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Abstract

The Kesten-Stigum theorem for the one-type Galton-Watson process gives nec-
essary and sufficient conditions for mean convergence of the martingale formed
by the population size normed by its expectation. Here, the approach of Lyons,
Peres and Pemantle (1995) to this theorem, which exploits a change of measure
argument, is extended to martingales defined on Galton-Watson processes with a
general type space through non-negative functions that are harmonic for the mean
kernel. Many examples satisfy stochastic domination conditions on the offspring
distributions that combine with the measure change argument to produce moment
conditions, like the X log X condition of the Kesten-Stigum theorem; a general
treatment of this phenomenon is given. The application of the approach to branch-
ing processes in varying environments and random environments is indicated; the
results also apply to the general (Crump-Mode-Jagers) branching process once suit-
able results on what are called optional lines are obtained. However, the main reason
for developing the theory was to obtain martingale convergence results in branch-
ing random walk that did not seem readily accessible with other techniques. These
results, which are natural extensions of known results for martingales associated
with binary branching Brownian motion, form the main application.

1 Introduction

Let T be the labelled nodes of the family tree in which every node has a countably
infinite number of children; 7 is the (countable) index set for the process. Write |v| for
the generation of the node v, ¢(v) for the children of v and 0 for the initial ancestor. Each
node has a type (or mark), drawn from S; more precisely, let S be a S-valued function
on the nodes, which therefore takes values in B = S7. The types of the first generation
are given by an element of S = {(S}, S5, S3,...): S; € S}.

*Keywords and phrases. branching, measure change, multitype, branching random walk, varying envi-
ronment, random environment, martingales, harmonic functions, Crump-Mode-Jagers process, optional
lines
MS2000 subject classification. Primary 60J80, secondary 60G42,

temail: J.Biggins@sheffield.ac.uk

Yemail: kyprianou@math.uu.nl



The family size distributions, {P; : s € 8}, from which the branching process is built,
are distributions on SV, the possible types of the first generation; the corresponding
expectation is F,. Let 8, be obtained by projecting B onto the first n generations. In
a slight abuse of notation, P is also used for the measure on B; that has S(0) = s with
probability one and then picks the first generation types according to P;. A branching
process is a Markov chain with a state in 8, at time n and transition probabilities defined
by the nth generation nodes producing independent families, with the distribution of the
family of a node of type s being P;. The resulting law for the chain is denoted by B;
for notational simplicity, the starting type, S(0), is not explicitly recorded. This slightly
unconventional definition produces more familiar branching processes when one of the
types in S is a ‘ghost’-type, 0, that always has all its children of type 0 and is interpreted
as the node being absent. A realization of this chain can be identified, in the obvious way,
with an element of B, and the measure describing the evolution can then be transferred to
a measure on B. Let G, be the g-algebra generated by the types in the first n generations.

A finite non-negative function H on S will be called mean-harmonic when, abusing
the notation E as promised,

E, |Y H(S)| =E, |Y_ H(S())| =H(s) foralls€S

v[=1

and H(5) > 0 for some §. Since we deal with a single such H, it will be convenient for
many calculations to let A be the composition of H and S, a function from nodes to the
non-negative reals. Throughout, the starting type is picked from S = {s € S : H(s) >
0} so that H(S(0)) = h(0) > 0.

The functions {W,,} are defined by
Wa(S) = H(S() =Y hlo)= ) h(o);
lo|=n lo|=n lv|=n—1 oec(v)
then
EB [Wn| gnfl] - Z ES(V)

lv|=n—1

fo(si)] = Y H(SW) =W
i v|=n—1

and so W, forms a non-negative martingale with respect to G, with Wy, = h(0). Let
W = limsup, W,; of course W is actually lim, W, almost surely under B, but it is
convenient to have it defined everywhere. The main objective is to give conditions that
determine when the martingale converges in mean; that is to obtain Kesten-Stigum like
results for such martingales. The method used has been employed in various special
cases of the framework adopted here. It is a natural extension and refinement of that
employed by Lyons, Peres and Pemantle (1995), Lyons (1997) and Athreya (2000), and
the connections between this treatment and those are not hard to see. The discussion
in Waymire and Williams (1996) also has much in common with that here but it mostly
confines branching to a b-ary tree and so is not directed towards classical Kesten-Stigum
theorems; however, their framework is at first sight, rather different from here and so
some points of contact are noted in Section 4. The key idea in all these papers is to
exploit a change of measure to establish when the martingale converges in mean; the

2



actual measure change has much longer history, as can be seen from the references in
Lyons (1997).

In many branching models, the assertion that, when EpW = 1, the process dies out
on W = 0 is included as part of a Kesten-Stigum theorem. Here, let Z,, be the number
of nth generation nodes in S¥, then this assertion corresponds to the difference between
the events {Z, — 0} and {W = 0} being P-null, when EpW¥ = 1. Examples mentioned
in Section 4 show that this can fail. Clearly {Z,, — 0} C {WW = 0}, and, for simple
models, showing that P(W = 0) satisfies the same equation as the extinction probability
then settles the issue. No attempt is made here to tackle the generalization of this part
of the Kesten-Stigum Theorem.

The generality of the type space brings many particular branching processes within
the scope of the theorems. Some of these are discussed briefly later to illustrate this.
However, the original motivation for this extension of earlier work was to study the
convergence of a ‘derivative’ martingale — a name explained when it is defined properly
in Section 8 — for a certain boundary case in the homogeneous branching random walk.
The derivative martingale considered is the natural analogue of a martingale arising in
binary branching Brownian motion that is associated with minimal-speed travelling wave
of the KPP equation. Results on the convergence of that martingale, discussed in Neveu
(1988) and Harris (1999), lead naturally to questions answered here for the branching
random walk. An essential feature of this martingale is that it has the form of {IV,}
except that the corresponding function H takes negative values, so its convergence is
not guaranteed. However, the derivative martingale turns out to be naturally connected
to a non-negative one arising in the branching random walk with a barrier, which can
be studied by the methods developed. The results on the derivative martingale also
produce, as a by-product, information about an associated functional equation for the
Laplace transform of the limit, corresponding to the smoothing transform of Durrett and
Liggett (1983); this connection will be explained in Biggins and Kyprianou (2001).

To describe neatly the two measures that arise and their relationship, it turns out to
be useful to augment the basic space by picking out a single line of descent. Formally,
let & = (&0, &1, &2, - - .) be a sequence drawn from 7 with & = 0, and &,,1 € ¢(&,). Thus &
defines a line of descent starting from the initial ancestor. Let = be the set of possible £.
The new space is T = 87 x = (= B x =), its projection onto the first n-generations is T,
and a branching process will now be a Markov chain with state in ¥, at time n. The line
of descent & will be called the trunk — other names have also been used. (Informally,
the “trunk” is what distinguishes the “bushes” which make up B, in which every branch
is similar, from the “trees” which make up ¥, in which the “trunk” has special status.)
Let F,, be the o-algebra generated by the first n steps of the Markov chain, that is, the
information on the development for the first n generations. Let F be the o-algebra
generated by F,_; and the types of the nth generation, {S(v) : |v| = n}, but not the
identification of the trunk at the nth generation, ,; hence F,_; C F; C F,.

In producing the measure on this enlarged space, £ is produced by an extra randomi-
sation. Thus, the various types reproduce as before and then &, is picked from the
children of &,, with probabilities proportional to the children’s values of h when this



makes sense. More precisely,

. h(v)I(v € c(§
Snp1 =Vv|Fo) = when h(o 1
Pleuss = 1) = T PR EILE

and is some arbitrary, but fixed, probability distribution on ¢(&,) otherwise. This defines
a branching process with a trunk; call its probability law PP and its expectation Ep. There
is no reason at the moment to use h to weight the possibilities in picking the trunk, but
one will emerge. By construction, integrating out & maps (%, P) to (8, B).

Another approach to the construction starts by doubling the type space, working with
S x {1,2}. Types in & reproduce as before, producing only types in S;. For s € Sy,
use P, to generate a family from SY; given the family, pick child j with probability
H(S;)/ (3>, H(S;)) when 0 < ). H(S;) < 0o, and pick a child according to some fixed,
arbitrary distribution otherwise; the chosen child is given its type (as generated in SV)
in Sy, every other has its type in §;. Nodes in S, give €.

