
Persistence of noncompact

normally hyperbolic invariant manifolds

in bounded geometry



Thesis committee:
Prof. dr. H.W. Broer, Rijksuniversiteit Groningen
Prof. dr. O. Diekmann, Universiteit Utrecht
Prof. Dr. B. Fiedler, Freie Universität Berlin
Prof. R.S. MacKay, University of Warwick
Prof. C.C. Pugh, University of California, Berkeley

Cover illustration:
The cover shows a ball rolling on a smooth infinite surface. This is an example of a
nonholonomically constrained system. Understanding how such a system can be
viewed as a reduction of the unconstrained system has triggered the research in
this thesis. For more details see Example 1.5 or the Dutch summary.

ISBN: 978-90-393-5815-3
Thesis printed by Wöhrmann print service

Copyright © 2012 by J. Eldering
Licensed under the Creative Commons Attribution-ShareAlike 3.0 license.

http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/3.0/


Persistence of noncompact

normally hyperbolic invariant manifolds

in bounded geometry

Persistentie van niet-compacte

normaalhyperbolische invariante variëteiten

onder aanname van begrensde meetkunde

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan,

ingevolge het besluit van het college voor promoties in het openbaar
te verdedigen op maandag 27 augustus 2012 des middags te 4.15 uur

door

Jacob Eldering

geboren op 27 december 1980 te Hoogeveen



Promotoren: Prof. dr. J.J. Duistermaat†

Prof. dr. E.P. van den Ban
Co-promotor: Dr. H. Hanßmann



In memory of Hans Duistermaat





Preface

In this thesis we prove persistence of normally hyperbolic invariant manifolds.
This result is well-known when the invariant manifold is compact; we extend this
to a setting where the invariant manifold as well as the ambient space are allowed
to be noncompact manifolds. The ambient space is assumed to be a Riemannian
manifold of bounded geometry.

Normally hyperbolic invariant manifolds (NHIMs) are a generalization of hyper-
bolic fixed points. Many of the concepts, results and proofs for hyperbolic fixed
points carry over to NHIMs. Two important properties that generalize to NHIMs
are persistence of the invariant manifold and existence of stable and unstable
manifolds.

We shall focus on the first property. Persistence of a hyperbolic fixed point follows
as a straightforward application of the implicit function theorem. For a NHIM the
situation is significantly more subtle, although the basic idea is the same. In the
case of a hyperbolic fixed point we only have stable and unstable directions. When
we consider a NHIM, there is a third direction, tangent to the manifold itself. The
dynamics in the tangential directions is assumed to be dominated by the stable
and unstable directions in terms of the respective Lyapunov exponents. Thus the
dynamics on the invariant manifold is approximately neutral and the dynamics
in the normal directions is hyperbolic; hence the name normally hyperbolic. The
system is called r -normally hyperbolic if the spectral gap condition holds that the
tangential dynamics is dominated by a factor r ≥ 1. An r -NHIM persists under C 1

small perturbations of the system. The persistent manifold will be C r if the system
is, but it may not be more smooth, even if the system is C∞ or analytic. This can
also be formulated as follows: r -normal hyperbolicity is an ‘open property’ in the
space of C r systems under the C 1 topology. The description above shows that the
spectral properties of NHIMs and center manifolds are similar. The difference is
that NHIMs are globally uniquely defined, while center manifolds are not.
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There are two basic methods of proof for hyperbolic fixed points and center ma-
nifolds: Hadamard’s graph transform and Perron’s variation of constants integral
method. Both can be extended to prove persistence of NHIMs, as well as existence
of its stable and unstable manifolds. We employ the Perron method.

Both methods of proof construct a contraction scheme to find the persistent NHIM
(and a similar contraction scheme can be used to find its stable and unstable
manifolds). Heuristically, we can construct the implicit function F (M , v)=Φt (M)−
M = 0, where M is the NHIM andΦt is the flow of the vector field v after some fixed
time t . Normal hyperbolicity of M implies that D1F is invertible. Hence, there is
a function M̃ =G(ṽ) that maps perturbed vector fields ṽ to persistent manifolds
M̃ , at least in a neighborhood of v . This idea does not work directly for higher
derivatives. An inductive scheme can be set up that typically uses some form of the
fiber contraction theorem. This scheme will break down after r iterations, hence
the limited smoothness. Example 1.1 shows that this is an intrinsic problem.

To tackle the noncompact case, we replace compactness by uniformity conditions.
These include uniform continuity and global boundedness of the vector field and
the invariant manifold and their derivatives up to order r . We require additional
uniformity conditions on the ambient manifold, namely ‘bounded geometry’. This
means that the Riemannian curvature is globally bounded, and as a result we
have a uniform atlas which allows us to retain uniform estimates throughout all
constructions in the proof.

This thesis is organized as follows. In the introduction, we give a broad overview
of the theory of NHIMs with references to more details in the later chapters. We
start by describing how NHIMs are related to hyperbolic fixed points and center
manifolds. Then we give some basic examples and motivation for studying the
noncompact case. We give a brief overview of the history and literature and
compare the two methods of proof in the basic setting of a hyperbolic fixed point.
Then we continue to introduce the concept of bounded geometry and a precise
statement of the main result of this thesis and discuss its relation to the literature.
We describe a few extensions and details of the results and conclude the chapter
with notation used throughout this thesis.

Chapter 2 treats Riemannian manifolds of bounded geometry. We first introduce
the definition of bounded geometry and some basic implications. We explicitly
work out the relation between curvature and holonomy in Section 2.2. This we use
in Section 3.7 to prove smoothness of the persistent manifold. In the subsequent
sections we develop the theory required to prove persistence of noncompact
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NHIMs in general ambient manifolds of bounded geometry. We extend results
for submanifolds to uniform versions in bounded geometry, to finally show how
to reduce the main theorem to a setting in a trivial bundle. A number of these
results are new and may be of independent interest, namely the uniform tubular
neighborhood theorem, the uniform smooth approximation of a submanifold, and
a uniform embedding into a trivial bundle.

In Chapter 3 we finally prove the main result in the trivial bundle setting. We first
state both this and the general version of the main theorem and discuss these in
full detail. We include a precise comparison with results in the literature, followed
by an outline of the proof. Section 3.3 contains a discussion of the differences
to the compact case and presents detailed examples to illustrate these. Then we
start the actual proof. We first prepare the system: we put it in a suitable form
and obtain estimates for the perturbed system. Then we prove that there exists
a unique persistent invariant manifold and that it is Lipschitz. Secondly, we set
up an elaborate scheme in Section 3.7 to prove that this manifold is C r smooth by
induction over the smoothness degree.

In Chapter 4 we discuss how the main result can be extended in a number of
different ways that may specifically be useful for applications. We show how time
and parameter dependence can be added and we present a slightly more general
definition of overflow invariance that might be applicable to systems that are not
overflowing invariant under the standard definition.

Finally, the appendices contain technical and reference material. These are ref-
erenced from the main text where appropriate. Appendix A shows an important
idea that permeates this work: the implicit function theorem allows for explicit
estimates in terms of the input, hence it ‘preserves uniformity estimates’. This can
then directly be applied to dependence of a flow on the vector field. In Appendix B,
the Nemytskii operator is introduced as a technique to prove continuity of post-
composition with a function. This is an essential basic part in the smoothness
proof, together with the results on the exponential growth behavior of higher
derivatives of flows in Appendix C. Here, we also develop a framework to work
with higher derivatives on Riemannian manifolds. The last appendices include the
fiber contraction theorem of Hirsch and Pugh that is used in the smoothness proof,
Alekseev’s nonlinear variation of constants integral defined on manifolds, and a
brief overview of those parts of Riemannian geometry that we use.
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Chapter 1

Introduction

The basics of the theory of hyperbolic dynamics date back to the beginning of the
20th century, and the general formulation of the theory of normally hyperbolic sys-
tems was stated around 1970. Since then, many people have extended the theory,
and even more people have applied it to problems in all kinds of areas.

Normally hyperbolic invariant manifolds are important fundamental objects in
dynamical systems theory. They are useful in understanding global structures
and can also be used to simplify the description of the dynamics in, for example,
slow-fast or singularly perturbed systems.

In this thesis, we are specifically interested in noncompact normally hyperbolic
invariant manifolds. We extend classical results that were previously only formu-
lated for compact manifolds. However, in many applications the manifold is not
compact, so an extension of the theory to the general noncompact case allows one
to attack these problems in their natural context. The main result of this thesis
is an extension of the theorem on persistence of normally hyperbolic invariant
manifolds to a general noncompact setting in Riemannian manifolds of bounded
geometry type.

1.1 Normally hyperbolic invariant manifolds

We should first point out that the theory of (normally) hyperbolic systems can be
applied to both discrete and continuous dynamical systems. That is, if we have
a dynamical system (T, X ,Φ) with X a smooth manifold and Φ : T × X → X the
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2 Chapter 1. Introduction

evolution function, then the system1 is called discrete if T =Z and continuous if
T =R. In the discrete case, one typically has a diffeomorphism ϕ : X → X and the
full evolution function is defined as Φ(n, x) =ϕn(x), i.e. iterated application of ϕ.
In the continuous case, the mapΦ is called a flow. It is generated by a vector field
v ∈X(X ) and in that case the map Φt : X → X is again a diffeomorphism for any
t ∈R.

The two cases can be related by fixing a t ∈ R in the continuous case and then
view ϕ = Φt as generating a discrete system. The statements of definitions and
results are (almost) identical if formulated in terms of the evolution function Φ.
The methods of proof share this similarity and can be translated into each other.
We shall adopt the continuous formulation in this work, and refer to the evolution
parameter t ∈ T =R as time. Even though our system is defined in terms of a vector
field v , we call x ∈ X a fixed point of the system whenΦt (x) = x for any t ∈R. This
is equivalent to saying that v(x) = 0, i.e. that it is a critical point of v ; we adhere to
the former terminology to better preserve the analogy with discrete systems.

Before we proceed to explaining normally hyperbolic invariant manifolds, it should
be pointed out that these are a generalization of hyperbolic fixed points. Many
of the characteristic properties generalize as well, so we first sketch the basic
picture for hyperbolic fixed points. Let x be a fixed point of a vector field, v(x) = 0;
it is called hyperbolic if the derivative Dv(x) has no eigenvalues with zero real
part. This means that the eigenvalue spectrum splits into parts left and right of
the imaginary axis, that is, the stable and unstable eigenvalues, but no neutral
ones. The corresponding stable and unstable eigenspaces E± are both invariant
under the linear flow of Dv(x) and these spaces are characterized by the fact that
solution curves on them converge exponentially fast towards the fixed point under
forward or backward time evolution respectively. It is a well-known result that there
are corresponding stable and unstable (local) manifolds, denoted W S

loc and W U
loc

respectively, which are the nonlinear versions of these, see Figure 1.1. This situation
can be generalized to a normally hyperbolic invariant manifold by replacing the
single fixed point by a ‘fixed set of points’, that is, a manifold which is, as a whole,
invariant.

Let us start with a somewhat informal explanation of the concept of a normally
hyperbolic invariant manifold, which we shall from now on often abbreviate as
a NHIM, as is common in the literature. If we have a dynamical system (T,Q,Φ)
with phase space Q (which we shall often refer to as the ‘ambient manifold’) and
evolution map Φ, then a manifold M ⊂Q is called invariant under the system if

1For simplicity of presentation we ignore the facts thatΦmay have a smaller domain of definition,
or that it is a semi-flow or semi-cascade, only defined on T ≥ 0.



1.1. Normally hyperbolic invariant manifolds 3

W S
loc

W U
loc

E−

E+

Figure 1.1: A hyperbolic fixed point with (un)stable manifolds W S
loc,W U

loc.

M

Figure 1.2: A normally hyperbolic invariant manifold. The single
and double arrows indicate slow and fast flow respectively.

it is mapped to itself under evolution. In the continuous case this means that
Φt (M) = M for all times t ∈R, that is, any point x ∈ M stays in M , so its complete
orbit is contained in M .

An invariant manifold M is then called normally hyperbolic if in the normal direc-
tions, transverse to M , the linearization of the flowΦt has a spectrum separate from
the imaginary axis again. Although the precise definition is a bit more technical
than in the case of a hyperbolic fixed point, the geometric idea is the same. The
normal directions must separate into directions along which the linearized flow
exponentially converges towards M and directions along which it exponentially
expands; no neutral directions are allowed. Finally, the flow on M itself may expand
or contract, but only at rates that are dominated by the expansion and contraction
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in the normal directions. Figure 1.2 shows part of a normally hyperbolic invariant
manifold M that has only stable normal directions. Note that the dynamics on M
itself can be very complex; it can have fixed points or even be chaotic. The only
restriction is that the vertical contraction rate is stronger than horizontal ones (and
similarly for expansion), as is indicated by the double and single arrows and visible
from the convergence of solution curves to the rightmost fixed point on M .

1.1.1 Persistence and (un)stable manifolds

There are two important properties that generalize from hyperbolic fixed points to
normally hyperbolic invariant manifolds. These are persistence of the fixed point
and the existence of stable and unstable manifolds. The generalization of these
properties is not a trivial statement nor easily proven in the generalized case of
NHIMs, however.

Let us first focus on persistence. In case of a hyperbolic fixed point, this is trivially
stated and proven. If the fixed point x is hyperbolic, then it will persist as a nearby
fixed point under small perturbations of the vector field v and stay hyperbolic.
The proof is a direct application of the implicit function theorem. If Dv(x) has no
eigenvalues on the imaginary axis, then certainly it has no zero eigenvalue, and
therefore is a bijective linear map. So a slightly perturbed vector field ṽ will again
have a fixed point x̃ nearby x and the eigenvalues of Dṽ(x̃) will be close to those
of Dv(x) if ṽ − v is small in C 1-norm. Hence the eigenvalues are still separated by
the imaginary axis. For a NHIM the situation is similar but technically much more
involved due to the fact that there is no control on the behavior of solution curves
in the invariant manifold. A normally hyperbolic manifold M does persist under C 1

small perturbations and the perturbed manifold M̃ is again normally hyperbolic
and close to M in a precise way. The most important difference, however, is that
M̃ generally has only limited smoothness, even if M and the system were smooth
or analytic2. This smoothness is dictated by the spectral gap condition, which is
roughly the ratio between the normal exponential expansion/contraction and the
exponential expansion/contraction tangential to M . This fact already indicates
that the proof of persistence of a NHIM cannot be a straightforward application of
the implicit function theorem.

The stable and unstable manifolds generalize as well. That is, a normally hyperbolic
invariant manifold M has stable and unstable manifolds W S(M) and W U (M) such

2I do not know whether loss of smoothness is generic for NHIMs. See [Has94; HW99] for the case
of Anosov systems.
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that solution curves on these converge exponentially fast towards M in forward or
backward time, respectively. Their intersection is precisely M . But there is actually
more structure: these manifolds—we consider W S(M) but everything is equivalent
for W U (M)—are fibrations of families of stable and unstable fibers to each point
m ∈ M ,

W S(M) = ⋃
m∈M

W S(m).

We should be a bit careful with this last statement, as points m ∈ M are generally not
fixed points. These fibers W S(m) are invariant in the sense that the flow commutes
with the fiber projection πS :

∀ t ∈R, m ∈ M , x ∈W S(m) : πS ◦Φt (x) =Φt ◦πS(x).

In other words, each fiber is mapped into another single fiber under the flow,
namely the fiber over the flow-out of the base point m. This important fact means
that if we use the fibration for local coordinates, then in these coordinates the
horizontal, base flow decouples from the vertical, fiber flow. This is sometimes also
called an isochronous fibration [Guc75] as all points in a fiber have the same long-
term behavior. Each single fiber is as smooth as the system, but the dependence on
the base point m, and thus the smoothness of the fibrations as a whole, is generally
not better than continuous, see Fenichel [Fen74, Sec. I.G]. We do not investigate
these invariant fibrations in the present thesis, although the mentioned results
should hold for noncompact NHIMs as well.

1.1.2 The relation to center manifolds

Normally hyperbolic invariant manifolds bear a close resemblance to center mani-
folds. Their spectral properties are roughly equivalent; they differ in the fact that
NHIMs have an intrinsically global definition, while center manifolds are defined
in local terms.

A center manifold W C
loc(x) of a fixed point x is a local invariant manifold such

that its tangent space at the fixed point is the (generalized) eigenspace E0 of the
eigenvalues with real part zero, that is,

TxW C
loc(x) = E0. (1.1)

We can extend the definition of center manifold a bit by including all eigenvalues
λ with real part bounded by |Re(λ)| ≤ ρ0. An associated generalized center mani-
fold consists of solutions that converge or diverge from x at an exponential rate
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bounded by ρ0. Curves in the strongly3 stable or unstable manifold converge or
diverge at exponential rates larger than ±ρ0, respectively. These conditions can
directly be compared to the description of NHIMs above, or Definition 1.6 (with
ρ0 = ρM ).

If we take a look at Figure 1.2 again, then we see that both fixed points (indicated
with a dot) on M have (generalized) center manifolds; M itself is a center manifold
for these, but for the rightmost fixed point we can actually construct the center
manifold from any two solution curves converging to that fixed point from the
left and right. For example, the union of the two curves drawn in the figure that
converge to it could be taken as alternative center manifold. This reflects the
well-known fact that center manifolds are generally not unique. This is the main
difference with the case of NHIMs: center manifolds are only defined in terms of
growth rates of solution curves locally with respect to one fixed point, while NHIMs
are globally invariant objects, where the spectral splitting must hold everywhere
along the invariant manifold. This difference is effectively the reason that center
manifolds are not uniquely defined, while the perturbations of NHIMs are, see
below. If we perturb the system in Figure 1.2 a bit, then the persistent NHIM
must everywhere be close to the original invariant manifold M . This enforces
uniqueness; in Figure 1.2 this is clearly visible: the alternative choice of center
manifold to the rightmost fixed point diverges far from M . See also the example in
Section 1.2.1.

There is a subtle question of smoothness both for center manifolds and NHIMs,
related to the spectral gap condition (1.10). Center manifolds are arbitrarily smooth
in a sufficiently small neighborhood of the fixed point x, but they are generally
not C∞, even though they satisfy an infinite spectral gap. See Van Strien’s short
note [Str79]. The reason is that the size of the neighborhood may depend on the
degree of differentiability C k . Persistent NHIMs generally have bounded smooth-
ness due a finite spectral gap; but even if they have an infinite spectral gap, the
smoothness of a persistent NHIM is (generally) not C∞ for the same reasons. See
Remark 1.10 and Example 1.3.

1.2 Examples

We present a few examples. The first detailed example serves to show explicitly
that smoothness of a persistent manifold depends crucially on the spectral gap

3We remove the eigenvalues associated to E0 from E± so that E−, E0, E+ together disjointly span
the total tangent space at x.
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condition. The next examples motivate the usefulness of a noncompact version of
the theory of normal hyperbolicity.

1.2.1 The spectral gap condition

An invariant manifold is called an r -NHIM if the flow contracts or expands at
exponential rates along the normal directions, and if these rates dominate any
contraction or expansion along tangential directions at least by a factor r . This
separation between growth rates along directions tangential and normal to the
NHIM is encoded in equations (1.9) and (1.10).

Here we introduce a simple example where the growth rates can be identified
with eigenvalues λ of the linearization of the vector field at stationary points.
Furthermore, we consider the simplified case where only a stable normal direction
is present. That is, we consider a flow that contracts in the normal direction at an
exponential rate of at least ρY < 0 and along the invariant manifold it contracts at
most at the rate ρX with the simplified spectral gap condition

ρY < r ρX with ρX ≤ 0, r ≥ 1. (1.2)

The spectral gap is fundamental to persistence of invariant manifolds: the compact
invariant manifolds that are persistent under any small perturbation are pre-
cisely those that are normally hyperbolic4 [Mañ78]. Mañé only proved this inverse
implication for 1-normal hyperbolicity, the question is still open for r -normal
hyperbolicity with r > 1. A further property of normally hyperbolic invariant
manifolds is that the differentiability of a slightly perturbed manifold depends
not only on the smoothness of the original manifold and the perturbed vector
fields, but also on the spectral gap. The spectral gap determines an upper bound
1 ≤ r <∞ on the smoothness of the perturbed system, as r has to satisfy5 (1.10).
This condition stems from the fact that when the flow has exponential growth
behavior eρ t , then higher order derivatives will generally have growth behavior
ek ρ t and the interval inclusion

[
k ρ,ρ

]⊂ (
ρY ,ρX

)
is required to show existence and

uniqueness of the k-th derivatives via a contraction. The optimal differentiability
degree r can be extended to a real number by viewing α-Hölder continuity as a
fractional differentiability degree. That means that the perturbed manifold can

4The definition of normal hyperbolicity in [Mañ78] is a bit more general than the definition in
this paper. That definition only requires a growth ratio r ≥ 1 along solution curves in the invariant
manifold, and not as a ratio of global growth rates ρX ,ρY , see also Remark 1.8.

5The case r =∞ would require ρX > 0; when ρX = 0, any finite order r can be obtained, but only
for perturbations sufficiently small depending on r .
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be shown to be C k,α when r = k +α satisfies the spectral gap condition and the
system is C k,α to start with.

The following example shows that this result is sharp. We construct a very simple
compact, normally hyperbolic invariant manifold, and then show that an arbitrarily
small perturbation yields a unique perturbed C k,α invariant manifold, where r =
k +α satisfies ρY = r ρX . This in fact precisely violates the spectral gap condition,
since that requires a strict inequality. The example could be adapted to obtain
a perturbed manifold with smoothness no better than C r ′

for some r ′ < r , cf.
Example 1.3. A more qualitative exposition of this example can also be found
in [Fen72, p. 198–200] and [Hal69, p. 239, 251].

Example 1.1 (Optimal C k,α smoothness of persistent manifolds).
Let the horizontal space X = S1 be the circle and the vertical space Y =R. Take two
points x− = 0 and x+ =π in X and set the vector field v to zero at (x−,0), (x+,0). We
turn these stationary points into hyperbolic fixed points, with v linear in neighbor-
hoods around them and Dv(x−,0),Dv(x+,0) having eigenvalues λ− < 0<λ+ along
X , respectively, and one global eigenvalue λY <λ− in the vertical direction along Y ,
i.e. ẏ = vy (x, y) =λY y , see Figure 1.3. We extend the horizontal component vx of
the vector field v to the whole space X ×Y in such a way that it is C∞, independent
of y , and has no critical points except for x−, x+. Hence, M is an invariant manifold
for the flowΦt of v .

First, we check that M is normally hyperbolic. The long time behavior of any
point m ∈ M is governed by its approach of the stable fixed point (x−,0), except for

x− x+

Y

λ− χ λ+
X

λY λY

Figure 1.3: an example invariant manifold exhibiting C k,α smoothness under perturbation.
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m = (x+,0). For m = (x+,0) we have DΦt (m) = eDv(m) t , hence

DΦt (m)|Tm X = eλ+ t ,

DΦt (m)|Tm Y = eλY t .

More generally, consider a point m ∈ M in the neighborhood of either (x±,0) where
v is linear. Then DΦt (m) is given by

DΦt (m) =
(

eλ± t 0
0 eλY t

)
for as long asΦt (m) stays in that neighborhood of (x±,0) where the vector field is
linear. The transition time between these two neighborhoods is finite as v does not
have zeros and the transition map preserves vertical lines {x}×Y . The latter fact is
because vx is independent of y , that is, we have also found the invariant, foliated
stable manifold of M . Gluing together these DΦt maps on the different domains,
we see that the resulting tangent flow splits again into independent horizontal and
vertical parts, which can be estimated by

∀t ≤ 0: ‖DΦt (m)|Tm X ‖ ≤CX eλ− t ,

∀t ≥ 0: ‖DΦt (m)|Tm Y ‖ ≤CY eλY t ,

where the constants CX , CY are determined by the flowΦt in the domain where v is
nonlinear. For any point m close to (x−,0) this estimate is sharp, hence we expect
maximal smoothness r =λY /λ− for a generic perturbation.

Next, we add a perturbation term εχ to the vector field v , so we have a perturbed
vector field ṽ = v + εχ, where χ ∈ C∞

0 is chosen with support on a small ball
intersecting M away from the fixed points and pointing upward. This will ‘lift’
the invariant manifold as indicated in Figure 1.3 for any ε> 0. Let M̃ denote this
lifted manifold, that is, M̃ is the image of the two heteroclinic solution curves that
run from (x+,0) to (x−,0) together with these fixed points. The solution curve that
runs to the left is lifted up from the x-axis after entering the region suppχ.

We first investigate two claims: that M̃ is invariant and that it is the unique invariant
manifold that is close to M . The invariance is obvious; to the right of x+ nothing
has changed, so there M̃ = M . To the left of x+ we follow the original unstable
manifold, get pushed up within the domain of support of χ and after leaving that
domain and entering the linear flow around (x−,0) we follow a standard curve
ending at (x−,0). This is a solution curve of ṽ ∈ C∞, hence invariant and even
smooth. Now assume there exists another invariant manifold M ′ nearby and let
(x ′, y ′) ∈ M ′ \ M̃ . The backward orbit of the point (x ′, y ′) must diverge to |y |À 1. If
x ′ = x−, then y ′ 6= 0 and this is clear. If x ′ 6= x−, then the backward orbit will end
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up at a point (x, y) with x close to x+ and y 6= 0; since we are in the linear domain
of (x+,0), this orbit will then diverge (in reverse time) along the stable manifold
towards |y |À 1. Hence, M ′ is not close to M .

Next, we show that (for any ε > 0) the perturbed manifold M̃ is not more than
C k,α with k +α = λY /λ−, even though the original and perturbed systems are
C∞-smooth. To the left of (x−,0), M̃ is given by the graph of the zero function
from X to Y (as the continuation from (x+,0) to the right along X = S1). To the
right of (x−,0), the solution curve is given by (x, y)(t ) = (x0 eλ− t , y0 eλY t ), hence
y =C xλY /λ− where C depends on x0, y0 only. So we can write M̃ as the graph of the
function

h̃ : X → Y : x 7→
{

0 if x ≤ 0,

C xλY /λ− if x > 0.

This function is exactly C k,α for k +α= r in x = 0. Note that the loss of smoothness
appears at a different place than the perturbation of the vector field. The relevant
fact is that the different solution curves approaching the stable limit point have
finite differentiability with respect to each other, and this depends on the horizontal
and vertical rates of attraction at (x−,0). ©

If we had assumed that ρY = ρX , that is, r = 1, but with a non-strict inequality
ρY ≤ r ρX , then normal hyperbolicity precisely fails and the invariant manifold
indeed need not persist. By the arguments above it can already be seen that the
persistent manifold can lose differentiability: when r = 1, the graph of the manifold
will be given by

h̃(x) =
{

0 if x ≤ 0,

C x if x > 0,

which is clearly non-differentiable at x = x− = 0. We can extend the example above
to show that even more serious problems can occur.

Example 1.2 (Non-persistence of non-NHIMs).
We consider Example 1.1 with ρY = ρX . If we perturb the system with a small
circular vector field around x− = (0,0), then Dv(0,0) will have two eigenvalues
λY ± i ω with λY < 0 and ω ∈R small. Thus, the solution curves that should make
up the invariant manifold around (0,0) will spiral in, which leads to the picture
in Figure 1.4. Note that the curves wind around the origin infinitely often. At
the origin this is not a manifold anymore, and cannot be described by a function
h̃ : X → Y . ©

The idea to perturb around the stable fixed point x− also leads to the following
example.
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X

Y

Figure 1.4: breakdown of a non-NHIM under a circular perturbation.

Example 1.3 (Non-C∞ persistence for r =∞ NHIMs).
We consider again Example 1.1, but now with λ− = 0. Then we have ρX = 0 and
spectral gap r =∞. If we let λ− = ε depend on the perturbation parameter ε> 0,
then this decreases the spectral gap condition6 to a finite number r =λY /λ−. Even
though r →∞ as the perturbation size ε goes to zero, we still have a finite spectral
gap for any fixed perturbation. We conclude that the corresponding perturbed
manifolds are not C∞, but have smoothness C r where r can be made arbitrarily
large by decreasing the perturbation size. ©

1.2.2 Motivation for noncompact NHIMs

Most of the literature on normal hyperbolicity and its applications treat compact
NHIMs only. This excludes possibly interesting applications. Settings where a
noncompact, general geometric version of normal hyperbolicity may be useful in-
clude chemical reaction dynamics [Uze+02] and problems in classical and celestial
mechanics [DLS06].

We describe a two examples where noncompactness naturally comes into play.
The first example, a normally attracting cylinder, is set in Euclidean space. This
example could be complicated a bit more by adding normal expanding directions
to get a fully normally hyperbolic system. Such situations show up in Hamiltonian
or reversible systems with invariant tori [Bro+09]. The second example is set in
ambient manifolds with nontrivial topology, thus motivating the need for a theory
of noncompact NHIMs in such a geometric setting.

Let us first treat a simple example.

6The ratio r in the spectral gap is defined by a strict inequality, which we ignore here for simplicity
of presentation.
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Example 1.4 (A normally attractive cylinder).
Let us consider the infinite cylinder y2 + z2 = 1 in R3. If we define a very simple
dynamics by

(ẋ, ṙ, θ̇) = (0, r (1− r ), 1)

in cylindrical coordinates, then the cylinder is normally attractive and the motion
on the cylinder consists of only periodic orbits, see Figure 1.5.

The dynamics on the cylinder is completely neutral, while it attracts in the nor-
mal direction with rate −1. Hence, there exists a unique persistent manifold
diffeomorphic and close to the original cylinder. For any k ≥ 1, the persistent
manifold has C k smoothness if the perturbation is chosen sufficiently small. The
perturbed manifold must be uniformly close to the original cylinder; this rules out
Example 3.9 of a cylinder with exponentially shrinking radius.

The dynamics on the persistent manifold can be perturbed in arbitrary ways. It
could slowly spiral towards x-infinity, or develop attracting and repelling periodic
orbits on the cylinder. If the cylinder were higher dimensional, it could even
become chaotic. ©

z

x

y

Figure 1.5: A normally attracting cylinder.

The second example actually motivated this work.

Example 1.5 (Nonholonomic systems as singular perturbation limit).
Let a classical mechanical system be given by a smooth Riemannian manifold
(Q, g ) as configuration space and a Lagrangian L : TQ → R. The vector field v on
TQ is determined by the Lagrange equations of motion, given in local coordinates
by [

L
]i = d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0. (1.3)
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A nonholonomic constraint can be placed on such a system by specifying a dis-
tribution7 D ⊂ TQ and adding reaction forces to [L] according to the Lagrange–
d’Alembert principle, that is, we require that a solution curve γ satisfies[

L
]
(γ)(t ) ∈D0 and γ̇(t ) ∈D for all t ∈R (1.4)

where D0 ⊂ T∗Q denotes the annihilator of D. This means that we restrict the
velocities—but not the positions—of the system and adapt the vector field such
that it preserves D. Such constraints are called ‘nonholonomic’ if the distribution
D is not integrable. This means that some small positional changes can only be
obtained through long orbits due to the constraints. The prototypical example is
that parallel parking a car a small distance sideways requires repeated turning and
moving forward and backward.

As a concrete example of a nonholonomic system, let us consider a ball rolling on
a flat surface. The possible positions of the ball are specified by Q = SO(3)×R2, i.e.
orientation and position in the plane. If we enforce the constraint that the ball can
only roll and not slip, then its linear velocity is determined by its angular velocity
ω ∈ so(3), thus we have

so(3)×SO(3)×R2 ∼=D⊂ T
(
SO(3)×R2).

The addition of the nonholonomic reaction forces specified by the Lagrange–
d’Alembert principle can be argued for on physical grounds, and some experimen-
tal verification has been done by Lewis and Murray [LM95] to check its correctness
against the alternative vakonomic principle. Still, it would be nice to rigorously
derive these forces from fundamental principles; this would complement [RU57;
Tak80; KN90] which showed this for holonomic constraints. The nonholonomically
constrained system can be obtained from the unconstrained system by adding
friction forces, see [Kar81; Bre81; Koz92]. Heuristically, one could say that if a
rolling ball feels a strong contact friction force, then if this force is taken to infinity,
it suppresses all slipping. This can be viewed as a singular perturbation limit,
where D precisely is the invariant manifold, and it is normally attracting due to the
dissipative friction force.

The cited works prove this result, but only asymptotically on finite time intervals.
The extension of the theory of NHIMs to noncompact manifolds as developed in
this thesis can be applied here. It allows one to improve upon this result and make
it exact on infinite time intervals and general noncompact configuration spaces

7Here, a distribution is meant in the sense of differential geometry as a subbundle of the tangent
bundle, not a generalized function (nor a probability distribution).
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Q, as long as these satisfy the ‘bounded geometry’ condition. One could think, for
example, of a gently sloping surface and a ball that is not perfectly round, or even a
time-dependent perturbation, as long as it is uniformly bounded in time. ©

1.3 Historical overview

As already mentioned, the theory of normally hyperbolic invariant manifolds is a
generalization of the theory of hyperbolic fixed points. The study of these dates
back to the beginning of the 20th century, or even the end of the 19th century.
From 1892 onwards, Poincaré published his works “Les méthodes nouvelles de la
mécanique céleste” [Poi92], in which he founded the theory of dynamical systems
and famously studied the three-body problem. This triggered further research
in nonlinear dynamical systems and persistence questions. Another important
work published in the same year is “The general problem of the stability of motion”
by Lyapunov; the original is in Russian, but translations in French [Lya07] and
English [Lya92] are available. In this work, he introduced the concept of charac-
teristic numbers, nowadays called ‘Lyapunov exponents’, to study ‘conditional
stability’ of nonlinear differential equations at a fixed point. Conditional stability
corresponds to the existence of stable (and unstable) linearized directions and
Lyapunov proves the existence of a stable manifold by means of a series expansion
under the assumption that the system is analytic.

In the beginning of the 20th century, the problem of stable manifolds was studied,
without assuming analyticity, by Hadamard [Had01] and Cotton [Cot11]. Both
Frenchmen applied different methods to obtain the stable and unstable manifolds
of a hyperbolic fixed point. Later, the German mathematician Perron extended the
ideas of Cotton to allow for generic complex eigenvalues, possibly of higher multi-
plicity, as long as the real parts of the eigenvalues are separated by zero (or even
a number r 6= 0), see [Per29; Per30]. Hadamard’s method is now named after him,
and also known as the ‘graph transform’. The other method was first formulated by
Cotton, although the idea of exponential growth of solution curves can be traced to
Lyapunov. This method is commonly referred to as the Perron or Lyapunov–Perron
method in the literature. This seems to pay too little credit to Cotton, even though

Perron himself [Per29] does attribute the method to Cotton8.

From around 1960, renewed activity in the area of hyperbolic dynamics led to the
generalization of the theory of (un)stable manifolds for hyperbolic fixed points to
persistence and (un)stable fibrations for normally hyperbolic invariant manifolds.

8These facts were pointed out to me by Duistermaat.
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Many authors have contributed to this subject, culminating in the seventies in
the works by Fenichel [Fen72] and Hirsch, Pugh, and Shub [HPS77]. These two
works formulate the theory slightly differently, but in broad generality and can
be viewed as the basic references nowadays; references to earlier works can be
found in both. Both Fenichel and Hirsch, Pugh, and Shub use Hadamard’s graph
transform as their fundamental tool. In these works, compactness of the invariant
manifold is a basic assumption. Noncompact, immersed manifolds are considered
in [HPS77, Section 6], albeit under the assumption that the immersion image is
compact again.

The theory of normal hyperbolicity has seen some interesting developments since
these foundational works, and the applications have slowly started to flourish,
see [Wig94] for a list of subjects. A major development was the generalization to
semi-flows in Banach spaces. This situation can arise when one wants to study
partial differential equations as ordinary differential equations on appropriate
function spaces. This technique has been applied to PDEs such as the Navier–
Stokes or reaction-diffusion equations.

In his book on parabolic PDEs, Henry extended the Perron method to apply
to semi-flows with a NHIM given as the horizontal submanifold9 X × {0} in a
product X ×Y of Banach spaces [Hen81, Chap. 9]. Henry’s idea is to linearize
only the normal directions, but keep the horizontal flow along M in its general,
nonlinear form, while at the same time splitting the Perron contraction map into
a two-stage contraction map on horizontal and vertical curves separately. Henry
obtains C 1,α smoothness only. In the series of papers [BLZ98; BLZ99; BLZ08], Bates,
Lu, and Zeng study more general NHIMs of semi-flows in Banach spaces. They
employ Hadamard’s graph transform and allow so-called ‘overflowing invariant
manifolds’, as in [Fen72]. They also allow the NHIM to be noncompact and an
immersed instead of an embedded submanifold. In [BLZ99] the unperturbed
NHIM is assumed to be C 2 to obtain C 1 persistence results, for the technical
reason of constructing C 1 normal bundle coordinates. In their later paper [BLZ08],
this technicality is overcome10, and existence of a NHIM is even proven when
sufficiently close, approximately normally hyperbolic invariant manifolds exist;
the persistence result is then obtained for compact NHIMs only, though.

