
On Learning Soccer Strategies

Rafa�l Sa�lustowicz� Marco Wiering� J�urgen Schmidhuber

IDSIA� Corso Elvezia ��� ���� Lugano� Switzerland
e�mail� frafal� marco� juergeng	idsia
ch

In W� Gerstner� A� Germond� M� Hasler� and J��D� Nicoud� editors�

Proceedings of the Seventh International Conference on Artificial

Neural Networks �ICANN���	� volume 
��� of Lecture Notes in Computer

Science� pages �
������ Springer�Verlag Berlin Heidelberg� 
����

Abstract� We use simulated soccer to study multiagent learning
 Each
team�s players �agents
 share action set and policy but may behave dif�
ferently due to position�dependent inputs
 All agents making up a team
are rewarded or punished collectively in case of goals
 We conduct sim�
ulations with varying team sizes� and compare two learning algorithms�
TD�Q learning with linear neural networks �TD�Q
 and Probabilistic
Incremental Program Evolution �PIPE

 TD�Q is based on evaluation
functions �EFs
 mapping input�action pairs to expected reward� while
PIPE searches policy space directly
 PIPE uses an adaptive probability
distribution to synthesize programs that calculate action probabilities
from current inputs
 Our results show that TD�Q has di�culties to learn
appropriate shared EFs
 PIPE� however� does not depend on EFs and
�nds good policies faster and more reliably


� Introduction

Soccer recently received much attention by various multiagent researchers� There
have been attempts to learn low�level cooperation tasks such as pass play� Pub�
lished results on learning entire soccer strategies� however� have been limited
to extremely reduced scenarios �e�g�� two single opponent players in a � � 	
grid world 
���� Our comparatively complex case study will involve simulations
with continuous�valued inputs� simple physical laws to model ball bounces and
friction� and up to 

 players �agents� on each team�

Evaluation functions versus search through policy space� There are
two rather obvious classes of candidate algorithms for multiagent reinforcement
learning �RL�� The �rst includes traditional single�agent RL algorithms based
on adaptive evaluation functions �EFs� 

�� Usually online variants of dynamic
programming and function approximators are combined to model EFs map�
ping input�action pairs to expected discounted future reward� Methods from
the second class do not require EFs� Their policy space consists of complete
algorithms de�ning agent behaviors� and they search policy space directly� Well�
known members of this class are Levin search 
��� Genetic Programming� e�g� 
���
and Probabilistic Incremental Program Evolution 
���



Comparison� In our case study we compare two learning algorithms� each
representative of its class� TD�Q learning with linear neural nets �TD�Q� 
	� and
Probabilistic Incremental Program Evolution �PIPE� 
��� TD�Q selects actions
according to linear neural networks trained with the delta rule to map player
inputs to evaluations of alternative actions� PIPE uses a probability distribu�
tion to synthesize programs that calculate action probabilities from inputs� The
probability distribution is then adapted using an evolutionary approach�

� Soccer Simulation

Our discrete�time simulations involve two teams� There are either 
 or 

 play�
ers per team� Players can move with and without the ball or shoot it� As in
indoor soccer the �eld is surrounded by impassable walls except for the two
goals centered in the east and west walls� The ball slows down due to friction
�after having been shot� and bounces o� walls obeying the law of equal re�ection
angles� Players are �solid�� If a player� coming from a certain angle� attempts to
traverse a wall then it �glides� on it� loosing only that component of its speed
which corresponds to the movement direction hampered by the wall� Collisions
of players cause them to bounce back to their positions at the previous time
step� If one of them had the ball then the ball changes owners� There are �xed
initial positions for all players and the ball �see Figure 
�� A game lasts from

Fig� �� �� players and ball in initial positions
 Players of a � player team are those
furthest in the back �goalkeepers



time t � � to time tend�
Action Framework�Cycles� At each discrete time step � � t � tend each

player executes a �cycle�� A cycle consists of� �
� an attempt to get the ball� if it
is close enough� ��� input computation� ��� action selection and execution� and
�	� another attempt to get the ball� if it is close enough� Once all players have
executed a cycle we move the ball� If a team scores or t � tend then all players
and ball are reset to their initial positions�

Inputs� Player p�s input at a given time t is an input vector i�p� t�� Vector
i�p� t� has 
	 components� �
� Three boolean inputs that tell whether the player�a
team member�an opponent has the ball� ��� Polar coordinates �distance� angle�
of both goals and the ball with respect to a player�centered coordinate system�
��� Polar coordinates of both goals with respect to a ball�centered coordinate
system� �	� Ball speed� Note that these inputs make the environment partially
observable�



Actions� Players may execute actions from action set ASET� ASET contains�
go forward� turn to ball� turn to goal and shoot� Shots are noisy and noise makes
long shots less precise than close passes� For a detailed description of the soccer
simulator see 
���

� Probabilistic Incremental Program Evolution �PIPE�

We use PIPE 
�� to synthesize programs which� given player p�s input vector
i�p� t�� select actions from ASET�

Action Selection� Action selection depends on � variables� g � IR� Ai � IR�
�i � ASET � Action i � ASET is selected with probability PAi

according to the
Boltzmann�Gibbs distribution at temperature �

g
�

PAi
��

eAi�g

P
�j�ASET e

Aj �g
�i � ASET �
�

All Ai and g are calculated by a program�
Programs� A main program Program consists of a program Progg which

computes the �greediness� parameter g and 	 �action programs� Progi �i �
ASET �� The result of applying Prog to data x is denoted Prog�x�� Given
i�p� t�� Progi�i�p� t�� returns Ai and g �� jProgg�i�p� t��j� An action i � ASET
is then selected according to �
��

Program Instructions� A program Prog contains instructions from a
function set F and a terminal set T � We use F � f���� ���� sin� cos� exp� rlogg
and T � fi�p� t��� � � � � i�p� t�v � Rg� where � denotes protected division ��y� z �
IR� z �� �� y�z � y�z and y�� � 
�� rlog denotes protected logarithm ��y �
IR� y �� �� rlog�y��log�abs�y�� and rlog��� � ��� i�p� t�l 
 � l � v denotes
component l of a vector i�p� t� with v components and R represents the generic
random constant from 
��
��

PIPE Overview� PIPE programs are encoded in n�ary trees that are parsed
depth �rst from left to right� with n being the maximal number of function ar�
guments� PIPE generates programs according to a probability distribution over
all possible programs composable from the instruction set �F � T �� The proba�
bility distribution is stored in an underlying probabilistic prototype tree �PPT��
The PPT contains at each node an initial probability for each instruction from
F � T and a random constant from 
��
�� Programs are generated by traversing
the PPT depth �rst starting at the root node� At each node an instruction is
picked according to the node�s probability distribution� In case the generic ran�

dom constant is picked it is instantiated either to the value stored in the PPT

node or a random value from 
��
�� depending on the instruction�s probability� To
adapt PPT�s probabilities PIPE generates successive populations of programs�
It evaluates each program of a population and assigns it a scalar� non�negative
��tness value�� which re�ects the program�s performance� To evaluate a program
we play one entire soccer game� PIPE then adapts PPT�s probabilities so that
the overall probability of creating the best program of the current population



increases� Finally PPT�s probabilities are mutated to better explore the search
space� All details can be found in 
���

� TD�Q Learning

One of the most widely used EF�based approaches to reinforcement learning
is TD�Q learning� We use Lin�s successful TD��� Q�variant 
	�� For e�ciency
reasons our TD�Q version uses linear neural nets �nets with hidden units require
too much simulation time�� The goal of the networks is to map the player�
speci�c input i�p� t� to action evaluations Q�i�p� t�� a��� � � � �Q�i�p� t�� a��� where
ai � ASET � We use the same networks for all policy�sharing players� We reward
the players equally whenever a goal has been made or the game is over�

Action selection� We use a linear net for each of the four actions fa�� � � � �
a�g� To select an action for player p we �rst calculate Q�values of all actions�
The Q�value of action ak� given input i�p� t� is

Q�i�p� t�� ak� �

j�vX

j��

wk
j i�p� t�j � wk

v��� ���

where wk is the weight vector for action network k� v denotes the number of
inputs� and wk

v�� is the bias strength� Once all Q�values have been calculated�
a single action is chosen according to the Boltzmann rule �see assignment �
���

TD�Q learning� Each game consists of separate trials� For each player p
there is a variable time�pointer t�p�� At trial start we set t�p� to current game
time tc� We increment t�p� after each cycle of player p� The trial stops once one
of the teams scores or the game is over� Denote player p�s �nal time�pointer
by t��p�� To achieve an optimal strategy we want the Q�value Q�i�p� t�� ak� for
selecting action ak given input i�p� t� to approximate

Q�i�p� t�� ak� 	 E��t
��p��t�p�R�t��p���� ���

where E denotes the expectation operator� � � � � 
 the discount factor
which encourages quick goals �or a lasting defense against opponent goals�� and
R�t��p�� denotes the reinforcement at trial end ��
 if opponent team scores� 
 if
own team scores� � otherwise��

To learn these Q�values we monitor player experiences in player�dependent
history lists with maximum size Hmax� After each trial we calculate examples
using the TD�Q method� For each player history list� we compute desired Q�
values Qnew�t� for selecting action at� given i�p� t� �t � t��p�� � � � � t��p�� where
t��p� � Max�
� t��p� � 
�Hmax�� as follows�

Qnew�t��p�� �� R�t��p���

Qnew�t� �� � 
 
� 
Qnew�t� 
� � �
� �� 
MaxkfQ�i�p� t�� ak�g��

� determines future experiences� degree of in�uence�



Once all players have created TD�Q training examples� we train the selected
nets to minimize their TD�Q errors� All player history�lists are processed as
follows� we train the networks starting with the �rst history list entry of player

� then we take the �rst entry of player �� etc� Once all �rst entries have been
processed we start processing the second entries� etc� The nets are trained using
the delta�rule with learning rate LrN � All details can be found in 
���

� Experiments

We analyze TD�Q�s and PIPE�s behavior as we vary team size� We perform 
�
independent runs for each combination of learning algorithm and team size� We
play ���� games of length tend � ���� for both team sizes �
 and 

�� Every

�� games we test current performance by playing �� test games �no learning�
against a �biased random opponent� BRO and summing the score results�

BRO randomly executes actions from ASET� BRO is not a bad player due
to the initial bias in the action set� If we let BRO play against a non�acting
opponent NO �all NO can do is block� for twenty ���� time step games then
BRO wins against NO with on average �
�� to ��� goals for team size 
 and 
� ��
to ��� goals for team size 

�

PIPE Set�up� Parameters for PIPE runs are� PT��� � � � 
� Pel � ��
PS�
�� lr����� PM���
� mr����� TR����� TP���!!!!!! �see 
�� for details��
During performance evaluations we test the current best�of�current�population
program �except for the �rst evaluation where we test a random program��

TD�Q Set�up� After a thorough parameter search we found the following
best parameters for TD�Q runs� ����!!� LrN������
� ����!� Hmax�
��� All
weights are randomly initialized in 
����
� ���
�� During each run the Boltzmann
rule�s greediness parameter g is linearly increased from � to ���

Results� We plot goals scored by learner and opponent against number of
games in Figure �� PIPE�s score di�erences continually increase� It always quickly

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 1-player

player
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 11 players

player
opponent

Fig� �� Average number of goals scored during all test phases� for team sizes � and ��




learns an appropriate policy regardless of team size� PIPE learns much faster than
TD�Q� This is partially due to PIPE�s ability to e�ciently select the relevant
input features for each action� TD�Q�s score di�erences �rst increase until TD�
Q scores roughly twice as many goals as in the beginning �when it was still
random�� Then� however� performance breaks down� This phenomenon is most
pronounced in the 

 player TD�Q run�

TD�Q�s outlier problem�To understand TD�Q�s major performance break�
down in the 

 player case we saved a network just before breakdown �after ����
games�� We then analyzed the network�s behaviour with our simulator and dis�
covered the �outlier problem�� There are particular game constellations where
the opponent has the ball and is close to the goal but somehow fails to score�
Instead� the TD�Q team manages to grab the ball and score soon afterwards�
How does this a�ect its EFs" Once the linear nets have learned a good EF� they
assign negative evaluations to all actions in such dangerous situations� since most
of the times the opponent will indeed score� But once there is an outlier� the nets
are trained on completely di�erent values� In single�player teams this is less of a
problem� In 

 player teams� however� the e�ect on the nets is 

�fold� We could
not get rid of this problem� neither by �
� bounding error updates nor by ���
lowering learning rates or lambda� Case ��� actually just causes slower learning�
Increasing the greediness value tends to help a bit� but does not work well either�

	 Discussion

In a simulated soccer case study with policy�sharing agents we compared a direct
policy search method �PIPE� and an optimized EF�based one �TD�Q�� Both
competed against a biased random opponent� PIPE quickly learned to beat this
opponent� TD�Q achieved performance improvements� too� but its results were
less exciting� especially in case of multiple agents per team� TD�Q�s problems
were due to� �
� partial observability of the environment� and ��� inability to
handle outliers�

Acknowledgments

Thanks to Jieyu Zhao� Nicol Schraudolph� Luca Gambardella� and Cristina
Versino for valuable comments and suggestions�

References

�
 D
 P
 Bertsekas and J
 N
 Tsitsiklis
 Neuro�Dynamic Programming
 Athena Scien�
ti�c� Belmont� MA� ����


�
 N
 L
 Cramer
 A representation for the adaptive generation of simple sequential
programs
 In J
J
 Grefenstette� editor� Proceedings of an International Conference

on Genetic Algorithms and Their Applications� pages �������� Hillsdale NJ� ����

Lawrence Erlbaum Associates


�
 L
 A
 Levin
 Universal sequential search problems
 Problems of Information Trans�

mission� ���
��������� ����

�
 L
 J
 Lin
 Reinforcement Learning for Robots Using Neural Networks
 PhD thesis�

Carnegie Mellon University� Pittsburgh� January ����




�
 M
 L
 Littman
 Markov games as a framework for multi�agent reinforcement learn�
ing
 In A
 Prieditis and S
 Russell� editors� Machine Learning� Proceedings of the

Eleventh International Conference� pages �������
 Morgan Kaufmann Publishers�
San Francisco� CA� ����


�
 R
 P
 Sa�lustowicz and J
 Schmidhuber
 Probabilistic incremental program evolu�
tion
 Evolutionary Computation� to appear� ����
 See ftp���ftp
idsia
ch�pub�rafal��
PIPE
ps
gz


�
 R
 P
 Sa�lustowicz� M
 A
 Wiering� and J
 Schmidhuber
 Learning team strategies
with multiple policy�sharing agents� A soccer case study
 Technical Report IDSIA�
������ IDSIA� ����
 See ftp���ftp
idsia
ch�pub�rafal�soccer
ps
gz