An auxiliary branching process with a trunk, which will turn out to result from
the change of measure, is described next. To define the development of this Markov
chain, assume the state for the the first n generations is known. Then, reproduction
from nth generation nodes not on the trunk, that is from v € {o : |o| = n,0 # &},
is exactly the same as in P (or B). When S(§,) = s, the types of the children of
&, are given by generating a family from SY with the law having (Radon-Nikodym)
derivative ). H(S;)/H (s) with respect to P; when H(s) > 0 and, for completeness, 1
when H(s) = 0. Finally, given the types, &, is chosen exactly as previously, that is as
in P. Call the resulting measure Q. To express the derivative more neatly, and for later
developments, let X (v) be defined by

H(S
X(w) = I(H(S(v))=0)+I(H(S(v)) > 0) Zo—ec(()s(y())( o))

h(v)

= I(h(v) =0) + I(h(v) > 0)

Then, in constructing Q, the types of the children of &, are given by generating a family
with the law having derivative X (&,) with respect to Pg,).

By assumption h(&) = h(0) > 0; under Q, reproduction from &, produces, with
probability one, a family with 0 < > ) k(o) < oo, which yields, using (1), & with
h(&1) > 0, and so h(&,) > 0 for all n. More formally, the following simple result says
that under Q the types on the trunk develop as a Markov chain on S¥ with a transition
kernel arising naturally from the mean-harmonic function H.

Theorem 1 Let ¢, = S(&,). Then ¢ = {{, (i, ...} forms a Markov chain on S" under
Q with the proper transition measure given by

ZH I(S; € A)| for Ac S,




Proof. Compute Eg[I(S(&,11) € A)|F,] on S(&,) € ST. 0O

For simplicity, write X for X (0); which, under the prevailing assumption that S(0) €
S simplifies to X = > vee() () /R(0). It turns out that the interplay between the
development under QQ of the Markov chain ¢ and the distribution of X under P, often
determines when W, converges in mean. The next theorem, which is a special case of
Corollary 2 given later, illustrates this. In it, and the remainder of the paper, unadorned P
and F will be used for probability and expectation on an (undefined) auxiliary probability
space.

Theorem 2 For x> 0, let A(x) => .~ I(H(()x > 1). Suppose the positive increasing
function L is slowly varying at infinity and that 6 € [0,1); L and 6 may be different in

(i) and (ii).

(i) Suppose that there is a random variable X* with
P(X >2)<P(X*>uz) forallse S
and that sup,.o{A(z)/(z° L(x))} is bounded above, Q almost surely (A is random!). If
E[(X*)"ML(X*)] < o0

then EpW = h(0).

(ii) Suppose that there is a random variable X, with
P(X >z)>P(X,>x) forallseS

and that, for some y, inf,~,{A(z)/(z°L(z))} is bounded below by a positive constant, Q
almost surely. If

E[(X.)"L(X.,)] = o0
then EpW = 0.

The application of this result to the simplest (one-type) Galton-Watson process with
generic family size N satisfying EN = m € (1,00) is now indicated briefly. First, type
individuals by their generation, so the type space is S = {0,0,1,2,...}; a person of type
i gives birth to N’ children of type i+ 1, where N’ is just a copy of N, and the remaining
children are of type 0. Now the function H defined by H(n) = m ™ and H(9) = 0 is
mean harmonic and then W, is the usual martingale. Both X* and X, can be N/m,
G =riand so A(x) = .2 I(H(G)x > 1) = >.0°, I(m* < z) ~ logz/logm. Thus the
two parts of the theorem combine to show the martingale converges in mean exactly when
ENlog N < oo and the limit is zero when this fails, which is a Kesten-Stigum theorem.

We now summarise how the treatment will develop. The next section establishes
general results about the mean convergence of the martingale W,, through the measure
change argument. Often, particular models have, or are most easily understood under,
stochastic bounds on the reproduction of the form employed in Theorem 2. The machin-
ery to consider such cases is established in Section 3. Then, to make a break from general
theory, several examples are discussed briefly to show how they fit into the framework;
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these are the (one-type) Galton-Watson processes in a varying environment, the homo-
geneous Galton-Watson process with a finite irreducible type space, and the branching
random walk in a random, ergodic environment. Some new results are obtained but the
main point is to illustrate the applicability of the general results; it is clear that a similar
discussion of other examples could be given.

Returning to general issues, there are natural reasons to want to consider the sum
of h(v) over collections of nodes other than the nth generation ones; specifically over
what Jagers (1989) calls optional lines. Section 5 gives conditions for the limit over an
increasing sequence of such lines to be W, so that the limit is the same as when the lines
are just formed by the generations.

It was already mentioned that the original motivation for this work was to study the
convergence of a certain derivative martingale in the homogeneous branching random
walk through the branching random walk with a barrier. The latter process and the
result obtained for it are described in Section 6 and the proof forms Section 7. Then,
this result is used in Section 8 to prove convergence of the derivative martingale, and to
give mild conditions for its limit to be non-trivial; also, the theory developed on optional
lines is applied there.

2 DMartingale measure change and mean convergence

The approach is based on a simplification of a result in Durrett (1996, Theorem 4.3.3)
— see also Athreya (2000) — which is now stated and briefly discussed. The notation
employed suggests how the result will be used.

Theorem 3 Suppose P and Q are two probability measures and G, are increasing o-
algebras. Suppose further that, for all n, Q is absolutely continuous with respect to P on
G, with density W,,. Let W = limsup, W,,. Then

(i) Wy, is a P-martingale and 1/W,, is a Q-martingale;

(it) [WdP (= EpW) =1 if and only if QW < co) = 1;

(iii) [WdP (= EpW) =0 if and only if QW = oco) = 1.

Any non-negative, mean one, martingale defines a change of probability measure (from
P to Q above); clearly, if the resulting Q is tractable it can be used to study the mean
convergence of the original martingale through the last two parts of the lemma. When P
is the law of a Markov chain with filtration {G,}, Q is too; then the measure change is
often called Doob’s h-transform. Note that this measure change only concerns P and Q
on the o-algebra generated by {G,}, leaving some freedom over the definition of P and
hence of Q. In the branching context, the introduction of the trunk exploits this freedom.

Returning to branching processes, recall that, X (v) =>_, ., h(o)/h(v) when h(v) >
0 and is one when A(r) = 0. Then, when H(s) > 0,

Er[X(WIS() = 5] = 7=,

ZH(SZ-)] =1,

because H is mean harmonic, and, by definition, Ep [X (v)|S(v) = s] = 1 when H(s) = 0.
Exploiting the trunk, there is now a simpler martingale than W,, that can be constructed,
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by forming a product (down ) using these adapted positive terms with expectation one.
In fact it is useful to define these products for any node. To do this, let {v; : i =
0,1,...|v|} be the ancestry of v ordered in the natural way, starting from vy = 0. Now
(with 0.00 = 0), let

It turns out that W (&,) is a martingale linking, in the sense of Theorem 3, P and Q.
The probability laws P and Q are constructed from conditional probabilities (using the
Theorem of Tonescu Tulcea) defined on ¥, 41 given the state in ¥,,. The following straight-
forward lemma, on derivatives, from measure theory is the key to the relationship between
these measures.

Lemma 1 Let P be a probability measure on i, p a conditional probability from L to U
and P* the resulting joint probability measure. Let Q, ¢ and Q* be defined similarly, with
Q absolutely continuous with respect to P and, for each u € U, q absolutely continuous

1Q" _ dgdQ
dP*  dpdP’

with respect to p. Then

Lemma 2 W (&,) is the derivative of Q with respect to P on F,.

Proof. The result is true for n = 0, assume it also holds for n = r. Let p.,; and ¢4
be the conditional probability measures on ¥,.,; given the state in ¥, that are used in
the construction of P and Q respectively; both p,.,; and ¢, are products of the family
distributions appropriate to the types of the nodes. To generate the (r + 1)th generation
under Q, all nodes except &, use the same law as in P and &, uses the law which has
the derivative X () with respect to Pg,). Thus, overall, the derivative dg,,1/dp, is
X (&). Let P, and Q, be P and Q restricted to F,; then, applying Lemma 1,

dQi1  dg1dQ. o
AP,y dpryq AP, X(&)W (&) = W(&1)

as required. O

Recall that G, is the o-algebra generated by the types, but not the trunk, in the first
n generations. The idea now is to integrate out £ to get the derivative of Q with respect
to P on G,. For this to work, using h to choose the trunk in (1) turns out to be critical.
The next lemma gives the essential formula for the integration; it computes P[§,, = v|G,,]
on the set {W(v) > 0}.

Lemma 3 For a fized v, let n = |v|. Then

Ep[WW)I (&, =v)|Gn] = W(W)P[E, = v|G,] = %, P almost surely.