Vanderbauwhede and Van Gils [VG87; Van89] introduced the technique of con-
sidering a scale (family) of Banach spaces of curves with exponential growth, and

9Henry actually has reversed notation where the ‘vertical’ manifold Y × {0} is the NHIM.
10Their Hypothesis (H2) that a certain approximate splitting like (1.8) “does not twist too much”,

can be obtained from uniform Lipschitz continuity of the tangent spaces of the invariant manifold. I
am not sure if this is a significantly weaker hypothesis. See also the discussion in Remark 3.13.
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using the fiber contraction theorem (see Appendix D), proved smoothness of center
manifolds with the Perron method. Although not the same, center manifolds have
many properties in common with NHIMs and Sakamoto [Sak90] has built upon
the works of Henry and Vanderbauwhede and Van Gils to prove persistence and
C k−1 smoothness for singularly perturbed systems in a finite-dimensional Rm ×Rn

product space setting. The loss of one degree of smoothness is again due to the
construction of normal bundle coordinates, although this fact is obscured by the
explicit Rm ×Rn setting.

Singularly perturbed, or, slow-fast systems are another important class of appli-
cations. These describe systems where the dynamics is governed by multiple,
separate time scales, or when a system can be viewed as an approximation of an
idealized, restricted system. Singularly perturbed systems can be studied using
the theory of normal hyperbolicity by turning them into a regular perturbation
problem via a rescaling of time, see foundational work by Fenichel [Fen79] or the
more introductory expositions [Jon95; Kap99; Ver05].

1.4 Comparison of methods

There are two well-known methods for proving the existence and smoothness of
invariant manifolds in hyperbolic-type dynamical systems. The Hadamard graph
transform and the variation of constants method, also known as the (Lyapunov–
)Perron method. Variations of both have been applied in many situations with
some form of hyperbolic dynamics. This ranges from the relatively simple problem
of finding the stable and unstable manifolds of a hyperbolic fixed point, to center
manifolds, partially hyperbolic systems, and normally hyperbolic systems. The
quote of Anosov [Ano69, p. 23] that “every five years or so, if not more often,
someone ‘discovers’ the theorem of Hadamard and Perron, proving it either by
Hadamard’s method of proof or by Perron’s” is nowadays probably familiar to many
researchers in these areas; it illustrates the pervasiveness of these methods.

In this section, I describe the ideas that are common to both methods, as well as
their differences. I hope to elucidate the merits and weak points of both methods,
especially when applied to normally hyperbolic systems. Basically they seem to be
able to produce the same conclusions, but each method takes a different viewpoint
to the problem.

Let us first identify some basic common ideas. As a sample problem, we consider
finding the invariant unstable manifold W U of a hyperbolic fixed point, positioned
at the origin of Rn . The system is defined by either a diffeomorphism Φ in the
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discrete case, or a flow Φt in the continuous case. Both methods use the splitting
of the tangent space into stable and unstable directions:

T0R
n ∼=Rn =U ⊕S.

Let (x+, x−) denote coordinates in U ⊕S according to projections π+, π− from Rn

onto the unstable and stable directions U and S, respectively. We shall use the
notationΦ± =π± ◦Φ.

1.4.1 Hadamard’s graph transform

The graph transform is due to Hadamard. His paper [Had01] (in French, 4 pages)
can be used as a concise and basic introduction to the graph transform, applied to
the stable and unstable manifolds of a hyperbolic fixed point. He does not prove
smoothness or even continuity of these invariant manifolds, although continuity
could easily be concluded by introducing the Banach space of bounded continuous
functions with supremum norm.

The basic idea of the graph transform is to view the unstable manifold W U as the
graph of a function g : U → S. The graph, as a set, is invariant under Φ (or e.g.Φ1

in the continuous case). The diffeomorphism Φ can also be interpreted as a map
acting on functions g through its action on their graphs. This induces a mapping

T : g 7→ g̃ implicitly defined by g̃
(
Φ+(x, g (x))

)=Φ−(x, g (x)). (1.5)

Thus, by definition, any point (x, g (x)) on the graph of g gets mapped to a point
(x ′, g̃ (x ′)) on Graph(g̃ ). The map T turns out to be well-defined and a contraction
on functions U → S that are sufficiently small in Lipschitz norm. The graph of
the unique fixed point g? of T must correspond to the unstable manifold, that is,
W U = Graph(g?).

By considering the invariant sets, this method focuses on the geometry of the
problem. The method uses a diffeomorphism mapΦ; the continuous case can be
studied by considering the flow mapΦt for a fixed time t . The diffeomorphism can
easily be studied locally in charts on a manifold. Therefore this method lends itself
well to the generalized setting of normally hyperbolic invariant manifolds, where
the invariant manifold is intrinsically a global object. Even if this global object is
nontrivial, it can still be studied in local charts.
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1.4.2 Perron’s variation of constants method

This method is commonly referred to as the Perron or Lyapunov–Perron method.
Although in the literature this is attributed to Perron [Per29], he in turn cites
Cotton [Cot11] for the main idea.

This method focuses on the behavior of solution curves. The solutions on the
unstable manifold are precisely characterized by the fact that they stay bounded
under backward evolution. In the following, we explain the Perron method for
the continuous case11. We adopt the notation from the graph transform setting.
A contraction operator T is constructed via a variation of constants integral. The
nonlinear part of the vector field is viewed as a perturbation of the linear part.
The integral equation is split into the components along the stable and unstable
directions. Then the integration of the unstable component is switched from
the interval [0, t ] to [−∞, t ], and only bounded functions are considered. Writing
the vector field v(x) = Dv(0) · x + f (x) in linearized form with nonlinearity f , this
leads to the following contraction operator on curves x = (x+, x−) ∈C 0([−∞,0];Rn):

T :
(
x+(t ), x−(t )

) 7→ (
x+

0 −
∫ 0

t
DΦt−τ

+ (0) f+
(
x−(τ), x+(τ)

)
dτ ,∫ t

−∞
DΦt−τ

− (0) f−
(
x−(τ), x+(τ)

)
dτ

)
.

(1.6)

This mapping T is well-defined and a contraction on curves x ∈ C 0([−∞,0];Rn)
whose stable component x− is bounded and sufficiently small. Note that T does
not depend on the stable component x−

0 of the initial conditions anymore. The
fixed point of T is a solution curve on W U with x+

0 given as a parameter. The
unstable manifold is described, finally, by evaluating the stable component at zero,
leading to a graph

g : U → S : x+
0 7→ x−(0).

First of all, it must be noted that this method requires f to be small in C 1-norm. We
can make f small by restricting to a sufficiently small neighborhood of the origin
and cutting off f outside of it. This cut-off does not influence the results: due to
the boundedness condition, curves x stay in the neighborhood. The method can
be generalized to a separation of stable and unstable spectra (i.e. a dichotomy)

11Contrary to the graph transform (which is only intrinsically defined for mappings), the Perron
method can be formulated both for flows and discrete mappings. For the discrete case, the integral
must be replaced by a sum, the mapping Φmust be split into a linear and nonlinear part, and the
linearized flow must be replaced by iterates of the linearized mapping. See for example [APS02;
PS04].
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away from the imaginary axis12, and for example be applied to show existence of
center manifolds. In that case, uniqueness is lost as solutions will generally run out
of small neighborhoods. This makes the Perron method not directly applicable to
normally hyperbolic invariant manifolds. The center direction corresponds to the
invariant manifold, but solution curves are global objects that cannot be treated
locally.

The Perron method can be extended to overcome this problem. Henry [Hen81,
Chap. 9] linearizes the vector field only in the normal directions of the invariant
manifold. Henry uses a two-step contraction scheme, but this can be reduced to
a single contraction T = T− ◦T+ that is a composition of two maps. The maps T±
are essentially the components of (1.6). Still, the results obtained are not quite
as general as those obtained with the graph transform. For the graph transform,
the condition of normal hyperbolicity can be formulated in terms of the ratio
of the normal and tangential growth rates of the flow along orbits, while for the
Perron method it must be formulated in terms of the ratio of global growth rates.
This less general assumption is required because the contraction operator (1.6) is
studied on spaces of solution curves with a fixed exponential growth behavior, see
Definition 1.14.

Explicit time dependence can be added to the Perron method with only trivial
modifications. This allows one to study hyperbolic fixed points in non-autonomous
systems13. An application is the study of invariant fibrations of, for example,
normally hyperbolic invariant manifolds. These have fibered stable and unstable
manifolds. Points in a single fiber are characterized by the unique orbit on the
normally hyperbolic invariant manifold they are exponentially attracted to under
forward or backward evolution, respectively. Finding these fibers is turned into
a non-autonomous hyperbolic fixed point problem by following a point on the
invariant manifold.

1.4.3 Smoothness

In the truly hyperbolic case—when the stable and unstable spectra are separated
by a neighborhood of the imaginary axis—the Perron method allows for a direct

12This is for the continuous case. The imaginary axis of the spectrum of a vector field corresponds
(via the exponential map) to the unit circle for the spectrum of a diffeomorphism in the discrete case.

13The term ‘fixed point’ in the context of a non-autonomous system is not definable in a coordinate-
free way: any orbit of the system can be made into a fixed point under a suitable time-dependent
coordinate transformation. However, there may be a preferred “time-independent” coordinate
system. Moreover, the hyperbolicity of an orbit with respect an intrinsic metric is independent of a
choice of coordinates.
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proof of smoothness of the manifolds W U and W S , see [Irw70; Irw72] where this is
formulated for discrete systems. One first verifies that the contraction operator T
is as smooth as the system, still acting on continuous curves x. Then, by an implicit
function theorem argument, the fixed point depends smoothly on the (partial)
initial value parameter x+

0 . To the best of my knowledge, there is no similarly simple
approach for the graph transform. The contraction map acts directly on graphs
g , so to obtain smoothness, one must consider the maps g ∈ C k (U ;S). A direct
estimate of contractivity in C k -norm requires higher than k-th order Lipschitz
estimates on the system.

When the spectra are not separated by the imaginary axis—this occurs for example
in normally hyperbolic systems—things become more complicated. The spectral
gap condition defines an intrinsic upper bound for the smoothness that one can
generically expect for a system, as was seen in Example 1.1. Both methods apply
induction over the smoothness degree in their proof. Formal derivatives of the
contraction map T are constructed. These are again contractions, but now on
higher derivatives of the fixed point mapping, while fixing the derivatives below.
Finally, the fiber contraction theorem (see Appendix D) can be used to conclude
that these higher order derivatives converge to a fixed point, jointly with all lower
orders.

Explicit calculation of higher derivatives of T is very tedious; one should focus on
their form as dictated by Proposition C.3. For the graph transform, the relevant
terms that one obtains from (1.5) are, ignoring arguments,

Dk g̃ · (D1Φ++D2Φ+ Dg
)k + . . . = D2Φ− ·Dk g + . . .

This leads to a contraction when ‖D2Φ−‖·‖D1Φ
−1+ ‖k < 1. The limit on k precisely

corresponds to the spectral gap condition, at least when we replace Φ by a suffi-
ciently high iterateΦN of itself, or in the continuous case, if we take the flow map
Φt at a sufficiently large time t .

For the Perron method, the essential form of the derivatives of T is

Dk T (x)
(
δx1, . . . ,δxk

)
(t ) =

∫
DΦt−τ(0) ·Dk f (x(τ))

(
δx1(τ), . . . ,δxk (τ)

)
dτ. (1.7)

The solution curve x as well as its variations δxi are of growth order eρ t , so the
variation of f in the integrand is of growth order ek ρ t , even if Dk f itself is bounded.
This means that k-th order variations must be considered in spaces of growth order
ek ρ t and Dk T is only contractive on such spaces if both ρ and k ρ are contained in
the spectral gap.
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1.5 Bounded geometry

The main results of this thesis are formulated in a geometric context on differen-
tiable manifolds. Already in [Fen72; HPS77] the results are formulated in such
a context. This allows for more general situations than choosing Rn as ambient
space. In the compact case, it does not require a change in the basic proofs (as can
be seen from the approach taken in [Fen72]), but it does bring in some additional
formalism. It turns out that if one switches to a noncompact setting in manifolds,
then a fundamental new idea must be added. First, a choice of Riemannian metric
(or possibly a weaker form: a Finsler structure) is required since not all metrics are
equivalent anymore on a noncompact manifold, see Example 3.6. As an extension,
Example 3.7 shows that one cannot reduce the noncompact to a compact case
by compactification. Secondly, the ambient manifold and functions on it should
satisfy uniformity criteria that can be captured in terms of ‘bounded geometry’14.
For full details see Section 3.3 on compactness and uniformity and Chapter 2 on
bounded geometry. Let us just give a quick overview here.

A Riemannian manifold has bounded geometry, loosely speaking, if it is globally,
uniformly well-behaved. More precisely, its curvature must be bounded and the
injectivity radius must be bounded away from zero, see Definition 2.1. Then there
exists a preferred set of so-called normal coordinate charts for which coordinate
transition maps are uniformly continuous and bounded, smooth functions. That
is, in k-th order bounded geometry we have a C k uniform atlas. As a consequence,
uniformly continuous and bounded submanifolds, vector fields, and other objects
can be defined and manipulated in a natural way in terms of these coordinates.
Note that Rn and compact manifolds have bounded geometry, see Example 2.3.
Together with corollaries 3.4 and 3.5 of the main theorem, this shows that bounded
geometry provides a natural generalization to the known settings of compact and
Euclidean spaces.

We use bounded geometry to obtain boundedness estimates on holonomy, see
Section 2.2. This is a fundamental ingredient in our proof of smoothness of the
perturbed manifold. Finally, we present more technical results in bounded geome-
try: a uniform tubular neighborhood, uniform smoothing of submanifolds, and
a trivializing embedding of the normal bundle. We use these to reduce the full
problem of persistence of a normally hyperbolic submanifold M in an ambient
manifold Q to the trivialized situation X×Y , where M is represented by the graph of

14We do not claim that bounded geometry is a necessary condition to generalize the theory of
normal hyperbolicity to noncompact ambient spaces, only that it is sufficient. Section 3.3 does
contain some examples, though, that indicate that some form of bounded geometry is necessary.
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a small function h : X → Y and Y is a vector space. Uniformity permeates all these
constructions in order to obtain uniform estimates required for the persistence
proof in the trivialized setting.

1.6 Problem statement and results

The main problem in this thesis is the persistence of normally hyperbolic invariant
manifolds under small perturbations of the dynamical system. That is, given a flow
Φt defined by some vector field v and a normally hyperbolic invariant submanifold
M , we want to show that for any vector field ṽ sufficiently close to v , there exists a
unique manifold M̃ close to M that is invariant under the flow of ṽ ; moreover we’d
like to show that M̃ is normally hyperbolic again. To make this statement precise,
we need to define a lot of things: first of all, we need to rigorously define normal
hyperbolicity. Secondly, the statements about vector fields and manifolds being
‘close’ need to be formalized and finally, we need to specify the ambient space Q
on which the system is defined.

We start with a Riemannian manifold (Q, g ) as ambient space and a submanifold
M . For technical reasons this manifold is assumed to be complete and of bounded
geometry (or at least in a δ> 0 neighborhood of M , since the whole analysis can be
restricted to such a neighborhood). Basically, these conditions impose uniformity
of the space, and fit in the principle of replacing compactness by uniform estimates,
see Section 3.3 and Chapter 2 for more details. Note that Q =Rn with the standard
Euclidean metric is an easy (and typical) special case.

Let v ∈X(Q) be a vector field on Q with v ∈C k,α
b,u , that is, v up to its k-th derivative

is uniformly continuous and bounded, and α-Hölder continuous if α 6= 0. On Rn

these statements make immediate sense; on general manifolds Q, results from
Chapter 2 are required, in particular Definition 2.9, to make sense of uniform
boundedness and continuity by means of normal coordinates. Let ṽ be another
such vector field. The closeness of v and ṽ will be measured using supremum
norms. The C 1-norm is required to be small for the persistence result. Thus, even
though we consider the space of C k,α bounded vector fields, we endow this space
with a C 1 topology. See Section 1.7 for some more remarks on this topology and
a comparison with standard topologies on noncompact function spaces. If we
assume that ṽ − v is small in C k,α-norm as well, then M̃ will be C k,α-close15 to M .

15We actually only obtain C k closeness for integer k ≤ r −1 where r is the ratio in the spectral
gap condition 1.9. This is probably an artifact of the techniques we used, while C k,α closeness with
k +α= r should be obtainable.
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These C 1 and C k norm requirements and results are direct analogues of those in
the implicit function theorem.

Finally, we define normal hyperbolicity of a submanifold M with respect to a
continuous dynamical system (R, Q,Φ). The flow Φt should have a domain of
definition containing at least a neighborhood of the invariant manifold M . This
definition is easily adapted to the discrete case of a diffeomorphism Φ : Q → Q;
simply replace t ∈R by t ∈Z as iterated powers ofΦ.

Definition 1.6 (Normally hyperbolic invariant manifold).
Let (Q, g ) be a smooth Riemannian manifold, Φt ∈C r≥1 a flow on Q, and let M ∈
C r≥1 be a submanifold of Q. Then M is called a normally hyperbolic invariant
manifold of the system (Q,Φt ) if all of the following conditions hold true:

i. M is invariant, i.e. ∀ t ∈R : Φt (M) = M;

ii. there exists a continuous splitting

TMQ = TM ⊕E+⊕E− (1.8)

of the tangent bundle TQ over M with globally bounded, continuous projections
πM , π+, π− and this splitting is invariant under the tangent flow DΦt = DΦt

M ⊕
DΦt+⊕DΦt−;

iii. there exist real numbers ρ− <−ρM ≤ 0≤ ρM < ρ+ and CM ,C+,C− > 0 such that
the following exponential growth conditions hold on the various subbundles:

∀ t ∈R, (m, x) ∈ TM : ‖DΦt
M (m) x‖ ≤CM eρM |t | ‖x‖,

∀ t ≤ 0, (m, x) ∈ E+ : ‖DΦt
+(m) x‖ ≤C+ eρ+ t ‖x‖,

∀ t ≥ 0, (m, x) ∈ E− : ‖DΦt
−(m) x‖ ≤C− eρ− t ‖x‖.

(1.9)

These exponential estimates imply that the tangent flow DΦt must contract at a
rate of at least ρ− along the stable complementary bundle E−, expand16 as eρ+ t

along the unstable bundle E+, and may not expand or contract at a rate faster than
±ρM , respectively, tangent along TM .

Remark 1.7. We added the condition that the projections πM , π+, π− are globally
bounded. This is a natural extension to the noncompact case, and is automatically
satisfied in case M is compact.

16Note that expansion along E+ could also be formulated as ‖DΦt (m) x‖ ≥C+ eρ+ t ‖x‖ for t ≥ 0
and (m, x) ∈ E+. This is equivalent to the condition as stated, which says that there is contraction for
t ≤ 0, that is, in backward time. This latter formulation is preferable because it is the form required
in estimates.



24 Chapter 1. Introduction

Remark 1.8. This definition of normal hyperbolicity is not as general as could be.
Fenichel [Fen72, p. 200–204] defines normal hyperbolicity in terms of ‘generalized
Lyapunov type numbers’. It follows from his uniformity lemma that these are
essentially exponentiated versions of our Lyapunov exponents ρ. For example,
his ν is equivalent to our e−ρ+ . But Fenichel defines σ in terms of the ratio ρM /ρ+
along orbits in M . His definition allows the expansion rate along TM to be large,
for example, as long as the expansion rate along E+ is large enough to keep the
ratio σ(m) bounded, along the orbit through m. The definitions in [HPS77; Mañ78;
BLZ08] are equivalent in the compact context to the one in [Fen72]. Mañé’s work
shows that this definition is as general as possible, see below. ♦

When M is compact, normal hyperbolicity is a sufficient condition for the existence
of a persistent manifold M̃ for a system generated by ṽ if ‖ṽ − v‖1 is sufficiently
small. Conversely, Mañé [Mañ78] has proved that normal hyperbolicity (in the
sense of e.g. Fenichel’s definition) is also necessary: if a compact invariant manifold
M is persistent under any C 1 small perturbation, then M is normally hyperbolic
(see also Example 1.2 and the clear exposition in the introduction of [Fen72]).
Definition 1.6, however, only guarantees C 1 smoothness for the perturbed manifold
M̃ . To obtain higher order smoothness, a more stringent condition of r -normal
hyperbolicity must be satisfied.

Definition 1.9 (r -normally hyperbolic invariant manifold).
A manifold M is called r -normally hyperbolic with r ≥ 1 a real number, if it satisfies
M ∈C r and the conditions in Definition 1.6, but with the stronger inequalities

ρ− <−r ρM ≤ 0 ≤ r ρM < ρ+. (1.10)

This means that the normal expansion and contraction must not just dominate the
tangential ones, but do so by a factor r . For r = 1 we recover the original definition,
while the generalized inequality (1.10) is called the spectral gap condition. If M
is r -normally hyperbolic and v and the perturbation ṽ are C r as well, then the
persistent manifold M̃ is C r smooth again. The example in Section 1.2.1 shows that
this spectral gap condition is sharp: even when everything is C∞, the perturbed
manifold M̃ in that example is only C r when no more than r -normal hyperbolicity
holds. Note that r can be interpreted as a ‘fractional differentiability degree’ when
writing r = k +α with integer k ≥ 1 the normal degree of differentiability and
0 ≤α≤ 1 an additional Hölder continuity exponent.

Remark 1.10. We explicitly exclude the case r =∞ from Definition 1.9, even though
the spectral gap condition (1.10) could hold for r =∞, if ρM = 0. The reason is
that one can generally not expect to obtain a persistent manifold M̃ ∈C∞ in this
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case. Even though for any order r <∞ there exist persistent manifolds M̃ ∈ C r

for sufficiently small perturbations, the maximum perturbation size generally
depends on r and may shrink to zero when r → ∞. See Example 1.3 and the
example in [Str79] for the closely related case of center manifolds.

On the other hand, it is shown in [HPS77] that there is forced smoothness. If
M ∈C 1 is an r -NHIM, then M must be C r . We do not show that this also holds in
our noncompact setting, but this is likely to be true. ♦

With these preliminary definitions in place, we are now ready state the main
theorem of this thesis; it is restated in Chapter 3. We should point out that M
is not required to be an embedded submanifold; immersions are allowed as well,
see Section 1.6.2. For the details of the smoothness notation C k,α

b,u on manifolds we
refer to definitions 2.9 and 2.21.

Theorem 3.1 (Persistence of noncompact NHIMs in bounded geometry).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (Q, g ) be a smooth Riemannian manifold of

bounded geometry and v ∈ C k,α
b,u a vector field on Q. Let M ∈ C k,α

b,u be a connected,
complete submanifold of Q that is r -normally hyperbolic for the flow defined by v,
with empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η> 0 there exists a δ> 0 such that for any vector field
ṽ ∈C k,α

b,u with ‖ṽ − v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood
of M, such that M̃ is diffeomorphic to M and invariant under the flow defined by
ṽ. Moreover, M̃ is C k,α

b,u and the distance between M̃ and M can be made arbitrarily

small in C k−1-norm by choosing ‖ṽ − v‖k−1 sufficiently small.

This result generalizes the well-known results in [Fen72; HPS77] to the case of
noncompact submanifolds of Riemannian manifolds. Again, our definition of
normal hyperbolicity is slightly less general than the definitions used in these works.
We also assumed that only the stable bundle E− is present, see also Section 4.4;
note that we thus only have the spectral gap condition ρ− <−r ρM with ρM ≥ 0.
See also the restatement of this theorem on page 82 and the list of remarks 3.3 for
more details.

We borrow the idea to generalize the Perron method to NHIMs from Henry [Hen81],
and use the techniques of Vanderbauwhede and Van Gils [VG87] (see [Van89] for
a clear presentation) for proving higher order smoothness. This is similar, but
developed independently from Sakamoto’s work [Sak90] in which he used the
same ideas to study singular perturbation problems. We improve these results in
a couple of ways. First of all, we simplify the basics of the proof by reducing the
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two-step contraction argument to a single contraction mapping, still written as a
composition of two separate maps acting on horizontal curves in M and vertical
curves in the normal bundle fiber, respectively. More importantly, we remove the
restriction of a trivial product structure X ×Y . Thus, we neither require M to have
a global chart in a Banach space X , so M need not be topologically trivial, nor
do we require a global product, so the normal bundle of M need not be trivial
either. On the other hand, the results by Bates, Lu, and Zeng also allow M to be a
general submanifold, but still assume the ambient space to be a Banach space. Our
results are for finite dimensional, but not necessarily linear, Riemannian ambient
spaces. In their paper [BLZ08], they only require an approximate NHIM for finding
a persistent invariant manifold. We use this idea as well (see the setup of h small
in the formulation of Theorem 3.2), but we do not expand this idea any further.
Finally, this work was initiated from the (unfortunately never published) preprint
by Duistermaat on stable manifolds [Dui76].

It seems to be a well-known belief by many experts that the theory of normal
hyperbolicity can be extended to a general noncompact setting [DLS06, p. 165].
The idea is to replace compactness by uniform estimates. An important conclusion
to be drawn from the present work is that indeed this principle holds, but probably
in a more strict way than one would naively realize. Uniform estimates are not only
required for the vector field defining the system, but for the underlying ambient
space as well, in terms of bounded geometry. This becomes clear only when one
leaves the context of Euclidean ambient spaces, which trivially have bounded
geometry. On a Riemannian manifold, already the very definition of uniform
continuity of a vector field v and its derivatives requires some aspects of bounded
geometry. It should be noted though, that we do not prove that bounded geometry
is a strictly necessary condition for persistence of NHIMs; nonetheless, the results
do suggest that persistence of NHIMs may break down in ‘unbounded geometry’,
see Section 3.3.

In Section 3.2 we present an outline of the proof and how it is reduced to a more
basic setting M ′×Y of a trivial normal bundle. Here M ′ is a smoothed version of
M to rectify an artificial loss of smoothness, as occurs e.g. in [Sak90]. Below we
present some extensions to the main Theorem 3.1 above.

1.6.1 Non-autonomous systems

Our main theorem can be trivially extended to the non-autonomous, time-de-
pendent case. First, extend the configuration space with time t as additional
variable, i.e. Q̂ = Q ×R, and add the equation ṫ = 1. If the original system was
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time-independent, then M̂ = M ×R is a NHIM for the extended system, and all
uniform assumptions still hold, since the flow along the time direction is neutral
and trivial. Note that this argument does not work in the classical theory as M̂ is not
compact17. Now we can make any C 1 small perturbation, and obtain a persistent
manifold M̃ in the extended configuration space. The perturbation is allowed to
be generally time-dependent, as long as it is uniform in time, including derivatives.
The resulting manifold M̃ will still be invariant and close to the original M , although
it will depend on time. That is, if we assume local coordinates (x, y) ∈Rn ×Rm for Q
such that M =Rn×{0} locally, then we can write M̃ = Graph(h) for a function

h : Rn ×R→Rm , y = h(x, t ).

In other words, M̃ can be viewed as a graph over M (i.e. a section of the normal
bundle), but this graph now additionally depends on time. The manifold M̃ itself
is again normally hyperbolic when viewed in the extended space Q ×R, see also
Section 4.1.

Such time-dependent invariant manifolds are called ‘integral manifolds’. These
have been studied as non-autonomous generalizations of stable and unstable
manifolds of hyperbolic fixed points [Pal75], but also as generalizations of compact
NHIMs [Hal61; Yi93]. The theory of noncompact NHIMs allows one to treat all
such integral manifolds in the same way as the autonomous case. One can, for
example, also start with an integral manifold that is normally hyperbolic: it will
persist just as well.

1.6.2 Immersed submanifolds

In the main Theorem 3.1, we intentionally do not precisely state in what sense M is
a submanifold of Q. The implicit assumption that M is an embedded submanifold
can be weakened to M being an immersion, see also [HPS77, Section 6] and [BLZ99].
That is, M can be viewed as an abstract manifold together with an immersion map
ι : M →Q that need not be injective. This does not affect the theory as long as ι is
still locally injective: ι(M) including a neighborhood modeled on its normal bundle
N can be pulled back via the immersion ι to the abstract M . All local properties
are preserved, so we can study the system via this ‘covering’. We may not always
make a clear distinction between the abstract manifold M and its immersed image

17If the perturbation is time-dependent, but in an (almost) periodic way, then this can still be
treated in the compact setting. One can extend the configuration space with the circle S1 (or an
n-torus in the almost periodic case).
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ι(M) ⊂Q; the discussion below shows that this distinction is not really necessary,
as long as we do not consider perturbations.

Dι(m2)

Dι(m1)

Figure 1.6: An immersion with a
transverse intersection.

Figure 1.7: An allowed immersion
with tangential intersection.

For a generic immersion one could expect a picture as in Figure 1.6, where the
immersed manifold intersects itself transversely. Such situations cannot occur if
M is a NHIM. This follows from the exponential growth rates along tangent and
normal bundles of M . Let m ∈ ι(M) be an intersection point of two preimages
m1,m2 ∈ M . If the tangent spaces along M at m1 and m2 are embedded differently
into TmQ, then one could find x ∈ Im

(
Dι(m1)

)
\ Im

(
Dι(m2)

)
. This would imply

that x has a component in Nm2 and give contradictory growth rates for DΦt (m) · x
depending on whether we view m as image of m1 or m2, as the orbit of m ∈ ι(M)
is uniquely defined. Hence, at each point m ∈ ι(M) the tangent spaces Dι(mi ) of
all preimages mi ∈ ι−1(m) must coincide, see Figure 1.7. Stated more abstractly,
M must have contact of order one with itself. More generally it holds that an
immersed k-NHIM has contact of order k with itself18, see [HPS77, p. 68].

Next, each maximal set of ι(M) with constant number of preimages19 p ∈N∪ {∞},

Mp = {
m ∈ ι(M)

∣∣ # ι−1(m) = p
}
, (1.11)

is an invariant subset of ι(M). This is again due to uniqueness of the flow. If an orbit
would cross into a set of different preimage number, then a least one of the ‘lifts’ of
this orbit from ι(M) to the ‘cover’ M would have to enter or leave M . This cannot
happen as M itself is invariant. Hence, the conclusion is that self-intersections of
ι(M) must be invariant.

Immersed NHIMs may occur on themselves, or appear as a persistent manifold
under perturbation from an embedded manifold. An example of an embedded

18The order of contact is defined as the degree up to and including which the Taylor expansions of
the objects agree.

19The number of preimages must be countable if M is assumed to be second-countable.
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noncompact NHIM that collapses under a small perturbation into an immersed
manifold can be found in Section 3.3. The same can happen with an immersed
manifold with compact image. The following example is taken from [HPS77, p. 130]
and shows that the injection map is relevant for how the NHIM persists.

Example 1.11 (Perturbation of a compact non-injectively immersed NHIM).
We consider on R3 the vector field

ẋ = arctan(x2)+ε,

ẏ = y,

ż =−z

and smoothly modify it outside the cylinder y2 + z2 = 1 such that it flows in the
negative x-direction and connects the basin of repulsion of the origin intersected
with x > 0 to the basin of attraction intersected with x < 0. The perturbation
parameter ε is initially set to zero.

Note that the x-axis is a NHIM (the arctangent is there to keep the vector field
and tangential growth rate bounded). Due to the modification, the two loops in
Figure 1.8 are also NHIMs of this system, both separately and their union. They
start from the origin along the positive x-axis, then diverge from it in opposite
directions in the x y-plane; once outside the cylinder y2 + z2 = 1 they start moving
into the negative x direction and finally return to the origin approximately along
the xz-plane.

We can parametrize their joint image with an injection ι1 mapping M = {0,1}×S1

separately onto the two loops, but we can also parametrize with ι2 that maps
M = S1 onto the full figure eight image. If we perturb to ε> 0, then ι1 will result
in Figure 1.9 where the two loops are separated, while ι2 will result in Figure 1.10
which has one loop, but the middle of the figure eight does not intersect anymore.
Figure 1.11 shows how the two orbits from the separate loops closely pass the x-axis
along hyperbolic trajectories. The single orbit of ι2 follows hyperbolic trajectories
through the other two quadrants. ©

Remark 1.12. Note that these different persistent NHIMs do not contradict the
uniqueness property of persistence, since the (abstract) manifolds M were dif-
ferent to begin with. Formulated differently, if we consider the universal cover
of the tubular neighborhood of ι1(M) (deduplicating the origin as image point),
then Figure 1.9 shows the unique invariant manifold that stays in this tubular
neighborhood cover. We obtain a different persistent NHIM for any prescribed
(possibly infinite) sequence of concatenating the two loops of the original figure
eight into an immersion from S1 (or R if the sequence is infinite). ♦
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y

z

x

Figure 1.8: a non-injectively immersed
manifold with compact image.

Figure 1.9: the persistent manifold of ι1
consisting of two separate loops.

Figure 1.10: the persistent manifold of ι2
consisting of one figure eight loop without
self-intersection.

y

z

x

Figure 1.11: projection onto the y z-plane
showing the orbits of the persistent mani-
fold ι1 while passing the origin.

Finally, we present an example of an injectively immersed (but not embedded)
NHIM, see [HPS77, p. 68]. The mapping below is known as Arnold’s cat map.

Example 1.13 (Injectively immersed dense line in the torus).
The matrix

A =
(

2 1
1 1

)
acting on the two-torus T2 is an Anosov diffeomorphism. The line through 0
with slope 1

2 (1−p
5) is densely immersed in the torus and it is a NHIM for this

discrete system. If we take its suspension, then we have a flow with a NHIM that
is densely immersed into the mapping torus

(
[0,1]×T2

)
/∼ with identification

(1, x) ∼ (0, A x). ©
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1.6.3 Overflowing invariant manifolds

In many applications of normally hyperbolic systems, the manifold M has a boun-
dary ∂M . A typical reason is that the system ceases to be normally hyperbolic across
the boundary. This happens, for example, when studying a singularly perturbed, or
slow-fast system and in the fast limit there are points on M with zero eigenvalues
in the normal direction. At such points, M is not normally hyperbolic anymore, so
one must restrict M such that these points are outside of M . Another, somewhat
artificial but practical example would be if the invariant manifold is noncompact
and one would try to use the classical theorems that are only applicable to compact
manifolds by cutting off M to a compact manifold with boundary. One can try to
attack this latter case with our more general theory for noncompact manifolds.
The additional uniformity assumptions should be checked then.

If M is a manifold with boundary, some persistence results can still be retained.
This idea was introduced by Fenichel [Fen72] in studying so-called overflowing
invariant manifolds. These are normally hyperbolic manifolds that are invariant
under backward time flow, or in other words, only under the forward flow, orbits
can leave, i.e. ‘overflow’ the manifold. The condition of overflowing invariant
is slightly stronger: the vector field must strictly point outward at the boundary.
This weakened version that the manifold is negatively invariant does come at the
additional cost that only stable normal directions are allowed. The time-reversed
situation of an inflowing invariant manifold with only unstable normal directions
is equivalent. In Section 4.3 we discuss how this idea can be incorporated into the
Perron method proof.

The attention of the reader is also drawn to the following remark made in [Fen72,
p. 214]. If an open submanifold N ⊂ M is overflowing invariant, and the spectral
gap condition is satisfied on N with a higher ratio rN than on the whole of M , then
the persistent manifold Ñ over N retains C rN smoothness, even if smoothness of
M̃ will generally be lower.

1.7 Induced topology

In this work the topologies for spaces of vector fields, submanifold embeddings, et
cetera, are (implicitly) defined by norms and distance functions. The norms we
use are uniform C k -norms for bounded functions, and families with additional
exponential growth rates. Let us call the topologies induced by these norms
C k

b -topologies and consider how they compare to two common topologies: the



32 Chapter 1. Introduction

weak and strong Whitney topologies for maps between manifolds, alternatively
known as the compact-open and fine topology, see [Hir76].

The weak topology has a subbasis generated by the set of functions g that are close
to some function f in C k -norm on compact subsets in local coordinate charts.
This means that for example the function family

fδ : R→R : x 7→ δ exp(x2)

converges to zero for δ→ 0 in this topology. On any compact set fδ will become
arbitrarily small when δ→ 0 while it does not converge in uniform norm (nor with
additional exponential growth rate). Hence the weak topology is weaker than our
induced C k

b -topologies.

