer
Gold Coast bar is negligible may advocate the use of MLPs
for our future work on sandbar behavior. However, whether
this conclusion also holds for the cross-shore migration of the
inner bar (which is sheltered from the offshore waves by wave
breaking on the outer bar and thus may respond differently to
offshore wave forcing than the outer bar (Plant et al., 2001;
Southgate & Möller, 2000)) and for the evolution of the above-
mentioned crescentic patterns remains to be investigated.
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