Proof. The first equality is obvious; for the second it is necessary to prove rather more
than stated. Let r > n; then we prove that W (v)P[§, = v|G,] = h(v)/h(0). This is
done by induction on n. The result is true for n=0. Suppose it is true for (n—1). Let
o{F:,G,} be the o-algebra generated by the two components. Then, since the process is
Markov,

P(&n = v|o{F5, G }) = P(& = v F7) = p(V)I(&n1 = V1)
where {p(v) : v € ¢(v,—1)} is a proper probability distribution that is G,-measurable.
Thus, taking expectations conditional on G,, multiplying by W(v) = X (vp,_1)W (V1)
and using the result for (n—1),
W(V)P(gn =v|G,) = pv X(Vn—l)W(Vn—l)P(gn—l = Vp-1|Gr)
= p() X (Vn_1)h(vn_1)/h(0).
When h(vy—1)X (vp-1) € (0,00), h(vn-1)X (Va—1) = 3o, ) M(o) and, from (1),
h(v) h(v)
V) = = ;
) S o M)~ Hom )X 00

substitution now shows that the formula holds. This leaves cases where h(v;,_1) X (v,,—1) ¢
(0,00): if X (v,—1) = 0 then h(v) = 0; if h(v,,—1) = 0 then, since

E Z h gnfl = h(anl) = 07

o€e(Vn—1)
h(v) = 0 almost surely; finally, Ep[h(vy—1)X (vh-1)] < Ep[W,_1] = h(0) < oo so that
I(h(vp—1)X (Vp—1) = 00) is P-null. O

Proposition 1 W, /h(0) is the derivative of Q with respect to P on G,,. Hence Theorem
3 applies.

Proof. The derivative sought equals Ep[W (£,)|G,]. For a fixed v with |v| = n,

Ee[W (&) (€ = 1)|Gn] = BelW (1) (6 = v)IGn] = %
by Lemma 3; thus
Eo[W(&)IGa] = B | Y W(W)I(éa = v)|Gn :hV(VS)‘

v|=n
U

The next proposition is an intermediate result that it is convenient to isolate on the
way to the main theorems on mean convergence of the martingale W,, to W.

Let ¢'(&,) be the children of &, excluding &, and let, by analogy with X and X (),
ZVEC’(O) h(]/) Zz/€c’(§i) h(l/)
h(0) h&)

so that h(&)X (&) = h(&)X'(&) + h(&41). Then h(E;) tracks the value of H along the
types in the trunk, while X’ concerns the reproduction along the trunk.

X' = and X'(&) =
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Proposition 2
(i) If
Q (lin;infh(fn) < 00, Zh(&)X’(&) < oo) >0 (2)
i=1

or

(Zh& (&) <oo) >0, (3)

which implies (2), then EpW > 0. Furthermore EpW = h(0), and so {W,} converges in
P-mean, when the probability in either (2) or (3) is one.

(ii) If
Q (nmnsuph@nw@n) _ oo) -0 ()

then EpW < h(0) and so {W,} does not converge in P-mean. Furthermore, EpW = 0
when this probability is one.

Proof. Let S” be the function S on the sub-tree rooted at v. Then, by partitioning the

sum using the sub-trees emanating from the siblings of &, &, ..., &, 1
’I'L Z SV
=3 =6 + 32 3 i)
|I/‘:TL i=1 vec 61 ( )

Let H be the o-algebra generated by the reproduction of the members of the trunk. (Tech-
nically, in the language of Jagers (1989), with L the optional line formed by all non-trunk
children of the nodes forming the trunk, # is the pre-L sigma algebra.) The construction
of Q means that away from the trunk it looks just like P, and so Eq[W,_;(S")|H] is h(v)
when v € (&;). Since 1/W,(S) is a positive martingale under Q, W,,(S) converges to
W, Q almost surely. Then, by Fatou,

Eo[W|H] = Eq[limW,(5)[#]

,_.

n—

< hm inf | h(&,) + h(v
=1 VEC,(fz
= liminfh(&,) + Z h(v)
" i=1 vee' (&)
= liminfh(&,) + D h(&)X'(&) <Y h(&)X (¢
=1 =1

Q almost surely. Hence (3) implies (2) and either implies that Q(WW < oo) > 0; in
addition, Q(W < oo) = 1 when either probability is one. Theorem 3 now gives the
conclusion to the first part.

For the second half, note that

S)=Y h@)= Y hw)=hE 1)X(E )

vl=n vEe(En—1)



and so
QI = ) > @ (limsuph(5) X(6) = )
A further application of Theorem 3 completes the proof. 0
Corollary 1 If Q(limsup,, H((,) = o0) = 1 then EpW = 0.
Proof. Since H((,) = H(S(&.)) = h(&n), the result follows from Proposition 2(ii) and

the fact that h(&)X (&) > h(&i11). O

Observe that h(&,), X'(£,—1) and X (&,—1) are F,-measurable; therefore, the series
Y h(&)X'(&) and > h(&)X (&) are amenable to the following standard result, proved
by truncation and conditional Borel-Cantelli. It and the lemma after it translate the
conditions in Proposition 2(i) to ones involving {H((,), P, }, the development of the
types of the trunk and the associated family laws, to give the main theorem.

Lemma 4 Suppose Y; are non-negative variables that are adapted to the increasing o-
algebras F;. Let t(x) =I(x > 1)+ xl(x < 1). Then

<ZY < oo) =17 <ZE Yii1)|Fi] < oo) almost surely.

Lemma 5 Recall that X = X (0). Let Y be a non-negative function on By and Y (v) the
corresponding function of the reproduction from node v. Then

Eo[Y (&)|Fil = Es(e)[XY] = E¢,[XY].
In particular, for any non-negative f,
Eo[f (X (&))IFi] = E¢,[X f(X)] and Eg[f(X'(&))|F] = E¢ [X f(X")].

Proof. This is no more than the definitions. Firstly, S(&;) = (;. Secondly, under Q, &;
produces children typed according to the law that has derivative X (&;) with respect to
Ps(e:)- L

Theorem 4 As in Lemma 4, t(x) = I(x > 1) + xl(z < 1).
(i) If, with Q-probability one,
liminf H((,) < oo and Y B, [Xt(H(()X')] < oo, (5)

=1
or

Z E, [Xt(H(¢)X)] < 00 (6)

then EpW = h(0).
(i1) If for all y > 0, with Q-probability one,

ZEQ [XI(H(G)X > y)] = (7)
then EpW = 0.
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Proof. Apply Proposition 4 and Lemma 5 to the series in (2) and (3) for the first part;
for the second part, conditional Borel-Cantelli and Lemma 5 show that (7) implies that
the probability in (4) is one. O

Splitting ¢ into its two parts splits (6) into two; the first of the sums is the one in (7)
when y = 1. This indicates that (6) and (7) are quite close; a necessary and sufficient
condition for mean convergence of the martingale will be obtained when there are no
intermediate cases. A version of Theorem 4 could be formulated for the cases where the
probabilities in (2), (3) and (4) are positive, rather than one, translating those parts of
Proposition 2.

The collection {W(v) : v € T} is, essentially, a positive T-martingale; see Waymire
and Williams (1996), and references therein. That discussion takes such martingales, also
called multiplicative cascades, as the fundamental object, whereas here it is the multitype
branching process. The connection is discussed further in Section 4.

3 Stochastically bounded reproduction

The conditions in Theorem 4 can be simplified to moment conditions in many examples
where there are bounds on Py(X > z) that are uniform in the type s. The next two
elementary lemmas establish the framework for this. The first is well-known and proved
by integration by parts.

Lemma 6 If P(X > x) < P(X* > x) then, for any increasing non-negative function f,
E[f(X)] < E[f(X*)].

Lemma 7 Suppose n is a measure on (0,00), A(x) = n(0,z] and, as in Lemma 4,
t(x) =I(x > 1)+ xl(x <1). Then

/t(fﬂ/y)n(dy) = /100 Agzl;x)dw.

Proof.
[ttatntan) = [ (16> )+ 16 < ) atd)
_ A(x)+x/:oy177(dy)
— A(x) +x/:) (/yoo z2dz> n(dy)
_ A(x)+x/:o 2 2(A(2) — A(x))dz
_ /loo w2 A(wz)dw,
as required. 0

Using this Lemma the conditions involving ¢ in Theorem 4 will be replaced by con-
ditions on a suitable A. In the next theorem, note that A (and the associated measure
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n) is a function of the development of the chain giving types along the trunk, that is of
¢, and so is random, and that the expectation in (8) and (9) is only over the auxiliary
random variable X*, not over A, which accounts for the qualification ‘Q almost surely’.
For orientation, the theorem can be read first assuming the function g always takes the
value one and the stochastic bounds hold for all types, that is with F' = S.