The strong topology has as basis all sets of functions g that are close to some
function f on a locally finite cover by compact sets Ki , where g must approximate
f in C k -norm on each Ki in local coordinates up to a given chart-dependent size
εi . For any function without compact support, a collection εi > 0 can be found that
converges faster to zero on each larger Ki than the function to zero when x →∞.
Hence the only sequences of functions R→R that converge to the zero function
in the strong topology are those with (eventually) compact support. A family fδ
of functions with noncompact support cannot converge to the zero function, as
can be seen by using a diagonal argument. The family fδ(x) = δ exp(−x2), for
example, does not converge to the zero function in the strong topology. Given a
locally finite cover of R by compact sets Ki , we choose xi ∈ Ki and corresponding
εi = exp(−x2

i )/i . Then for any given δ > 0, we will have | fδ(xi )| > εi for some
large i . On the other hand, this family fδ obviously converges under the uniform
norm with any exponential growth rate. Thus, the strong topology is stronger than
our induced C k

b -topologies, see also the remark in [GG73, p. 43] for noncompact
manifolds.

We conclude that the C k
b -topologies induced by our uniform norms are not equiv-

alent to either the weak or strong Whitney topology, because the weak topology
allows arbitrary behavior of functions outside compact sets, while the strong
topology completely restricts that behavior. Our norms allow moderate varia-
tions at infinity. In general, ‘moderate behavior’ is not well-defined on a general
noncompact manifold, as it depends on the choice of charts. In the setting of
bounded geometry, though, the uniform, metric structure makes this behavior
unambiguous; we can restrict to normal coordinate charts and consider ‘moderate
behavior’ with respect to these. Note that these topologies are equivalent on
compact domains.
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1.8 Notation

Here, we will establish some notation and conventions to be used throughout this
work. See the index for more specific symbols.

• The letters I and J will denote intervals inR; I will typically represent an interval
that is unbounded on one side, while J will be bounded.

• ε,δ > 0 will denote (small) bounds for continuity-like estimates; C > 0 will
denote arbitrary bounds. The specific meaning of these symbols will vary
depending on context. ε f (δ) will denote a uniform continuity modulus of the
function f , that is, ε f : R≥0 →R≥0 satisfies

d( f (x2), f (x1)) < ε f (d(x2, x1)) and lim
δ→0

ε f (δ) = 0. (1.12)

Without subscript f this will denote an arbitrary continuity modulus.

• The D denotes a total derivative, while Di with index i ∈ N denotes a partial
derivative with respect to the i -th argument, or, when a subscript symbol is
appended, say Dx , then this denotes a partial derivative with respect to the
argument commonly referred to by that symbol.

• We use the following symbols to denote classes of function spaces:

Cb bounded, continuous functions;
Cb,u bounded, uniformly continuous functions;
C k k times continuously differentiable functions;
C k,α C k functions with α-Hölder continuous k-th derivative. We will

conventionally write r = k +α ∈R≥1; the Hölder estimates are
assumed to be uniform in C k,α

b,u spaces.

L continuous, i.e. bounded, (multi)linear operators;
X vector fields;
Γ sections of a fiber bundle.

Unless otherwise specified, C k
b and C k,α

b spaces will be endowed with the canon-
ical norms that turn these into Banach spaces, that is,

‖ f ‖k,α = ∑
0≤n≤k

sup
x

‖Dn f (x)‖+ sup
x2 6=x1

‖Dk f (x2)−Dk f (x1)‖
d(x2, x1)α

. (1.13)

We define the operator norm on a multilinear operator A ∈Lk (V1 × . . .×Vk ;W )
as

‖A‖ = sup
vi∈Vi‖vi ‖=1

‖A(v1, . . . , vk )‖. (1.14)
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This multilinear operator norm can be extended to sections s of real-valued
tensor bundles by taking the operator norm pointwise of s(x) as a multilinear
operator into R.

• On a Riemannian manifold, Γwill denote the Christoffel symbols, whileΠwill
be used for parallel transport along a curve given as argument, for example,
Π(γ|ba) will denote parallel transport along the curve γ restricted to the interval

[a,b]. We shall denote induced parallel transport on products of the tangent
bundle byΠ(γ|ba)⊗k .

• We shall often work with maps that are defined on the tangent space over a
point x ∈ M and denote this dependence on x by a subscript, for example
hx : Tx M → Tx M . If we want to refer to the whole family of such maps for all
x ∈ M , then we denote this by

h• : T•M → T•M ,

particularly if we want to stress that this family satisfies some properties uni-
formly in x.

• We use the notation B(x;δ) not only to indicate open balls of radius δ around a
single point x, but also B(M ;δ) to indicate a (tubular) neighborhood of some
set or submanifold M , that is,

B(M ;δ) = {x | d(M , x) < δ}.

The following definition of a scale of Banach spaces (cf. [VG87]) is fundamental to
the rest of this work.

Definition 1.14. Let X be a normed linear space and F = C (I ; X ) the space of
continuous functions from an interval I ⊂R to X . We define a family of exponential
growth norms with parameter ρ ∈R by

‖ f ‖ρ = sup
t∈I

‖ f (t )‖e−ρ t for f ∈F . (1.15)

We define Bρ(I ; X ) to be the normed space consisting of all functions f ∈ F with
‖ f ‖ρ <∞. If X is a Banach space, then Bρ(I ; X ) is a Banach space as well.

Remark 1.15. When the interval I is bounded from below, then the embedding
Bρ1 (I ; X ) ,→ Bρ2 (I ; X ) is continuous for ρ1 ≤ ρ2. The time reversed version when I
is bounded above and ρ2 ≤ ρ1 holds, will frequently recur throughout this work.
See also Remark B.4 and the note on integrals of exponentials (1.17) below. In
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Chapter 3 we shall use I = R≤0 and negative rates ρ, while in the appendices B
and C we use (the somewhat more natural) I =R≥0; though ρ’s can take both signs
there. ♦

The definition of an exponential growth norm can be generalized to curves map-
ping into a metric space. Let (X ,d) be a metric space, then analogously to 1.14, we
define a family of exponential growth distance functions on F by

dρ( f1, f2) = sup
t∈I

d
(

f1(t ), f2(t )
)

e−ρ t . (1.16)

Note that this distance function might be infinite for some x1, x2 ∈F .

We will be working with exponential growth estimates of the form C eρ t throughout
this paper. The pair of numbers C > 0,ρ ∈R that determine such a growth estimate
will be referred to as exponential growth numbers, and ρ as an exponential growth
rate.

We will frequently encounter integrals over a time interval, where the integrand
obeys an exponential estimate. As long as the interval [a,b] is bounded in the
direction of exponential growth and ρ 6= 0, these can be estimated as

∫ b

a
eρ t dt ≤ 1

|ρ| exp
(

sup
t∈[a,b]

ρ t
)
. (1.17)

We also state here some basic facts about uniformly Hölder continuous functions.

Lemma 1.16 (Product rule for Hölder continuity).
Let f , g ∈Cα

b,u be defined on spaces such that the product f · g is well-defined. Then
also f · g ∈Cα

b,u .

Proof. Let ‖ f ‖0, ‖g‖0 ≤ M and let C f ,α, Cg ,α be the respective Hölder coefficients
of f , g . Then we have for all x1 6= x2

‖ f (x2) g (x2)− f (x1) g (x1)‖ ≤ ‖ f (x2)‖‖g (x2)− g (x1)‖+‖ f (x2)− f (x2)‖‖g (x2)‖
≤ M (C f ,α+Cg ,α)‖x − y‖α,

which exhibits the Hölder coefficient M (C f ,α+Cg ,α) for the product, and f · g is
clearly bounded by M 2.

Lemma 1.17. Let f ∈Cα
b,u . Then it also holds that f ∈Cβ

b,u for any 0 <β<α.
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Proof. Let M be the bound on f , and Cα itsα-Hölder coefficient. For ‖x2−x1‖ ≤ 1
the estimate for β follows automatically from that of α. For ‖x2 − x1‖ > 1 we use
boundedness to obtain

‖ f (x2)− f (x1)‖ ≤ 2 M ≤ 2 M ‖x2 −x1‖β.

Hence, Cβ = max(Cα,2 M) suffices as β-Hölder coefficient.

Typographical conventions

As usual we close proofs with the symbol , while we shall use ♦ and © to denote
the end of (a series of) remarks or examples, respectively.



Chapter 2

Manifolds of bounded
geometry

For noncompact normally hyperbolic systems, uniformity assumptions that were
implicit in the compact case must be made explicit. Not only assumptions on the
vector field, but on the underlying space as well. For this we need the concept of
bounded geometry; Section 3.3 contains a discussion and examples for why we
require this concept.

The class of manifolds of bounded geometry allows us to uniformly apply con-
structions that are well-known for compact manifolds. We single out the atlas
of normal coordinate charts and derive from the very definition of bounded
geometry that all constructions and estimates are uniform over all such charts.
For completeness, we present here all results that we need later on. Some of
these results are already present in the literature: the construction of a uniformly
locally finite cover and a subordinate C k uniformly bounded partition of unity, and
bounded coordinate transformations can be found in [Shu92; Sch01], for example,
while [Roe88] includes the result on finite coloring of the connectedness graph of
a uniformly locally finite cover. I have not been able to find in the literature the
results about the existence of a uniform tubular neighborhood, the approximation
of a submanifold by a smoothed manifold, and the construction of a trivial bundle
embedding. Submanifolds are allowed to be non-injectively immersed.

This chapter is organized as follows. First, the material is presented that is already
required for the global coordinate setting of Theorem 3.2. These include the basic
definitions of bounded geometry, related results on bounded coordinate transition
maps, uniform covers and partitions of unity, and an explicit relation between

37
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holonomy and curvature. Then we continue to work towards the final goal of this
chapter: to reduce a noncompact normally hyperbolic system from a setting in
general manifolds to a trivial bundle setting, in order to generalize the persistence
theorem to the former setting. To this end, we need some more technical results:
a uniform tubular neighborhood, smooth approximation of a submanifold, and
embedding into a trivial bundle.

This chapter relies heavily on some more advanced concepts from differential and
specifically Riemannian geometry. On the other hand, the results are used as tools
in solving a dynamical systems problem. Appendix F provides a quick review for
non-experts of the most relevant geometric concepts used here. It also provides
further references to the literature. We shall assume the contents of this appendix
known from here on.

I suggest the reader to at least take a glance at the first two sections of this chapter
to familiarize himself with the basic definitions and results of bounded geometry,
without the need to go through the details of the proofs. Then, depending on his
interest, he can choose to delve into the more technical geometric details or skip
to Chapter 3 for the more analytical side of the proof of Theorem 3.2, and possibly
return later to read how Theorem 3.1 is reduced to the former.

2.1 Bounded geometry

We follow the definition in [Eic91] to introduce bounded geometry. Recall that
the injectivity radius rinj(x) at a point x ∈ M is the maximum radius for which the
exponential map at x is a diffeomorphism, see also Appendix F.

Definition 2.1 (Bounded geometry).
We say that a complete, finite-dimensional Riemannian manifold (M , g ) has k-th
order bounded geometry when the following conditions are satisfied:

(I) the global injectivity radius rinj(M) = inf
x∈M

rinj(x) is positive, rinj(M) > 0;

(Bk ) the Riemannian curvature R and its covariant derivatives up to k-th order
are uniformly bounded,

∀ 0 ≤ i ≤ k : sup
x∈M

‖∇i R(x)‖ <∞,

with operator norm of ∇i R(x) as an element of the tensor bundle over x ∈ M.

Remark 2.2. The conditions (I) and (Bk ) are independent. We present a simple
example which exhibits zero infimum for the injectivity radius while all derivatives
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of the curvature are globally bounded. Indeed, let M = R×S1 be a cylinder with
metric g = dx2 +e−2x dθ2 in coordinates (x,θ), see also Figure1 3.3 on page 96. The
injectivity radius rinj(M) is zero since the cylinder circumference shrinks to zero
with x →∞. Global boundedness of the curvature and all of its derivatives follows
from a symmetry argument. The family

ϕξ,α : (x,θ) 7→ (x +ξ,eξθ+α) with ξ ∈R, α ∈ [0,2π)

is a set of local isomorphisms that acts transitively on M . That is, for any two
points (x1,θ1), (x2,θ2) ∈ M there exist ξ,α and a neighborhood U 3 (x1,θ1) such
that ϕξ,α : U → ϕξ,α(U ) is an isomorphism and ϕξ,α(x1,θ1) = (x2,θ2). For any
(x,θ) ∈U and v, w ∈ T(x,θ)M we have

(ϕ∗
ξ,αg )(x,θ)(v, w) = g(x+ξ,eξ θ+α)

(
Dϕξ,α(x,θ) v,Dϕξ,α(x,θ) w

)
= dx(v)dx(w)+e−2(x+ξ) eξdθ(v)eξdθ(w)

= g(x,θ)(v, w)

so ϕ∗
ξ,αg = g on U . Since the curvature and its derivatives are locally determined,

this implies that these are constant across M , hence uniformly bounded (actually
all derivatives of R vanish). Note that these local isometries do not imply a finite
global injectivity radius since the size of the neighborhood U does depend on the
points (x1,θ1), (x2,θ2) ∈ M . ♦

Example 2.3 (Manifolds of bounded geometry).
The following are examples of manifolds with bounded geometry of any (i.e. infi-
nite) order.

• Euclidean space with the standard metric trivially has bounded geometry.

• A smooth, compact Riemannian manifold M has bounded geometry as well;
both the injectivity radius and the curvature including derivatives are continu-
ous functions, so these attain their finite minimum and maxima, respectively,
on M . If M ∈C k+2, then it has bounded geometry of order k.

• Noncompact, smooth Riemannian manifolds that possess a transitive group
of isomorphisms (such as hyperbolic space) have bounded geometry since the
finite injectivity radius and curvature estimates at any single point translate to
a uniform estimate for all points under isomorphisms. Note that the example
in Remark 2.2 above shows that it is not sufficient to have local isometries.

1This is a noncompact surface with constant negative curvature, hence it cannot be isometrically
embedded into R3, see [Hil01]. The embedding is nearly isometric for x À 0 though, so the figure is
still a good representation there.
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More manifolds of bounded geometry can be constructed with these basic building
blocks in the following ways.

• The product of a finite number of manifolds of bounded geometry again has
bounded geometry, since the direct sum structure of the metric is inherited
by the exponential map and curvature. We give an outline of the proof. In a
product coordinate chart

(ϕ1,ϕ2) : U1 ×U2 →Rn1 ×Rn2

with coordinates (x1, x2), the metric has diagonal form

g (x1, x2) = (g1 ⊕ g2)(x1, x2) =
(

g1(x1) 0
0 g2(x2)

)
.

The coordinate dependence on x1, x2 is non-mixed and this is preserved under
taking derivatives and index contractions, so R will split into a direct sum of R1

and R2 again. This can be extended to derivatives of R.

A geodesic in M1×M2 is precisely given byγ= (γ1,γ2) whereγ1, γ2 are geodesics
parametrized with constant speed in M1, M2, respectively. This follows eas-
ily since minimization of length is equivalent to minimization of the energy
functional

2E(γ) =
∫ b

a
g (γ̇, γ̇) dt =

∫ b

a
g1(γ̇1, γ̇1)+ g2(γ̇2, γ̇2) dt

and this splits nicely into independent minimization problems for γ1 and γ2.
With a little effort one sees that rinj(M) ≥ min

(
rinj(M1),rinj(M2)

)
.

• If we take a finite connected sum of manifolds with bounded geometry such
that the gluing modifications are smooth and contained in a compact set, then
the resulting manifold has bounded geometry again.

• We can endow the tangent bundle TM of a Riemannian manifold (M , g ) with
the natural Sasaki metric [Sas58]. Let xi denote coordinates on an open neigh-
borhood U ⊂ M . These coordinate functions can be pulled back to TU and the
one-forms dxi can be viewed as additional coordinates v i such that the xi , v j

together form a complete set of induced coordinates on TU . With respect to
these coordinates the Sasaki metric is given by

ĝ (x, v) = gi j (x)
(
dxi dx j +Dv i Dv j ) where Dv i = dv i +Γi

j k v j dxk (2.1)

and Γi
j k denote the Christoffel symbols on M , while the dv i are one-forms on

the manifold TU .
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Bounded geometry of (M , g ) is not inherited by (TM , ĝ ) since the extended
Riemannian curvature R̂ contains unbounded terms v when expressed in terms
of R, see [GK02, Prop. 7.5]. These expressions do readily show that the restriction
Tr M = {(x, v) ∈ TM | gx (v, v) ≤ r 2} satisfies curvature bounds of order k −1 if
(M , g ) has k-bounded geometry. The geodesic flow equation is given in induced
coordinates by [Sas58, eq. (7.7)]. By application of Theorem A.6, one can then
show that the injectivity radius is bounded.

Note that Tr M is a manifold with boundary, but this is not problematic in our
setting as long as the invariant submanifold stays away from the boundary.
Alternatively one could try to use results from [Sch01]. ©

When we say that a manifold has bounded geometry without specifying the order
k, then it is assumed that the order is infinite, k =∞, or sufficiently large. When
k ≥ 1 we have the following result, see [Eic91, Thm 2.4 and Cor. 2.5]. In case k =∞
the converse also holds [Roe88, lem. 2.2].

Theorem 2.4 (Boundedness of the metric).
Let (M , g ) be a Riemannian manifold of k-bounded geometry. Then there exists a
δ> 0 such that the metric up to its k-th order derivatives and the Christoffel symbols
up to its (k−1)-th order derivatives are bounded in normal coordinates of radius δ
around each x ∈ M, and the bounds are uniform in x.

This basic fact can be used to make the properties of all kinds of constructions
uniform over a noncompact manifold. Note that here and in the following, all
uniformity estimates are assumed globally valid, that is, independent of the point
x ∈ M . To stress this, we shall use notation f•, for example as in Definition 2.9, to
indicate that the family of maps { fx }x∈M satisfies continuity estimates independent
of x.

With Theorem 2.4 at hand, we shall exclusively use normal coordinates for local
coordinate calculations. To establish notation, we say that

ϕ= exp−1
x : B(x;δ) ⊂ M → B(0;δ) ⊂ Tx M (2.2)

is a normal coordinate chart at x ∈ M . The radius δ will always be chosen smaller
than the injectivity radius rinj(M), so ϕ is a diffeomorphism. Each tangent space
Tx M carries the inner product gx , hence is isometric to Euclidean space Rn (but
identification requires a choice of basis).

Proposition 2.5. Let (M , g ) be a Riemannian manifold of k ≥ 1 bounded geometry.
For every C > 1 there exists a δ> 0 such that the normal coordinate chartsϕx in (2.2)
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are defined on B(x;δ) for each x ∈ M and the Euclidean distance dE on the normal
coordinates is uniformly C -equivalent to the metric distance d induced by M, that
is,

∀x1, x2 ∈ B(x;δ) : C−1 d(x1, x2) ≤ dE (ϕx (x1),ϕx (x2)) ≤C d(x1, x2).

Proof. Let δ< 1
2 rinj(M) and x ∈ M . We consider a normal coordinate chart ϕx on

B(x;2δ). According to Theorem 2.4, the metric g and its derivatives are bounded
in normal coordinates. We have (exp∗

x g )(0) = gx , the Euclidean inner product
on Tx M , while the total derivative D(exp∗

x g )(ξ) is bounded on B(0;2δ) 3 ξ, say
by ‖D(exp∗

x g )(ξ)‖ ≤ C1, independent of x ∈ M . By the mean value theorem this
induces the uniform bounds

1−2δC1 ≤ ‖(exp∗
x g )(ξ)‖ ≤ 1+2δC1.

Let x1, x2 ∈ B(x;δ) and let γE be the straight curve between ϕx (x1) and ϕx (x2) in
Tx M parametrized by arc length. This curve γE attains the Euclidean distance
lE (γE ) = dE (ϕx (x1),ϕx (x2)). On the other hand, it gives an upper bound on the
metric distance

d(x1, x2) = inf
γ

l (γ) ≤
∫ lE (γE )

0

√
(exp∗

x g )γE (t )
(
γ′E (t ),γ′E (t )

)
dt

≤
√

1+2δC1 dE
(
ϕx (x1),ϕx (x2)

)
.

Let γ be a geodesic minimizing the distance d(x1, x2). Then γ is contained in
B(x;2δ): the distance from each xi to the boundary of B(x;2δ) is at least δ, so if γ
would leave and reenter B(x;2δ) then its length would be at least 2δ. On the other
hand, x1 and x2 can be connected via x with a curve of length less than 2δ. Let us
write η=ϕx ◦γ and assume that η is parametrized by arc length with respect to the
Euclidean metric gx . Then we obtain an inverse estimate to the one above:

dE (ϕx (x1),ϕx (x2)) ≤
∫ lE (η)

0
1 dt ≤

∫ lE (η)

0
(1−2δC1)−

1
2

√
(exp∗

x g )η(t )
(
η′(t ),η′(t )

)
dt

= (1−2δC1)−
1
2

∫ lE (η)

0

√
gγ(t )

(
γ′(t ),γ′(t )

)
dt

≤ (1−2δC1)−
1
2 d(x1, x2).

Finally, we complete the proof by choosing δ> 0 small enough that

max
(
(1+2δC1)

1
2 , (1−2δC1)−

1
2
)≤C .
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From here on, we shall frequently represent objects living in B(x;δ)⊂ M on normal
coordinate neighborhoods B(0;δ) ⊂ Tx M via the normal coordinate chart ϕx . We
will mostly use B(x;δ) to clearly indicate the base point, or B(0x ;δ)⊂ Tx M to stress
the tangent space domain of the coordinates as well. In spaces of bounded geom-
etry, normal coordinate charts are the natural charts to works in and coordinate
transition maps are not just smooth, but uniformly bounded, as stated in the
following lemma.

Lemma 2.6 (Boundedness of transition maps).
Let (M , g ) be a Riemannian manifold of k-bounded geometry with k ≥ 2. There
exists a δ with 0 < δ < rinj(M) and constants C , L > 0 such that for all x1, x2 ∈ M
with d(x1, x2) < δ the following holds.

i. The coordinate transition map

ϕ2,1 =ϕ2 ◦ϕ−1
1 : U → Tx2 M with U =ϕ1(B(x1;δ)∩B(x2;δ)) ⊂ Tx1 M

(2.3)
is C k−1 bounded with ‖ϕ2,1‖k−1 ≤C .

ii. Let γ2,1 : [0,1] → B(x1;δ) be the unique shortest geodesic connecting x1 and x2

and let Π(γ2,1) be the associated parallel transport. Then the map

ϕ2,1 −Π(γ2,1) : U → Tx2 M

has C k−2-norm bounded by the Lipschitz estimate

‖ϕ2,1 −Π(γ2,1)‖k−2 ≤ L d(x1, x2). (2.4)

Remark 2.7. One degree of smoothness is lost because the exponential map is
defined in terms of the geodesic flow. This flow in turn is defined in terms of the
Christoffel symbols, which depend on derivatives of the metric, so these are only
C k−1 bounded. We lose another degree of smoothness in estimating ϕ2,1 −Π(γ2,1)
since the Lipschitz estimate follows from a uniform bound on one higher derivative
of these. ♦

We shall first compare both ϕ2,1 andΠ(γ2,1) to the identity in normal coordinates
and finally conclude with the triangle inequality that their difference must be small.
We compare ϕ2,1 to the parallel transportΠ(γ2,1) since this is the most natural way
to identify the tangent spaces Tx1 M and Tx2 M .

Proof. Let B(x1;δ), B(x2;δ) be two normal coordinate neighborhoods with non-
empty intersection. The coordinate transition map ϕ2,1 =ϕ2 ◦ϕ−1

1 = exp−1
x2

◦expx1

can be studied as the exponential map expx1
: Tx1 M → M in normal coordinates
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on B(x2;δ), since ϕ2 = exp−1
x2

. From here on, we will implicitly be working in
normal coordinates around x2, using some choice of basis to isometrically identify
Tx2 M ∼=Rn .

Let x ∈ B(x1;δ)∩B(x2;δ), hence x1 ∈ B(x2;2δ). We choose δ≤ 1, and small enough
so that the results of Theorem 2.4 and Proposition 2.5 (with C = 2) hold for 2δ.
The exponential map is given by the time-one geodesic flow projected on the base
manifold. For the base point x2, this is the identity map, while for the base point
x1 we will show that it is a small perturbation thereof. The geodesic flow on TM is
given in local coordinates by

ẋi = v i ,

v̇ i =−Γi
j k (x) v j vk ,

(2.5)

where Γi
j k denote the Christoffel symbols with respect to the coordinates xi on

M and the v j are induced additional coordinates on TM , see the explanation
above (2.1). The Christoffel symbols are C k−1 bounded due to Theorem 2.4. Let
Υt denote the geodesic flow of (2.5) on TM restricted to B(x2;2δ). We denote
by (x(t ), v(t )) a solution curve of Υt . The geodesic flow preserves the length of
tangent vectors with respect to the metric g , so we have ‖v(t )‖ ≤ 2‖v(0)‖ ≤ 2δ with
respect to the Euclidean distance in the normal coordinates. This implies that the
vector field (2.5) is bounded in these induced coordinates. Hence, by Theorem A.6,
Υt ∈C k−1

b is bounded as well on the interval [0,1]. Moreover, DΥt ∈C k−2
b exhibits a

Lipschitz estimate for the base point dependence ‖ϕ2(x1)‖E . By Proposition 2.5
the local Euclidean distance is equivalent to the distance on M , so ‖ϕ2(x1)‖E ≤
2 d(x1, x2). These conclusions directly translate to expx ( · ) = π ◦Υ1(x, · ) and we
conclude that ϕ2,1 = exp−1

x2
◦expx1

∈C k−1
b with bound C > 0 uniform in x1, x2 ∈ M

and ‖ϕ2,1 −1‖k−2 ≤ L′ d(x1, x2) for some L′ > 0.

The parallel transportΠ(γ2,1) is given by integrating the pullback of the connection
along γ2,1. This yields a differential equation similar to (2.5) and similarly leads
to C k−1 boundedness estimates in normal coordinates and Lipschitz estimates
for the C k−2-norm. Thus, the difference ϕ2,1 −Π(γ2,1) is C k−1 bounded, and has
C k−2-norm that satisfies the Lipschitz estimate (2.4) for some L > 0.

Definition 2.8 (M-small coordinate radius).
Let (M , g ) be a Riemannian manifold of bounded geometry. We define δ> 0 to be
M-small if Theorem 2.4 and Lemma 2.6 hold on all normal coordinate charts of
radius δ.
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Note that such a δ> 0 always exists. From now on, we shall always assume to have
selected such a δ for any given manifold of bounded geometry and restrict its atlas
to include these normal coordinate charts only.

Lemma 2.6 shows that normal coordinate transformations respect C k boundedness
of functions in coordinate representations. Thus, it is natural to consider manifolds
of bounded geometry as the class of C k bounded manifolds with respect to this
restricted atlas. This also makes the following definition natural.

Definition 2.9 (C k bounded maps).
Let X ,Y be Riemannian manifolds of k+1-bounded geometry and f ∈C k (X ;Y ). We
say that f is of class C k

b when there exist X ,Y -small δX , δY > 0 such that for each
x ∈ X we have f (B(x;δX )) ⊂ B( f (x);δY ) and the representation

f̃ x = exp−1
f (x) ◦ f ◦expx : B(0;δX ) ⊂ Tx X → Ty Y (2.6)

in normal coordinates is of class C k
b and the associated C k -norms of f̃ • are bounded

uniformly in x ∈ X . We define the classes of C k
b,u(X ;Y ) and C k,α

b,u (X ;Y ) functions
analogously when X ,Y are of k+2-bounded geometry.

Remark 2.10. We shall say that a vector field v ∈X(X ) is of class C k
b , also denoted by

v ∈Xk
b(X ), when v ∈C k

b with respect to coordinates on TM induced by normal co-
ordinates on M . This is slightly different from normal coordinates on TM induced
by the metric (2.1). Note that since ‖v‖ ≤ r is assumed bounded, we could restrict
to the submanifold Tr M of bounded geometry and consider v ∈C k

b (M ;Tr M), but
this is less practical.

Remark 2.11. The manifolds X ,Y need to have bounded geometry of one or two
degrees higher than the smoothness of the maps to preserve boundedness and
uniform continuity estimates under normal coordinate transformations. This shall
from now on always be an implicit assumption.

Remark 2.12 (Locally/globally defined continuity modulus).
The continuity modulus ε f of a function f ∈ C k

b,u(X ;Y ) is only defined on the

interval [0,δX ) ⊂R. On the other hand, ‖Dk f (x)‖ is globally well-defined in terms
local charts and assumed to be bounded. We shall want to compare Dk f at points
x1, x2 far apart. If we have isometric isomorphisms

ϕ : Tx1 X ∼−→ Tx2 X and ψ : T f (x1)Y
∼−→ T f (x2)Y ,

then this allows us to compare

‖Dk f (x2)◦ϕ⊗k −ψ◦Dk f (x1)‖ ≤ ‖Dk f (x2)‖+‖Dk f (x1)‖. (2.7)
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Note that the right-hand expression does not depend on the choice2 of isomor-
phisms.

Thus, with such isomorphisms at hand, we can use (2.7) to heuristically extend
the local to a global continuity modulus. That is, for nearby points x1, x2 we use
an estimate in terms of local charts; if this is not possible, then the points must
be separated by a distance larger than a δ as in Definition 2.8. Since the functions
we consider are globally bounded, we then use some (non-canonical) choice to
identify the vector bundle fibers over x1, x2 that the function lives in and estimate
by the right-hand side of (2.7). This estimate is crude but independent of the choice
of identification and will always satisfy our needs. For example, if f ∈C k,α

b,u (X ;Y ),
with Hölder coefficient Cα locally for d(x1, x2) ≤ δ then we have

‖Dk f (x2)−Dk f (x1)‖ ≤
{

Cαd(x1, x2)α if d(x1, x2) < δ,
2‖ f ‖k

δα d(x1, x2)α else.

This shows that we can heuristically consider max
(
Cα, 2‖ f ‖k

δα

)
as a global Hölder

coefficient. ♦

The following proposition shows that we may measure continuity of the derivatives
of a function f using local parallel transport. With the remark above we see how it
can be extended to a global continuity modulus if a (non-unique) choice is made
for how to connect non-close points x1, x2 by a path; this idea will be developed in
Section 3.7.4.

Proposition 2.13 (Equivalence of continuity moduli).
Let X , Y be Riemannian manifolds of bounded geometry and f ∈C k

b (X ;Y ). Then
the following statements are equivalent:

i. f ∈C k,α
b,u (X ;Y ) according to Definition 2.9;

ii. we have the continuity estimate

∃ ε f ,Π ∈Cα(R+;R+), δ0 > 0: ∀ x1, x2 ∈ X , d(x1, x2) ≤ δ0 :∥∥Dk f̃ x2 (0) ·Π(γ2,1)⊗k −Π(η2,1) ·Dk f̃ x1 (0)
∥∥≤ ε f ,Π(d(x1, x2)),

(2.8)

where Π(η2,1) and Π(γ2,1)⊗k denote parallel transport along the unique short-
est geodesic between f (x1), f (x2) and x1, x2, respectively, and ε f ,Π denotes a
uniform or α-Hölder continuity modulus.

2In practice, we shall use isomorphisms defined by parallel transport on X = Y , cf. Proposition 2.13.
This is a non-canonical choice, since it depends on the path connecting x1, x2. A canonical choice
that depends continuously on x1, x2 cannot be made in general, since it would imply that the tangent
bundle is trivializable.
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Proof. We first prove the statement in case Y is a normed linear space, hence no
parallel transport termΠ(η2,1) appears.

Let δ0 ≤ δX as in Definition 2.9 (thus, in particular δ0 is X -small), and let d(x1, x2)≤
δ0. Then we have the Lipschitz estimate ‖ϕ2,1 −Π(γ2,1)‖ ≤ L d(x1, x2) while the
normal coordinate representations (2.6) of f at x1, x2 are related by f̃ x1 = f̃ x2 ◦ϕ2,1.
This leads to∥∥Dk f̃ x2 (0) ·Π(γ2,1)⊗k −Dk f̃ x1 (0)

∥∥
= ∥∥Dk f̃ x2 (0) ·Π(γ2,1)⊗k −Dk [ f̃ x2 ◦ϕ2,1](0)

∥∥
≤ ∥∥Dk f̃ x2 (0) ·Π(γ2,1)⊗k −Dk f̃ x2 (ϕ2,1(0)) · (Dϕ2,1

)⊗k∥∥
+

k−1∑
l=1

‖Dl f̃ x2 (ϕ2,1(0)) ·Pl ,k
(
D•ϕ2,1(0)

)‖
≤ ∥∥Dk f̃ x2 (0)−Dk f̃ x2 (ϕ2(x1))

∥∥+‖Dk f̃ x2 (ϕ2(x1))‖‖Π(γ2,1)−Dϕ2,1‖k

+
k−1∑
l=1

‖Dl f̃ x2 (ϕ2(x1))‖‖Pl ,k
(
D•ϕ2,1(0)

)‖
≤ ε f (d(x2, x1))+‖ f ‖k

(
L d(x1, x2)

)k +
k−1∑
l=1

‖ f ‖l ‖Pl ,k
(
D•ϕ2,1(0)

)‖,

where ε f denotes the continuity modulus of f and its derivatives according to
Definition 2.9, and the Pl ,k denote (l ,k)-linear maps according to Proposition C.3.
We used the fact that both Π(γ2,1) and Dϕ2,1(0) act on the k-tensor bundle as a
k-tuple of copies. By assumption ‖ f ‖k is bounded, and to estimate the Pl ,k terms,
we note that l < k, so each of the Pl ,k contains at least a factor Diϕ2,1(0) with i ≥ 2.
Since ϕ2,1 is close toΠ(γ2,1) and DiΠ(γ2,1) = 0 for i ≥ 2, it follows that

‖Pl ,k
(
D•ϕ2,1(0)

)‖ ≤C L d(x1, x2)

for some constant C independent of x1, x2. This shows that the continuity mod-
ulus ε f ,Π of (2.8) can be estimated by the continuity modulus ε f plus additional
Lipschitz terms. We can reverse the estimates above to arrive at the same conclu-
sion when expressing ε f in terms of ε f ,Π. Hence, the continuity statements are
equivalent for any α≤ 1.

If Y is a Riemannian manifold of bounded geometry, we just apply the same
estimates in the codomain. To this end, we must have d( f (x2), f (x1)) ≤ δY , so we
choose δ0 small enough that

d( f (x2), f (x1)) ≤ ‖D f ‖d(x2, x1) ≤ ‖ f ‖1δ0 ≤ δY

holds with δY as in Definition 2.9.
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The definition of bounded geometry can be extended to vector bundles, see
also [Shu92, p. 65].

Definition 2.14 (Vector bundle of bounded geometry).
Let (M , g ) be a manifold of bounded geometry and δ be M-small as in Definition 2.8.
We say that a vector bundleπ : E → M with fiber F has k-th order bounded geometry
when there exist preferred trivializations

τ : π−1(B(m;δ)
)→ B(m;δ)×F for each m ∈ M (2.9)

such that if we have a transition function ϕ2,1 = τ2 ◦τ−1
1 between two trivializations

on B(m1;δ) and B(m2;δ), then the function g : B(m1;δ)∩B(m2;δ) →L(F ) defined
by ϕ2,1(m, f ) = g (m) f satisfies g ∈C k

b independent of the points m1,m2 ∈ M.

Remark 2.15. Note that we could have replaced B(m;δ) by arbitrary (preferred)
coordinate charts. The relevant property is that we express uniformity of the
transition functions in terms of uniformity of the function g with respect to the
underlying coordinate charts of M , which are normal coordinates in our case. ♦

It follows from Lemma 2.6 that the tangent bundle TM has bounded geometry of
order k−2 if (M , g ) has bounded geometry of order k ≥ 2. One order of smoothness
is lost (beyond the one expected) as noted in Remark 2.7.

We introduce the concept of a uniformly locally finite cover of a manifold of
bounded geometry. This is a natural extension of a locally finite cover. Uniformity
means that we require a global bound K on the number of sets in the cover that
intersect any small open ball.

Lemma 2.16 (Uniformly locally finite cover).
Let (M , g ) be a Riemannian manifold of bounded geometry.

Then for δ2 > 0 small enough and any 0 < δ1 ≤ δ2, M has a countable cover{
B(xi ;δ1)

}
i≥1 such that

i. ∀ i 6= j : d(xi , x j ) ≥ δ1;

ii. there exists an explicit global bound K such that for each x ∈ M the ball B(x;δ2)
intersects at most K of the B(xi ;δ2).