Theorem 5

(i) Suppose that there is a random variable X*, a non-negative function g on S and
a subset FF C S such that

P(X >x) < P(g(s)X*>z) forallse FCS

and that ¢ is eventually in F, Q almost surely. Let the increasing function A be defined
by
= () (xg(¢)H(G) > 1),

which corresponds to the measure n with mass g(¢;) at (g(G)H(G))™" for each i in the
notation of Lemma 7. If

/°° E[X*A(wX*)]

w?

dw < oo  (Q almost surely) (8)

then EpW = h(0).

(ii) Suppose that there is a random variable X, a non-negative function g on S and
a subset FF C S such that

P(X >x) > P(g(s)X.>x) forallse FCS.

Let

If, for all w > 0,
E[X.A(X,w)] = o0 (Q almost surely) 9)

then EpW = 0.

Proof. Since zt(hx) = x(I(hx > 1)+hzl(hx < 1)) is an increasing function of x, applying
Lemma 6 shows that, when (; € F,

Eg [Xt(H(G)X)] < Eg(G) X t(H (G)g () X7)],

where the expectation on the right is only over X*. By assumption, Q((; € F eventually)
is one and so (6) in Theorem 4 holds when

chth (G)a(G)X)| < oo

12



Now let 17 be the measure with atoms g((;) at (g(¢;)H(¢)) ™ and note that

ZngXt (Ga(G)X

/XtX/y n(dy).

Applying Lemma 7 completes the proof of (i).

In a similar way, considering the series in (7),

ZEg,XI (C)X >y)] > ZEQXI (C)X > ) (G € F)

v

}:HAQXAH@M@M;ZMMQEH
= EIX.A(X./y),
giving (ii). -

Corollary 2 The positive increasing function L is slowly varying at infinity and § €
[0,1); L and 6 may be different in (i) and (ii).

(i) Suppose, in addition to the conditions of Theorem 5(i), that,

sup{A(z)/(z°L(x))} < oo, Q almost surely.

>0
If E[(X*)'L(X*)] < oo then EpW = h(0).
(ii) Suppose, in addition to conditions of Theorem 5(ii), that, for some vy,

ér>1£{A( z)/(x°L(x))} >0, Q almost surely.

If E[(X,)'"°L(X,)] = oo then EpW = 0.

Proof. Suppose A(z)/(z°L(z)) is bounded above by C. Then

/°° Aws) 0 < ¢ /°° (wfv)‘sLQ(wfv) dw

gy [0 L)
e u>[’wzuﬂd,

and, using the representation theorem for slowly varying functions, for suitably small €

and then sufficiently large x

> w’ L(wz) > w’ €1 _ _S5—e !
| gy s [ auh = s 90 -5 -0

Applying these bounds in (8) proves (i). For (ii), note first that, since L(zw)/L(z) — 1 as
r — 00, B[(X)'L(X,w)] is infinite when E[(X,)'*L(X,)]is. Suppose A(z)/(x°L(x))
is bounded below by C' > 0 for z > y; then

E[X,A(X,w)] > Cw’ B[(X,)"° L(X,w)I(X,w > y)],

13



which is infinite when E[(X,)'*L(X,w)] is. Now apply (9). O

The results with ¢g the identity suffice for most purposes. However, for our main
example the natural bounds on the reproduction take a more complicated form. In it,
there are random variables X| and X such that, for some positive function g on S,

Py(X > x) < P(X{ 4+ g(s)X; > x). (10)

The next lemma implies that, when this happens, moment conditions for EpW = h(0)
can be derived separately for X; and Xj. The fact that g multiplies X5 but not X7 will
lead to the moment conditions on the two being different.

Lemma 8 Suppose (10) holds. Then, for any h > 0,

E,[Xt(hX)] < 2B [X{t(hX7)] + 2F [g(s) X3t (hg(s) X3)].

Proof. This follows directly from the inequality (z +y)t(h(z+y)) < 2zt(hz)+ 2yt(hy).O

4 Examples
Varying environment

Let S ={0,0,1,2,...} and let a person of type i give birth only to children of type i+ 1
and 0. Assume the initial ancestor is of type 0. Let N; be the (generic) family size for a
person of type 4, that is the number of children of type ¢ + 1, and let EN; = m;. Then

n—1

Hn)=]] i, H(0)=1, H@®) =0

m.
i=0

is mean-harmonic and the corresponding martingale is Z,,/EZ,,, where Z, is the number
of nth generation people. In this example H((,) = H(n), which is not random, and the
distributions of X’ and X depend only on n. Hence (5), (6) and the sum in (7) are all
deterministic.

A routine application of Theorem 4(i) gives the following result.

Corollary 3 If

n—1

lim ian(—logmi) < 0o
=0

and, with N} = N; — 1

)

then EpW = 1.

It is worth noting that, since N] < NN; and, for a suitable K > 0,

tly) =I(y>1)+yl(y <1) §K<1— 1_;3,)’

14



this result contains the main result, Theorem 5, of Goettge (1975).

To illustrate the use of bounding variables, Corollary 2 yields the following result
for varying environment process. The special case when X* and X, are the same and
{n(1),n(2),...} = N leads to a classical Kesten-Stigum result, as was indicated in the
Introduction.

Corollary 4
(i) Suppose that there is a random variable X* such that

P(N,/my, > 1z) < P(X* > 1)
and that

ZZZOI log m;
n

lim inf > 0.
If E[X*logt(X™*)] is finite then EpW = 1.

(ii) Suppose that there is a random variable X, and positive integers {n(1),n(2),...}
with
P(N,/my, >1x) > P(X,>x) forne {n(l),n(2),...}

and

T}(J')*ll i
lim sup 20 ; 08 1M < 00
J J
If E[X, log" (X.,)] is infinite then EpW = 0.

Proof. This is an application of Corollary 2. For the first part, A(z) =) I(H(n)x > 1)
and the condition on the means translates to the restriction that for some C' > 0 and
a >0, H(n) < Ce ® for all n; hence, A(x)/log(x 4+ 2) is bounded above. For the second
part, taking F' = {n(1),n(2),...} gives A(x) = >_; I(H(n(j))x > 1); now the condition
on the means yields, for some C' > 0 and a > 0, H(n(j)) > Ce™% for all j, which implies
that inf,., A(x)/logx is positive for y large enough. O

The growth conditions on the means here produce exponential decay rates for H(n),
leading to the X log X conditions. Other growth assumptions on the means will yield
alternative results; an observation already made, in his notation, by Goettge (1975).

Before leaving this example, it is worth recalling that there are examples of varying
environment processes where EpW = 1 but P(Z,, — oo, W = 0) > 0, so that the survival
set, is larger than the set where W is positive. Relevant examples can be seen in MacPhee
and Schuh (1983) and D’Souza and Biggins (1992).

Homogeneous, finite type space

Consider an irreducible, homogeneous, multitype, supercritical Galton-Watson process
with the finite type space {1, 2, ..., p}, which, with the minor extra assumption of positive
regularity, is the framework in the original Kesten-Stigum theorem (1966). Let S =
Zt x {0,1,2,...,p}, where the first component of S tracks the generation. If p is the
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Perron-Frobenius eigenvalue of the mean matrix and v the corresponding strictly positive
right eigenvector then
H(n,j)=p"v;, H(n,0)=0

is mean-harmonic and W), is a weighted sum of the numbers in the n generation, with
type j having weight p~"v;. Corollary 2 translates to one part of the multitype Kesten-
Stigum theorem. To see this, note first that the second component of ¢, = S(&,) forms
an irreducible Markov chain on {1,2,...,p}. The sum of all the offspring variables can be
used for X* and any component of any one of them for X,. In either case the associated
A(x) looks like log z; in the lower bound, this is a consequence of the chosen type having
a finite mean recurrence time under the chain on {1,2,..., p}.

The full multitype Kesten-Stigum theorem considers the convergence of the vector
formed by the numbers of each type, not just a particular weighted sum of the compo-
nents. The best way to get from one to the other, in this model and more complex ones,
is by establishing (by law of large number arguments) the stabilization of the proportion
of each type; see, for example, Section V.6 of Athreya and Ney (1972). Kurtz et al.
(1997) also discuss the multitype Galton-Watson process through the change of measure
argument.

Reproduction depending on family history

In the language adopted here, Waymire and Williams (1996) allow reproduction at a
node to depend on the reproduction of the node’s ancestors. This can be accommodated
easily by augmenting the type suitably. Let

S'(v)y={S(e):0=00ro€c(y), i=0,1,...,|v| -1},

so that S’'(v) contains all the information on the families of the ancestors of v. Using S’
as the new type allows reproduction to depend on the family history. There is an obvious
consistency condition — the relevant part of a child’s type must agree with the parent’s.
A very simple illustration is a one-type ‘Galton-Watson’ process in which a person’s
family size has a fixed mean m but a distribution that varies with the number of siblings
that person has. Then Corollary 2(i) implies that the martingale Z,,/m™ will converge in
mean when the various family size distributions are dominated by a distribution with a
finite x log z moment.

Branching random walk in a random environment

In the original formulation, the basic data is a function from the type space & into
probability laws on SV, giving the family size distributions {P, : s € S}. Denote the
set of such functions by L. In a sense, the collection of family size distributions, that is
the element of £ used, defines the external environment. Thus, a natural generalization
is to allow some choice from L£; the varying environment process, already described, can
be viewed in this way. Usually in a random environment the elements from £ used in
successive generations form a stationary sequence; here a branching random walk with a
stationary environment sequence is considered.

16



First, the homogeneous branching random walk is described briefly. Let Z be a point
process on the reals, with intensity measure p. Branching random walk is a branching
process with types in RU 0, corresponding to position. The point process describing the
relative positions of the children of a person at s is distributed like Z. For a real 0, let
m(#) = [e % u(dz) and assume this is finite; assume also that —m’(6), interpreted as
i ze %% i(dz), exists. Augment the type space to include the generation; then

H(n,s) = eesgmtﬁ) = ni(é;"b’ H(n,0) =0

is mean-harmonic. Using Theorem 1, it is straightforward to check that ¢, = (n, Y21y Vi),
where {Y;} are independent identically distributed, with the law that has derivative
e~ /m(0) with respect to p, so that E[Y;] = —m/(#)/m(0). Hence

n—1

—log H(Gy) = ) (8Yi +logm(6)) .

1=0

In the process with a random environment, the law for the point process Z varies; when
that law is 7 let the corresponding expectation be E" and let m,(0) = E" [ [ e~ Z(dx)].
Let the law used in generation n be A\(n), where A = {A(n)} forms a stationary sequence
with the marginal law P*. Assume that m, () is finite and m; (9) exists, P* almost surely.
Finally, denote the conditional branching law given A by P. It should really be something
like P*, but precision is sacrificed to simplicity.

Suppose the environment A is given. Then, again augmenting the type space by the
generation,

n—1

o 1
H(n)s):egnm, H(n,a):o
i=0 !

is mean-harmonic for the branching process. Suppose the parent has reproduction law 7,
then the variable X becomes X = (m,(0)) ! [ e ?"Z(dz), where Z has law 7.

The next lemma is a straightforward application of definitions.

Lemma 9 Given A, E Slf(X)] = BAr )[f(X)] Let E be the expectation over \, then,
by stationarity, E[Eq,q[f(X))] = [ E"[f(X)]P*(dn).

The following theorem extends some of the results in Biggins (1977) and Lyons (1997).
When 6 = 0 it covers the Galton-Watson case and when the environment is fixed it
covers the homogeneous branching random walk. It is worth stressing that, since P is a
conditional law, the conclusions are conditional ones, holding almost surely as A varies
over realisations.

Theorem 6 Assume that the environment X\ is ergodic and that

k= / (-927722 —|—logmn(0)> P*(dn)

exists.
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(i) If kK < 0 then EpW = 0.
(i) If k > 0 and [ E" [X log X] P*(dn) < oo then EpW = 1.

(11i) If X\ is a collection of independent identically distributed variables, then EpW = 0
when (a) kK =0 or when (b) 0 < k < oo and [ E"[X log X| P*(dn) = oc.

Proof. Let the real random variable Y, have the law with density =% /m, (#) with respect
to py,. Then, as before,

—_

n—

—log H((,) = (0Y5) + log magi)(6))

i

Il
=)

where, given the A(7), the Y’s are independent variables. Then {(A(n), Yyu))} is station-
ary and, by careful use of the pointwise ergodic theorem,

—log HiG) _, / (_Hm%(ﬁ) + logmn(9)> P*(dn) = k.

n m,(0)

When £ is less than 0, Corollary 1 applies to show that W is zero, proving (i).

When « is greater than zero, H((,) is eventually contained in an interval of the form
(0,d™), with d < 1. Then (6) in Theorem 4 is finite when

f: B, [Xt(d"X)] <

n=1
and, by Lemma 9,

E iXt(d"X)

n=1

P*(dn),

5t txien)] - [

n=1

which is finite when [ E"[X log X| P*(dn) < oo. This proves (ii).
When x = 0 and the {A\(i)} are independent, —log H((,) is a zero-mean random walk

and so has its lim sup at infinity; thus, Corollary 1 again shows that W is zero.

When 0 < k < 00, H((,) is ultimately contained in an interval of the form (d", c0),
with d < 1. Then, using Lemma 9, the series in (7) in Theorem 4 is infinite when

i EAMIXT(d"X > y)] = oo

n=1

and the terms here are bounded by one and are independent. Conditional Borel-Cantelli
now shows this holds exactly when [ E7[X log X| P*(dn) = . O

The example can be taken further, allowing reproduction to depend on the node, not
just its generation. Each node v has a law A(v) attached to it, with A forming an ergodic
sequence down every line of descent. Now, augmenting the type by the node,

v|-1

1
H(v,s)=e " —,
g M) (0)
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is mean harmonic, given A, and the arguments leading to Theorem 6 continue to apply,
but the martingale W,, may now be too complicated to be interesting.

This example is fairly simple because the mean-harmonic function factorises, with
one factor depending on the original type space and the other depending only on the
environment. Most multitype random environment branching processes do not have this

property.

Multiplicative cascades

There is a direct correspondence between the branching random walk and what are called
multiplicative cascades. To make this correspondence, the type space RU 0, used in the
branching random walk, becomes [0,00) by taking s to e®, with the convention that
¢ = 0. This transforms the addition of displacements along lines of descent, which
define the branching random walk, into multiplications.

When the node v has type 0 let A(r) = 0; otherwise, let z(r) be the displacement
of v from its parent and let A(v) = e**). Then A = (A, A,,...) is usually called the
generator of the cascade and m(1) = E [e *Z(dz) = E Y, A;.

Waymire and Williams (1996) consider such cascades on the b-ary tree with the b
non-zero terms in A being conditionally independent given the family history of the
parent and each having mean one. Then m(1) = b~!. Augmenting the type space with
the generation, so that it becomes Z* x [0,00), the function H(n,s) = s/b" is mean
harmonic. Now Proposition 2 here can be seen to be very closely related to Corollary 2.3
in Waymire and Williams (1996), with the basic measure change being their Theorem
2.3.

Other examples

There are several other examples that might also have been considered in detail. Com-
bining the first two examples leads to the multitype Galton-Watson process in a varying
environment, which was considered using other methods in Biggins, Cohn and Nerman
(1999). The parts of that discussion which consider martingales arising from mean-
harmonic functions, which are there just called harmonic, can certainly be tackled using
the ideas developed here. Another example is the multitype branching random walk with
a finite type space; Kyprianou and Rahimzadeh Sani (2001) discuss martingale conver-
gence for this through the measure change argument. Olofsson (1998) uses the change
of measure argument in the context of the general branching process; the next section,
on optional lines, provides the theory to connect this model with the branching random
walk already discussed. The connection is explained at the end of that section.

5 Optional lines

There are natural reasons to want to consider the sum of h(v) over collections of nodes
other than the nth generation ones; see, for example, Jagers (1989), Chauvin (1991), Big-
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gins and Kyprianou (1997) and Kyprianou (2000). In particular, Jagers (1989) establishes
the basic framework.

A function £ from the nodes 7 to {0,1} codes for membership of the set of nodes
{v: L(v) = 1}. This set, and the corresponding function £, is called a line if no member
of it is the ancestor of any other, so that £(v) = 1 implies that L(v;) = 0 for all 7 < |v].
Lines in this sense cut across the tree, in (complete) contrast to lines of descent; however,
a line does not have to include a node from every line of descent, so it does not have to
cut all branches from the root. Although, formally, a line £ is a function on the nodes
it will often be convenient to identify L with set of nodes where the function takes the
value one.