Note that the second result implies both that the cover is locally finite with fixed
neighborhood size, and that each set in the cover overlaps with at most K others,
cf. Lebesgue covering dimension.
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Proof. Using Proposition 2.5, choose δ> 0 such that Euclidean distance in normal
coordinates on each B(x;δ) is C = 2 equivalent to the metric distance and set
δ2 ≤ δ/3.

Let {Mk }k∈N be a compact exhaustion of M . Cover Mk with a sequence of balls
B(xi ;δ1), where d(xi , x j )≥ δ1. This sequence is finite, because an infinite sequence
{xi }i≥0 must have an accumulation point in Mk , which contradicts d(xi , x j ) ≥ δ1.
Choosing the first xi ’s in Mk+1 to coincide with those of Mk , it follows that the
union of all balls B(xi ,δ1) is a countable cover of M such that ∀ i 6= j : d(xi , x j )≥ δ1.

Let x ∈ M arbitrary. Any ball B(xi ;δ2) that intersects B(x;δ2) must be completely
contained in B(x;3δ2). Each of these balls has an exclusive subset B(xi ;δ1/2),
so in normal coordinates around x, each has an exclusive volume of at least
Vol

(
B(0;δ1/(2C ))

)
, while B(x;δ) has volume of at most Vol

(
B(0;C 3δ2)

)
. With

n = dim(M), this leads to the explicit upper bound

K ≤ (3C δ2)n

(δ1/(2C ))n =
(
24

δ2

δ1

)n
. (2.10)

Thus, only finitely many can intersect B(x;δ2). These estimates are uniform and
do not depend on x ∈ M so the bound K is global.

Lemma 2.17 (Uniform partition of unity).
Let M be a manifold with a uniformly locally finite cover with δ1 < δ2 and δ2

sufficiently small, as per Lemma 2.16.

Then there exists a partition of unity by functions χ• ∈C k
b,u(B(xi ;δ2); [0,1]) subordi-

nate to this cover.

We shall also apply this lemma to submanifolds which have a uniformly locally
finite cover due to Corollary 2.26 on page 57.

Proof. Let δ2 be small enough that by Lemma 2.6 coordinate transition maps are
C k

b,u . Define a standard radially symmetric smooth bump functionϕ ∈C∞(Rn ; [0,1])
that is identically one on B(0;δ1) and has compact support in B(0;δ2), hence
ϕ ∈ C k

b,u . We set ϕi = ϕ ◦ exp−1
xi

by isometric identification Txi M ∼= Rn and zero

outside B(xi ;δ2). We have ϕ• ∈C k
b,u in any coordinate patch. Define in the usual

way

χi =ϕi
/ ∑

n≥1
ϕn . (2.11)

The sum is finite as at most K of the B(xn ;δ2) overlap any B(xi ;δ2). The balls
B(xi ;δ1) already cover M , so the denominator is at least one, from which it follows
that χ• ∈C k

b,u .
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Corollary 2.18. Similar to a uniform partition of unity, we can construct a partition
by functions χ• ∈C k

b,u(B(xi ;δ2); [0,1]) whose squares sum to one.

In the proof of Lemma 2.17 we simply replace (2.11) by

χi =ϕi
/ √ ∑

n≥1
ϕ2

n . (2.12)

2.2 Curvature and holonomy

To prove smoothness of the persistent manifold in Section 3.7, we shall want to
estimate the holonomy along closed loops to be close to the identity, that is, if c is a
closed loop, then we wantΠ(c)−1 to be small. To this end, we relate the holonomy
to the curvature and finally obtain an estimate in terms of a global bound on the
curvature and the area of a surface enclosed by c.

The result that curvature is the generator of holonomy dates back at least to Am-
brose and Singer [AS53] who formulated this in differential form in the 1950’s; they
cite an even older statement (without proof) by Élie Cartan [Car26]. More recent
work by Reckziegel and Wilhelmus [RW06] shows explicit integral formulas for this
relation, formulated on fiber bundles, a context far more general than is required
here. We shall present a formulation for Riemannian manifolds (M , g ).

LetΠ denote the parallel transport functional, which takes C 1 curves to orthogonal
maps between the tangent spaces at their endpoints, see (F.3). If c is a closed loop,
then Π(c) is a linear endomorphism on Tc(0)M and we can measure ‖Π(c)−1‖.
Our goal is to bound this quantity by the integral of the curvature form R over a
surface with boundary precisely c. This result can be viewed as a generalization of
Stokes’ theorem where the curvature is the exterior derivative of the connection
form ω, while the connection on the other hand generates parallel transport along
the boundary of the surface A that the curvature is integrated over. Note though,
that we actually have R = dω+ω∧ω, so there is an additional term due to the
noncommutativity of the connection form.

Let

γ : D = [0, t ]× [0, s] → M : (t , s) 7→ γ(t , s) (2.13)

parametrize the surface A = γ(D) ⊂ M . The idea is that γ is the homotopy of a
(closed) curve c. We shall only consider parallel transport along horizontal or
vertical lines in D ; let us denote by Πs2,s1

t parallel transport along s 7→ γ(s, t ) with
s ∈ [s1, s2] and byΠs

t2,t1
parallel transport along t 7→ γ(s, t ) with t ∈ [t1, t2].
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We shall calculate the holonomy along ∂A with respect to a chosen frame on the
pullback bundle γ∗(TM). The final result will turn out to be independent of this
choice, hence it is covariantly defined. Let f be an orthonormal frame on γ∗(TM),
that is, ft ,s : Tγ(t ,s)M →Rn is an isometry of inner product spaces. The Levi-Civita
connection ∇ on M can be pulled back to the connection γ∗(∇) on γ∗(TM) and it
can be expressed in terms of the connection form ω ∈Ω1

(
D ;End(Rn)

)
with respect

to the frame f . The curvature ofγ∗(∇) is equal to the curvature R of∇pulled back to
D , so we have dω+ω∧ω= γ∗(R) f , where the subscript f indicates that everything
is expressed with respect to the chosen frame. In the same notation, parallel
transport along a curve s 7→ c(s) satisfies the linear, homogeneous differential
equation3

d

ds f Π(c|s0) =−ω(ċ(s))◦ f Π(c|s0), f Π(c|00) =1Rn , (2.14)

which has a unique solution s 7→ f Π
s,0 = f Π(c|s0). This can be viewed as time-

dependent flow in End(Rn).

(t , s)

(t , s)

(0,0)

Figure 2.1: the path of the parallel transport term P (s) in D .

Let us define the parallel transport term

P (s) =Πs,s
t

◦Πs
0,t

◦Πs,0
0 : Tγ(0,0)M → Tγ(t ,s)M , (2.15)

see Figure 2.1. The holonomy defect can be expressed as

1−Π(∂A) =1−Π(∂D) =1−P (s)−1 ◦P (0) = P (s)−1 ◦ (
P (s)−P (0)

)
,

where Π(∂D) is defined using the pullback connection. We use the fundamental
theorem of calculus to write

P (s)−P (0) =
∫ s

0

dP (s)

ds
ds. (2.16)

3If the frame f is induced by local coordinates, then ω will precisely be given by the Christoffel
symbols and we recover equation (F.4).



52 Chapter 2. Manifolds of bounded geometry

Expressing everything with respect to the frame f , we see that the first and last
factor of P (s) are easily differentiated using (2.14):

d

ds f Π
s,0
0 =−ω( ∂∂s )◦ f Π

s,0
0 and

d

ds f Π
s,s
t

= f Π
s,s
t

◦ω( ∂∂s ). (2.17)

The middle term f Π
s
t ,0

can be differentiated by viewing s as parameter in the
differential equation (2.14). Variation of constants yields (see e.g. [DK00, App. B]
for a proof of the differentiable dependence of a flow on parameters)

d

ds f Π
s
t ,t

=
∫ t

0
f Π

s
t ,t

◦ d

ds

[−ω( ∂∂t )
]◦ f Π

s
t ,0 dt

=
∫ t

0
− f Π

s
t ,t

◦
(
dω( ∂∂s , ∂∂t )+ d

dt

[
ω( ∂∂s )

]+ω(
[ ∂
∂s , ∂∂t

]
)
)
◦ f Π

s
t ,0 dt

using standard rules for exterior derivatives. Next we note that
[
∂
∂s , ∂

∂t

] = 0, and
integrate by parts the term d

dt

[
ω( ∂

∂s )
]

=
∫ t

0
− f Π

s
t ,t

◦
(
−ω( ∂∂t )◦ω( ∂∂s )+dω( ∂∂s , ∂∂t )+ω( ∂∂s )◦ω( ∂∂t )

)
◦ f Π

s
t ,0 dt

−
[

f Π
s
t ,t

◦ω( ∂∂t )◦ f Π
s
t ,0

]t

t=0

=
∫ t

0
f Π

s
t ,t

◦ (dω+ω∧ω)
( ∂
∂t , ∂∂s

)◦ f Π
s
t ,0 dt −ω( ∂∂s )◦ f Π

s
t ,0

+ f Π
s
t ,0

◦ω( ∂∂s ).

(2.18)

We see that this variation depends on the curvature form γ∗(R) f = dω+ω∧ω along
the path and two additional boundary terms. If we view γ as a homotopy of paths
with homotopy parameter s and we keep the path endpoints γ(0, s) and γ(t , s)
fixed for all s ∈ [0, s], then these boundary terms vanish and the result (2.18) agrees
with [RW06, Cor. 3].

Instead, we insert (2.17) and (2.18) into (2.16). Then these boundary terms cancel
against the terms from (2.17) and we finally obtain

P (s) f −P (0) f =
∫ s

0

∫ t

0
f Π

s,s
t

◦ f Π
s
t ,t

◦γ∗(R) f ( ∂∂t , ∂∂s )◦ f Π
s
t ,0 ◦ f Π

s,0
0 dt ds

=
(∫

D
Πs,s

t
◦Πs

t ,t
◦γ∗(R)◦Πs

t ,0 ◦Πs,0
0

)
f

.
(2.19)

The integrand on the last line is a two-form on D with values inL(Tγ(0,0)M ;Tγ(t ,s)M).
This final expression is clearly independent of a choice of frame, so we have
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recovered an explicit integral formula relating holonomy along a null-homotopic
loop to the curvature.

We conclude from (2.19) that if c is a closed, null-homotopic loop, and the curvature
globally bounded, then ‖Π(c)−1‖ can be estimated by ‖R‖sup times the surface area
of any null-homotopy γ of c. Note that we do not require γ to be an embedding; the
integral is intrinsically defined on D by pullback. Furthermore, γ is required to be
C 1 only. This follows from the fact that both sides of the equation are continuous
with respect to γ in C 1-norm; alternatively, an explicit calculation requires that the

mixed partial derivative ∂2 γ
∂s ∂t is continuous to perform integration by parts. Both

lead to the to the following result.

Lemma 2.19 (Exponential growth bound on holonomy).
Let (M , g ) be a manifold of bounded geometry with normal coordinate radius δ that
is M-small as in Definition 2.8. Fix T > 0 and ρ > 0 and let x1, x2 be two C 1 curves
on M with derivatives bounded by N such that dρ(x1, x2)eρ T ≤ δ< rinj(M). Denote
by γt the unique shortest geodesic connecting x1(t ) to x2(t ) for any t ∈ [0,T ].

If δ is sufficiently small, then the closed loop η= x2|0T ◦γT ◦ x1|T0 ◦γ−1
0 satisfies the

holonomy bound

‖Π(η)−1‖ ≤ C̃ ‖R‖0 N dρ(x1, x2)
eρ T

ρ
(2.20)

where C̃ depends on the geometry of M only.

Proof. The two-parameter family (s, t ) 7→ γt (s) defines a null-homotopy of the
closed loop η. The map s 7→ γt (s) is defined through the exponential map as

γt : [0,1] → M : s 7→ expx1(t )

(
s exp−1

x1(t )(x2(t ))
)
.

Since expx is a local diffeomorphism at least for d(x1(t ), x2(t )) < δeρ t < rinj(M),
that depends smoothly on x, it follows that (s, t ) 7→ γt (s) defines a homotopy
between the curves x1, x2 restricted to the interval [0,T ]. The map γt (s) has contin-
uous mixed derivatives with respect to s, t (even though the double derivative with
respect to t does not exist since x1, x2 ∈C 1 only), so integration by parts is allowed
in (2.18).

We estimate the surface area mapped by γt (s). We use shorthand notation ξ =
s exp−1

x1(t )(x2(t )) ∈ Tx1(t )M and denote by Dx expx the derivative of the exponential
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map with respect to the base point parameter x. Then

d

ds
γt (s) = Dexpx1(t )(ξ) ·exp−1

x1(t )(x2(t )),

d

dt
γt (s) = Dx expx1(t )(ξ) · ẋ1(t )

+Dexpx1(t )(ξ) · [s Dx (exp−1
x1(t ))(x2(t )) · ẋ1(t )+ s Dexp−1

x1(t )(x2(t )) · ẋ2(t )
]
.

Since M has bounded geometry, D expx and its inverse are bounded by Theo-
rem 2.4, while Dx expx and its inverse are bounded by Lemma 2.6, say by C > 1.
This leads to estimates∥∥∥ d

ds
γt (s)

∥∥∥≤C d(x1(t ), x2(t )),∥∥∥ d

dt
γt (s)

∥∥∥≤C ‖ẋ1(t )‖+C s
[
C ‖ẋ1(t )‖+C ‖ẋ2(t )‖]≤ 3C 2 N ,

so the holonomy bound satisfies

‖Π(η)−1‖ ≤ ‖R‖0

∫ 1

0

∫ T

0

∥∥∥ d

ds
γt (s)

∥∥∥∥∥∥ d

dt
γt (s)

∥∥∥ dt ds

≤ ‖R‖0

∫ T

0
3C 3 N dρ(x1, x2)eρ t dt

≤ 3C 3 ‖R‖0 N dρ(x1, x2)
eρ T

ρ
.

Remark 2.20. It should be possible to obtain C̃ = 1 if the curves xi are generated
by a flow Φ and we choose as homotopy (s, t ) 7→Φt (γ(s)), where γ is the geodesic
connecting x1(0) and x2(0). In our applications, though, the curves x1, x2 need not
be solutions to exactly the same flow, while the current result is sufficient for our
purposes. ♦

2.3 Submanifolds and tubular neighborhoods

From this section on, we shall prove results that—although they may be of inter-
est independently within bounded geometry—are building up towards the final
section of this chapter, where we prove how to reduce Theorem 3.1 on persis-
tence in general manifolds of bounded geometry to the setting of a trivial bundle.
These results form the more technical part of this chapter and are not required
elsewhere.
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In the following, we assume that (Q, g ) is an ambient manifold that has bounded
geometry of large or infinite order and M ∈C k will denote a submanifold of Q. Only
a finite order l > k of bounded geometry is required of (Q, g ), but for simplicity we
shall assume l =∞. Recovering the explicit additional order l−k would amount to
tediously tracking the details throughout all the proofs; it should be sufficient if l is
larger than k by some number between 2 and 10.

Let ι : M → Q be a C 1 immersion. With abuse of notation we denote by Tx M =
Im(Dι(x)) and Nx = Im(Dι(x))⊥ the tangent and normal spaces of M with respect to
the immersion. Note that even if ι is not injective, the original point x ∈ M uniquely
selects the tangent and normal spaces in Tι(x)Q.

Definition 2.21 (Uniformly immersed submanifold).
Let ι : M → Q be a C k≥1 immersion of M into the Riemannian manifold (Q, g ) of
bounded geometry. Denote by Mx,δ the image under ι of the connected component
of x in ι−1

(
B(ι(x);δ) ∩ ι(M)

)
. We define M to be a C k

b,u immersed submanifold
when there exists a δ > 0 such that for all x ∈ M, the connected component Mx,δ

is represented in normal coordinates on B(ι(x);δ) ⊂ Q by the graph of a function
hx : Tx M → Nx and the family of functions h• ∈C k

b,u(T•M ; N•) has uniform conti-

nuity and boundedness estimates independent of x. We define C k≥1
b immersions in

a similar way.

Remark 2.22. By taking the connected component Mx,δ in M , we allow for im-
mersed submanifolds that intersect, or nearly intersect themselves. See Figure 2.2
on the left: Mx,δ is described by the graph of hx , while on the right side, a different

Nx

Tx M
0ξ′

hx

B(0;δ)

x ′

Nx

Tx M
0

x ′

Nx ′

Figure 2.2: an immersed submanifold represented by the graph of hx in normal coordi-
nates. In the left figure, another part of M intersects transversely on the right; the right
figure contains an orbit of the geodesic flow along a normal vector at x ′ ∼= ι(x ′).
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part of M embeds into this same neighborhood B(ι(x);δ). See Figure 3.2 on page 94
for an example of a nearly self-intersecting submanifold. If we want to rule out
such cases, we can assume that Mx,δ is the unique component of M ∩B(ι(x);δ).
This will turn M into an embedded submanifold, but more strongly, the nearly
self-intersecting case is also ruled out. We will refer to this as a uniformly embedded
submanifold.

Remark 2.23. The sets Mx,δ play a similar role as ‘plaques’ in [HPS77, p. 72–73].

Remark 2.24. In case k = 1, boundedness is automatically implied by uniform
continuity. This follows from the representation in normal coordinates. We have
Dhx (0) = 0, so by uniform continuity there exists a δ > 0 such that ‖Dhx (ξ)‖ <
ε= 1 when ‖ξ‖ < δ, hence Dhx is bounded. Put another way, there is no intrinsic
measure for the ‘size of the derivative or tangent’ of a submanifold. ♦

Note that the function hx is only defined on that part of the domain B(0;δ) ⊂ Tx M
where its graph is contained in B(0;δ) ⊂ Tι(x)Q, as can be seen in Figure 2.2. In the
splitting Tι(x)Q = Tx M ⊕Nx , we denote with p1, p2 orthogonal projections onto the
Tx M and Nx subspaces, respectively.

From now on we shall continually assume that M ∈C k≥1
b,u is a uniformly immersed

submanifold of Q. We will often identify M with its image ι(M) ⊂ Q, as well as
identify points x ∈ M with ι(x), keeping in mind the definition of Mx,δ to track local
injectivity. Furthermore, denote by dM the distance on M induced by the pulled
back Riemannian metric ι∗(g ). This distance function measures whether points
are close when viewed along the domain of the immersion, disallowing ‘shortcuts’
through Q. It also distinguishes different points with the same immersion image.
Note that it is different from the distance d on Q pulled back to M . This we denote
by dQ = ι∗(d) but it is not a distance on M when ι is not injective. Still, we have the
following local result, which will be useful for later estimates.

Lemma 2.25 (Local equivalence of distance).
Let M ∈C 1

b,u be a uniformly immersed submanifold of the bounded geometry mani-
fold (Q, g ). Then dQ and dM are locally equivalent in the following sense:

i. ∀x1, x2 ∈ M : dQ (x1, x2) ≤ dM (x1, x2);

ii. for any C ′ > 1 there exists a δ> 0 such that for all dM (x1, x2) < δ, we have the
local converse dM (x1, x2) ≤C ′ dQ (x1, x2).

Proof. The first assertion follows directly from the fact that any path in M induces
a path of equal length in Q via the immersion ι.
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For the second part, we first note that if δ is small enough and dM (x1, x2) < δ, then
we must have x2 ∈ Mx1,δ. If this would not be the case, then any path γ connecting
x1, x2 through M cannot be contained in Mx1,δ. But this implies that the path runs
out of B(x1;δ), so its length is greater than δ. This contradicts the assumption
that dM (x1, x2) < δ. Hence, x2 can be represented as a point on the graph of hx1 in
B(x1;δ).

Let C > 1, ε > 0 be constants to be fixed later and let δ be small enough such
that the metric coefficients are bounded by C in normal coordinate charts, that
Proposition 2.5 holds with C , and we have ‖h•‖1 ≤ ε as in Remark 2.24. We consider
the normal coordinate chart on B(x1;δ) and construct a path in M to find an upper
bound for dM (x1, x2). Let x2 = (ξ,hx1 (ξ)) and define γ(t )= (t ξ,hx1 (t ξ)) for t ∈ [0,1].
We estimate the length of γ as

l (γ) ≤
∫ 1

0

√‖g‖
√

1+‖h•‖2
1 ‖ξ‖ dt ≤

p
C

√
1+ε2 ‖ξ‖,

while the Euclidean norm can be estimated by the distance in Q as

‖ξ‖ ≤ ‖(ξ,hx1 (ξ))‖ ≤C d(x1, x2).

We conclude that

dM (x1, x2) ≤ l (γ) ≤C 3/2
√

1+ε2 dQ (x1, x2)

and for any C ′ > 1 we can find C > 1, ε> 0 such that C 3/2
p

1+ε2 <C ′.

A uniform submanifold of a bounded geometry manifold can be shown to possess
a uniformly locally finite cover as a corollary of Lemma 2.16, without the need to
show that the submanifold itself has bounded geometry. As a consequence, it also
has (square-sum) partitions of unity.

Corollary 2.26 (Uniform cover of a submanifold).
Let M ∈C 1

b,u be a uniformly immersed submanifold of the bounded geometry mani-
fold (Q, g ).

Then for δ2 > 0 small enough and any δ1 ∈ (0,δ2], M has a uniformly locally finite
cover by balls of radius δ2 in terms of the distance dQ , such that the balls of radius
δ1 already cover M. That is, there exist {xi }i≥1 such that

⋃
i≥1 Mxi ,δ1 covers M with

a uniform bound K on the maximum number of sets Mxi ,δ2 covering any set Mx,δ2

with x ∈ M.
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Proof. The proof follows the ideas of Lemma 2.16. As an additional requirement,
let δ> 0 be sufficiently small such that each Mx,δ is represented in normal coordi-
nates by the graph of hx . Under this assumption, the open sets Mx,δ are induced by
dQ and correspond to the connected component of x of the preimage of B(ι(x);δ).
Consequently, we can locally push the argument to ι(M)⊂Q to conclude that there
is an upper bound K on the number of sets Mxi ,δ2 that intersect any set Mx,δ2 .

Even though we do not require submanifolds to have bounded geometry for the
results in this section, the lemma below will be needed in the final reduction to a
trivial bundle. The essential idea of the proof is to use Gauß’ second fundamental
form to relate curvature of the submanifold to second derivatives of its immersion
map.

Lemma 2.27 (Submanifold of bounded geometry).
Let M ∈ C k≥2

b be a uniformly immersed submanifold of the bounded geometry
manifold (Q, g ). Then (M , ι∗(g )) is a Riemannian manifold with bounded geometry
of order k −2.

Remark 2.28. We lose two orders of smoothness in the bounded geometry defini-
tion. This is due to bounded geometry being defined in terms of the curvature,
which depends on second order derivatives of the metric, and in this case also on
second order derivatives of the embedding through Gauß’ second fundamental
form. ♦

Proof. Let δ be sufficiently small such that for each x ∈ M we have the representa-
tion Mx,δ = Graph(hx ) with ‖Dhx‖ ≤ 1.

The Riemann curvature tensor RM of M can be expressed as a sum of the curvature
R on Q and the second fundamental form of the (local) embedding, see e.g. [Jos08,
Thm 3.6.2]:

g (RM (X ,Y ) Z ,W ) = g (R(X ,Y ) Z ,W )+ g (S(Y , Z ),S(X ,W ))

− g (S(Y ,W ),S(X , Z )),
(2.21)

where
S : TM ×TM → N : X ,Y 7→ (∇X Y )⊥ (2.22)

is the second fundamental form, and it is indeed pointwise defined. In normal
coordinates we find

Sx (X ,Y ) = D2hx (0)(X ,Y ). (2.23)

Since h ∈C k
b and g , g−1 ∈C k

b as well, it follows that S ∈C k−2
b and by (2.21) then that

RM ∈C k−2
b , so condition (Bk−2) of Definition 2.1 is satisfied.
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Condition (I) on the injectivity radius follows from an implicit function argument
applied to the geodesic flow using Theorem A.6. We consider local coordinates
around x ∈ M by projecting the representation M ∩B(x;δ) onto Tx M in normal
coordinates in Q. That is, we have the coordinate chart map

κx : B(0;δ/2) ⊂ Tx M → M : ξ 7→ expx (ξ,hx (ξ))

and the corresponding embedding into normal coordinates Tx M ,→ TxQ : ξ 7→
(ξ,hx (ξ)) of Q. We calculate explicit estimates for the exponential map expM

x using
Christoffel symbols of the connection ∇M on M in the coordinates in chart κx .

Let X ,Y be vector fields on M . Their representation in κx is mapped to normal
coordinates B(x;δ) on Q as

X (ξ) 7→ X̃ (ξ) = (
1,Dhx (ξ)

)T ·X (ξ).

Hence, from the covariant derivative on M in normal coordinates B(x;δ) ⊂Q we
can recover the Christoffel symbols in local coordinates κx as

∇M
X Y = p1 ◦

[
X i (ξ)

∂

∂ξi
Y (ξ)+Γ(ξ,hx (ξ))

(
X̃ (ξ), Ỹ (ξ)

)]
,

where the first term has reduced to derivatives with respect to ξ ∈ Tx M ⊂ TxQ only,
and Γ : B(x;δ) →L2(TxQ;TxQ) are the Christoffel symbols in normal coordinates
at x ∈Q. Thus, the Christoffel symbols

ΓM (ξ)(X ,Y ) = p1 ◦Γ(ξ,hx (ξ))
(
X̃ , Ỹ

)
(2.24)

of M in κx coordinates are uniformly bounded on sufficiently small balls B(0;δ′)⊂
Tx M . The Euclidean geodesic flow at time one defines the (trivial) Euclidean
exponential map, which is an isomorphic diffeomorphism (with infinite injectivity
radius actually). Since we study a small perturbation of this flow in local coordi-
nates, given by the additional term (2.24), and the perturbation is at least C k−1

b
and C 1 small, the perturbed geodesic flow of M can be made close enough that
expM

x is still a diffeomorphism on B(0;δ′) for some δ′ > 0. Hence, rinj(x) ≥ δ′, but
these estimates depend only on the perturbation size, so they hold uniformly for
all x ∈ M .

To obtain the final result of this section, the tubular neighborhood theorem 2.33,
we first need to work out some details on local coordinates. If M is a submanifold
of Q, it is natural to consider a specific splitting on the normal coordinates at
points x ∈ M , namely TxQ = Tx M ⊕Nx , where N is the normal bundle over M . We
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shall require bounds, not just on coordinate transformations, but more specifically
bounds on how well this splitting is preserved. The lemmas are formulated in a
more general context of splittings of tangent spaces at any two nearby points, while
the results for coordinates along M follow as an easy corollary.

Lemma 2.29 (Coordinate transformations of splittings).
Let (Q, g ) be a smooth Riemannian manifold of bounded geometry, let C be suf-
ficiently large and let δ,ζ > 0 be sufficiently small. Let x1, x2 ∈ Q and let Txi Q =
Hi ⊕Vi , i = 1,2 be splittings along ‘horizontal’ and ‘vertical’ perpendicular sub-
spaces with dim(H1) = dim(H2). Assume that d(x1, x2) < δ and that, for i 6= j , Hi is
represented in tangent normal coordinates at x j by the graph of Li ∈L(H j ;V j ) with
‖Li‖ ≤ ζ.

Then the coordinate transformation ϕ2,1 in Lemma 2.6 is of the form

ϕ2,1 =OH ⊕OV + ϕ̃2,1 with ‖ϕ̃2,1‖k ≤C
(
ζ+d(x1, x2)

)
, (2.25)

where OH ,OV are orthogonal transformations between the Hi and Vi with i = 1,2,
respectively.

We first prove the following result and use it to prove Lemma 2.29.

Lemma 2.30 (Approximation of orthogonal maps).
Let V be a finite-dimensional inner product space and define the map

f : L(V ) → Sym(V ) : A 7→ AT A−1. (2.26)

There exists an ε > 0 and a tubular neighborhood B(O(V );η) ⊂ GL(V ) with fiber
projection π, such that on {A ∈ GL(V ) | ‖ f (A)‖ < ε,‖A‖ ≤ 2}, the map ϕ : A 7→
(π(A), f (A)) is a smooth diffeomorphism. As a direct corollary, if ‖ f (A)‖ < ε and
‖A‖ ≤ 2 then U =π(A) ∈O(V ) is an orthogonal approximation of A in the sense that
‖U − A‖ ≤ ‖ f (A)‖.

Proof. The map f is smooth and invariant under the left action of the orthog-
onal maps O(V ), while O(V ) = ker( f ). Since GL(V ) is a Lie group, we have the
canonical trivialization TGL(V )=GL(V )× g l (V ) by left multiplication. The similar
trivialization TO(V ) =O(V )×o(V ) can be viewed as a subbundle of

O(V )×o(V )⊕Sym(V ) = TGL(V )|O(V ),

where o(V ) is identified with the skew-symmetric linear maps. We restrict the expo-
nential map exp: TGL(V ) →GL(V ) to O(V )×Sym(V ). At 1 ∈O(V ) this restriction
has bijective derivative, hence it is a local diffeomorphism. Since exp is O(V )-in-
variant, it defines a diffeomorphism onto a tubular neighborhood B(O(V );η) ⊂
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GL(V ) of O(V ) of size η > 0 and a corresponding smooth fiber projection map
π : B(O(V );η) →O(V ).

Now D f (1) : a 7→ aT +a has image precisely Sym(V ). Thus, if we restrict f to the
fiber over 1 ∈O(V ) in the tubular neighborhood, then D f (1)|Sym(V ) = 2 and f is a
diffeomorphism with ‖Df −1‖ ≤ 1 in some neighborhood of 0∈π−1(1); if necessary,
we reduce η> 0 for ‖D f −1‖ ≤ 1 to hold on B(O(V );η)∩π−1(1). By O(V ) invariance
of f , this holds globally on all (fibers) of the tubular neighborhood. Since, Dπ
and D f have complementary image at O(V ), ϕ = (π, f ) is a diffeomorphism on
B(O(V );η).

The set B(0;2) \ B(O(V );η) ⊂ L(V ) is compact, so ‖ f ( · )‖ attains its nonzero min-
imum on it. Let ε be smaller than this minimum. Then, if ‖ f (A)‖ < ε, we must
have A ∈ B(O(V );η) and hence A = exp(U , a) for a unique (U , a) ∈O(V )×Sym(V ).
By O(V )-invariance, we can assume w.l.o.g. that U = 1 and use the mean value
theorem to estimate

‖A−1‖ ≤ ‖D f −1‖‖ f (A)− f (1)‖ ≤ ‖ f (A)‖ < ε.

In other words, when A is sufficiently close to being orthogonal, measured accord-
ing to f , then it is close to an orthogonal map U in operator norm.

Proof of Lemma 2.29. Extending the results of Lemma 2.6, let

O =Π(γ2,1) : Tx1Q → Tx2Q

denote the orthogonal linear map induced by parallel transport. We decompose
ϕ2,1 =O + ϕ̂2,1, where ϕ̂2,1 can be made arbitrarily small. Moreover, we write

O =
(

A B
C D

)
∈L(H1 ⊕V1; H2 ⊕V2),

with the idea that B ,C should be small and A,D should approximate orthogonal
maps OH ,OV , respectively. Orthogonality of O implies

1=OT O =
(

AT C T

B T DT

)
·
(

A B
C D

)
=

(
AT A+C T C AT B +C T D
B T A+DT C B T B +DT D

)
.

For the operator norm we have ‖A‖,‖B‖,‖C‖,‖D‖ ≤ ‖O‖ = 1, so if we assume for
the moment that B ,C can be made sufficiently small, then, by writing AT A−1=
−C T C and DT D −1 =−B T B , Lemma 2.30 implies that we can find OH ,OV such
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that

‖O −OH ⊕OV ‖ ≤
∥∥∥O −

(
A 0
0 D

)∥∥∥+∥∥∥(
A 0
0 D

)
−

(
OH 0

0 OV

)∥∥∥
≤ ‖B‖+‖C‖+‖A−OH‖+‖D −OV ‖
≤ ‖B‖+‖C‖+‖C T C‖+‖B T B‖.

(2.27)

In normal coordinates around x2 we have H1 = Graph(L), so C : H1 → V2 is rep-
resented by L in these coordinates. The metric g is close to the identity in these
coordinates, so C ∼= L can be assumed bounded by 4ζ ≤ 1, as measured in the
metric on Q. The same argument can be made for B T by considering ϕ1,2 =ϕ−1

2,1,
since

O−1 =OT =
(

AT C T

B T DT

)
.

We conclude that both ‖B‖,‖C‖ ≤ 4ζ when δ is chosen small, hence O can be
approximated by OH ⊕OV , and the error from (2.27) can be absorbed into ϕ̃2,1:

ϕ̃2,1 = ϕ̂2,1 + (O −OH ⊕OV ).

The errors introduced in ϕ̃2,1 from lemmas 2.6 and 2.30 are Lipschitz small in terms
of d(x1, x2) and ζ, respectively, so these add up to the estimate in (2.25).

Corollary 2.31. Let M ∈C k≥1
b,u be a uniformly immersed submanifold of a smooth

Riemannian manifold (Q, g ) of bounded geometry. Let x1, x2 ∈ M and let Txi Q =
Txi M ⊕Nxi , i = 1,2, be the respective splittings in horizontal and vertical directions.
Then the results of Lemma 2.29 hold for dM (x1, x2)< δ. If moreover M ∈C 2

b , then we
have a Lipschitz estimate ‖Dϕ̃2,1(0)‖ ≤C d(x1, x2).

Proof. This follows immediately from the local representation Mx2,δ = Graph(h2)
as Tx1 M is represented in tangent normal coordinates at x2 by L = Dh2(ξ), where
x1 = (ξ,h2(ξ)). And Dh2(ξ) becomes small when δ is small. The same holds with
x1, x2 interchanged.

If M ∈ C 2
b , then we can estimate ‖Dh•(ξ)‖ ≤ ‖D2h•‖‖ξ‖ ≤ C d(x1, x2). Hence, the

Lipschitz result in Lemma 2.29 transforms into a Lipschitz estimate in d(x1, x2)
only.

Below we define when a mapping is approximately isometric, see for example
also [Att94, p. 505]. The Lyapunov exponents of a dynamical system are preserved
under these quasi-isometries since the exponential growth dominates any boun-
ded factors when measuring sizes. This property is required when we transfer a
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noncompact normally hyperbolic system to a different space and want normal
hyperbolicity to be preserved.

Definition 2.32 (quasi-isometry).
Let M , N be manifolds with distance metrics dM ,dN and let ϕ : M → N be a diffeo-
morphism. we call ϕ a C -quasi-isometry with C > 1, if

∀x, y ∈ M : C−1 dM (x, y) ≤ dN (ϕ(x),ϕ(y)) ≤C dM (x, y). (2.28)

We simply call ϕ a quasi-isometry if there exists an unspecified C > 1.

We conclude this section with a version of the tubular neighborhood theorem that
is appropriate in the bounded geometry setting.

Theorem 2.33 (Uniform tubular neighborhood).
Let M ∈ C k≥2

b be a uniformly immersed submanifold of the bounded geometry
manifold (Q, g ). Then for η > 0 sufficiently small (but depending explicitly on M
and Q), the η-sized tubular neighborhood B(M ;η) = {y ∈ Q | d(y, M) ≤ η} can be
represented on the η-sized normal bundle N≤η of M by a diffeomorphism ϕ, locally
on each N≤η|Mx,δ and we have ϕ,ϕ−1 ∈C k−1

b,u (hence ϕ is a quasi-isometry).

When moreover M is uniformly embedded, i.e. Mx,δ = M ∩B(x;δ) for each x ∈ M as
in Remark 2.22, then ϕ is a global diffeomorphism.

In case M is compact, the standard proof uses the fact that the exponential map
has bijective differential at the zero section, and then by compactness it must be
a diffeomorphism on a uniform neighborhood N≤η of the zero section. Here, to
get a uniform neighborhood N≤η on which ϕ= exp |N≤η is a diffeomorphism, we
require bounds on second order derivatives (that is curvature, cf. Lemma 2.27) of
M so that it has curvature radius r bounded from below, hence cut locus points
can only occur at least at distance r away from M , makingϕ injective for η< r . See
Figure 2.2 for a representation of a submanifold M in normal coordinates around
x and a ray of the normal bundle at a nearby point x ′.

Note that for an immersed submanifold, we define the normal bundle as

N = {
(x,ν) ∈ M ×TQ

∣∣ ι(x) =π(ν), ν⊥ Im
(
Dι(x)

)}
. (2.29)

This can again be viewed as immersed into TQ.