Informally, an optional line, £, is a random line with the property that its position
is determined by the history of the process up to the line. Its o-algebra, G., is the
information on the reproduction of all individuals that are neither on the line nor a
descendent of any member of the line. Jagers (1989) shows that the branching property,
which is that, given G,, different individuals in generation n give rise to independent
copies of the original tree, extends to any optional line.

Unfortunately, optional lines seem to be too general for some of the results sought
here, necessitating some restriction. Specifically, the optional line £ will be called simple
when, for all v, the function L(v) is measurable with respect to G, (not Fj,); thus,
whether v is on the line or not is determined by looking at the process up to generation
|v|, ignoring the trunk.

For the line L let

We =Y LW H(S(v) =Y L)h(v).

veT veT

Clearly W, is W, when L is the (non-random) line formed by all nth generation nodes.
Lines can be ordered through the natural ordering of the nodes; so, L) < £L® if every
node on the line £ is on, or has an ancestor on, the line LY. An important question is
when W, defines a martingale as £ varies through some increasing collection of optional
lines. The next lemma provides the key to this property, which relies on expectation
being preserved. Define N by L({y) = 1, with N = oo when there is no such N; thus,
N is the generation in which £ hits the line. Often it will be easy to see when N is finite
under Q.

Lemma 10 When L is a simple optional line, QN < oo) = EpW/h(0), and so
Ep [We] = h(0) if and only if Q(N < c0) = 1.

Proof. The steps in the next calculation are justified by: conditioning on F,, and using

Lemma 2 to move from Eg to Ep; conditioning on G,, and using that £ is a simple optional
line; and, finally, using Lemma 3.

QN =n) = Eg | LWI(&=v)

lv|=n
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Summing over n now gives the result. O

Let A, be the o-algebra generated by {S(v;) : i =0,1,...,|v|}. Then it is reasonable
to call an optional line very simple when, for all v, the function £(v) is measurable with
respect to A, ; then, whether v is on the line or not is determined by looking at the types
in its ancestry. For very simple optional lines, N is a stopping time for the Markov chain
¢ = {S(&),S(&1), ...} The main application is of this form, but there is no advantage
to the extra restriction in developing the theory. It is worth noting that the definition
of an optional line used in Kyprianou (2000) to prove a particular case of Lemma 10 is
between simple and very simple.

Once W, defines a martingale as L varies, it is natural to wonder whether its limit
is the same as that of the martingale W,,. Let £,, be the (function corresponding to the)
line formed by members of £ in the first n generations and the nth generation nodes with
no ancestor in L.

Lemma 11 For any (not necessarily simple) optional line L, Ep [W,|Ge] = W, .

Proof. Recall that W,.(S") is W, defined on the sub-tree rooted at v. Then
Wa=Y_ Lo)Wa (5"

lv[<n

and, when L, (v) =1, Ep [W,_,(S”)| Gc] = h(v). Hence

Ee[WalGe]l = Ep | > La(r)Waiiy(S")|Ge

v<n

= Z L,(v)Ep [an|u\(sy)‘ Gr]
jvl<n

— Z Ln,(v)h(v) =W,,.
v<n

O

In general £,, need not be optional when L is and so W, need not be G,,-measurable.
However, for simple optional lines it is, and then, as the next two lemmas show, much
more can be said.

Lemma 12 Let L be a simple optional line. Then L, is a simple optional line and
(We,,,Gn) is a positive martingale with a limit at least Wr. When Ep [W¢] = h(0), (i)
Wy, = Ep[We|Gnl, (ii) the martingale converges in mean to Wy, and (iii) Ep [W,|Gc] =
Ep [W¢|Gn].
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Proof. Tt is immediate from the definitions that £, is a simple optional line. Hence
We, is G,-measurable. Let Ag, be the line formed by members of the nth generation
that are neither in £ nor have an ancestor in L, so that (with the ancestry of v being

{v;:i=0,1,...,|v]})
Acalv) = 191 = ) [T~ £(00).

Then Ag , is a simple optional line when L is a simple optional line. By definition,

Wepo = Y | L0)AY) + An(v) Y h(o)

lv|<n o€c(v)

Now, when |v| = n,

Z h(o = h(v)

O'EC

and, because L is simple, everything else in the expression for Wy, is G,-measurable.
Thus,

Ep [We,plGa] = Y (L(0) + Apu(v)) h(v) = W,

v|<n

and so is a martingale, and lim,, Wy > Wy. Hence Ep [W,, | = Ep [W,| = h(0) and

We, = lim Ep[We,,|Ga] > Ee [We|Ga];

Ep [We] = h(0) forces equality here, which in turn implies that Wy, converges to Wp.
Hence, W, = Ep [W.|G,] and, by Lemma 11, W, = Ep [W,,|G.], proving (iii). O

Theorem 6.7 of Jagers (1989) gives similar conclusions to the next lemma, but for
general optional lines.

Lemma 13 Let L' and L be simple optional lines with L' < L and Ep W] = h(0).
Then E]p [WL|QL/] = WL"

Proof. Let N’ and N be the generations where £ hits L' and L respectively. Then
N’ < N and so, by Lemma 10, Ep[W,] = h(0) implies that Ep[W/] = h(0). Since
L' < L, G C Gp and so, by Lemma 11,

Wy, = Ep [Wy|Gu] = Ep [Ep [Wy|Ge] 1G] = Ep [We, [Ge] -

Letting n go to infinity and applying Lemma 12(ii) completes the proof. O

The final lemma in this sequence gives a fairly simple necessary condition for one of
the hypotheses of the main theorem to hold.

Lemma 14 Let {L[t] : t > 0} be (not necessarily simple) optional lines that are in-
creasing with t. If (h(v)L[t](v)) — 0 as t — oo for each v with |v| < (n — 1) then
WL[t]n — W,.
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Proof. Let G, be the o-algebra generated by {Grpy : ¢ > 0}. Lemma 11 implies that
(Wi, Gepg) is a positive martingale, and so Wy, converges as t — 0o, to Ep [W,|G.].

Now

n

Wep, < | Wa + Z Lit](v)h(v)

vl<n—1

and 3, ., h(v) = S " W; which is finite. Hence, letting t — oo and using dominated
convergence,

Ep [W,|G.] = tllglo Wepg, < W,y

which implies that Ep[W,|G.] = W,,, as required. O

Recall that W is the almost sure limit of the martingale (W,,, G,). Obviously, in the
next theorem, Lemma, 10 is useful for checking that Fp [WLM] = h(0).

Theorem 7 Let {L[t] : t > 0} be simple optional lines that are increasing with t and
satisfy Ep [WL[t}] = h(0) for every t. Then (W, Gerg) 45 a positive martingale. If, for
each n, Wepy, tends to W,, almost surely, as t — oo then Wy converges to W almost
surely.

Proof. The martingale property follows immediately from Lemma 13. Let W' be the
limit of Wey. By Lemma 12(i), Ep [WL[tHQn] = Wepy,; letting ¢ — oo, Fatou gives
Ep [W'G,] < W, and then letting n — oo gives W’ < W. Again, let G, be the o-algebra
generated by {Grpy : t > 0}. By Lemma 12(iii), Ep [Wg[tﬂgn] = Fp [Wn|ggm]; letting
n and then ¢ go to infinity shows that W' > Ep[W|G.]. Hence Ep[W' — W] > 0, but
W' < W. Hence W' = W, completing the proof. O

The results are easier to establish when the original martingale {W,} converges in

mean. This can be seen from the next theorem, which we will not need.

Theorem 8 Suppose W, converges in mean to W. Let {L[t] : t > 0} be optional lines
that are increasing with t and satisfy Fp [WL[t}] = h(0) for every t. Then (Wepy,Gepyg) 45
a positive martingale and Wy converges in mean to W.

Proof. Let n — oo in Lemma 11 to show that Ep[W|Gry] > Wepy; both sides have
expectation h(0), forcing equality. Standard martingale theory now gives the results. [

An example: first crossings in the branching random walk

The remainder of this section concerns a homogeneous branching random walk, as de-
scribed in Section 4, with E [ e *Z(dt) = 1 for some o > 0 and 3 = E [ te **Z(dt) > 0;
then e~ is mean-harmonic, giving the martingale W,, = 3~ e [ (|v| = n, S(v) # )
with associated martingale limit W. Let

Cltl(v) = I(S(v) >t but S(v;) <t fori < |v|),

which is the line formed by picking out individuals born to the right of ¢ but with all
their antecedents born to the left t. Now let Wepy = > e™ (v € C[t)).
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Proposition 3 We is a martingale converging to W.

Proof. The C[t] are simple optional lines that are increasing in t. Under Q, (¢ is a
random walk with mean 8 > 0; hence, ( is certain to cross C[t] and so Lemma 10 applies.
Furthermore, e *™[(S(v) > t) — 0 as t — oo and so Lemma 14 applies. Hence
Theorem 7 applies to show that W is a martingale converging to W. U

The martingale Wep occurs in the general branching process. Let X = [ e *Z(dt).
Theorem 6 gives EpW = 1 if E[XlogX] < oo and EpW = 0 if both f < oo and
E[Xlog X] = co. When combined with Proposition 3, this includes the conclusion of
Theorem 2.1 in Olofsson (1998), which deals with the case where Z is concentrated on
(0,00) and /8 < oo; that paper should be consulted for references to earlier treatments of
this result and more context on the general branching process.

6 Branching random walk with a barrier

Let Z =), 0(%) be a point process on the reals, with points at {z;}. As indicated in
Section 4, a homogeneous branching random walk based on Z has types in (—o0,00)
generated in the obvious way. The homogeneous process is now modified by the removal
of lines of descent from the point where they cross into (—o0, 0], to give a process with
an absorbing barrier. This construction couples the process with a barrier, which is the
topic of this section, to the homogeneous one. This kind of process has been considered
before; see Kesten (1978) and Biggins et al. (1991).

Formally, the branching process considered in this section has the type space, corre-
sponding to position, S = [0,00) and has the point process describing the positions of
the children of a person at s distributed like

Zé(s + 2)I(s+ 2z > 0);

thus, the relative positions are distributed like Z, except that children with positions in
(—00, 0] do not appear. The ‘ghost’ state 0 and the associated details are omitted from
the discussion; hence, sums over |v| = n should now be interpreted as being over the
nodes that occur, that is those that do not have type 0.

Let the intensity measure of Z be p and assume that

/e‘xu(d:ﬂ) =1 and /xe“”u(dm) = 0. (11)

It turns out that this provides the most interesting case; a claim not justified here. The
results can be transferred easily to any Z that takes the required form after its points
have been scaled by a non-zero 6.

Let Y,, be independent identically distributed variables with their law having density
e * with respect to p and let S,, be the random walk with increments {Y,}. For z > 0, let
V' (z) be the expected number of visits S,, makes to (—z, 0] before first hitting (0, c0), and
let V(0) = 1. Some results from random walk theory are important for the motivation
and the formulation; these are recorded in the following lemma. The first two parts are
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consequences of V' being, essentially, the renewal function for the weak descending ladder
height process of {S,}; the final part is Lemma 1 of Tanaka (1989). Similar results can
be found in Bertoin and Doney (1994). The relevant material is reviewed at the start
of Biggins (2001), which develops the random walk results needed to prove Theorem 10
stated at the end of this section.

Lemma 15 (i) As © — oo, V(z)/x converges to a positive constant, which is finite if
[ 2?e™*u(dx) < oo. (ii) When V(z)/x has a finite limit, a(x +1) < V(z) < b(xz + 1)for
suitable a > 0 and b < co. (i) E[V (Y1 + $)I(Y1 + s > 0)] = V(s).

Lemma 16 When (11) holds, H(s) = V(s)e* is mean-harmonic for the branching ran-
dom walk with a barrier.

Proof. For any non-negative g,

E;|Y g(Sw)| = E

lv|]=1

Zg(s + 2z;)I(s+ 2z > 0)

7

= /g(z+s)[(s+z > 0)pu(dz).

Hence, using Lemma 15(iii) for the final equality,

E {Z V(S(V))es(”)} = /V(z +s)e “ (s +z > 0)u(dz)

lv|=1

= e 'ElV(Y1i+s)I(Yi+s>0)]=¢e°V(s),
as required. O

The martingale now being studied is

Wo=Y_ V(Sw)e ™,
lv|=n
with its limit being W; the behaviour of the trunk under the measure change this mar-
tingale induces is described next.

Lemma 17 Under Q, the Markov development of the types on the trunk, ¢, has the
transitions from s given by the law

V(z+s)

e I(z+ s> 0)e *u(dz).

Proof. Substitute for H and the reproduction process in Theorem 1. O

This transition mechanism, which has arisen previously, in, for example, Tanaka
(1989) and Bertoin and Doney (1994), can reasonably be called a random walk con-
ditioned to stay positive for reasons explained in Bertoin (1993). In particular, Tanaka
(1989) gives a sample path construction of the process that can be used to give rather
precise information on the long term behaviour of , which will be described in the next
section, but first the following simple consequence of his results is recorded.
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Lemma 18 Under Q, (, — o0 as n — 00.

This is enough for the application of the ideas on optional lines. In the same way as
at the end of Section 5, C[t] is the line formed by picking out individuals born to the right
of ¢ but with all their antecedents born to the left of . These lines are particularly useful
since they focus attention on nodes near ¢, regardless of generation, thereby making sums
over them comparatively well behaved. As before, C[t] are increasing very simple optional
lines, and so in Lemma 10, N is the first time ( exceeds ¢; Lemma 18 now shows that
Q(N < o0). Furthermore, V(S(v))e ™M I(S(v) > t) — 0 as t — oo and so Lemma 14
applies. Hence Theorem 7 applies to give the following result.

Theorem 9 The martingale (Wepg, Ger) converges to W, which is the limit of the mar-
tingale (W, Gp).

Obviously mean convergence of W,, will require moment conditions. To state these,

let
= Z zje 1 (z; > 0),

J
ngz:e’zf and X3 Ze (2 > —s).
J

Note that X3(s) T X3 as s T co. The next section is devoted to the proof of the following
result.

Theorem 10 Assume [ z?e™"p(dx) < 0o
Let ¢(z) = logloglogz, Ly(x) = (logz)¢(x), La(x) = (logz)*¢(x), Ls(z) = (logz)/¢(x)
and L,(z) = (logx)?/¢(x).

(i) If both E[X,L,(X})] and E[XyLy(X5)] are finite then W, converges in mean.

(i) If E[X,L3(X,)] is infinite or, for some s, or E[Xs(s)Ly(Xs(s))] is infinite then
W, — 0 almost surely.

There is a (small) gap between the slowly varying functions used in the two parts.
There are some grounds for thinking this gap is inevitable, reflecting oscillations in the
trunk. The gap in the random variables, between using X5 in the first part and X3(s) in
the second, arises from the upper and lower bounds on the reproduction having slightly
different forms.

7 Proof of Theorem 10

The proof is an application of Corollary 2, Lemma 8 and the following results. First,
the simple Lemma 18 needs to be supplemented by information on how fast ( goes to
infinity; the following result, taken from Biggins (2001), provides relevant estimates.
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Theorem 11 Let D(x) =), I(¢, < x) and let ¢(x) = loglogx for x > 3. For suitable
(non-random) L and U

<U<o and liminf D(z)

. D
lim sup (@) 100 22 /()

> L >0,
v L2P(x) -

almost surely.

One consequence of this, or Lemma 18, is that in applying the second parts of Theorem
5 and Corollary 2 it will be enough to consider the reproduction far above the barrier,
that is, F' C S in those results can be taken as [s,00) for any large s. The next lemma is
also a simple application of Theorem 11, providing another relevant estimate. It would
be easy to prove more, replacing V' by a more general function, but the result will only
be needed for this case.

Lemma 19 LetN[)(x) =Y, V(G) (¢ < x) = [[V(2)7'D(dz). For suitable (non-
random) L and U

D - D .
lim sup (z) <U<o and liminf (z) >L>0.

v00  TOH(T) z—00 2/¢()
Proof. Let D,(x) = (L —€)x?/¢(z) for x > z¢ > e® and D, = 0 otherwise, with zy, which
is random, large enough that D(z) > D,(x) for all z > 0. Then, using Lemma 15(i) and
Fubini,

D(z) = Aﬂqa*pu@

r 1
/0 b(z + 1)D(dz)

—€ / 71 2z z
_ — dz

b J,, 2+ 1 \loglogz logz(loglogz)?
Estimating the integral for large x gives the lower bound; the derivation of the upper
bound is similar. O

The next result derives suitable bounding variables for use in Corollary 2. It is here
that the gap, mentioned already, between using X, in the upper bound but Xj3(sg) as a
lower bound arises.

Lemma 20 Under P (that is, when the parent is at s), for suitable 0 < a < b < o0,

Xl b - Xl
-X X >

Vi) Tar T

X<b
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and, for s > s,

X Z %Xg,(S()).