Proof. We set ϕ= exp |N and in the following we will implicitly apply Theorem 2.4
and Proposition 2.5 to choose 0 < δ≤ 1 small enough such that the metric g up
to its second order derivatives is bounded, as well as that the Christoffel symbols
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are bounded. Also, we choose δ such that M is uniformly locally representable by
graphs according to Definition 2.21. We will in sequence prove local and global
injectivity, surjectivity of ϕ and finally that ϕ,ϕ−1 ∈C k−1

b,u .

We claim that for some η > 0, ϕ is locally injective on N≤η, the normal bundle
restricted to size η. Let ν, ν′ ∈ N be such that ϕ(ν) = ϕ(ν′) and denote by x =
π(ν), x ′ =π(ν′) their base points in M . We consider normal coordinates at x, hence
we have ν= (0,σ2) for someσ2 ∈ Nx , while ν′ is given by (σ′

1,σ′
2) ∈ Tx M ⊕Nx . From

Corollary 2.31 it follows for small δ that ν′ is nearly mapped onto Nx in normal
coordinates at x. Since M ∈C 2

b , the deviation from mapping onto Nx is Lipschitz
small in d(x ′, x) ∼= ‖ξ‖, so we have

‖σ′
1‖ ≤C ‖ξ‖‖σ′

2‖. (2.30)

Now, ϕ(ν′)=ϕ(ν) can only hold if the respective horizontal coordinates along Tx M
are equal. By definition of normal coordinates around x, we have exp(ν) = (0,σ2).
Therefore it is sufficient to prove that some η> 0 exists as a lower bound for

{‖ν′‖ ∈R |ϕ(ν′)1 = 0,π(ν′) 6= x}.

We view the exponential map as the time-one geodesic flow, which is given in local
coordinates by (2.5). The geodesic flow along ν′ = (σ′

1,σ′
2) starting at (ξ′,h(ξ′)) is a

small perturbation of the flow along (0,σ′
2) starting at (0,0). The latter has solution

curve t 7→ (0, t σ′
2) ∈ Tx M ⊕Nx .

By Theorem 2.4 we arrange for ‖g −1‖,‖Γ‖ ≤ 2 and ‖DΓ‖ ≤C in local coordinates.
We have estimates

‖Γ(x ′(t ))−Γ(x(t ))‖ ≤ ‖DΓ‖‖x ′(t )−x(t )‖ ≤C ‖x ′(t )−x(t )‖,

‖σ′(t )‖ ≤
√

g (σ′(t ),σ′(t )) =
√

g (σ′(0),σ′(0)) ≤
p

2‖σ′(0)‖.

With these, we obtain the Gronwall-like estimates

d

dt
‖x ′(t )− (0, t σ′

2)‖ ≤ ‖σ′(t )− (0,σ′
2)‖,

d

dt
‖σ′(t )− (0,σ′

2)‖ ≤ ‖DΓ‖‖x ′(t )− (0, t σ′
2)‖‖σ′(t )‖2

+‖Γ‖(‖σ′(t )‖+‖(0,σ′
2)‖)‖σ′(t )− (0,σ′

2)‖
≤ (

4C η2 +4
p

2η
)‖σ′(t )− (0,σ′

2)‖,

for which Gronwall’s inequality yields

‖σ′(t )− (0,σ′
2)‖ ≤ ‖(σ′

1(0),0)‖eC̃ η t .
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Now, if η is chosen sufficiently small, then using (2.30), we have for all 0≤ t ≤ 1 that

‖x ′
1(t )−x1(0)‖ ≤

∫ t

0
C ‖ξ′‖ηeC̃ η t dτ≤ 1

2
‖ξ′‖.

This shows that there exists an explicit η > 0 such that ϕ is injective on N≤η re-
stricted to a neighborhood Mx,δ, and by construction this η is uniform over M .
Later modifications to choose η smaller will only depend on the global geometry
of Q, but not on any details of M .

If moreover Mx,δ = M ∩B(x;δ) is the unique connected component of M in each
normal coordinate chart, then ϕ is injective globally on N≤η. This follows easily by
taking η< δ

2 . Then, any ν′ and ν that have the same image, must have base points
x ′, x separated by a distance less than δ, as ϕ= exp will only map onto points at
most η away from the base point. Therefore, x ′ must lie in B(x;δ) and in M , hence
on Graph(h) = Mx,δ. This case was already treated.

Finally, we will show that ϕ is surjective onto B(M ;η) when η < rinj(Q). Take
y ∈ B(M ;η), then M ∩B(y ;rinj(Q)) contains a nonempty compact set, so there
exists an x ∈ M such that d(y, M) = d(y, x). This distance must be realized by a
(unique) geodesic γ. We will derive a contradiction if γ′(0) 6∈ Nx , by showing that
then the minimum distance is not attained at x. Let (ξ1,ξ2) ∈ Tx M ⊕Nx be the
normalized tangent vector of γ′(0). By assumption we have ξ1 6= 0, so ‖ξ2‖ < 1. We
parametrize

γ :
[
0,d(y, x)

]→ TxQ : t 7→ t (ξ1,ξ2)

by arc length in normal coordinates, thus d(x,γ(t )) = t . Consider the Euclidean
distance in normal coordinates at x of γ(t ) to its vertical projection onto M =
Graph(h). This shows that

dE (γ(t ), M) ≤ ‖t ξ2 −h(t ξ1)‖ ≤ t ‖ξ2‖+o(t ‖ξ1‖)

as Dh(0) = 0 and h ∈C 2
b . The Euclidean distance is C -equivalent to the g -induced

distance, so we have

lim
t↓0

d(γ(t ), M)

d(x,γ(t ))
≤ lim

t↓0
C ‖ξ2‖+o(t )/t =C ‖ξ2‖.

By assumption ‖ξ2‖ < 1, so we can restrict to a small enough neighborhood B(x;δ)
such that 1 <C < ‖ξ2‖−1 and conclude that d(γ(t ), M) < d(x,γ(t )) for some t > 0,
which shows that a shorter (broken) geodesic from y to M exists. This completes
the contradiction and proves that ϕ is surjective.
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Finally, ϕ ∈ C k−1
b,u follows directly from the fact that it is the restriction of the

exponential map to N≤η ∈ C k−1 and in induced normal coordinate charts, we
have exp ∈C k−1

b,u . For ϕ−1 we use a formula and arguments similar to (A.2), show-

ing that if Dϕ−1 is uniformly bounded, then ϕ−1 ∈ C k−1
b,u holds as well. Now

Dϕ = 1 in induced normal coordinates at M , so by uniform continuity, there
exists some η> 0 such that Dϕ stays away from non-invertibility on N≤η, hence
Dϕ−1 stays bounded. This automatically implies that ϕ is a quasi-isometry with
C = max(‖Dϕ‖,‖Dϕ−1‖).

2.4 Smoothing of submanifolds

It is well-known, at least in the compact case, that r -normal hyperbolicity is a
persistent property under C 1 small perturbations of class C r , that is, the persisting
manifold is again r -normally hyperbolic and specifically C r , see [HPS77, Thm 4.1]
or [Fen72, Thm 2]. In other words, r -normal hyperbolicity is an ‘open property’ in
the space of C r systems with C 1 topology. Therefore, it is natural to only assume
that the original manifold is C r , but not smoother. Even if we start out with an
r -NHIM M ∈C∞, then after a perturbation we will generally only have a manifold
Mε ∈ C r . We could, however, also have tried to obtain this manifold Mε by first
perturbing M to an intermediate manifold Mε/2 and then perturb that manifold to
Mε. When applying a persistence theorem in the second step, we can only assume
the initial manifold to be C r .

This restricted C r smoothness assumption forces us to be careful about the precise
smoothness of each and every object. For example, a vector field on a C r manifold
can only be C r−1. This could probably be overcome by considering discrete-time
mappings instead of flows, but we need other smoothness improvements as well.
For example, we want to model the persisting manifold as a section of the normal
bundle N ∈C r−1 of the original manifold, which is not smooth enough. So here we
need a smoothing argument as well, cf. [Fen72, p. 205].

We solve these problems by constructing an approximate, smoothed manifold
Mσ ∈C∞. This allows M to be modeled as a small section of the normal bundle
Nσ of Mσ, so the system in a neighborhood of M can be transferred to Nσ while
preserving smoothness and normal hyperbolicity properties. With this construc-
tion we need not worry about smoothness in the proof, while the conclusions are
preserved up to C r smoothness. Uniform estimates must be preserved though,
so standard methods for constructing Mσ and Nσ do not readily apply or need a
careful analysis.
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First, we constructσ> 0 close approximations Mσ ∈C∞ to M by globalizing a local
chart construction of smoothing by convolution with a mollifier. Then we use the
fact that Mσ has uniformly bounded ‘second-order derivatives’ to show that for a
sufficiently small σ> 0, Mσ has a normal bundle diffeomorphic to a neighborhood
B(M ;δ) ⊂Q of uniform size.

We recall some standard techniques on Rn , see for example [Hör03, p. 25]. Let ϕν ∈
C∞

0 (Rn ;R≥0) be a mollifier function, with support in B(0;ν) and integral normalized
to one for any ν> 0. We also define a generic cut-off function χα,β ∈C∞(R; [0,1])
such that

χα,β(x) =
{

1 if x ≤α,

0 if x ≥β.
(2.31)

Note that ϕν, χα,β ∈ C k
b,u for any k ≥ 0, as they are constant outside compact

sets.

Lemma 2.34 (Smoothing by convolution).
Let r, δr > 0, f ∈C k≥0

b,u

(
B(0;r +2δr )⊂Rm ;Rn

)
, and fix l > k and ε> 0. If the mollifier

support radius ν> 0 is chosen sufficiently small, then f can be approximated by a
function f̃ such that

i. f̃ = f outside B(0;r +δr );

ii. f̃ ∈C l
b,u ∩C∞ on B(0;r ) and wherever f ∈C l

b,u ∩C∞;

iii. ‖ f̃ − f ‖k ≤ ε;

iv. ‖ f̃ ‖l ≤C (ν, l )‖ f ‖0 on B(0;r ), for some C (ν, l ) > 0.

Note that C (ν, l ) may grow unboundedly as ν→ 0 or l →∞.

Proof. A function that is C l+1
b is automatically C l

b,u , that is, uniformly continuous

up to one degree less, so we only need to prove f̃ ∈C l
b ∩C∞ for l shifted by one.

We construct f̃ by a combination of convolution and cut-off. Let χ̂(x)=χr,r+δr (‖x‖)
for x ∈Rm and define

f̃ (x) = (1− χ̂(x)) f (x)+ χ̂(x)
∫
Rm

f (x − y)ϕν(y) dy. (2.32)

When ν< δr /2, this f̃ is smooth on B(0;r ) and equal to f outside B(0;r +δr ).

The convolution approximates f in C k -norm, as for any 0 ≤ j ≤ k and x ∈ B(0;r +
δr )

‖D j (ϕν∗ f )(x)−D j f (x)‖ ≤
∫

B(0;ν)
‖D j f (x − y)−D j f (x)‖ϕν(y) dy ≤ εD j f (ν),



68 Chapter 2. Manifolds of bounded geometry

so by uniform continuity of f up to k-th derivatives, ν can be chosen small enough
such that ‖(ϕν∗ f )− f ‖k ≤ ε on B(0;r +δr ). The map x 7→ χ̂(x) is C k

b,u , so we can
estimate for j ≤ k

‖D j f̃ (x)−D j f (x)‖ ≤
j∑

i=0

(
j

i

)
‖Di χ̂(x)‖ ·‖D j−i (ϕν∗ f − f

)
(x)‖ ≤C j ε(ν).

Hence, we can construct f̃ close enough to f in C k -norm by choosing ν small
enough.

Uniform continuity of f̃ follows from uniform continuity of ϕν∗ f as χ̂ ∈C k
b,u on

its compact support. We find for 0 ≤ j ≤ k

‖D j (ϕν∗ f )(x2)−D j (ϕν∗ f )(x1)‖
≤

∫
B(0;ν)

‖D j f (x2 − y)−D j f (x1 − y)‖ϕ(y) dy ≤ εD j f (‖x2 −x1‖).

To estimate bounds for higher derivatives of f̃ within B(0;r ), we note that χ̂= 1
and let the derivatives act on ϕν in the convolution: these are bounded on the
compact domain of support, but bounds will depend on the size ν and degree l ,
while ‖ f ‖0 can be factored out.

The smoothing technique in Lemma 2.34 is formulated for Euclidean space. To
adapt it to manifolds in a uniform setting, we need to have uniformly sized coordi-
nate charts, as well as uniform behavior of the function under these smoothing op-
erations. We cannot simply use local coordinates and a partition of unity, because
the images on different charts cannot be glued together on the target manifold.
Instead, we will apply this smoothing operation sequentially on each coordinate
chart in a cover. We require a cover that is locally finite with a global upper bound
K on the number of charts covering a point, so that each point undergoes only a
bounded number of smoothing operations and hence the final smoothed manifold
Mσ differs by a controllable amount from the original M .

When the graph representation of M in one chart is modified, we need control
on how much the graph is modified in overlapping charts. To this end, we extend
Lemma 2.29 and Corollary 2.31.

Lemma 2.35 (Graph difference under coordinate transformations).
Let (Q, g ) be a smooth Riemannian manifold of bounded geometry. Let x1, x2 ∈Q
and let Txi Q = Hi ⊕Vi , i = 1,2 be splittings along horizontal and vertical perpen-
dicular subspaces with dim(H1) = dim(H2). Assume that d(x1, x2) < δ and that, for
i 6= j , Hi is represented in normal coordinates at x j by the graph of Li ∈L(H j ;V j )
with ‖Li‖ ≤ ζ.
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Let f1, g1 ∈C k≥1
b,u

(
B(0;δ) ⊂ H1;V1

)
with ‖ f1‖1,‖g1‖1 ≤ ε and ‖ f1‖k ,‖g1‖k ≤C .

When δ,ζ,ε> 0 are sufficiently small, then there exists a constant C̃ such that the
graphs of f1, g1 are (partially) represented by functions f2, g2 ∈ C k

b,u(H2;V2) and
‖ f2 − g2‖k ≤ C̃ ‖ f1 − g1‖k . This result is uniform for all x1, x2 ∈Q.

Remark 2.36. The functions fi , gi may only be defined on parts of B(xi ;δ); all
claims should thus be read as only for those points where the respective functions
are defined. ♦

Proof. Let (ξi ,ηi ) ∈ Hi ⊕Vi , i = 1,2 denote normal coordinates, decomposed in
the split directions at xi ∈ Q. By Lemma 2.29, transformations between these
coordinates are of the form (2.25), where ‖ϕ̃2,1‖k+1 can be made uniformly small
as δ,ζ→ 0.

We aim to apply the implicit function theorem to find a function f2 on B(x2;δ)
whose graph corresponds to that of a function f1 on B(x1;δ). We define

X = H1 ×V2, Y = H2 ×C k
b,u(H1;V1), Z = H2 ×V2, and

F : X ×Y → Z : (ξ1,η2), (ξ2, f1) 7→ϕ2,1(ξ1, f1(ξ1))− (ξ2,η2). (2.33)

Note that X and Z are isomorphic vector spaces, so we can apply the implicit
function theorem with Y as parameter space. Moreover, if we have two functions
f1, f2 whose graphs represent the same manifold on the intersection B(x1;δ)∩
B(x2;δ), then we have

F
(
p1 ◦ϕ−1

2,1

(
ξ2, f2(ξ2)

)
, f2(ξ2),ξ2, f1

)= 0

for all ξ2 ∈ H2 where this is defined, so the implicit function

G(ξ2, f1) = (
p1 ◦ϕ−1

2,1(ξ2, f2(ξ2)), f2(ξ2)
)

encodes the representation f2. We verify the conditions of the implicit function
theorem:

D1F
(
(ξ1,η2), (ξ2, f1)

)= (
OH +p1 ·Dϕ̃2,1 · (1+D f1) 0

OV ·D f1 1

)
is unitary when ϕ̃2,1 = f1 = 0. When δ, ε are sufficiently small, then these functions
are still small enough such that D1F is invertible with uniformly bounded inverse,
using Lemma A.1. Furthermore, F ∈C k

b,u , as the dependence on ξ1,η2,ξ2 is clearly

C k
b,u , while the omega Lemma [AMR88, p. 101] guarantees joint C k

b,u-dependence
on f1 as well. Note that compactness of the domain of f1 is not required, as we
assume these functions to be uniformly bounded and thus have compact image.
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The implicit function theorem has a corresponding formulation as a uniform
contraction principle. The latter formulation shows that the implicit function G
must be unique, while existence holds if ϕ̃2,1, f1,ξ2 are sufficiently close to zero,
due to a priori estimates. We apply Corollary A.4 as an extension of the implicit
function theorem to conclude that G ∈ C k

b,u . This means that f2 = p2 ◦G( · , f1) ∈
C k

b,u on suitable neighborhoods. Using formula (A.2) for DG , we can moreover
conclude that f2 depends Lipschitz on f1. This follows from explicit control on
the boundedness and continuity estimates, while variation with respect to f1

only introduces additional k+1-order derivatives of ϕ̃2,1, which can be assumed
uniformly bounded. Hence, there exists some constant C̃ such that ‖g2 − f2‖k ≤
C̃ ‖g1 − f1‖k and all estimates are uniform.

Corollary 2.37 (Graph size under coordinate transformations).
Under the assumptions of Lemma 2.35, there exist constants A,B such that we have
the estimate

‖ f2‖k ≤ A‖ f1‖k +B (2.34)

on amplification of the size of a graph under coordinate transformations.

Proof. We choose g1 = 0 in Lemma 2.35 and set A = C̃ . There exists a uniform
bound B such that ‖g2‖k ≤ B , and when ζ,ε are sufficiently small, then for δ′ = 9

10 δ

we have B(0;δ′) ⊂ Dom(g2). Hence, we easily deduce

‖ f2‖k ≤ ‖ f2 − g2‖k +‖g2‖k ≤ C̃ ‖ f1‖k +B

for all x ∈ B(0;δ′) where f1, f2 are defined.

Theorem 2.38 (Uniform smooth approximation of a submanifold).
Let M ∈ C k≥1

b,u be a uniformly immersed submanifold of a smooth Riemannian
manifold (Q, g ) of bounded geometry.

Then for each σ> 0 and integer l ≥ k, there exists a uniformly immersed subman-
ifold Mσ ∈ C l

b,u ∩C∞ and δ > 0 such that ‖Mσ−M‖k ≤ σ with respect to normal
coordinate charts of radius δ along both M and Mσ. If M is a uniformly embedded
submanifold, then so is Mσ.

The proof relies on finding a (uniformly locally finite) cover of M and then in
each chart make smooth the graph representation h•. All estimates are uniform,
independent of the point x ∈ M , hence so is the final result. Smoothing is done
sequentially in each chart, so we must be careful to check how smoothing in one
chart influences the graph representation in other charts. This makes the technical
estimates quite involved, but the basic idea is that we have uniform control on the
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size of changes in each h• by the convolution kernel parameter ν in Lemma 2.34,
as well as the size of this change in other charts.

Proof. This proof contains a lot of interdependent size estimation parameters.
Giving explicit choices and dependencies would clutter the proof needlessly, so
we make a few remarks on beforehand. Any δ’s denote sizes of normal coordinate
balls and ε’s are used for sizes of (changes in) functions in these coordinates. The
parameter ν from Lemma 2.34 depends on most of the foregoing, while only the
C l bound (but not the C k bound) of Mσ depends on the choice of ν. The various
ε’s will be fixed later, and depend on σ and global properties of M and (Q, g ), but
not on δ’s. Also note that everything is independent of points x ∈ M ,Q.

We fix 2δ1 = δ2 = 1
2 δ3, ε∞ = 2ε0, and C∞ = C0 + 1 and choose δ3, ζ, ε∞, εϕ > 0

sufficiently small such that all the following statements hold true.

i. By Proposition 2.5 and Lemma 2.25, distances and metrics are C = 2 equivalent
on balls B(x;δ3), and dQ , dM are locally equivalent, all up to order l +1.

ii. By assumption of M ∈C k
b,u , we have for each x ∈ M the representation Mx,δ3 =

graph(hx ) with ‖h•‖1 ≤ ε0 and ‖h•‖k ≤C0.

iii. By Corollary 2.26, there exists a uniformly locally finite cover
⋃

i≥1 Mxi ,δ2 of
M with all xi separated by at least δ1, the balls Mxi ,δ1 already covering M ,
and bound K on the maximum number of Mxi ,δ2 intersecting any Mx,δ2 .
Formula (2.10) shows that K depends on the ratio δ2/δ1, but does not increase
when δ3 → 0.

iv. By Lemma 2.29, all coordinate transition maps ϕ2,1 between any x1, x2 ∈
Q, d(x1, x2) < δ3 are C l bounded. When the graph representations Hi =
Graph(Li ) are bounded by ζ> 0, then these are of the form ϕ2,1 =OH ⊕OV +
ϕ̃2,1, with ‖ϕ̃2,1‖l+1 ≤ εϕ. And by Corollary 2.31, this holds for the coordinate
transformations between the xi chosen for the cover of M .

v. By Lemma 2.35, there exists a constant C̃ that estimates the graph change
under coordinate transformations from the previous point, when ‖ f ‖1,‖g‖1 ≤
ε∞ and ‖ f ‖k ,‖g‖k ≤C∞, while Corollary 2.37 holds on balls of sizeδ′ = 9

10 δ3 >
δ2.

vi. If M was a uniformly embedded submanifold, then let Mx,δ3 be the unique
connected component of M in B(x;δ3) for each x ∈ M .

Let M j denote a modification of M after applying smoothing operations in the first
j charts, and let h j

i denote the graph representation of M j in chart i . So, initially we

have M 0 = M and h0
i = hi . Note that the sequence {h j

i } j≥1 is constant after some
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finite index j (i ), since it is changed at most K times by smoothing in overlapping
charts. Thus, the final graphs are given by h∞

i = h j (i )
i .

Initially, we have ‖h•‖1 ≤ ε0 and ‖h•‖k ≤C0, and we assume that throughout the
sequential smoothings it holds for all i , j that ‖h j

i ‖1 ≤ ε∞ and ‖h j
i ‖k ≤ C∞, and

therefore the final h∞
i satisfy these estimates as well. Let ε0 be sufficiently small,

such that by a mean value theorem estimate

‖h•(ξ)‖ = ‖h•(ξ)−h•(0)‖ ≤ ‖Dh•‖‖ξ‖ ≤ ε0 ‖ξ‖,

we have B(0;δ2) ⊂ Dom(h•).

We apply the convolution smoothing Lemma 2.34 with some choice r > δ1 and
r +2δr < δ2 to sequentially make smooth hi−1

i in the coordinate chart B(xi ;δ3)

to obtain hi
i ∈C l

b,u ∩C∞ on B(0;r ). The h j
• representations of the M j

x•,δ3
overlap,

so we must be careful that (at most) K repeated smoothing operations keep the
h j
• within the bounds required to apply this lemma, while at the same time we

must ensure that each point on the sequence of manifolds M j is smoothed to C l
b,u

at some stage, even though M j changes to Mσ = M∞ throughout the sequential
smoothings.

Let us first show that each point is smoothed. We can keep track of each original
point x ∈ M as a sequence of points x j ∈ M j throughout the smoothings, and
once M j is smoothed around x j , then the convolution lemma guarantees that
smoothness is preserved around the sequence x j under further smoothing in other
charts. Let Φ : M ∼−→ Mσ denote the diffeomorphism that assigns to x ∈ M the
final point x∞ ∈ Mσ. Each point x ∈ M is element of a graph hi in at least one
ball B(xi ;δ1), so if the corresponding sequence of points x j ∈ M j moves less than
r −δ1, then it is smoothed in B(xi ;r ). Therefore, we choose ν in Lemma 2.34 small
enough, such that

‖ f̃ − f ‖k ≤ ε(ν) < r −δ1

2K
.

The factor 2 K accounts for at most K charts in which x j is moved and C = 2 to
correct for equivalence of distance in charts. Hence, the manifold is smoothed to
C l

b,u ∩C∞ at each point.

Next, we show that each h j
i is defined at least on B(0;r +2δr ) and satisfies the

bounds ε∞ and C∞. Initially, we have ‖hi‖1 ≤ ε0, ‖hi‖k ≤ C0, and Graph(hi ) =
Mxi ,δ3 is well-defined in B(xi ;δ3). So for ε0 ≤ 1

10 , say, we must have ‖hi‖0 ≤ 1
10 δ3

and Dom(hi ) ⊃ B(0; 11
10δ2). The only reason that the domain of some h j

i decreases
is if either the graph moves outside of B(0;δ3) or the modified manifold cannot be
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represented by a graph anymore. The latter cannot occur if Dh j
i stays bounded,

while the former can be controlled by bounding ‖h j
i ‖0. Both can be controlled by

estimating the C 1 changes h j
i −h j−1

i . First, in coordinate chart i = j we can directly

use the convolution smoothing Lemma 2.34 to conclude that ‖h j
i −h j−1

i ‖1 ≤ ε(ν).
In any other chart i 6= j , this change is amplified by a bounded factor C̃ , as per
Lemma 2.35, so we have

‖h j
i −h j−1

i ‖1 ≤ C̃ ε(ν).

When we choose ν small enough that

K C̃ ε(ν) < min
(
ε0 , 1

10 δ3 ,1
)

holds, then this leads to

‖h j
i ‖0 ≤ ‖hi‖0 +K C̃ ε(ν) ≤ 2

10
δ3,

‖h j
i ‖1 ≤ ε0 +ε0 = ε∞,

‖h j
i ‖k ≤ ‖hi‖k +K C̃ ε(ν) ≤C0 +1 =C∞.

This shows that indeed the assumed bounds ε∞ and C∞ hold, and that h j
i is defined

at least on the ball B(0;r +2δr ).

The sequential smoothings create and preserve C l
b,u ∩C∞ smoothness, while

every ‘point’ x j ∈ M j is touched by these operations. Moreover, Lemma 2.34
and Corollary 2.37 together guarantee that the smoothing in each chart keeps

‖h j
i ‖l ≤ A‖h j−1

j ‖0 +B ≤ A C (ν, l )‖h j−1
j ‖0 +B ≤ A C (ν, l )ε∞+B

bounded with a uniform estimate, at least on charts B(xi ;δ2).

Finally, we want to estimate the sizes and distance between the graphs h•, h∞• in
split coordinate charts of radiusδ= δ2−r along either M or Mσ. If x is a point either
on M or Mσ, then it is contained in at least one ball B(xi ;r ) and B(x;δ) ⊂ B(xi ;δ2).
If we also set ε∞ ≤ ζ and consider the coordinate transformation ϕ from normal
coordinates at xi to x, then Lemma 2.35 and Corollary 2.37 hold and can be used
to estimate

‖h∞
x ‖l ≤ A‖h∞

i ‖l +B and ‖h∞
x −hx‖k ≤ C̃ ‖h∞

i −hi‖k ≤ C̃ 2 K ε(ν)

for all points in the domains of hx and h∞
x −hx within B(0;δ). So if we set C̃ 2 K ε(ν)<

σ, then Mσ is C k close to M in normal coordinate charts of radius δ along either
M or Mσ, while at the same time Mσ ∈C l

b,u ∩C∞.
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If M is a uniformly embedded submanifold, then δ3 was chosen small enough
such that Mx,δ3 is the unique connected component of M in B(x;δ3) for any x ∈ M .
We now show that the same holds for Mσ with balls of radius δ. Let x̃ ∈ Mσ be
arbitrary and x = Φ−1(x̃) ∈ M . We take ỹ ∈ Mσ∩B(x̃;δ) and want to prove that
ỹ ∈ (Mσ)x̃,δ. By the uniform estimates made before, both Mx,δ2 and (Mσ)x̃,δ2 can
be represented by graphs hx ,h∞

x respectively in coordinates B(0;δ2) ⊂ Tx M ⊕Nx .
We have y =Φ−1(ỹ) ∈ B

(
x̃;δ+ (r −δ1)

) ⊂ B
(
x;δ+2(r −δ1)

)
, so y ∈ B(x;δ2)∩M =

Mx,δ2 = Graph(hx ).

By the construction of Mσ we have x ∈ B(xi ;r ) in some chart i , but also (Mσ)x,δ2 =
Graph(hx ). Let y ∈ B(x;δ)∩Mσ; we want to prove that y ∈ (Mσ)x,δ = Graph(h∞

x ).
Since y ∈ B(x;δ), then for its original it must hold that

y0 ∈ B
(
x;δ+ (r −δ1)

)⊂ B
(
xi ;r +δ+ (r −δ1)

)
,

hence y0 ∈ Mxi ,r+δ+(r−δ1) = Graph(hx ). Following the change of M to Mσ in coor-
dinates around x, we see that y ∈ Graph(h∞

x ) must hold.

2.5 Embedding into a trivial bundle

Let π : N → M be the normal bundle over M immersed in (Q, g ), a Riemannian
manifold of bounded geometry. We are going to construct a trivial bundle N over
M that contains N and preserves uniform properties. As a second step, we extend a
normally hyperbolic vector field to this trivial bundle setting. This procedure is also
alluded to in [Sak94, p. 333–334], but especially in the case of bounded geometry
requires a more careful inspection.

Theorem 2.39 (Uniform embedding of a normal bundle in a trivial bundle).
Let M ∈ C k≥1

b,u be a uniformly immersed submanifold of the bounded geometry

manifold (Q, g ). Then there exists an embedding λ : N ,→ N of the (nontrivial)
normal bundle π : N → M into a larger, trivial vector bundle N = M ×Rn . The
embedding map λ ∈C k−1

b,u is a quasi-isometry when restricted to N≤η for any η> 0

and the splitting N =λ(N )⊕N⊥ is C k
b,u , where N⊥ is chosen perpendicular to λ(N )

according to the standard Euclidean metric on Rn .

Note that λ only has smoothness C k−1 since N ∈C k−1 is the normal bundle of M ∈
C k . The image bundleλ(N )⊂ N has smoothness C k , though, since its construction
only involves the immersion M → Q. This increase of smoothness is possible
because we do not view λ(N ) as a normal bundle with respect to the differentiable
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structure of Q anymore. This can be compared to the remark in [Fen72, p. 205] and
the reference to [Whi36, Lem. 23] therein.

The idea of the proof is to use normal coordinate charts of Q covering M to
construct local trivialization maps of N . In such charts B(x;δ), we have, from
Definition 2.21, Mx,δ = expx

(
Graph(hx )

) ⊂ M and trivialization maps τx for the
vector bundle trivialization diagram

N ⊃ N |Mx,δ

π

��

τx // Mx,δ×Nx

p1

}}
M ⊃ Mx,δ

(2.35)

Then we take a uniformly locally finite cover of M by sets Mxi ,δ. The trivializations
on each Mxi ,δ induce a spanning set of sections, i.e. a frame. Using the uniformity
of the cover, we can globally glue these frames together to obtain rank(N ) = n =
(K +1) rank(N ). Here, K is the maximum number of overlapping charts in the
cover. This identifies λ(N ) as the subbundle of N = M ×Rn spanned by these glued
frames.

Proof. Let δ be Q-small as in Definition 2.8, as well as sufficiently small such
that M is given as the graph of h• : T•M → N• in normal coordinates as in Defini-
tion 2.21. For any x ∈ M we have a trivialization map

τx = (expx , p2)◦Dexp−1
x : N |Mx,δ

∼−→ Mx,δ×Nx , (2.36)

where we canonically identified T(TxQ) ∼= (TxQ)2 and apply expx only on the base
TxQ and p2 on the fibers of T(TxQ). In a normal coordinate representation (see
page 55, Figure 2.2 on the right) this just means that we project the normal fiber Nx ′

at any point x ′ = expx (ξ,hx (ξ)) ∈ Mx,δ onto Nx . By Corollary 2.31 this projection is
approximately orthogonal and bounded away from non-invertibility for small δ,
henceτ• ∈C k−1

b,u and it is a quasi-isometry, but only on a finitely sized neighborhood
N≤η|Mx,δ since it acts linearly on the fibers of N |Mx,δ . We then choose a uniformly
locally finite cover

⋃
i≥1 Mxi ,δ of M such that the sets Mxi ,δ/2 already cover M .

Next, we prove the existence of a finite set of C k−1
b,u sections that everywhere span

N . Let G = (V ,E) be the (possibly infinite) graph whose vertices are sets in the
cover, V = {Mxi ,δ}i≥1, and edges are added between overlapping sets, i.e. E =
{(A,B) ∈ V 2 | A ∩B 6= ;}. Each set in the cover overlaps at most K other sets, so
the maximal degree of G is bounded by K . Therefore, we can ‘color’ the vertices
of G with numbers {0, . . . ,K } such that no two connected vertices have the same
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number. Sequentially for each i ≥ 1, set the number of vertex i to one of the
numbers {0, . . . ,K } that is not already taken by its neighbors. We thus obtain a map
c : N→ {0, . . . ,K } such that each preimage c−1(k) labels a collection of mutually
disjoint sets of the cover.

Let n denote the rank of N and let N = M ×Rn be a trivial bundle with rank
n = n (K +1). On each Mxi ,δ we have an orthogonal frame ei of n sections that span
N , induced by the local trivialization, while on N we have the global orthogonal
frame e of standard unit sections. The latter can also be viewed as a (K+1)-tuple of
n-frames {ek }0≤k≤K onRn = (Rn)K+1. Since all spaces have (the standard Euclidean)
inner products, the dual frames can be canonically identified as the inverse e∗i =
e−1

i : Nxi → RN and a projection e∗k = pk : Rn → Rn onto the k-th n-tuple of all n
coordinates respectively. Let the functions χi be a square-sum partition of unity
subordinate to the cover according to Corollary 2.18 and define the embedding

λ : N≤η ,→ N≤η : (m,ν) 7→ ∑
i≥1

χi (m)ec(i ) e∗i τxi (m,ν). (2.37)

This mapping is C k−1
b,u as a composition of such maps (and can be extended, albeit

non-boundedly so, to a map N ,→ N ). The τxi are quasi-isometries, while ec(i ) e∗i
is isometric on each Mxi ,δ. Each frame ec(i ) is orthogonal to the frame of any
overlapping set Mx j ,δ since c( j ) 6= c(i ) and the χi squared sum to one. Thus∑

i χi ec(i ) e∗i is an isometry, and so λ is a quasi-isometry.

Let p and p⊥ = 1−p denote the projections from N onto N and N⊥, respectively.
One can verify that

p = ∑
i , j≥1

χi χ j ec(i ) e∗c( j ) (2.38)

is the projection onto N by noting that λ(N ) equals the image of
∑

i≥1χi ec(i ), while
the identities

e∗k el = δkl and
∑
i≥1

χ2
i = 1

can be used to show that p2 = p. Formula (2.38) shows that both p, p⊥ ∈ C k
b,u ,

hence the splitting N =λ(N )⊕N⊥ is C k
b,u .

Next, we must extend a vector field v on N to the larger bundle N . There are
additional directions along the fibers of N⊥ and the extended vector field v must
be such that it is normally hyperbolic in these directions as well. On the other
hand, the uniform boundedness of v must be preserved. We do not assume here
that M is the exact invariant manifold, since these results shall be applied after
application of Theorem 2.38, which has smoothed and slightly altered M such that
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it is not the original NHIM anymore. The extension v will keep N invariant and is
identical to v on N , so in the end, we can conclude that the perturbed manifold is
contained in N and restrict to the original setting again.

Lemma 2.40 (Normally hyperbolic extension of a vector field).
Let λ : N ,→ N = M ×Rn be a trivializing embedding of vector bundles as in Theo-

rem 2.39 and let v ∈C l ,α
b,u be a vector field on N with l +α≤ k −2. Let N |≤η be the

restriction to some radius η > 0. Then v can be extended to a vector field v on N ,
such that v is C l ,α

b,u on N≤η, leaves N invariant, and contracts at a given exponential

rate ρ < 0 along the fiber direction of N⊥ towards N ⊂ N .

To extend v to a vector field v on N with the required properties, we must do two
things. First of all, v must be extended from N throughλ to the whole of λ(N )⊕N⊥

and secondly, a normal component along the fibers of N⊥ must be added to make v
contracting, thus normally hyperbolic in that direction. The idea can be expressed
in local coordinates (m, y, z) ∈λ(N )⊕N⊥ as

v(m, y, z) = v̂(m, y, z)+ v⊥(m, y, z) = (
v(m, y),ρ z

)
,

where v̂(m, y, z) = v(m, y) points ‘horizontally’ along λ(N ) and v⊥(m, y, z) = ρ z is
the ‘vertical’ component along the N⊥ fibers. By construction, the latter has the
required contraction property in the N⊥ direction, while it preserves λ(N )⊕ {0} as
an invariant manifold. We shall make this intuitive idea rigorous by introducing
an appropriate bounded connection to lift v to v̂ for z 6= 0; the second term v⊥ is
canonically defined.

Proof. The embedding map λ is a quasi-isometry and of class C k−1
b,u , hence the

pushforward λ∗(v) = Dλ · v ◦λ−1 is a C l ,α
b,u vector field on λ(N ) ⊂ N . From now on

we identify N with λ(N ) as well as v with its pushforward.

Let g be the standard Euclidean metric on N and ∇ the compatible, trivial, flat
connection. The restricted metric g⊥ = g |N⊥ is preserved by the connection ∇⊥ =
p⊥ ·∇. We create the pullback bundle

E =π∗
N (N⊥) = {

(y, z) ∈ N ×N⊥ ∣∣πN (y) =πN⊥(z)
}∼= N ⊕N⊥ = N .

Note that we identify this pullback of N⊥ along the projection πN : N → M with
the vector bundle p : N → N , that is, we view N as the base manifold and N as
bundle over N with fibers π−1

N (y)= N⊥
πN (y). We naturally endow E with the pullback

connection ∇̂ =π∗
N (∇⊥). With this connection, v can be lifted to a unique vector

field v̂ ∈X(N ) that is horizontal along N on E ∼= N , and thus the flow of v̂ preserves
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the norm along the fibers of E , that is, v̂ · ‖ ·‖E = 0. More heuristically, we can
say that the pullback πN : N → M introduces a trivial additional base coordinate
y ∈ Nm to the bundle πN⊥ : N⊥ → M .

To prove that v̂ ∈C l ,α
b,u , we first recover an explicit representation of the Christoffel

symbols of ∇̂ in terms of trivial coordinates on E ∼= N = M ×Rn , and then a repre-
sentation for the lifted vector field v̂ . Let s ∈ Γ(N ), s ≡ s0 ∈Rn be a constant section.
Let m ∈ B(m0;δ) denote normal coordinates in M . Define s⊥ = p⊥ · s ∈ Γ(N⊥) and
ŝ =π∗

N (s⊥) ∈ Γ(E). Let X̂ ∈ TN a tangent vector in the base of E and X = DπN (X̂ ) ∈
TM . Then we find for the covariant derivative ∇̂ on E

∇̂X̂ ŝ =π∗
N

(
p⊥ ·∇X (p⊥ · s)

)=π∗
N

(
p⊥ ·X i

[
p⊥ ∂s

∂mi
+ ∂p⊥

∂mi
s
])

.

We read off that the Christoffel symbols are given by p⊥ ∂p⊥

∂mi (DπN )i , so they are
C k−1

b,u . The horizontal lift

v̂(m, y, z) = v(m, y)−p⊥ · (
∂p⊥

∂mi
z)(DπN v(m, y))i , (2.39)

then, is also C l ,α
b,u since all functions involved are at least C l ,α

b,u in these coordinates,

and z is bounded on N≤η.

We define v⊥ as the Euler vector field along the fibers of N ∼= E , taking values in
Vert(E). Each fiber E(m,y) = N⊥

m is a linear space, so the tangent space at any point
is canonically identified with the fiber itself, which allows us to canonically define

v⊥ : N → TN : (m, y, z) 7→ ρ z ∈ Tz N⊥
m = Vert(E)(m,y,z). (2.40)

This vector field leaves N ⊂ N invariant, while generating a flow that attracts
towards N at the exponential rate ρ < 0. It is clear that v⊥ ∈C k

b,u for any k when z

is bounded on N≤η.

We conclude that the vector field v = v̂ + v⊥ indeed leaves N invariant. Since v̂ is
neutral in the fiber directions of E and v⊥ contracting at rate ρ, it follows that v is
contracting with rate ρ as well. The combined vector field v is defined in terms of
v and other functions that are all at least C l ,α

b,u , hence v ∈C l ,α
b,u .

2.6 Reduction of a NHIM to a trivial bundle

Having set up the theory of bounded geometry spaces, we are finally in a position
to reduce a general normally hyperbolic system to the setting of a trivial bundle.
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That setting is required to apply our basic persistence Theorem 3.2 for NHIMs.
Let M ∈ C k,α

b,u with k ≥ 2 and 0 ≤ α ≤ 1 be a uniformly immersed or embedded
submanifold in (Q, g ) of bounded geometry and furthermore assume that M is an
r -NHIM with r = k +α for the vector field v ∈C k,α

b,u on Q.

Remark 2.41. The bounded smoothness requirement k ≥ 2 is dictated by Theo-
rem 2.33. It is not present in the compact case where the normal bundle can be
“jiggled slightly” [Fen72, Prop. 2] to make it sufficiently smooth to model a C k flow
for k ≥ 1. Hypotheses 2 and 3 in [BLZ99, p. 987] require similar conditions in the
noncompact setting in Banach spaces, see also the discussion after Corollary 3.5
and Remark 3.13. I have not investigated in detail whether the C 2

b requirement is
necessary, or if M ∈ C 1

b,u could be modeled as a sufficiently small section of the
normal bundle of a smooth approximate manifold. ♦

We reduce this system to a trivial bundle in the following steps:

i. approximate M by a smoothed manifold Mσ;

ii. construct a tubular neighborhood of M in the normal bundle N of Mσ;

iii. embed N into a trivial bundle N = Mσ ×Rn , and construct an extended,
normally hyperbolic vector field v ;

iv. after application of the basic persistence theorem in the enlarged bundle,
push the results to the original setting and conclude that M persists.

Proof of Theorem 3.1. Assume the hypotheses of the theorem. First, Theorem 2.38
gives a smooth, C k -close approximation Mσ ∈C l

b,u of M , where the choice l = k+10

suffices and σ> 0 will be fixed later. The C k,α bounds of Mσ are uniformly close
to those of M for all σ small. Then, Theorem 2.33 says that there exists a tubular
neighborhood ϕ : N≤η ∼−→ B(Mσ;η) where the size η> 0 depends only on the C 2

bounds of Mσ. These bounds are of the same order as those of M , independent of
σ. Hence, we can chooseσ so small that ‖Mσ−M‖k ≤σ≤ η

2 and the neighborhood
B(M ;η/2) is fully within the tubular neighborhood N≤η of Mσ. The mapϕ is a C l−1

bounded (local) diffeomorphism and a quasi-isometry, so by the reasoning4 before
Definition 2.32, a pullback by ϕ does not change the normal hyperbolicity growth
rates of the vector field v . The bounded continuous splitting (1.8) of TMQ is also
preserved.

4This is similar to Fenichel’s argument in [Fen72, p. 203] that normal hyperbolicity is independent
of a choice of metric when M is compact.
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Next, as a result of Theorem 2.39, N is embedded into the trivial bundle

λ : N ,→ N = Mσ×Rn = N ⊕N⊥.

The embedding is a quasi-isometry and so preserves hyperbolicity properties of v .
The extended vector field v ∈C k,α

b,u on N≤η is constructed in Lemma 2.40 as a lift of v ,
so the flow preserves N≤η and intertwines with the projection onto N , while in the
perpendicular direction along the fibers of N⊥ it has the same normal hyperbolicity
properties as v . Boundedness of the invariant splitting TMQ = TM ⊕N+⊕N− is
also preserved under these quasi-isometries. The additional directions along N⊥

are stable and invariant, and have bounded projections by construction. Thus, M
is an r -NHIM for v as well.

The invariant manifold M is given by the graph of a section h ∈ Γ(N ) ⊂ Γ(N ), and
from Theorem 2.38 it follows that ‖h‖k ≤σ while h ∈C k,α

b,u . By Lemma 2.27, X = Mσ

has bounded geometry of order l −2 = k +8, which is sufficiently smooth for the
conditions of Theorem 3.2, while Y =Rn is clearly a Banach space. Hence, we are
in the trivial bundle setting, and all conditions are satisfied.

A small perturbation of v in the original setting in Q corresponds to a small
perturbation of v ∈X(N ), while N≤η is preserved under the flow by construction.
Therefore, after application of Theorem 3.2 we recover a unique persistent invariant
manifold M̃ and by construction M̃ = Graph(h̃) ⊂ N , so we can restrict the system
to N . Then it can be transferred back to Q under the quasi-isometries of the
embedding λ : N ,→ N and the tubular neighborhood map ϕ : N≤η→ B(M ;η) ⊂Q.

All size estimates can be transferred between the settings (with bounded factors)
due to the near isometry and uniform C k,α boundedness of ϕ and λ. We conclude
that M̃ is a C k,α

b,u submanifold of Q for appropriate estimates σ,ε, and δ, where σ
must be chosen sufficiently small as well to make ‖M̃ −M‖k−1 small.

This completes the reduction from the general setting in bounded geometry to that
of a trivial bundle and proves Theorem 3.1.



Chapter 3

Persistence of noncompact
NHIMs

This chapter contains the main proof of persistence of noncompact normally
hyperbolic invariant manifolds, formulated in Theorem 3.2. This theorem is formu-
lated in a specific setting: we assume that the invariant manifold M is (nearly) the
zero section of a trivial vector bundle. This is a slightly more general formulation
than in [Hen81; Sak90]. There, it is assumed that in a product X ×Y of Euclidean
(or Banach) spaces, the invariant manifold M is given as the graph of a function
h : X → Y . We shall also assume that Y is a vector space, but we let X instead be a
Riemannian manifold that is finite-dimensional and has bounded geometry. In
Chapter 2 on bounded geometry, we extended the result obtained here to a setting
where M is assumed to be a general submanifold of a Riemannian manifold (Q, g )
that is again finite-dimensional and of bounded geometry. We assume the basic
statements from Section 2.1 to be known.

This chapter is organized as follows. First we state the two main theorems; both
the general version with M a submanifold of Q and the X ×Y trivial bundle version
to be proved in this chapter. We provide detailed remarks on these theorems
and compare them to the literature. Then we present an outline of the proof
of Theorem 3.2. Section 3.3 presents some thoughts on replacing the classical
compactness by uniformity conditions, and presents examples that indicate the
necessity of various assumptions we impose.

In Section 3.4 we transform the (still somewhat geometrical) formulation of Theo-
rem 3.2 into a more explicit setup suitable for analysis. In the subsequent section,
we prove (with relatively little work) the existence and uniqueness of the persistent

81
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manifold M̃ = Graph(h̃). It automatically follows that h̃ is bounded and uniformly
Lipschitz.

The last sections are devoted to the tougher job of proving C k,α smoothness,
exhausting the spectral gap. A formal scheme is set up, and we work out the
details for C 1 smoothness. Higher, C k smoothness follows along the same lines
by induction. The addition of Hölder continuity to obtain C k,α smoothness is
included as a natural extension to (uniform) continuity that slightly simplifies the
spectral gap estimates. See the proof outline and the introduction of Section 3.7
for more details.

3.1 Statement of the main theorems

The main theorem on persistence was already formulated in the introduction. We
state it again to directly compare it to the trivialized bundle version of Theorem 3.2.
The main theorem is reduced to this trivialized version in Section 2.6; in this chapter
we shall prove the latter version. Then we formulate corollaries of these theorems,
both to present simpler versions and to compare our result to well-known results
from the literature.

Theorem 3.1 (Persistence of noncompact NHIMs in bounded geometry).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (Q, g ) be a smooth Riemannian manifold of

bounded geometry and v ∈ C k,α
b,u a vector field on Q. Let M ∈ C k,α

b,u be a connected,
complete submanifold of Q that is r -normally hyperbolic for the flow defined by v,
with empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η> 0 there exists a δ> 0 such that for any vector field
ṽ ∈C k,α

b,u with ‖ṽ − v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood
of M, such that M̃ is diffeomorphic to M and invariant under the flow defined by
ṽ. Moreover, M̃ is C k,α

b,u and the distance between M̃ and M can be made arbitrarily

small in C k−1-norm by choosing ‖ṽ − v‖k−1 sufficiently small.

Theorem 3.2 (Persistence of noncompact NHIMs in a trivial bundle).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (X , g ) be a smooth, complete, connected

Riemannian manifold of bounded geometry and Y a Banach space. Let vσ ∈C k,α
b,u be

a family of vector fields defined on a uniformly sized neighborhood of the zero-section
in X ×Y with family parameter σ ∈ (0,σ0]. Let the submanifold Mσ = Graph(hσ)
be given as the graph of a function hσ ∈C k,α

b,u (X ;Y ) and let Mσ be an r -NHIM with
rank(E+) = 0 for the flow defined by vσ where all estimates are uniform in σ and
additionally ‖hσ‖2 ≤σ holds.
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Then for each sufficiently small η> 0 there existσ1, δ> 0 such that for anyσ ∈ (0,σ1]
and any vector field ṽ ∈ C k,α

b,u with ‖ṽ − vσ‖1 < δ, there is a unique submanifold
M̃ = Graph(h̃), h̃ : X → Y , ‖h̃‖0 ≤ η such that M̃ is invariant under the flow defined
by ṽ. Moreover, h̃ ∈C k,α

b,u and ‖h̃‖k−1 can be made arbitrary small by choosing ‖h‖k

and ‖ṽ − vσ‖k−1 sufficiently small.

Remark 3.3. Let us make some remarks on these theorems.

i. The spectral gap condition contained in Definition 1.9 of r -normal hyper-
bolicity is essential to the proof. The C k,α-smoothness result is optimal, see
Section 1.2.1.

ii. In Theorem 3.1, both M and M̃ are assumed to be (non-injectively) immersed
according to Definition 2.21. If M is assumed uniformly embedded accord-
ing to Remark 2.22, then M̃ will be uniformly embedded again when δ is
sufficiently small.

iii. The additional family parameter σ in Theorem 3.2 is required to reduce Theo-
rem 3.1 to this case. If the unperturbed manifold is given as M = X × {0}, i.e.
the zero section, then the family vσ can simply be taken constant and all σ
dependence can be dropped from the formulation.

iv. We only obtain a C k−1-norm estimate for the perturbation distance of M̃ away
from M , even though M̃ ∈ C k,α is preserved. This is due to a linearization
along Y and the smoothing convolution used to restore C k,α smoothness after
linearization. See Section 3.4, in particular remarks 3.13 and 3.15, for more
details. I fully expect it to hold that M̃ and M are C k,α close when ‖ṽ −v‖k,α is
small.

v. The minimum smoothness requirement k ≥ 2 is a stronger assumption than
k ≥ 1 in the well-known compact case. This seems to be intrinsic to the
noncompact case. If the spectral gap condition only holds for some 1 ≤ r <
2, then we can still obtain a perturbed manifold M̃ . This manifold M̃ will
generally not have better than C r smoothness, though.

vi. We allow both values α = 0 and α = 1, where α = 0 is considered an empty
condition (besides the boundedness and uniform continuity). Thus, if r =
k + 1 satisfies the spectral gap condition (1.10), then we can choose both
C k,1 or C k+1,0 as resulting smoothness for M̃ , if M had the same smoothness.
Thus, if M was sufficiently smooth, then the choice M̃ ∈C k+1,0 yields the best
result. Note, though, that by Rademacher’s theorem, Lipschitz functions are
differentiable almost everywhere, so the difference is not that big.
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Finally, it should also be noted that the spectral gap condition is a strict
inequality on r , so if we can choose r = k integer, then we can also find an
α> 0 such that r ′ = k +α satisfies the spectral gap as well. This shows that in
this context C k

b,u ‘integer’ smoothness really is a special case of C k,α
b,u ‘fractional’

smoothness.

vii. Both Riemannian manifolds Q in Theorem 3.1 and X in Theorem 3.2 are
assumed to be finite-dimensional; multiple results on bounded geometry
crucially depend on this fact. On the other hand, we allow Y to be an infinite-
dimensional Banach space simply because everything naturally generalizes
to that setting. Note that we do not allow semi-flows as in [Hen81; BLZ08], so
the case that Y is infinite-dimensional may not be that useful.

viii. These results are weaker than those in the well-known compact case in a
few aspects. First of all, we use a stricter notion of normal hyperbolicity, see
Remark 1.8. This seems to be a fundamental restriction of the Perron method;
the more general definition of normal hyperbolicity is successfully applied
to noncompact manifolds in [BLZ08]. Secondly, we only include the stable
normal bundle E−. Adding the unstable bundle E+ as well should be possible,
see Section 4.4 for more details.

ix. While we do prove that the NHIM persists into a new invariant manifold M̃ , we
do not prove that M̃ is again normally hyperbolic. I fully expect this to be true
though: the perturbed flow satisfies slightly perturbed exponential growth
conditions and the spectral gap is an open condition, so should be preserved
under sufficiently small perturbations. The difficulty lies in proving that M̃
again has a continuous invariant splitting (1.8) with bounded projections.
This is one possible reason for breakdown of normal hyperbolicity [HL06]. ♦

These two theorems reduce to the corollaries formulated below, when M is com-
pact or when Q = Rm+n with standard Euclidean metric and M = Rm × {0}. The
statements then significantly reduce in complexity, and are comparable to well-
known results.

Firstly, the case that M is compact. Then we can take a (pre)compact neighborhood
B(M ;ε) ⊂ Q of M and thus conclude that bounded geometry holds on B(M ;ε),
ignoring irrelevant boundary problems. Any C k,α function on B(M ;ε) is automat-
ically C k,α

b,u , so Theorem 3.1 reduces to the following corollary. For simplicity we

leave out α-Hölder continuity and the C k distance estimate between M and M̃ .



3.1. Statement of the main theorems 85

Corollary 3.4 (Persistence of compact NHIMs).
Let k ∈Z≥2, let (Q, g ) be a smooth Riemannian manifold and v ∈C k be a vector field
on Q. Let M ∈ C k be a connected, compact submanifold of Q that is k-normally
hyperbolic for the flow defined by v, with empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η> 0 there exists a δ> 0 such that for any vector field
ṽ ∈C k with ‖ṽ − v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood
of M, such that M̃ is diffeomorphic to M and invariant under the flow defined by ṽ.
Moreover, M̃ is C k .

This corollary closely resembles [Fen72, Thm. 1] in the absence of a boundary ∂M
(a boundary is allowed when M is overflowing invariant, see also sections 1.6.3
and 4.3). Note that our definition of normal hyperbolicity is less general (see
Remark 1.8), and that we exclude unstable normal directions and the case1 k = 1,
while we do allow M to be an immersed submanifold. The persistence result of
Hirsch, Pugh, and Shub [HPS77, Thm. 4.1 (f)] is similar to that in Fenichel’s work; it
additionally includes Hölder smoothness and allows immersed submanifolds as
well.

Secondly, the case of M = Rm × {0} ⊂ Q = Rm+n . Again, Rm+n has bounded ge-
ometry with one trivial, global chart. Thus, any object is C k

b,u if it can (locally)

be described by C k
b,u functions, but with common global bound and continuity

modulus. Then Theorem 3.2 reduces to the following corollary. We again suppress
Hölder continuity and drop the σ parameter dependence, which was only relevant
for the reduction of Theorem 3.1.

Corollary 3.5 (Persistence of a trivial NHIM in Euclidean space).
Let k ∈Z≥2. Let v ∈C k

b,u be a vector field on Rm+n and let M =Rm ×{0} be a k-NHIM
for the flow defined by v, with empty unstable normal bundle.

Then for each sufficiently small η> 0 there exists a δ> 0 such that for any vector field
ṽ ∈C k

b,u with ‖ṽ − v‖1 < δ, there is a unique submanifold M̃ = Graph(h̃), h̃ : Rm →
Rn , ‖h̃‖0 ≤ η such that M̃ is invariant under the flow defined by ṽ. Moreover, h̃ ∈C k

b,u
and ‖h̃‖k−1 can be made arbitrary small by choosing ‖ṽ − v‖k sufficiently small.

This theorem can be compared, for example, to [Sak90, Thm. 2.1]. Sakamoto’s
theorem is specifically targeted to singular perturbation problems. His conditions
are more specific and concrete: the invariant manifold M is assumed to consist
of stationary points and normal hyperbolicity is formulated in terms of the eigen-
values of normal derivatives of the vector field at M . He starts with an invariant

1This was for technical reasons in the noncompact setting, see Remark 3.3, v, and could be
repaired in the compact setting.
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manifold that is the graph of a nonzero function h ∈ C k
b ; this he reduces to the

zero graph case M =Rm × {0}, while he incurs a loss of one degree of smoothness,
obtaining a C k−1

b persistent manifold and he requires k ≥ 3, see [Sak90, p. 50]. He
does allow both stable and unstable normal bundles.

In their series of papers [BLZ98; BLZ99; BLZ08], Bates, Lu, and Zeng obtained
multiple results on noncompact NHIMs, including a persistence result similar to
mine. These results are in some senses complementary, however. Most importantly,
they work in Banach spaces with semi-flows, which adds some nontrivial problems.
On the other hand, my setting allows the ambient space to be a manifold, albeit
finite-dimensional. They use the graph transform instead of the Perron method.
This allows for the more general definition of relative normal hyperbolicity as in
Remark 1.8. They include both stable and unstable normal directions, while they
do not prove Hölder regularity. Finally, in [BLZ08] the interesting idea is developed
to start with an approximate NHIM only.

If we ignore these differences, then their results fit in between the formulations
of Theorem 3.1 and Corollary 3.5. Their invariant manifold M is immersed in a
Banach space, but not necessarily described by the graph of a function h. Their
hypothesis [BLZ08, p. 363] that the splitting does not twist too much is a bounded
Lipschitz condition on the (approximate) splitting of the (un)stable and tangent
bundles over M . This condition is similar, but slightly weaker than our condition
M ∈C 2

b,u , see also remarks 3.3, v and 3.13.

Although the results of Bates, Lu, and Zeng are more general and complete in
many aspects, I think that these cannot easily be generalized to prove a version of
Theorem 3.1, set in an ambient manifold of bounded geometry. One could hope
to use the Nash embedding theorem to obtain the ambient manifold (Q, g ) as an
isometrically embedded subspace of someRn . Then the dynamical system must be
extended from Q toRn , such that M is still normally hyperbolic as a submanifold of
Rn ; this procedure can be compared to the reduction in Section 2.6. The problem
that arises is that the Nash embedding theorem provides no control on the extrinsic
curvature of the embedding2, so M need not be C 2

b in Rn . It might be possible to
work around this by proving a ‘bounded geometry version’ of the Nash embedding
theorem.

2This can be seen from the result that the Nash embedding can be obtained into an arbitrarily
small ball. As an explicit example, take Q =Rwith standard metric and embed it into R2 via the map
r (θ) = arctan(θ)/π+ 1

2 in polar coordinates. Since the integral of r (θ) diverges both when θ→±∞,
we obtain (after arc length reparametrization) an isometric embedding of R ‘curled up’ into B(0;1),
while the extrinsic curvature grows unbounded for θ→−∞.
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We should also mention the paper [JS99] by Jones and Shkoller. They generalize
Fenichel’s results on persistence of overflowing invariant manifolds to semi-flows
on infinite-dimensional Riemannian manifolds. They do assume the invariant
manifold itself to be compact.

3.2 Outline of the proof

The proof of Theorem 3.2 is lengthy and involves a lot of details. We therefore first
present an overview of the separate steps involved in the proof.

First, in Section 3.4 we bring the system into a form that is suitable for application
of further analytical techniques. That is, we decompose the vector fields along X
and Y directions and linearize the vertical direction, leading to equations

ẋ = vX (x, y),

ẏ = vY (x, y) = A(x) y + f (x, y)

with a C 1-small term f . This is a generalization of the classical Perron method
for hyperbolic fixed points (see Section 1.4.2 for a quick overview) to NHIMs, first
presented by Henry [Hen81, Chap. 9]. In the case of a hyperbolic fixed point, we
could fully linearize the system; here, we can only linearize the normal directions,
while we keep the full nonlinear form in the directions along X . These cannot be
linearized because we have no control to localize the dynamics in the directions
along X .

In the theorem, the invariant manifold M is given as a (small) graph h : X → Y .
A coordinate change to represent the invariant manifold as M = X × {0} would
(re)introduce a loss of smoothness that we carefully worked around in Chapter 2
by means of a uniformly smoothed submanifold. The graph h can be chosen
arbitrarily close to the zero section, and together with the small perturbation
ṽ − v , this influences the exponential growth rates (1.9) only slightly. We recover
equations (3.16) for the perturbed system that satisfy slightly perturbed exponential
estimates (3.17), even when we decouple the equations for x and y by inserting
curves y(t ) and x(t ), respectively, that are ‘close’ to solution curves of the original
system. We directly include the perturbation ṽ − v into the horizontal component
of the vector field; for the vertical component we include the perturbation in the
nonlinear term f̃ . This gives rise to a nonlinear, horizontal flow Φy (t , t0, x0) and
a linear, vertical flow Ψx (t , t0) y0 that depend on a curve in the other space and
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satisfy estimates

∀ t ≤ t0 : ‖DΦy (t , t0, x0)‖ ≤CX eρX (t−t0),

∀ t ≥ t0 : ‖Ψx (t , t0)‖ ≤CY eρY (t−t0),

where ρX , ρY are close to the original exponential rates −ρM , ρ−.

The next step in Section 3.6 is to define a pair of maps (3.32) between curves in
X and Y in terms of these flows and the decomposed vector fields (3.16). The
composition T = TY ◦ (TX ,pr1) of these maps will be a contraction on bounded
curves in Y depending on a parameter x0 ∈ X , but we measure these curves with
‖·‖ρ norms for some exponent ρ with ρY < ρ < ρX . Lemma 3.27 shows that the
fixed points of T are precisely the vertical parts y(t ) of solution curves of the
perturbed vector field ṽ that stay in the tubular neighborhood ‖y‖ ≤ η of M and
have initial value x0 for their horizontal part x(t ). The maps TX and TY generalize
the center-unstable and stable components, respectively, of the Perron integral
in the fixed point case, cf. Section 1.4.2. The nonlinear flow along the invariant
manifold is used in TX , but now depends on the vertical component y(t ) too,
while in the vertical, normal directions we use a variation of constants integral to
separate the nonlinear terms from the linearized flow, just as in the classical Perron
method.

This setup leads to a fixed point map Θ : X → Bρ
η (I ;Y ) that maps an initial value

x0 ∈ X to the unique bounded curve in Y that corresponds to a full solution curve
(x, y) such that x(0) = x0. If we now evaluate the vertical solution curve y =Θ(x0)
at t = 0, then we obtain the vertical component y0 = y(0) ∈ Y of the initial value
corresponding to x0 ∈ X . All these solution curves stay close to M and form an
invariant manifold, so the graph of

h̃ : X → Y : x0 7→Θ(x0)(0)

must describe the unique perturbed invariant manifold M̃ . Application of the
contraction principle immediately implies that h̃, and therefore M̃ , is Lipschitz
continuous.

In Section 3.7 we continue to prove that M̃ is C k,α. We start that section with a
more detailed overview of this smoothness part of the proof and in Section 3.7.1
we present a scheme to obtain the first derivative in a number of steps. Higher
smoothness then follows along the same lines, just with more complex expressions,
see Section 3.7.9. Let us focus here on the basic ideas.

Smoothness of M follows directly from smoothness of Θ. We study the deriv-
atives of Θ by formal differentiation of the fixed point equation; this leads to
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Equation (3.42). But let us consider for a moment a simpler heuristic formulation,
similar to equation (1.7) for the hyperbolic fixed point in Section 1.4.3. Then the
derivatives of the Perron fixed point map are

Dk T (y)
(
δy1, . . . ,δyk

)
(t ) =

∫ t

−∞
Ψ(t ,τ) ·Dk f̃ (y(τ))

(
δy1(τ), . . . ,δyk (τ)

)
dτ.

Even if Dk f̃ is bounded, it acts as a multilinear map on a k-tuple of variations δyi ,
each having exponential growth of order ρ, so the result has exponential growth of
order k ρ. This is canceled by the exponential growth of Ψ(t ,τ) if ρY < k ρ. Then
Dk T can be viewed as a contraction on DkΘ, but only when DkΘ is viewed as
a map into B k ρ(I ;Y ). To obtain continuity of the maps Dk T , we have to add
another arbitrarily small termµ< 0 to the exponent, i.e. k ρ+µ; in case ofα-Hölder
continuity we need µ=αρ. These key facts show how the spectral gap condition
limits smoothness; see Section 1.2.1 for a detailed discussion and an example that
shows that our smoothness result is in fact sharp.

The technique of using a scale of Banach spaces as developed by Vanderbauwhede
and Van Gils [VG87], and the fiber contraction theorem of Hirsch and Pugh [HP70]
can be applied, and we obtain each DkΘ as a fixed point in the appropriate space.
The final conclusion h̃ ∈C k follows by evaluating DkΘ at t = 0.

We have to be very careful however: higher derivatives of maps between manifolds
are difficult to define (at least in a practical way), so we develop some theory to
describe higher derivatives using normal coordinates in Appendix C and generalize
results from Rn to this setting. Secondly, the derivatives of TX , TY only exist as
‘formal derivatives’ on ‘formal tangent bundles’. We endow these formal tangent
bundles with a topology induced by parallel transport. This allows us to study
continuity of the formal derivatives D˜ TX , D˜ TY at the cost of introducing additional
holonomy terms. Finally, we do obtain the DkΘmaps as derivatives ofΘ.

3.3 Compactness and uniformity

The classical results on normally hyperbolic invariant manifolds [Fen72; HPS77]
assume the invariant manifold to be compact. This is used to obtain uniform
boundedness and continuity of the vector field and other objects. Here, instead,
we assume these objects to have the required uniformity directly, replacing the
compactness requirement. In this section, we expose some of the issues that
need to be dealt with and we present accompanying examples. We focus here on
those issues that are not (clearly) present in the literature and only show up when
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considering general manifolds. See Section 1.2.2 for motivation and examples of
noncompact NHIMs.

The primary requirement in the noncompact case—well-known to experts in the
field—is that the vector field defining the system must be uniformly bounded, in-
cluding all its spatial derivatives up to the order of the smoothness result requested.
Secondly, the vector field should be uniformly continuous, and uniformlyα-Hölder
continuous when α 6= 0. The case α= 0 really is a special case, whose proof needs
more care. Hölder continuity provides an explicit continuity estimate, which is
tailored to the problem; ‘plain’ uniform continuity does not provide this, forcing us
to use an (arbitrarily) small amount of the spectral gap to compensate.

In the compact case, Fenichel [Fen72, p. 200] argues that persistence of the invari-
ant manifold should be independent of the choice of a Riemannian metric. Indeed,
he proves that the exponential growth rates are independent of such a choice, as all
metrics are equivalent. In a noncompact setting, however, non-equivalent metrics
do exist and we do expect persistence to depend on the choice of metric, since
it determines which perturbations are globally C 1 small. Moreover, we make a
technical uniformity assumption of bounded geometry (see Chapter 2, also for
example spaces of bounded geometry) on both the underlying space and the
invariant manifold. These assumptions are automatically satisfied in the compact
case. It is not clear though to what extend they are essential in the noncompact
case.

The remainder of this section is devoted to examples that show multiple aspects
that should be treated carefully in the noncompact setting, while being trivially
fulfilled in the compact case. Some interesting examples can also be found in the
early work [Hop66] by Hoppensteadt. He presents counterexamples to uniform
stability of solutions in a time-dependent singular perturbation setting when the
stability criteria do not have sufficient uniformity.

3.3.1 Non-equivalent metrics

As a simple example of two metrics leading to different results in the noncompact
case, let us consider the following.

Example 3.6 (Non-equivalent metrics).
Let X = R2, Y = R with on the one hand the usual Euclidean metric ge and on
the other hand a metric gs induced by a diffeomorphism similar to stereographic
projection from the sphere (with North Pole removed) onto X =R2.
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Let the vector field be given by

v(x, y) = (
arctan(‖x‖)

x

‖x‖ , λ y
)

(3.1)

with λ< 0. This makes the vertical, y direction uniformly attracting with exponent
λ, while in the plane X × {0} the origin is an expanding fixed point and the expo-
nential growth rate is everywhere non-negative. Thus, M = X × {0} is an r -NHIM
for arbitrarily large r and v ∈C k

b,u for any k ≥ 1 on a tubular neighborhood of M of
size η= 1, say. See Figure 3.1 on the left side.

In polar coordinates (s,θ) on X we have

v(s,θ, y) = (
arctan(s), 0, λ y

)
.

Now, instead of the usual stereographic projection map (ϕ,θ) 7→ (s = tan(ϕ/2),θ)
with ϕ= 0 at the South Pole, we take

f : [0,π) →R≥0 : ϕ 7→ − log(1−ϕ/π) (3.2)

and the corresponding diffeomorphismΦ that acts trivially along the directions of θ
and y coordinates. This diffeomorphism induces a metric gs on X by pushforward
of the standard metric on the sphere. The system with metric gs is most easily
studied by pullback to the sphere with North Pole removed, see Figure 3.1 on the
right side. This is an equivalent formulation sinceΦ is an isometry by construction.
The vector field is then represented on S2 ×R by

(Φ∗v)(ϕ,θ, y) = (
π(1−ϕ/π)arctan

(− log(1−ϕ/π)
)
, 0, λ y

)
. (3.3)

This shows that the vector field is still C 1
b , although not C 1

b,u anymore in this metric.
More importantly, the system can be extended to include the North Pole as an
attracting fixed point. The rate of attraction along the perpendicular y direction
has not changed from λ, but along the horizontal directions of the sphere, the
attraction rate now is

lim
ϕ→π

D1(Φ∗v)(ϕ,0,0) =−π
2

. (3.4)

In both metrics the normal exponential attraction rate is ρY =λ< 0 since the linear
flow on Y is decoupled from X . The exponential growth rate on X does depend
on the choice of metric. For the Euclidean metric ge , we have ρX = 0. This follows
from an analysis of the radial component ṡ = arctan(s) of the system. At s = 0
this has unstable exponent 1, while away from s = 0 the tangent flow is uniformly
bounded away from both zero and infinity, so there the Lyapunov exponent is zero.
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y

y

Figure 3.1: a normally hyperbolic flow with respect to Euclidean and sphere induced
metrics.

With respect to the metric gs , it follows from (3.4) that the Lyapunov exponent
is ρX =−π

2 for solutions approaching planar infinity. Thus, we see that if λ≥−π
2 ,

then the system is not normally hyperbolic with respect to the metric gs , while
X × {0} is an r -NHIM for any r ≥ 1 under the metric ge . On the other hand, if
λ<−π

2 , then the system is still only r -normally hyperbolic with respect to gs for
r < π/(2λ). Again, we can construct an explicit perturbation similar to that in
Example 1.1. If we add a small vertical perturbation εχ with support away from the
poles (compare with Figure 1.3), then along meridians passing through suppχ, the
invariant manifold is lifted and approaches the North Pole ϕ= π approximately
along a graph y =C (π−ϕ)−2λ/π, while on meridians not passing through suppχ,
the invariant manifold stays at y = 0. See the perturbed flow lines in Figure 3.1.
This results in unbounded C r derivatives of the perturbed invariant manifold at
the North Pole for r >−2λ/π. ©

We conclude that in the noncompact setting, normal hyperbolicity explicitly de-
pends on the choice of metric since metrics need not be equivalent. Moreover, the
allowed size of the perturbations depends on the metric.

Example 3.7 (Perturbation sizes depend on the choice of metric).
We extend Example 3.6 above. Letλ<−π

2 so that the system is normally hyperbolic
with respect to both metrics, and set

w(s,θ, y) = (
0, 0, arctan(s) sin(θ)

)
. (3.5)

Then the vector field v +εw is a C 1 small perturbation of (3.1) with respect to ge

and perturbs the original manifold M smoothly to a manifold M̃ that has height
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converging to y = −ε sin(2θ)π/(2λ) along radials when s →∞. The pullback of
M̃ to the sphere, however, has a discontinuity at the North Pole, since s → ∞
corresponds to ϕ→π, and so the North Pole is approached at different constant
heights along these radials. This apparent contradiction that Φ∗(M̃) is not a C 1

small perturbation with respect to gs stems from the fact that w is not C 1 small
with respect to this metric. The vector field w has unbounded derivatives since gs

‘squeezes’ distances when approaching planar infinity, that is, the North Pole. ©

Thus, non-equivalent metrics also lead to different classes of C 1 small pertur-
bations under which the invariant manifold persists. Moreover we see that one
cannot simply get rid of noncompactness by a compactification argument. The
metric gs is induced by a one-point compactification to the sphere, but leads to
different normal hyperbolicity properties than the noncompact case with metric ge .
Any other choice of the diffeomorphismΦwould lead to the same problems, since
pullback of the metric ge must introduce a singularity at the North Pole. This
cannot be equivalent to a metric that extends regularly there.