Proof. When the parent is at s, applying Lemma 15(i),

> Vi + s)e~ Gt [(z; + 5 > 0)

X =
V(s)e™s
2Vt s)e (z > —s)
B Vi(s)
- > 0(z + s+ 1)e (2 > —s)
N Vi(s)
< Zz] I(z; > 0) Ze‘zl
X, b~
=0 - X
V(s) o

as required. Similarly

Yojoalzj+s+1)e#l(z; > —s) a)  ze %z >0) Y X,
e ) G

and, for s > s

dojalzi+s+1)e (2> —s) _a

X2 TRy 2 520> =) = ol

In applying the first of these bounds in Theorem 5(i) and Corollary 2(i), Lemma 8
shows that the variables X/V(s) and X, can actually be treated separately; clearly,
X,/V(s) and Xj5(s0) can be considered separately in part (i) of these results. In dealing
with X, V(s)~" provides the function g(s). Hence there are two functions A of the
form defined in the main theorems that have to be considered. These are introduced
and estimated in the next Lemma. Notice how accounting for the function V'(s)~! that
multiplies X, alters the associated growth rate.

Lemma 21 Let Ay(z) =Y oo I(H(¢)x > 1). Then

A A
lim sup (@) < oo and liminf 1)
z—00  (logx)?logloglogx z—o00 (logx)?/logloglogz

Let Ay(z) =72, V(G) H(H(G)x > V(()). Then

A A
lim sup 2(2) < oo and liminf 2(2)
200 (logx)logloglog x z—o00 (logx)/logloglogx
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Proof.
V(¢G)e S > 1)

I(¢; < logzx +log V(()).

>
>

Since, 0 < logV(x) < logh(x + 1) and for any € > 0 there is an v > 0 such that
logb(x + 1) < v+ ex it follows that

Zlczglogx)<A1 <ZI (1—-¢)¢ <logz+n),

i=1 i=1

that is
D(logz) < Ay(z) < D((1 —€) '(logz +1)).

The results in Theorem 11 complete the required estimation of A;.

Similarly
Ay(z) = Z V(G) HT(H(G)z > V(G)
= ZV(Q)*I[(Q <logz)
i=1
and the estimates in Lemma 19 finish the proof. 0]

These estimates of the growth in terms of slowly varying functions translate into
moment conditions through Corollary 2 to give Theorem 10. The estimates for A; gives
the moment conditions on X, and Xg( ), while A, gives those on X.

8 The derivative martingale in branching random walk

Much as at the start of Section 6, let Z be a point process on the reals with intensity
measure 4 and assume that

/exu(dx) =1, /xe“",u(dx) =0 and /xQeIu(dx) < 00

The spatially homogeneous branching random walk based on Z is considered; this has
types in (—o00, 00) generated in the obvious way. The first assumption on g implies that
H(s) = e~* is mean-harmonic. The corresponding martingale,

W, = Z e
lv|=n

belongs to a class of martingales studied by several authors, see, for example Kingman
(1975), Biggins (1977), Liu (1997) and Lyons (1997).
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Lemma 22 (i) EpW =0, (i) P(W =0) =1 and (iii) inf{S(v) : |v| = n} — oo, almost
surely as n — oo.

This result is contained in Biggins (1977); the second and third assertions are immediate
consequences of FpWW = 0. Informally, the last part says that every line of descent goes
to infinity. A proof that Epl¥ = 0 without the side condition that [ z%e *u(dx) is finite
was given by Lyons (1997), can also be obtained fairly directly from Corollary 1 and is
contained in Theorem 6(iii)(a); however, this strengthening is not needed here.

If m(¢) = [ e " u(dz) is finite then

is a positive martingale, with W,, being W,,(1). Differentiating W, (¢) with respect to ¢
and setting ¢ = 1 shows that

ow, = Z S(v)e=5W)

lv|=n

ought to be a martingale, a fact easily verified by direct calculation. This is called the
derivative martingale, even if m(¢) is not actually finite anywhere other than at ¢ = 1
so that the derivative is fictional. The derivative martingale does not fall directly into
the general framework developed earlier because the function H(s) = se™® producing
it takes negative values. The basic idea for dealing with this problem, which was used
by Harris (1999) in the context of branching Brownian motion, is to approximate the
spatially homogeneous process by one with an absorbing barrier. The last part of Lemma
22 suggests that, for large b, a barrier at —b should make little difference. Then, for
the approximating process, the counterpart of 0W,, will be a non-negative martingale
amenable to the theory developed.

Known results for the martingales W,,(¢) and analogous martingales for branching
Brownian motion, which we do not attempt to describe, indicate that the case under
consideration (¢ = 1) is a boundary one. In the branching Brownian motion context
the boundary case corresponds to the travelling wave solution to the associated reaction-
diffusion equation with slowest speed. This was the context of the study of Harris (1999)
whose approach is adapted here to yield convergence of the derivative martingale. Kypri-
anou (2001) gives an extensive discussion of the use of change of measure ideas for branch-
ing Brownian motion, and other branching diffusions, and of the use of a barrier to discuss
derivative martingales in that context.

The convergence of derivative martingales and related questions have been considered
before; see, for example, Biggins (1991, 1992) and Barral (2000) for non-boundary cases.
More relevantly, the convergence in the boundary case has been considered by Kyprianou
(1998) and Liu (2000), drawing on results from a related functional equation; the approach
here, which is more direct, gives convergence under weaker conditions.

Theorem 12 The martingale OW,, converges to a finite non-negative limit, A, almost
surely. Furthermore, P(A = 0) is equal to either the extinction probability or one.
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The limit A has infinite mean, and so is not identically zero, when the conditions of
Theorem 10(i) hold. The limit is identically zero when the conditions of Theorem 10(ii)
hold.

Proof. Let t;, be the event that no node in the branching random walk has a position to
the left of —b; then, by Lemma 22(iii), ¢, increases to an event with probability one as
b — o0. Use the homogeneous branching random walk to construct a branching random
walk with a barrier at —b; on ¢, the processes with and without a barrier agree. To make
the coupling precise, let I;(v) be one if the node v is retained in the process with a barrier
at —b and zero otherwise. Now, by Lemma 15(ii), V(b)) ' 32, -, V(b + S(¥))e 5@ L (v)
is a positive martingale, which must converge to a finite limit, denoted by B,. Hence,
using Lemma 15(i) and Lemma 22,

lv|=n

_ th) tim V(b + Sw)e L)

C

= Ty Jm > 0+ SE)e 1)

v|=n

lv|=n

C
< - 'm ‘/1/ + 8‘4/

C
- li ns
V) A oW

furthermore, equality holds on #,. Thus OW,, converges to A = C~ 'V (b) B, on ;. Letting
b — oo completes the proof that 0W,, has a finite, non-negative limit.

Splitting on the first generation and letting n go infinity shows, drawing on Lemma
22(i), that
A(S) =Y e SIA(SY). (12)
v|=1
Hence, P(A = 0) is a fixed point of the generating function of the family size and so must
have the stated property.

It has already been shown that V'(b)B, < C'A with equality on t;,. When Theorem
10(i) holds, EpB, = 1 and then V(b) < C'EpA for any b; thus EpA = co. Similarly, when
the conditions of Theorem 10(ii) hold B,, and hence A, is zero on ¢, for every b. O

The equation (12) is an example of a smoothing transform, in the sense of Durrett
and Liggett (1983) and Liu (1998); the Laplace transform of A satisfies an associated
functional equation. It was this functional equation that was important in the study of
the convergence of 0W,, in Kyprianou (1998) and Liu (2000). In contrast, the results
here yield results about the functional equation as a by-product, as will be explained in
Biggins and Kyprianou (2001). For that study, it turns out to be important to consider
the analogue of OW,, over certain optional lines.
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Specifically, the optional lines C[t] have the same definition as in Section 6 and

OWep = Y S(v

veC(t]

It is worth noting explicitly that, unlike (Wepy, Gepg), (0Wey, Gey) is not a martingale
(though it is a submartingale). Nonetheless, the ideas in the proof of Theorem 12 yield
the following result.

Corollary 5 0W¢y) converges to A almost surely.
Proof. Note first that Proposition 3 shows that Wep; and W), have the same limit; by

Lemma 22, this limit is zero and so inf{S(v) : v € C[t]} — oo as t — 0o. Now, applying
Theorem 9 shows that on

Vi V(b + S —5W)
A= o nsoo Z_
_V(b) V(b+ S(v )
- TmE e
= lim (Wc t] b+ 8WC ¢ ) = lim 8W0[t].
t—00 t—00
Letting b — oo completes the proof. 0]
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