3.3.2 Non-persistence of embedded NHIMs

Let us give another example which shows that an embedded invariant manifold
need not persist. This example clarifies the remarks already made in the introduc-
tion in Section 1.6.2: noncompact embedded NHIMs can perturb into immersed
manifolds. On the one hand, this example shows that it is natural to consider
immersed NHIMs. It also shows that a noncompact NHIM must have a uniformly
sized tubular neighborhood that does not self-intersect, in order to guarantee
perturbation as an embedded manifold. Further details can be found in Section 2.3
where the concept of a uniformly embedded submanifold is defined.

In the example presented here, the unperturbed manifold is normally hyperbolic
but noncompact and ‘touches’ itself in the limit to infinity, see Figure 3.2, the top
image. In this case, we can find arbitrarily small perturbations that will let the two
persisting branches collapse into one at a finite point.

Example 3.8 (A non-uniformly embedded NHIM).
Let (x, y) ∈ R2 = Q. For x ≤ 0 we define the vector field v of the system in polar
coordinates, and for x ≥ 1

2 in Cartesian coordinates as

(ṙ, θ̇) = v(r,θ) = (1− r , −sin(θ/2)) if x = r cos(θ) ≤ 0,

(ẋ, ẏ) = v(x, y) = (e−x , −y) if x ≥ 1
2 .

(3.6)
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Figure 3.2: collapse of a nearly self-intersecting invariant manifold.

We glue these vector fields together in a smooth way somewhere between x = 0
and x = 1

2 . Then the manifold as shown at the top in Figure 3.2 is a NHIM. The flow
attracts uniformly in the normal direction with rate −1 (except that the rate may
deviate slightly around the glued area), while along the manifold, the flow has an
expanding fixed point at (−1,0) and the contraction in the direction of x →∞ is
weaker than exponential. Explicitly solving the flow for x ≥ 1

2 yields

Φt (x, y) = (log(ex + t ) , y e−t ),

which exhibits the rates of contraction in the normal and tangential directions by
considering either projection in

lim
t→∞

1

t
log

(
πx,y ◦DΦt (x, y)

)
.

Let us now introduce the very simple perturbation vector field w(x, y)= (−ε , 0) for
x ≥ 1 and smoothly cut off to zero left of x = 1. When this perturbation is added to
the vector field v , the vertical line x =− log(ε) becomes a stable, invariant set, see
Figure 3.2 the bottom image. The upper and lower branch of the original NHIM
will both converge to the newly created fixed point (− log(ε) , 0). On the right side
of this point the manifold is given by the single line y = 0.

Each branch separately persists as a C∞ manifold, as could (naively) be expected.
The problem is that we have no control on the distance between the two branches,
so for any ε> 0, these branches will collapse at some point where the persisting
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object ceases to be an embedded manifold. As already remarked, there are two
ways to address this issue. One can abandon the implicit assumption that the
NHIM is an embedded submanifold and replace this by immersed submanifolds;
this idea was introduced already in [HPS77]. If one insists on having embedded
submanifolds, even under perturbations, then one must eliminate the possibility
of these ‘collapses’ occurring. A sufficient condition is the existence of a uniformly
sized tubular neighborhood of the invariant manifold that does not intersect itself.
Global control on the perturbation distance of the invariant manifold will imply
that the perturbed manifold stays inside this tubular neighborhood and thus will
not self-intersect. ©

3.3.3 Non-uniform geometry of the ambient space

The previous examples were set in Euclidean space. The next two examples show
that additional uniformity conditions must be imposed on a nontrivial ambient
space. It is not enough to assume uniform continuity and boundedness for the
dynamical system. The first example is an extension to the previous one and shows
that the ambient space must have a uniformly finite injectivity radius. The second
example indicates that even if the ambient space has finite injectivity radius and
trivial topology, persistence might be lost due to non-bounded curvature of the
ambient space.

Example 3.9 (Zero injectivity radius).
We construct as ambient space Q a cylinder whose radius shrinks exponentially.
That is, we take Q =R×S1 with metric g (x,θ) = dx2 +e−2x dθ2. See Figure 3.3 for
an impression, but note that the metric induced by the embedding in R3 is not
(and cannot be made) the same as g . The vector field

v(x,θ) = (1, 0) (3.7)

generates a simple flow along the cylinder, and each solution curve is a NHIM
purely due to the fact that all curves flow into an exponentially shrinking tube,
while there is no contraction along the curve.

Let us consider the invariant manifold M = {θ = 0}. We add a perturbation to the
vector field that is given by θ̇ = ε for x ≥ 0 and is smoothly cut off to zero left of
x = 0. This perturbation is smooth and C 1 small with respect to the metric3 g .

3Measuring the C 1 size with respect to g requires taking covariant derivatives and may introduce
results not directly apparent in coordinates (x,θ). A perturbation term θ̇ = ε exp(x) would still be
globally small in this metric.
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Figure 3.3: a non-uniform cylinder with a winding curve.

When the original curve M enters the region x ≥ 0, it is modified to a curve M̃ that
starts winding around the cylinder, as indicated in Figure 3.3.

This clearly cannot be represented in a tubular neighborhood of M in Q since
the curve would leave the neighborhood ‘above’ and reenter ‘from below’. On the
other hand, the normal bundle of M can be viewed as a covering of Q, and on
that covering, M̃ is represented by the function θ(x) = εx, which is still a bounded
graph with norm ‖θ(x)‖ = εx e−x , but which winds around since θ ∈ [0,2π). Thus,
a globally finite injectivity radius seems a necessary requirement if we want the
perturbed manifold to be represented in a diffeomorphic tubular neighborhood of
M . ©

The second example indicates that a finite injectivity radius is not enough; un-
bounded curvature of the ambient manifold might lead to loss of persistence of
the NHIM. It should be pointed out that this example satisfies all properties of
normal hyperbolicity with uniform estimates up to C 1 smoothness, except that the
vector field has no uniformly continuous derivative. I have not been able to add
this final property to create a complete counterexample where persistence fails in
the absence of the curvature property of bounded geometry only.

Example 3.10 (Unbounded curvature).
Let Q =R3 with metric

g (x, y, z) = dx2 +exp
(−2 |x|arctan(x z)

)
dy2 +exp

(−2 |x|)dz2, (3.8)

but with component functions symmetrically smoothed around x = 0. This Rie-
mannian manifold is invariant under translations in y and has a mirror symmetry
involution in any plane of fixed y . Hence, each submanifold { y = y0 } is geodesically
invariant.
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Let the vector field be

v(x, y, z) =
{ (

x, 0, −arctan(z)
)

for |x| ≤ 1,(
sign(x), 0, 0

)
for |x| ≥ 1,

(3.9)

and smoothly glued together in a neighborhood of the boundary |x| = 1. Thus, the
whole system is invariant under translations in y , and within any plane { y = y0 },
the point (x, z) = (0,0) is a hyperbolic fixed point with eigenvalues 1 and −1 in the
x and z direction, respectively. The system also has a mirror symmetry around
x = 0; from now on we only consider x ≥ 0.

x

y

z

x=1 x=3

Figure 3.4: perturbation of a normally hyperbolic system in unbounded geometry.

The plane M = { z = 0} is a NHIM; it is clearly invariant under the flow, and similar
to the exponentially shrinking cylinder, the metric contracts in the z direction
along solution curves x → ∞, while no contraction occurs along the manifold.
On TM the metric reduces to g |TM = dx2 +dy2 while the flow is linear in time.
On a neighborhood of the y-axis, finally, normal hyperbolicity follows from the
attraction along the z directions due to the term −arctan(z) in (3.9).

The vector field v and its covariant derivative are uniformly bounded with respect
to the metric. For x ≤ 2, this follows from the fact that g including its inverse
and derivatives, as well as v and its derivatives are bounded. For x ≥ 2, explicit
calculations in local coordinates show that ‖v‖ = 1, while for x ≥ 1 we have

∇v =

0 0 0
0 − x z

1+(x z)2 −arctan(x z) 0

0 0 −1

 ,

expressed in an orthonormal frame, which is bounded as well. The second co-
variant derivative ∇2v is unbounded, though. This indicates that ∇v is probably
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not uniformly continuous for a reasonable definition of uniform continuity, cf.
Definition 2.9, although I have not completely investigated this question.

The Ricci scalar curvature of Q is unbounded and on M = { z = 0} it is given by

S =−2
(
1+x4 e2x)

.

Clearly, this implies that the Riemannian curvature is unbounded too.

Remark 3.11. In hindsight, it should probably not come as a complete surprise
that ∇2v is unbounded. The Riemannian curvature is unbounded, and since it is
the generator of holonomy (see Section 2.2), it can thus generally be expected that
holonomies along infinitesimal loops act as an unbounded family of operators on
v . These are expressed in local coordinates by second covariant derivatives of v :

R(∂i ,∂ j ) v =∇∂i ∇∂ j v −∇∂ j ∇∂i v. ♦

We proceed with checking that exp: N → Q has finite injectivity radius on the
normal bundle4 N of M . Then all assumptions for persistence are fulfilled, except
for bounded curvature (and uniform continuity of ∇v). As each submanifold
{ y = y0 } is invariant, we can restrict our investigation to y = 0, such that x denotes
the coordinate along the base manifold of the normal bundle; let t denote the
normalized coordinate in the vertical direction. The exponential map of (x, t ) is
generated by the geodesic flow as follows: start at x with vertical unit vector and
then follow a geodesic for time t . For x = 2, say, this flow is well-defined and stays
inside the region x ≥ 1 for some bounded time |t | ≤ r . The diffeomorphism group

ϕ(x, z) = (x +ξ, z eξ) with ξ ∈R

translates along x while simultaneously scaling z, see also Remark 2.2. In the region
x ≥ 1 this is an isometry, so the exponential mapping defined for x = 2, |t | ≤ r can
be isometrically mapped onto the whole region x ≥ 2, |t | ≤ r . For x on the compact
interval [0,2] the exponential map must have a finite injectivity radius too, so there
exists a global r > 0 such that exp: N≤r →Q is diffeomorphic onto its image.

Now we add a perturbation in a similar spirit to that in Section 1.2.1: we lift M by a
local, vertical perturbation of the vector field, varying along y . In a neighborhood
of the plane x = 2 we add a small vertical component

ż = ε (2−cos(y)) exp
( −1

1− (x −2)2

)
if |x −2| ≤ 1.

4We should actually show that the injectivity radius of Q is finite, i.e. rinj(Q) > 0, at least in a
neighborhood of M . I have not been able to do this. Finite injectivity radius of the normal bundle
does allow us to construct a tubular neighborhood to model persistent manifolds close to M , though.
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In the region x ≤ 1 the flow is unmodified, so there the perturbed manifold M̃
must coincide with the original M ; otherwise it would not stay in a bounded
neighborhood of M under the backward flow. Around x = 2, the flow lifts M̃ to at
least a height

z ≥ ε

∫ 3

1
exp

( −1

1− (x −2)2

)
dx ≥ ε/4

and the height z depends on y , see Figure 3.5. Then in the region x ≥ 3 the manifold
M̃ continues along ẋ = 1 at the same y, z coordinates. Now we have ε/4 ≤ z ≤ 6ε,
so for all small ε> 0 the y component of the metric along the flow on the invariant
manifold eventually shrinks at an exponential rate that is stronger than in the z
direction, while M̃ has variable height z(y) independent of x. Hence the Lipschitz
norm of M̃ can be estimated by measuring z ′(y) with respect to the metric g along
the manifold. But z ′(y) is nonzero and constant along x in coordinates, while
horizontal distances along y shrink faster than vertical distances. This means
that the Lipschitz norm of M̃ grows unbounded for x →∞. Moreover, the normal
exponential growth rate does not dominate the tangential rate anymore, so the
perturbed manifold is not normally hyperbolic anymore. ©
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Figure 3.5: the graph of the perturbed manifold with respect to the Euclidean metric (top)
and an approximate image of the same graph with respect to the metric g (bottom).
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3.4 Preparation of the system

As a first step towards proving Theorem 3.2 we shall bring the system in a form
suitable to apply analytical tools to it. Let

ẋ = vX (x, y) ∈ Tx X ,

ẏ = vY (x, y) ∈ Y ,
(3.10)

be the decomposition of the vector field v along X and Y . The invariant manifold
is given as the graph M = {y = h(x)}. We dropped the explicit dependence on
σ from the notation. The full flow of v will be denoted by Υt , while Φ,Ψ are
reserved for flows defined in terms of the horizontal and vertical components of v ,
respectively. To shorten notation we write g (x)= (x,h(x)). We shall always assume
that ‖y‖ ≤ η.

Our goal is to establish a linearized form

vY (x, y) = A(x) y + f (x, y) (3.11)

for the vertical part of (3.10) such that f is small and A, f ∈C k,α
b,u , while the flowsΦt

andΨt generated by

ẋ = vX (g (x)),

ẏ = A(x(t )) y with g (x(t )) a solution curve on M ,
(3.12)

should satisfy exponential growth estimates (1.9) as in Definition 1.6 of normal
hyperbolicity with exponents ρX , ρY close to the original −ρM , ρ−, respectively; the
corresponding constants C̃ M , C̃− may differ arbitrarily from the original CM , C−.

Y

x
X
h

Tm M
m

E−
m

πE−,N

Figure 3.6: The splitting Tm(X ×Y ) = Tm M ⊕E−
m with m = g (x).

We first identify the invariant splitting and associated flows on TM (X ×Y ) to be
able to relate these exponential growth rates, see also Figure 3.6. By definition of
normal hyperbolicity (without an unstable bundle) we have

TM (X ×Y ) = TM ⊕E−, 1=πTM +πE− , DΥt = DΥt
M ⊕DΥt

−



102 Chapter 3. Persistence of noncompact NHIMs

with associated exponential growth rates (1.9). On the other hand we have the
splitting

T(X ×Y ) =π∗
Y (TX )⊕π∗

X (TY ) ∼= TX × (Y ×Y )

that is naturally induced by the trivial bundle structure. The identification Dg =
1TX +Dh : TX → TM is bounded linear with bounded inverse, so the associated
vector field g∗(v) = vX ◦ g on X generates a flow Φt such that DΦt has the same
exponential growth rate as DΥt

M , up to a bounded factor ‖Dg−1‖ ·‖Dg‖ due to the
norms on the different tangent spaces. Recall that vσ depends on a parameter
σ ∈ (0,σ0]. We choose the bound σ1 small enough such that for all σ ≤ σ1 we
have

∀ t ≤ 0: ‖DΦt‖ ≤ C̃ M e−ρM t with C̃ M = 2CM .

Let N =π∗
X (TY )|M denote the vertical bundle over M , whose fibers can be canoni-

cally identified with Y . Just as above, we want to project the flow DΥt− onto N while
preserving the exponential growth rate. The projection πE− along TM is uniformly
bounded for all σ. This means that the angle between TM and E− is bounded
away from zero. Since TM can be chosen arbitrarily close to the horizontal TX by
choosing σ sufficiently small, it follows that the projection DπY |E− : E− → N and
its inverse πE−,N are bounded for all σ≤σ1 when σ1 is sufficiently small, see also
Figure 3.6. To this end, let (0,ϕ) ∈ Tg (x)(X ×Y ) and consider the identity

ϕ= DπY · (0,ϕ) = DπY · (πTM +πE−) · (0,ϕ).

We have πTM · (0,ϕ) ∈ TM so πTM · (0,ϕ)= (ξ,Dh(x)ξ) where ξ= DπX ·πTM · (0,ϕ) ∈
Tx X Now we have estimates

‖ξ‖ = ‖DπX πTM (0,ϕ)‖ ≤ ‖πTM‖‖ϕ‖,

‖πTM · (0,ϕ)‖ = ‖Dh(x)ξ‖ ≤σ‖πTM‖‖ϕ‖,

‖DπY ·πE− · (0,ϕ)‖ = ‖ϕ−DπY ·πTM · (0,ϕ)‖ ≥ (1−σ‖πTM‖)‖ϕ‖
from which it follows that DπY |E− has an inverse πE−,N : N → E− for which we
have the bound ‖πE−,N‖ ≤ (1 −σ1 ‖πTM‖)−1 ‖πE−‖ ≤ 2‖πE−‖ if we choose σ1 ≤

1
2‖πTM‖ .

Consider the flow

Ψ̂t = DπY ◦DΥt ◦πE−,N : N → N , (3.13)

generated by DvY ◦πE−,N along solution curves g (x(t )). Both DπY |E− and πE−,N are
uniformly bounded, so the exponential estimates of DΥt− carry over to Ψ̂t up to a
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constant factor:

∀ t ≥ 0: ‖Ψ̂t‖ ≤ C̃− eρ− t with C̃− = 2‖πE−‖C−. (3.14)

We have thus constructed flows Φt and Ψ̂t on X and N , respectively, that are
generated by

vX ◦ g and Â(x) = DvY (g (x)) ·πE−,N (g (x))

with a solution curve x(t ) of the vector field vX ◦ g inserted. These flows are of the
form (3.12) and satisfy exponential estimates (1.9) inherited from the invariant
bundle splitting.

The vector field vX ◦ g already has sufficient smoothness5, but Â is not smooth
enough since the projection πE−,N is only continuous. We construct A ∈C k,α

b,u as a

smoothed approximation of Dy vY ◦ g . This term is C 0-close to Â, since

‖Â−Dy vY ◦ g‖0 = ‖(Dx vY ◦ g ) ·DπX ·πE−,N‖0 ≤ ‖Dx vY ◦ g‖0 ‖πE−,N‖0 (3.15)

because DπY ·πE−,N = 1N and ‖Dx vY ◦ g‖ is small. Lemma 3.17 will imply that the
flowΨt of this approximation has exponential growth estimates close to those of
Ψ̂t . The following lemma will be used to obtain A from Dy vY ◦ g . We apply it with
l = k −1 to obtain A ∈C k

b (X ;L(Y )) such that ‖A−Dy vY ◦ g‖k−1 ≤ ε(ν). This lemma
is a (strongly) simplified version of Theorem 2.38; the notation of l , k is reversed to
match the context here.

Lemma 3.12 (Uniform smoothing of a vector bundle section).
Let (X , g ) be a Riemannian manifold of bounded geometry and V a Banach space.
Let f ∈C l

b,u(X ;V ) be a section of the trivial vector bundle π : X ×V → X .

Then for any k > l and ε> 0 there exists a smoothed function f̃ ∈C k
b,u(X ;V ) such

that ‖ f̃ − f ‖l ≤ ε. (The bounds on higher than l-th order derivatives will generally
depend on ε.)

Proof. We apply convolution smoothing of Lemma 2.34 in each chart of a cover of
X and glue these together.

Let 0 < δ1 < δ2 < δ3 and let {B(xi ;δ2)}i≥1 be a uniformly locally finite cover of X
obtained from Lemma 2.16, such that the δ1-sized sets already cover X , and the

5It may seem impossible to define a C k vector field v on the tangent bundle TM of a C k manifold
M since TM ∈ C k−1. See [PT77, App. 1] or [PT83, p. 398] for a method to endow an invariant
submanifold M ∈C k with a compatible topology that makes v |M ∈C k . We effectively used this in
our definition of vX ◦ g ∈C k .
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δ3-sized sets still have normal coordinate charts. Lemma 2.17 yields a uniform
partition of unity

∑
i≥1χi subordinate to this cover.

In each chart B(xi ;δ2) we apply Lemma 2.34 to f with r = δ2 and 2δr ≤ δ3−δ2. We
obtain f̃ i ∈C k

b,u on each chart with uniformly bounded C k -norms and ‖ f̃ i − f ‖l

can be made as small as required by choosing the parameter ν small. We glue these
together to one function

f̃ = ∑
i≥1

χi f̃ i

defined globally on X with the functions χi ∈ C k
b,u . Together with the uniform

bound on the number of charts in the cover that intersect any one point, this
guarantees that f̃ satisfies estimates equivalent to those of the f̃ i . Note that ‖ f̃ ‖l

does not depend on the smoothing parameter ν, but the higher derivative norms
do.

Remark 3.13 (On loss of smoothness).
We must carefully construct the system (3.11) in order not to lose one degree
of smoothness, while at the same time retaining exponential growth rates and
proximity estimates.

The invariant complementary bundle E− is only continuous, while the normal
bundle of M is only C k−1, even if disguised in coordinate expressions. We use
the linearization at y = 0, but not directly, since Dy vy ( · ,0) ∈ C k−1,α

b,u artificially
decreases the smoothness as well. The loss of smoothness in [Sak90] occurs for
these reasons. Note that even though we retain C k,α smoothness by a convolution
smoothing, this does not preserve higher than C k−1 bounds. This seems to be an
artifact of the proof, inherent to the partial linearization along Y .

In the proof of Theorem 3.1 we construct a smoother, approximate manifold Mσ

exactly to circumvent these problems. In the trivial bundle setting of Theorem 3.2
then, we must be careful not to pick a representation that reintroduces this loss of
smoothness. On the other hand, we do not seem to obtain optimal results in the
sense that we require ‖h‖2 small, while the classical results in the compact case
only require M = Graph(h) ∈C 1. Similarly, h ∈C k

b with k ≥ 3 is assumed in [Sak90,
p. 50], while hypothesis H2 in [BLZ99, p. 987] is imposed to bound ‘twisting’ of the
invariant manifold. This requirement seems closely related to our condition on h,
and is necessary for the same reason as in our Theorem 3.1: to construct a tubular
neighborhood of uniform size. I do not know whether these stronger assumptions
can be weakened or removed. ♦
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3.5 Growth estimates for the perturbed system

We shall finally put all the ingredients together to obtain exponential growth
estimates for perturbed flows contained in the tubular neighborhood ‖y‖ ≤ η

of X ×Y . We write the perturbed vector field ṽ on X ×Y as

ẋ = ṽ X (x, y),

ẏ = ṽ Y (x, y) = A(x) y + f̃ (x, y),

where f̃ (x, y) = f (x, y)+ (
ṽ Y (x, y)− vY (x, y)

)
.

(3.16)

Let us assume that the conditions of Theorem 3.2 hold true. First, if ρM = 0, then
for any fixed r we can always slightly increase6 to ρM > 0, such that the growth
rates (1.9) and spectral gap condition ρ− < −r ρM still hold true; this way, we
get rid of degenerate exponentials in integrals. We have some ‘spectral space’
∆ρ = r ρM −ρ− > 0 that we use to define modified exponential growth numbers

ρX =−ρM − ∆ρ
4

, CX = 2C̃ M ,

ρY = ρ−+ ∆ρ
4

, CY = C̃−.
(3.17)

This allows us to get all perturbed flows within these slightly modified growth rates,
while we reserve another ∆ρ/2 spectral space for later use, such as proving (higher
order) differentiability. Note that both ρY , ρX are negative since we focus on the
stable normal bundle.

We first fix some notation to be used throughout the proof:

• Cv denotes the global C k,α bound on v and ṽ .

• ε(ν) denotes the perturbation size in Lemma 3.12 depending on the smooth-
ing convolution parameter ν from Lemma 2.34, while Cv (ν) denotes the C k,α

bound on A, f̃ , which may grow due to smoothing when ν→ 0. We also have
‖A‖k−1,‖ f̃ ‖k−1 ≤Cv .

• ζ denotes a small bound both on the derivative of f̃ and on perturbations of
the horizontal vector field on X , that is, we impose bounds

sup
x∈X‖y‖≤η

‖D f̃ (x, y)‖ ≤ ζ and sup
x∈X‖y‖≤η

‖ṽ X (x, y)− vX (x,h(x))‖ ≤ ζ,

and the size of ζ will be controlled by δ, σ1, ν, and η.

6We have ρM ≥ 0 from (1.9). Note that we are interested in −ρM for the stable side of the spectrum.
In the rest of this chapter, all exponential rates will be negative.
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Let us point out here that multiple parameters must be chosen small, some depen-
dent on other small parameters. The following graph shows all dependencies; an
arrow indicates that the choice of a parameter influences the choice of the object
pointed to.

δ σ1 ν

η

OO <<
55

bb ζoo

bb OO ::

OO (β,T )oo

ii
dd OO

::

other (small) constants and bounds

(3.18)

The constants and bounds include (3.17) and Cv , and are all fixed. Note that there
are no circular dependencies, so we are free to choose any of these parameters
smaller if necessary without the risk of having unsatisfiable constraints.

By invariance of M = {y = h(x)} we have

vY (x,h(x)) = dy

dt
= Dh(x) · vX (x,h(x)). (3.19)

This can be used to estimate ‖vY (x,h(x))‖ ≤σ1 Cv and derived estimates, such as
(taking the derivative with respect to x)

‖Dx vY ◦ g‖ ≤ ‖Dy vY ‖‖Dh‖+‖D2h‖‖vY ◦ g‖
+‖Dh‖(‖Dx vX ◦ g‖+‖Dy vX ◦ g‖‖Dh‖)≤ 4Cv σ1

(3.20)

where σ1 ≤ 1 has been assumed. Together with previous estimates, this leads
to

‖ f (x,0)‖ = ‖vY (x,0)− A(x) ·0‖
≤ ‖Dh(x)‖‖vX ◦ g‖0 ≤σ1 Cv ,

‖Dx f (x, y)‖ = ‖Dx vY (x, y)−DA(x) y‖
≤ ‖Dx vY (x, y)−Dx vY (x,h(x))‖+‖Dx vY ◦ g‖0

+
(
‖D(A−Dy vY ◦ g )‖0 +‖Dx Dy vY ‖0

)
‖y‖

≤ εDx vY (η+σ1)+4Cv σ1 +
(
ε(ν)+Cv

)
η,

‖Dy f (x, y)‖ = ‖Dy vY (x, y)− A(x)‖
≤ ‖Dy vY (x, y)−Dy vY (x,h(x))‖+‖Dy vY ◦ g − A‖0

≤ εDy vY (η+σ1)+ε(ν),

‖ṽ X (x, y)− vX (x,h(x))‖ ≤ ‖ṽ X (x, y)− vX (x, y)‖+‖vX (x, y)− vX (x,h(x))‖
≤ δ+εvX (η+σ1).
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Hence, ‖ f ( · ,0)‖0 can be made small independently of η, while ‖ f ‖1, ‖ṽ X ( · , y)−
vX ◦ g‖0 ≤ ζ can be obtained for any ζ > 0 depending on δ, η, σ1, ε(ν), and the
continuity moduli εDvY , εvX . So if we set

ζ= 5Cv σ1 +2εDvY (η+σ1)+ (
ε(ν)+Cv

)
η+ε(ν)+εvX (η+σ1)+δ, (3.21)

then ‖ f ‖1, ‖ṽ X ( · , y)− vX ◦ g‖0 ≤ ζ hold and ζ is small when δ, σ1, ν, η are.

We need the following result to control the C k−1 distance of the perturbed manifold
M̃ to M .

Proposition 3.14. For any ε> 0, the nonlinearity f̃ and its partial derivatives with
respect to x ∈ X can be bounded as

∀ 0 ≤ i ≤ k −1: ‖Di
x f̃ ‖ ≤ ε (3.22)

by choosing η, ν, σ1, ‖h‖k , and ‖ṽ − v‖k−1 small enough.

The idea of the proof is the following. If M is described exactly by h(x)≡ 0, then by
invariance we have vY (x,0) ≡ 0 (cf. (3.19)), hence Di

x vY (x,0) ≡ 0 as well. We adapt
the proof to incorporate small perturbations introduced by the nonzero function h
and the convolution smoothing of A.

Proof. Note that f̃ is defined by (3.16) and (3.11) as

f̃ (x, y) = vY (x, y)− A(x) · y + [
ṽ Y (x, y)− vY (x, y)

]
, (3.23)

where A is defined as a convolution smoothing of Dy vY ◦ g such that ‖A−Dy vY ◦
g‖k−1 ≤ ε(ν). The term in brackets obviously becomes small when ‖ṽ − v‖k−1

does. For the second term note that ‖y‖ ≤ η, while ‖A‖k−1 is bounded close to
‖Dy vY ◦g‖k−1, which in turn can be estimated by ‖Dy vY ‖k−1 ≤Cv and ‖h‖k−1 after
application of Proposition C.3.

For the first term in (3.23) we use the continuity modulus of Di
x vY to estimate

‖Di
x vY (x, y)‖ ≤ ‖Di

x vY (x,h(x))‖+εDi
x vY

(‖y −h(x)‖),

while ‖y −h(x)‖ ≤ η+σ1. We insert (3.19) and apply Proposition C.3 another time
to obtain

Di
x vY (x,h(x)) = Di

x

[
Dh(x) · vX (x,h(x))

]− ∑
l≥0,m≥1
l+m≤i

Dl
x Dm

y vY (x,h(x)) ·Pm,i−l
(
D•h(x)

)
.

This expression can be made small since ‖Dl
x Dm

y vY ‖ ≤Cv and each term contains
at least one factor D j h(x) for some 0 ≤ j ≤ k.



108 Chapter 3. Persistence of noncompact NHIMs

Remark 3.15. Note that we cannot improve the result to a C k size estimate, since
‖A‖k ≤C (ν) may grow with ν→ 0, while compensating this by choosing η smaller
would introduce a circular dependency in (3.18). ♦

As the next step, we will derive exponential growth estimates for the perturbed
system (3.16). More generally, we consider the horizontal flow Φy and vertical,
linear flowΨx generated by

ẋ = ṽ X (x, y), (3.24a)

ẏ = A(x) y, (3.24b)

with specific curves y : I → Y and x : I → X substituted, respectively. The following
series of lemmas and propositions show that these flows are small perturbations of
the flows of (3.12) and satisfy exponential growth rates (3.17). We prove the nonlin-
ear case on X and the linear case on Y separately, since we use C 1 smoothness for
the nonlinear case, while only continuity can be assumed for the linear case.

Lemma 3.16 (Growth estimates for a perturbed system).
Let X be a Riemannian manifold and let the system ẋ = v(t , x) with v, Dx v ∈ C 0

b
have flowΦwith exponential growth estimate

∀ x0 ∈ X , t ≤ t0 : ‖DΦ(t , t0, x0)‖ ≤C eρ(t−t0). (3.25)

Let ṽ = v + r be a perturbed system generating a flow Φ̃. For each ρ̃ < ρ and C̃ >
C , there exists a δ > 0, such that if ‖r‖0, ‖Dx r‖0 < δ, then Φ̃ satisfies the growth
estimate (3.25) with ρ̃ and C̃ inserted.

Note that this lemma is formulated in backward time.

Proof. Choose T > 0 sufficiently large such that C̃ eρ(−T ) ≤ e ρ̃(−T ). By continuous
dependence of the solutions of differential equations on parameters (see Theo-
rem A.6 and Remark A.7), a C 1 small perturbation r results in a C 1 small perturbed
flow Φ̃ on compact time intervals −T ≤ t − t0 ≤ 0. This result is uniform in t0, t
when v,r ∈C 1

b , where differentiation is understood with respect to x only. Hence
we obtain

sup
x0∈X

−T≤t−t0≤0

∥∥DΦ̃(t , t0, x0)
∥∥e−ρ(t−t0) ≤ C̃

if δ is chosen sufficiently small. Writing t − t0 =−(n T +τ) with n ∈N, τ ∈ [0,T ), we
use the group property of the flow to obtain∥∥DΦ̃(t , t0, x0)

∥∥≤ (
C̃ eρ(−T ))n

C̃ eρ(−τ) ≤ e ρ̃n(−T ) C̃ eρ(−τ) ≤ C̃ e ρ̃(t−t0).
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Lemma 3.17 (Perturbation of linear flow).
Let Y be a Banach space and let A ∈C 0

b

(
R;L(Y )

)
generate a flowΨ(t , t0) with growth

estimate
∀ t ≥ t0 : ‖Ψ(t , t0)‖ ≤C eρ(t−t0). (3.26)

Let ρ̃ > ρ be given and set δ= ρ̃−ρ
C > 0. If B ∈C 0

b

(
R;L(Y )

)
is globally bounded by δ,

then the flow Ψ̃(t , t0) of Ã(t ) = A(t )+B(t ) satisfies (3.26) with ρ̃ inserted.

Proof. The variation of constants integral equation for Ψ̃ is

Ψ̃(t , t0) =Ψ(t , t0)+
∫ t

t0

Ψ(t ,τ)B(τ)Ψ̃(τ, t0) dτ. (3.27)

We shall prove the estimate for Ψ̃with an approach inspired by Gronwall’s lemma.
Note that our variation of constants formula (3.26) is slightly different from the
standard context of Gronwall’s lemma, since we do not have a bound for A.

We denote by ψ(t , t0)=C eρ(t−t0) the bound onΨ. Now ψ̃(t , t0)=C e ρ̃(t−t0) satisfies
the integral equation

ψ̃(t , t0) =ψ(t , t0)+
∫ t

t0

ψ(t ,τ)δψ̃(τ, t0) dτ (3.28)

when δC = ρ̃−ρ. We verify this by calculating the right-hand side:

C eρ(t−t0) +
∫ t

t0

C eρ(t−τ)δC e ρ̃(τ−t0) dτ

=C eρ(t−t0)
[

1+δC
∫ t

t0

e(ρ̃−ρ)(τ−t0) dτ
]

=C eρ(t−t0)
[

1+ δC

ρ̃−ρ
(
e(ρ̃−ρ)(t−t0) −1

)]
=C eρ(t−t0) e(ρ̃−ρ)(t−t0)

=C e ρ̃(t−t0).

Next, we prove by contradiction that∥∥Ψ̃(t , t0)
∥∥≤ ψ̃(t , t0).

Thus, let
t1 = inf

{
t ∈R ∣∣ t ≥ t0 and ‖Ψ̃(t , t0)‖ > ψ̃(t , t0)

}
.

Note that Ψ̃ is the solution of a differential equation, hence continuous. We write∥∥Ψ̃(t , t0)
∥∥ = ψ̃(t , t0) + f (t ), so we may assume that f (t ) ≤ 0 for t ∈ [t0, t1], but
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there exist t ∈ (t1, t2] arbitrary close to t1 such that f (t ) > 0. Let f |[t1,t2] attain its
supremum at t , thus we have

sup
[t1,t ]

f = f (t ) > 0.

We insert these estimates into the integral equality (3.27) and obtain

∥∥Ψ̃(t , t0)
∥∥= ψ̃(t , t0)+ f (t ) ≤ψ(t , t0)+

∫ t

t0

ψ(t ,τ)δ
(
ψ̃(τ, t0)+ f (τ)

)
dτ

≤ ψ̃(t , t0)+
∫ t

t1

ψ(t ,τ)δ f (τ) dτ

≤ ψ̃(t , t0)+ (t1 − t )δ sup
τ∈[t1,t ]

ψ(t ,τ) sup
[t1,t ]

f ,

where we used that ψ̃(t , t0) satisfies (3.28) and that f |[t0,t1] ≤ 0. Now we choose
t2 and therefore t sufficiently small that (t − t1)δ supτ∈[t1,t ] ψ(t ,τ) ≤ q < 1, which
leads to the contradiction

f (t ) ≤ q sup
[t1,t ]

f < f (t ).

Proposition 3.18 (Perturbation of X -flow estimate).
If δ, η, σ1 are sufficiently small, then the flow of (3.24a) satisfies the modified expo-

nential growth estimates (3.17) for any y ∈ Bη(R;Y ) inserted.

Here Bη(R;Y ) denotes the closed ball of radius η in the space of bounded continu-
ous functions R→ Y .

Proof. Define the non-autonomous system v(t , x)= ṽ X (t , x, y(t )). This system is a
C 1 small perturbation of (vX ◦ g )(x), uniformly in t :

‖v(t , x)− (vX ◦ g )(x)‖ ≤ ‖ṽ X (x, y(t ))− vX (x, y(t ))‖+‖vX (x, (t ))− vX (x,h(x))‖
≤ δ+εDv (η+σ1),

‖Dx v(t , x)−D(vX ◦ g )(x)‖ ≤ ‖Dx ṽ X (x, y(t ))−Dx vX (x, y(t ))‖
+‖Dx vX (x, y(t ))−Dx vX (x,h(x))‖

≤ δ+εDv (η+σ1),

where εDv denotes the uniform continuity modulus of v and its first derivative,
which can be made small by choice of η, σ1. We apply Lemma 3.16 to obtain expo-
nential growth numbers CX , ρX for (3.24a) by choosing δ+εDv (η+σ1) sufficiently
small.
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The following definition and lemma for flows on X are again formulated in back-
ward time, similar to Lemma 3.16.

Definition 3.19 (Approximate solution).
Let X be a Riemannian manifold and v(t , x) a time-dependent vector field on X .
We call a continuous curve x : R→ X a (β,T )-approximate solution of v if for each
interval [t2, t1] ⊂Rwith t1 − t2 ≤ T and associated exact solution curve ξ of v with
initial condition ξ(t1) = x(t1), it holds that

sup
t2≤t≤t1

d(x(t ),ξ(t )) <β. (3.29)

It would have been easier to define approximate solutions as C 1 curves x such
that ‖ẋ(t )−v(t , x(t ))‖ <β. We shall want to work with C 0-norms, though, and C 1

curves do not form a complete space under such norms. We use this continuous
curve definition to avoid any complications associated with non-completeness.
We still have the following result, as a discretized variant on variation by constants
estimates.

Lemma 3.20 (Growth of approximate solutions).
Let X be a Riemannian manifold, v(t , x) a time-dependent vector field on X , and x
a (β,T )-approximate solution of v. Assume that v generates a flowΦt ,t0 that satisfies
the exponential growth estimate (3.25) with C ≥ 1, ρ < 0. Let ξ0 denote the exact
solution of v with initial condition ξ0(0) = x(0).

Then the distance dρ(x,ξ0) is finite on the interval (−∞,0], and explicitly bounded
by

dρ(x,ξ0) ≤β
(
1+ C

1−eρ T

)
. (3.30)

Proof. Let ξi with i ∈N be the associated exact solutions of x that satisfy (3.29) on
the interval [−(i +1)T,−i T ]. We have d

(
ξi (−(i +1)T ),ξi+1(−(i +1)T )

)<β. Hence,
dρ(ξi ,ξi+1) <βC eρ(i+1)T on the interval (−∞, (i +1)T ] by the exponential growth
estimate.

Thus on each interval [−(i +1)T,−i T ] we can use the triangle inequality to estimate

dρ(x,ξ0) ≤ dρ(x,ξi )+
i−1∑
j=0

dρ(ξ j ,ξ j+1)

<βeρ i T +
i−1∑
j=0

βC eρ( j+1)T

≤β
(
1+ C

1−eρ T

)
.

The union of all such intervals is (−∞,0] hence (3.30) follows.
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Proposition 3.21 (Perturbation of Y -flow estimate).
Let x be a (β,T )-approximate solution to vX ◦g . If T is sufficiently large andσ1, ν, β
are sufficiently small, then the flowΨx of A(x(t )) has exponentially bounded growth
as specified in (3.17), that is, ‖Ψx (t , t0)‖ ≤CY eρY (t−t0) for all t ≥ t0.

Proof. Let ρ̃ = 1
2 (ρ−+ρY ) < ρY and choose T > 0 sufficiently large that C̃− e ρ̃ T ≤

eρY T . Let xi be an exact solution to vX ◦ g such that supt∈[ti ,ti+T ] d(x(t ), xi (t )) ≤β

per Definition 3.19, hence the flow Ψ̂ of Â(xi (t )) satisfies (3.14), that is, ‖Ψ̂t‖ ≤
C̃− eρ− t . We decompose A(x(t )) = Â(xi (t ))+B(t ) and estimate

‖B(t )‖ = ∥∥A(x(t ))− Â(xi (t ))
∥∥

≤ ∥∥A(x(t ))− A(xi (t ))
∥∥+∥∥A(xi (t ))− (Dy vY ◦ g )(xi (t ))

∥∥
+∥∥(Dy vY ◦ g )(xi (t ))− Â(xi (t ))

∥∥
≤ ‖DA‖d(x(t ), xi (t ))+ε(ν)+4Cv σ1 2‖πE−‖.

Note that ‖A‖1 is bounded close to ‖Dy vY ‖1 ≤Cv , and (3.15) and (3.20) were used
to estimate the third term. We thus have ‖B(t )‖ ≤ δ for any δ> 0 when σ1, ν, β are
sufficiently small. Hence by Lemma 3.17, we have ‖Ψx (τ,τ0)‖ ≤ C̃− e ρ̃(τ−τ0) for any
τ,τ0 ∈ [ti , ti +T ].

Now we cover the interval [t0, t ] by intervals [t0 + (i −1)T, t0 + i T ] with correspond-
ing exact solutions xi that approximate x. As in the proof of Lemma 3.16, we write
t − t0 = n T +τ and use the group property of the flow to obtain

‖Ψx (t , t0)‖ ≤ (
C̃− e ρ̃ T )n

C̃− e ρ̃ τ ≤ eρY n T C̃− eρY τ = C̃− eρY (t−t0).

We note that CY = C̃− to complete the proof.

Using these results, we choose T sufficiently large and δ, η, σ1, β, ν sufficiently
small that the modified flows DΦy ,Ψx satisfy exponential growth rates (3.17)
when curves y ∈ Bη(R;Y ) and (β,T )-approximate solutions x ∈ C 0(R; X ) are in-
serted.

Lemma 3.22 (Variation of linear flow).
Let X be a metric space and Y a Banach space and let A ∈Cα

b,u(X ;L(Y )) be a family
of linear operators on Y that depends uniformly α-Hölder continuous on x ∈ X ,
with Hölder coefficient Cα and 0 <α≤ 1. Let Ψx denote the flow of A under a curve
x ∈C (I ; X ), and assume that it satisfies the exponential growth condition (3.26).

Then the variation of the flow satisfies the Hölder-like estimate

‖(Ψ1 −Ψ2)(t ,τ)‖ ≤ CαC 2

−αρ eρ(t−τ) dρ(x1, x2)α eαρ τ (3.31)

when dρ(x1, x2) is finite.
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Proof. Let dρ(x1, x2) be finite, letΨ1,Ψ2 be the associated flows of A and denote
Υ=Ψ1 −Ψ2. We have forΥ the differential equation

d

dt
Υ(t ,τ) = A(x1(t ))Υ(t ,τ)+ [

A(x1(t ))− A(x2(t ))
]
Ψ2(t ,τ), Υ(t , t ) = 0.

By variation of constants we obtain

‖Υ(t ,τ)‖ ≤
∫ t

τ
‖Ψ1(t ,σ)‖Cαd(x1(σ), x2(σ))α ‖Ψ2(σ,τ)‖ dσ

≤CαC 2 eρ(t−τ)
∫ t

τ
dρ(x1, x2)α eαρσ dσ

≤ CαC 2

−αρ eρ(t−τ) dρ(x1, x2)α eαρ τ.

3.6 Existence and Lipschitz regularity

We start with proving Lipschitz estimates for two mappings onto curves in X ,Y ,
respectively. These mappings will be combined to a contraction mapping T . Its
fixed points parametrized by x0 ∈ X will correspond to the unique solution curves
of the modified system (3.16) that stay bounded.

Let Bρ(I ;Y ) denote the Banach space of exponentially bounded, continuous curves
in Y on the interval I = (−∞,0] and recall that in this chapter we always assume
ρ < 0. Additionally, we denote by Bρ

η (I ;Y )= Bρ(I ;Y )∩Bη(I ;Y ) the subset of curves
y(t ) which are moreover globally smaller than η. The closure of Bρ

η (I ;Y ) is given by
Bρ
η (I ;Y ) = Bρ(I ;Y )∩Bη(I ;Y ).

Proposition 3.23. The space Bρ
η (I ;Y ) is a closed subspace of the Banach space

Bρ(I ;Y ), hence a complete metric space.

Proof. Consider the evaluation mapping evt : Bρ(I ;Y ) → Y : y 7→ y(t ). For each
fixed t ∈ I this is a continuous mapping as ‖y(t )‖ ≤ ‖y‖ρ eρ t with eρ t a finite
number.

Let R = B(0;η) be the closed ball in Y , then we have

Bρ
η (I ;Y ) = ⋂

t∈I
ev−1

t (R)

as an intersection of closed preimages under evt , hence closed.
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For curves x(t ) in X , we cannot construct a similar space Bρ(I ; X ) as X is not
a normed linear space. Instead we construct a (not necessarily complete) met-
ric space. Let Bρ(I ; X ) = (

C 0(I ; X ),dρ
)

denote the space of continuous curves
equipped with the metric (1.16) (which is allowed to take the value ∞) and let
Bρ

β
(I ; X ) be the subset of curves x ∈C 0(I ; X ) that are (β,T )-approximate solutions

to vX ◦ g according to Definition 3.19. We suppress the dependence on T from the
notation (note that T in the equation below is a completely different object); bothβ
and T were fixed once and for all to fulfill the requirements of Proposition 3.21, we
keep just the subscript β as a reminder and to distinguish from the space Bρ(I ; X ).
Let ρ < ρX . Then exact solutions of vX ◦ g have finite dρ distance on I , and by
Lemma 3.20 the distance of any two curves x1, x2 ∈Bρ

β
(I ; X ) is finite, too.

We write T = TY ◦
(
TX , pr1

)
with

T : Bρ
η (I ;Y )×X → Bρ

η (I ;Y ),

TX : Bρ
η (I ;Y )×X →Bρ

β
(I ; X ),

TY : Bρ

β
(I ; X )×Bρ

η (I ;Y ) → Bρ
η (I ;Y ) ⊂ Bρ

η (I ;Y ),

(3.32)

for any ρY < ρ < ρX . The map TX is defined by the flowΦy of ṽ X ( · , y(t )) with initial
value x0 ∈ X , that is,

TX (y, x0)(t ) =Φy (t ,0, x0). (3.33)

In [Hen81], the TY part of the contraction operator is indirectly defined by another
contraction. Instead, here, we will set up TY as a direct mapping

TY (x, y)(t ) =
∫ t

−∞
Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ, (3.34)

whereΨx is the flow of A(x(t )). This should ease proving smoothness properties of
T , which will subsequently imply smoothness of the invariant manifold.

Remark 3.24. Note that Bρ

β
(I ; X ) is not a Banach space or even a complete metric

space. It will only appear as an intermediate space in the composition T = TY ◦(
TX , pr1

)
though, so this does not affect the Banach fixed point arguments, as long

as the mappings TX ,TY compose to a contraction T on Bρ
η (I ;Y ) uniformly in the

parameter x0 ∈ X . ♦

The following two propositions show that the maps TX , TY do indeed map into
their specified codomains, when parameters are chosen sufficiently small.

Proposition 3.25. If ζ is chosen such that (3.36) holds and δ, σ1 are sufficiently
small, then TY maps into Bη(I ;Y ).
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Proof. The conditions of Proposition 3.21 are satisfied for any x ∈Bρ

β
(I ; X ), so the

flow Ψx of system (3.24b) satisfies exponential growth estimates with numbers
ρY , CY .

Now, TY maps into Bη(I ;Y ) since

∥∥TY (x, y)(t )
∥∥≤

∫ t

−∞
‖Ψ(t ,τ)‖(‖ f̃ (x(τ),0)‖+‖Dy f̃ ‖‖y(τ)‖) dτ

≤ CY

−ρY

(Cv σ1 +δ+ζη)
(3.35)

which can be made smaller than η by choosing ζ such that

CY ζ

−ρY

≤ 1

2
(3.36)

holds, as well as δ, σ1 sufficiently small.

This shows that TY is well-defined in (3.32) after choosing ζ, δ, σ1 possibly smaller.
Note that the choice of ζ does not depend on any of the other small bounds.
Similarly, we verify that TX maps into Bρ

β
(I ; X ).

Proposition 3.26. If δ, σ1, and η are chosen sufficiently small, then TX maps into
Bρ

β
(I ; X ).

Proof. Let y ∈ Bρ
η (I ;Y ) and x0 ∈ X . The curve x = TX (y, x0) is generated by the

vector field ṽ X ( · , y(t )) which is a small perturbation of vX ◦ g , since

‖ṽ X ( · , y(t ))− vX ◦ g‖0 ≤ ζ.

Let t2− t1 ≤ T and letΦt denote the flow of vX ◦g . We apply the nonlinear variation
of constants estimate (E.2) and obtain for t ∈ [t1, t2]

d
(
x(t ),Φt−t2 (x(t2))

)≤ ∫ t2

t
‖DΦt−τ(x(τ))‖ζ dτ

≤
∫ t2

t
CX eρX (t−τ) ζ dτ

≤ CX ζ

−ρX

eρX (t−t2).

Thus, if we choose ζ sufficiently small that

CX ζ

−ρX

eρX T <β, (3.37)

then x is (β,T )-approximated by the exact solution Φt ,t2 (x(t2)) on the interval

[t1, t2] so x ∈Bρ

β
(I ; X ).
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The basic argument for the Perron method is encoded in the following lemma: a
y-bounded solution curve of the system (3.16) is equivalent to y ∈ Bη(I ;Y ) being a
fixed point of T , while this map T will be shown to be a contraction.

Lemma 3.27 (Cotton–Perron).
Let x ∈C (I ; X ), y ∈ Bη(I ;Y ) bounded, and x0 ∈ X . Then the following statements are
equivalent:

i. the pair (x, y) is a solution curve for the modified system (3.16) with partial
initial condition x(0) = x0;

ii. y ∈ Bη(I ;Y ) is a fixed point of T ( · , x0) and x = TX (y, x0).

Proof. The proof goes along the same lines as the classical Perron method for
hyperbolic fixed points. As an intermediate step, we introduce the operator

T̂ Y (x, y, t0)(t ) =Ψx (t , t0) y(t0)+
∫ t

t0

Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ (3.38)

and the following statement that is equivalent to those in the lemma:

iii. the pair (x, y) is a fixed point of (TX , T̂ Y ) for each t0 ∈ (−∞,0].

Equivalence of i and iii (with t0 = 0) is a direct consequence of equivalence of
differential and integral equations; the equation for y has been rewritten as a
variation of constants integral with respect to the nonlinear term f̃ . If (x, y) is a
fixed point of (TX , T̂ Y ) for t0 = 0, then this holds for any t0 ∈ (−∞,0]. Note that the
initial value for y is left unspecified in both statements.

We finish by proving the implications iii ⇒ ii ⇒ i . For the first we take the limit
t0 →−∞ in T̂ Y (x, y, t0). SinceΨx decays exponentially and y is bounded, it follows
that this limit is well-defined:

∀ t ∈ I : lim
t0→−∞ T̂ Y (x, y, t0)(t ) = TY (x, y)(t ).

Hence, a fixed point of (TX , T̂ Y ) is a fixed point of (TX , TY ). The last implication
can readily be verified by calculating the time derivatives of x = TX (y, x0) and
y = TY (x, y) to show that (x, y) is a solution of (3.16) with x(0) = x0.

Next, we prove that both TX , TY are Lipschitz, while the Lipschitz constant of TY

can be made arbitrarily small.

Lemma 3.28. Let ρY < ρ ≤ ρX and 0 < qY < 1. If ζ is sufficiently small, then
Lip(TY ) ≤ qY .
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Proof. Let (xi , yi ), i = 1,2 be curves from Bρ

β
(I ; X )×Bρ

η (I ;Y ). LetΨi be the corre-
sponding flows of A along the curves xi . Then the application of Lemma 3.22 in
the Lipschitz case α= 1 leads to a Lipschitz estimate on TY for any ρY < ρ ≤ ρX :

‖TY (x1, y1)(t )−TY (x2, y2)(t )‖

≤
∫ t

−∞
‖Ψ1(t ,τ) f̃ (x1(τ), y1(τ))−Ψ2(t ,τ) f̃ (x2(τ), y2(τ))‖ dτ

≤
∫ t

−∞
‖Ψ1(t ,τ)−Ψ2(t ,τ)‖‖ f̃ (x1(τ), y1(τ))‖

+‖Ψ2(t ,τ)‖‖ f̃ (x1(τ), y1(τ))− f̃ (x2(τ), y2(τ))‖ dτ

≤
∫ t

−∞
Cv C 2

Y

−ρ eρY (t−τ) dρ(x1, x2)eρ τ ‖ f̃ ‖0

+CY eρY (t−τ)‖D f̃ ‖0
(
dρ(x1, x2)+‖y1 − y2‖ρ

)
eρ τ dτ

≤ ζC
(
dρ(x1, x2)+‖y1 − y2‖ρ

)
eρ t .

Here C < ∞ depends only on the constants and additional integration factors
(ρ−ρY )−1 in the last integral, hence ζC ≤ qY when ζ is small enough.

Lemma 3.29. Let ρY < ρ < ρX . If ζ, η are sufficiently small, then Lip(TX ) ≤ qX for
some qX > 1 independent of all small parameters.

Proof. Let ξ1,ξ2 ∈ X and y1, y2 ∈ Bρ
η (I ;Y ). For i = 1,2, define vi (t , · ) = ṽ X ( · , yi (t ))

and let xi ∈ C 1(I ; X ) be a solution of the system vi with initial condition ξi . We
compare the systems v1, v2:

‖v1(t , · )− v2(t , · )‖ ≤ ‖Dy ṽ X‖‖y1(t )− y2(t )‖ ≤Cv ‖y1(t )− y2(t )‖.

The flow Φy1 has exponential growth numbers ρX , CX . We view v2 as a small
perturbation of v1 and apply the nonlinear variation of constants estimate (E.2) to
obtain

d(x1(t ), x2(t )) ≤CX eρX t d(ξ1,ξ2)+
∫ 0

t
CX eρX (t−τ) Cv ‖y1(τ)− y2(τ)‖ dτ

≤CX eρX t d(ξ1,ξ2)+CX Cv ‖y1 − y2‖ρ
∫ 0

t
eρX (t−τ) eρ τ dτ

≤CX eρX t d(x1, x ′
2)+ CX Cv

ρX −ρ
‖y1 − y2‖ρ eρX t .

Now

dρ
(
TX (y1,ξ1),TX (y2,ξ2)

)≤ sup
t≤0

CX d(ξ1,ξ2)e(ρX −ρ) t + CX Cv

ρX −ρ
‖y1 − y2‖ρ e(ρX −ρ) t

≤CX d(ξ1,ξ2)+ CX Cv

ρX −ρ
‖y1 − y2‖ρ
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exhibits a Lipschitz constant qX for TX that does not depend on any of the small
parameters.

Proposition 3.30 (Extension of solution is bounded in Y ).
Let (x, y)(t ) be a solution of the perturbed system (3.16) satisfying y ∈ Bη(I ;Y ) for
t ≤ 0. For ζ, δ, σ1 sufficiently small, the forward extension to t ≥ 0 has y ∈ Bη(R;Y ).

Proof. First of all, choose ζ, δ, σ1 sufficiently small such that by (3.35), we have
y ∈ Bη/2(I ;Y ). Proceeding by contradiction, let t0 be the first time after which y(t )
becomes larger than η, thus

t0 = sup {t ∈R | ∀ τ≤ t : ‖y(τ)‖ ≤ η}.

The curve x(t ) is a (β,T )-approximate solution to vX ◦g on the interval (−∞, t0], so
from Proposition 3.25 we conclude that y ∈ Bη/2

(
(−∞, t0];Y

)
. The continuity of y

contradicts the assumption that t0 is the supremum.

Completing the proof of existence and Lipschitz regularity

We finally put things together and prove that a unique persistent manifold M̃ exists
and that it is Lipschitz.

Since TX satisfies a fixed Lipschitz estimate, we can choose ζ small enough to obtain
qX ·qY < 1. Thus, T is a contraction on Bρ

η (I ;Y ) for each fixed ρY < ρ < ρX ; ζ will
depend on ρ though. According to Proposition 3.23, Bρ

η (I ;Y ) is a complete metric
space, so the Banach fixed point theorem shows that there is a unique y ∈ Bρ

η (I ;Y )
fixed point of T ; it holds moreover that y ∈ Bρ

η (I ;Y ). This contraction also depends
(uniformly) on the parameter x0 ∈ X , hence we obtain a fixed point map

Θ∞ : X → Bρ
η (I ;Y ), (3.39)

satisfying the relation

∀ x0 ∈ X : Θ∞(x0) = T (Θ∞(x0), x0). (3.40)

The superscript ∞ indicates that this map is obtained as a limit of applying the
uniform contraction T . The parameter dependence in T is Lipschitz, so the map
Θ∞ will be Lipschitz as well.

By Proposition 3.30, the fixed point y =Θ∞(x0) is bounded by η for all time and
Bη(I ;Y )= Bρ

η (I ;Y ) as sets, so y is the unique η-bounded solution with partial initial
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data x(0) = x0. In combination with the evaluation map y 7→ y(0), we obtain the
mapping

h̃ : X → B(0;η) ⊂ Y : x0 7→Θ∞(x0)(0). (3.41)

Its graph M̃ = Graph(h̃) is the unique invariant manifold of the modified sys-
tem (3.16) and is Lipschitz as well.

Since both M and M̃ are described by graphs of small functions X → Y , it follows
that they are homeomorphic and ‖h̃‖0 ≤ η. We can choose another, arbitrarily small
η′ instead. This requires us to choose smaller δ′, σ′

1 parameters as well. But as can
be seen from (3.18), η does not depend on δ, σ1, so the newly found ‖h̃′‖0 ≤ η′ will
actually be unique in the original η-sized neighborhood as well.

3.7 Smoothness

To study smoothness of Θ∞, we can formally differentiate the fixed point rela-
tion (3.40) with respect to x0 to obtain contractive mappings T (k) for the k-th
order derivatives of maps Θ and then apply the fiber contraction theorem, see
Appendix D. If we assume that Θ satisfies (3.40), then Proposition C.3 shows that
(at least formally)

DkΘ(x0) = ∑
l ,m≥0

l+m≤k
(l ,m) 6=(0,0)

Dl
y Dm

x0
T (Θ(x0), x0) ·Pl ,k−m

(
D•Θ(x0)

)
, (3.42)

which can be rewritten as a fiber contraction map on DkΘ by isolating that term
(l = 1, m = 0) on the right-hand side as

DkΘ(x0) = Dy T (Θ(x0), x0) ·DkΘ(x0)+ . . .

All the remaining terms are expressions in the lower order derivatives DnΘ(x0) for
n < k only; these form the base space in the fiber contraction theorem.

The derivatives DkΘ and Dl
y Dm

x0
T in (3.42) do not exist on the space Bρ

η (I ;Y ) as
codomain, however. Indeed, if they did, we could have applied the implicit function
theorem right away. Instead, the derivatives DkΘ are only well-defined on spaces7

B kρ+µ(I ;Y ), where µ < 0 is an arbitrarily small additional exponential growth
rate. Derivatives of the maps TX , TY do not exist at all. By using the fiber con-
traction theorem and interpreting the Dk TX , Dk TY as ‘formal derivatives’ in some

7Note that the spaces Bkρ+µ(I ;Y ) are to be understood as the codomains of the maps Θ, hence
the DkΘ as multilinear operators into these. The spaces Yη play the same role in [Van89, Def. 3.10].
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appropriate way, we can still show, though, that the DkΘ are higher derivatives of
Θ that converge to the derivatives of Θ∞ under iteration of the fiber contraction
maps (3.42). The gap conditionρY < r ρX will show up in the requirement that (3.42)
is contractive for k ≤ r (and finally k +α≤ r when considering Hölder continuity).
In case of uniform continuity (i.e. when α= 0) we make use of the strict inequality
to seize some of the spectral space left for the terms µ< 0.

The interpretation of DT and its constituents DTX and DTY as true derivatives is
obstructed already by the fact that neither Bρ

η (I ;Y ) nor Bρ

β
(I ; X ) are smooth Banach

manifolds8, hence these can never be the (co)domain of differentiable maps. Thus,
the chain rule

DΘn+1 = Dy T ·DΘn +Dx0 T

cannot be used to conclude the existence of DΘn+1 from DΘn by induction. On
the other hand, we can find ‘formal tangent bundles’ of these spaces on which
DTX ,DTY are defined as ‘formal derivatives’, and we even have explicit formu-
las (3.43) for these maps. From here on we shall use the notation D˜ f to indicate a
formal derivative and D f to indicate that a function f is truly differentiable. We
shall not make precise the notion of ‘formal’, but heuristically these formal objects
can be seen as limits of well-defined real smooth manifolds and derivatives, see
Section 3.7.7.

First, we outline the procedure of obtaining Θ∞ as a truly differentiable map by
careful manipulation of these formal derivatives. This is followed by the details
of working out the definitions and estimates. Finally, we show how everything
generalizes to higher derivatives. This last step adds more complexity, but requires
no fundamentally new ideas.

Higher derivatives of functions involving variables or values in X need to be treated
with some care, as these are not naturally defined. In such expressions, the deriva-
tives are with respect to normal coordinates at the base point in domain and range,
according to Definition C.6. I should point the reader to Appendix C: it establishes
the essential basic ingredient for this section on (higher) smoothness, namely how
exponential growth estimates carry over to continuity and higher derivatives of the
flow. Additionally, building on bounded geometry and Definition 2.9, a framework
is set up to work with these notions on the manifold X .

8At least, they are not smooth Banach manifolds in a natural way, see the discussion in Sec-
tion 3.7.4.
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3.7.1 A scheme to obtain the first derivative

The map T is not differentiable. Instead, we shall use the scheme below to obtain
differentiability ofΘ∞. The sequence {Θn}n≥0 of maps X → Bρ

η (I ;Y ) is defined by
Θn+1(x0) = T (Θn(x0), x0) and Θ0 ≡ 0. We prove the differentiability of the Θn by
induction and finally conclude thatΘ∞ is differentiable as well.

i. First, we propose candidate formal derivatives (3.43) of TX ,TY . These are
obtained naturally by standard differentiation and variational techniques,
postponing for the moment the question of which spaces these maps are
well-defined on. We define D˜ T in terms of the formal derivatives D˜ TX and
D˜ TY .

ii. The pair (T,D˜ T ) acts as a uniform fiber contraction on pairs of maps

(Θn ,D˜Θn) : TX → Bρ
η (I ;Y )×Bρ+µ(I ;Y )

when ρY < ρ+µ≤ ρ < ρX holds, both in case of µ= 0 and µ< 0 small.

iii. There are appropriate formal tangent bundles of the spaces Bρ
η (I ;Y ), Bρ

β
(I ; X )

on which these formal derivatives are well-defined. Moreover, these formal
tangent bundles can be endowed with a topology such that D˜ TX , D˜ TY , and
D˜ T are uniformly continuous into bundles with slightly larger exponential
growth rate ρ+µ. Under appropriate assumptions (and with µ=αρ) these
formal derivatives are α-Hölder continuous.

iv. The fiber contraction theorem D.1 can be applied. It follows from ii that D˜ T
has a unique fixed point D˜Θ∞ : TX → T˜Bρ

η (I ;Y ), and from iii that the map

Θ 7→ D˜ T (Θ) ·D˜Θ∞ : C 0(X ;Bρ
η (I ;Y )

)→ Γb
(
L

(
TX ;T˜Bρ+µ

η (I ;Y )
))

into bounded sections of the bundleπ : L
(
TX ;T˜Bρ+µ

η (I ;Y )
)→ X is continuous.

Thus we can conclude that D˜Θn converges in Γb
(
L

(
TX ;Bρ+µ(I ;Y )

))
to the

unique fixed point D˜Θ∞, simultaneously withΘn →Θ∞. See (3.45) and (3.47)
for precise definitions of these spaces. Moreover, D˜Θ∞ is uniformly or Hölder
continuous.

v. There is a family of maps, given by restricting the domain I of curves,

T b,a : Bρ
η ([a,0];Y )×X → Bρ

η ([b,0];Y )

that approximate T , and moreover these T b,a are differentiable maps between
Banach manifolds whose derivatives DT b,a approximate the formal derivative
D˜ T .
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vi. With the continuous embedding Bρ(I ;Y ) ,→ Bρ+µ(I ;Y ) and the previous
point, we show that ifΘn : X → Bρ+µ(I ;Y ) is differentiable, then

D˜Θn+1 = D˜ y T ·DΘn +D˜ x0 T

is the derivative ofΘn+1 : X → Bρ+µ(I ;Y ).

vii. Finally, we use Theorem D.2 to conclude that since the sequenceΘn converges
toΘ∞ and its derivatives satisfy DΘn → D˜Θ∞, it must hold that DΘ∞ = D˜Θ∞

as a map into Bρ+µ(I ;Y ).

In the subsequent sections we shall work out the details of this scheme. With some
care, the same ideas generalize to higher derivatives.

3.7.2 Candidate formal derivatives

We first explicitly give the candidate mappings for the derivatives of TX ,TY . From
now on, we will use shorthand notation xy (t ) = TX (y, x0)(t ) = Φy (t ,0, x0). The
spaces that these maps act on will be made more precise in the following sections;
δx, δy denote variations of curves x ∈ Bρ

β
(I ; X ) and y ∈ Bρ

η (I ;Y ), respectively, and
δx0 ∈ Tx0 X .

(
D˜ x0 TX (y, x0)δx0

)
(t ) = DΦy (t ,0, x0) ·δx0 (3.43a)(

D˜ y TX (y, x0)δy
)
(t ) =

∫ 0

t
DΦy (t ,τ, xy (τ))Dy ṽ X (xy (τ), y(τ))δy(τ) dτ, (3.43b)

(
D˜ x TY (x, y)δx

)
(t ) =

∫ t

−∞
Ψx (t ,τ)Dx f̃ (x(τ), y(τ))δx(τ) (3.43c)

+ (
D˜ xΨx ·δx

)
(t ,τ) f̃ (x(τ), y(τ)) dτ,(

D˜ y TY (x, y)δy
)
(t ) =

∫ t

−∞
Ψx (t ,τ)Dy f̃ (x(τ), y(τ))δy(τ) dτ, (3.43d)

(
D˜ xΨx ·δx

)
(t ,τ) =

∫ t

τ
Ψx (t ,σ)DA(x(σ))δx(σ)Ψx (σ,τ) dσ. (3.43e)

The correctness of these expressions pointwise in t can be checked by variation of
constants and follows from Theorem E.2. Note also that the expressions above are
linear in the variations δx, δy, δx0. The map (3.43e) is only included in the list for its
occurrence in (3.43c).
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3.7.3 Uniformly contractive fiber maps

We establish uniform boundedness of the formal derivative maps (3.43) as linear
operators on δx, δy , and δx0. The estimates are straightforward generalizations of
those in Section 3.6. The operator norms are induced by ‖·‖ρ norms. We have the
following list of estimates:

‖D˜ x0 TX (y, x0)‖ = sup
t∈I

‖δx0‖=1

∥∥DΦy (t ,0, x0)δx0
∥∥e−ρ t ≤ sup

t∈I
CX eρX t e−ρ t ≤CX ,

‖D˜ y TX (y, x0)‖ ≤ sup
t∈I

‖δy‖ρ=1

∫ 0

t
‖DΦy (t ,τ, xy (τ))Dy ṽ X (xy (τ), y(τ))δy(τ)‖ dτ ·e−ρ t

≤ sup
t∈I

∫ 0

t
CX eρX (t−τ) Cv eρ(τ−t ) dτ≤ CX Cv

ρX −ρ
,

‖D˜ y TY (x, y)‖ ≤ sup
t∈I

‖δy‖ρ=1

∫ t

−∞
‖Ψx (t ,τ)Dy f̃ (x(τ), y(τ))δy(τ)‖ dτ ·e−ρ t

≤ sup
t∈I

∫ t

−∞
CY eρY (t−τ) ζeρ(τ−t ) dτ≤ CY ζ

ρ−ρY

,

‖(D˜ xΨx ·δx
)
(t ,τ)‖ ≤

∫ t

τ
‖Ψx (t ,σ)DA(x(σ))δx(σ)Ψx (σ,τ)‖ dσ

≤
∫ t

τ
CY eρY (t−σ) Cv ‖δx‖ρ eρσCY eρY (σ−τ) dσ

≤ C 2
Y Cv

−ρ ‖δx‖ρ eρY (t−τ) eρ t ,

‖D˜ x TY (x, y)‖ ≤ sup
t∈I

‖δx‖ρ=1

∫ t

−∞

[
‖Ψx (t ,τ)Dx f̃ (x(τ), y(τ))δx(τ)‖

+‖(D˜ xΨx ·δx
)
(t ,τ) f̃ (x(τ), y(τ))‖

]
dτ ·e−ρ t

≤ sup
t∈I

∫ t

−∞
CY eρY (t−τ) ζeρ τ+ C 2

Y Cv ζ

−ρ eρY (t−τ) eρ t dτ ·e−ρ t

≤ CY ζ

ρ−ρY

+ C 2
Y Cv ζ

ρ ·ρY

.

These estimates show that

D˜ y T = D˜ x TY ·D˜ y TX +D˜ y TY ,

D˜ x0 T = D˜ x TY ·D˜ x0 TX

(3.44)
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are bounded linear maps when ρY < ρ < ρX . Since we have some spectral elbow
room, we can first choose a value for ρ and then choose µ< 0 sufficiently close to
zero, such that this inequality holds both for ρ and ρ+µ. If ζ is sufficiently small,
then ‖D˜ y T ‖ ≤ q < 1 can be satisfied. This shows that (T,D˜ T ) is a uniform fiber
contraction on δy ∈ Bρ+µ(I ;Y ) over base curves y ∈ Bρ

η (I ;Y ), and with additional
parameter x0 ∈ X . It can also be viewed as a fiber mapping of maps D˜Θ over base
mapsΘ. Let us define

S0 =C 0(X ;Bρ
η (I ;Y )

)
and Sµ1 = Γb

(
L

(
TX ;Bρ+µ(I ;Y )

))
, (3.45)

where S0 is equipped with the supremum norm and Sµ1 is interpreted as bounded
sections of the bounded geometry bundle over X of linear maps between TX and
the trivial bundle π : X ×Bρ+µ(I ;Y )→ X , equipped with the (supremum/operator)
norm

‖D˜Θ‖ = sup
x0∈X

‖D˜Θ(x0)‖L(Tx0 X ;Bρ+µ(I ;Y )).

Then (T,D˜ T ) can also be viewed as a fiber mapping

(T,D˜ T ) : S0 ×Sµ1 →S0 ×Sµ1 ,

(Θ,D˜Θ) 7→
(
(x0,δx0) 7→ (

T (Θ(x0), x0),[
D˜ y T (Θ(x0), x0) ·D˜Θ(x0)+D˜ x0 T (Θ(x0), x0)

] ·δx0
))

.

(3.46)

As such, it is again a uniform fiber contraction since the contraction was uniform
in y and x0 to begin with, and the supremum norm does not affect the contraction
factor q < 1.

3.7.4 Formal tangent bundles

Derivatives of the maps TX , TY should be defined between tangent bundles of the
spaces Bρ

η (I ;Y ) and Bρ

β
(I ; X ). This is problematic for both spaces: Bρ

η (I ;Y ) is a
subspace of the Banach space Bρ(I ;Y ), but it has empty interior. The restriction to
(β,T )-approximate solutions of vX ◦ g creates a similar problem for Bρ

β
(I ; X ), but

here, construction of the tangent bundle faces an additional obstruction. There is
no clear way to define local coordinates around a solution curve x. The obvious
method would be by constructing a tubular neighborhood of x and represent
nearby curves x̃ in the tubular neighborhood. But the metric on Bρ

β
(I ; X ) allows x̃

to diverge exponentially from x even if dρ(x, x̃) is small. Thus the tubular neighbor-
hood would need to be of infinite size to contain x̃(t ) for all t ∈ I , which is generally
not possible. Since any finite-size tubular neighborhood does not contain a full
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neighborhood of the curve x, we cannot use local coordinates to define tangent
spaces.

Instead, we shall construct formal tangent bundles. These are just convenient
spaces to model variations of curves on; they are natural extensions of true Banach
tangent spaces, see Section 3.7.7. The primary role of these bundles is to introduce
a topology that allows us to show that D˜ T is uniformly or Hölder continuous.

A formal tangent bundle of Bρ
η (I ;Y ) can be constructed rather easily: Bρ(I ;Y ) is

a Banach space, so its tangent bundle is canonically identified as TBρ(I ;Y ) =
Bρ(I ;Y ) × Bρ(I ;Y ). We then define the formal tangent bundle of Bρ

η (I ;Y ) by
restricting the base:

T˜Bρ
η (I ;Y ) = TBρ(I ;Y )|Bρ

η (I ;Y )
∼= Bρ

η (I ;Y )×Bρ(I ;Y ) (3.47)

with induced topology and norm.

To define a formal tangent bundle of Bρ

β
(I ; X ), we consider variations δx of a curve

x as sections of a pullback bundle: δx ∈ Γ(x∗(TX )). That is, δx ∈C (I ;TX ) is such
that δx(t ) ∈ Tx(t )X for each t ∈ I . We equip this space with the norm that is natural
for our problem, namely

‖δx‖ρ = sup
t∈I

‖δx(t )‖e−ρ t ,

and denote it by Bρ(I ; x∗(TX )) = (
Γ(x∗(TX )),‖·‖ρ

)
. The curves δx ∈ Bρ(I ; x∗(TX ))

form the formal tangent space over one curve x ∈Bρ

β
(I ; X ). The complete formal

tangent bundle is then defined as the coproduct over all curves x ∈Bρ

β
(I ; X ),

T˜Bρ

β
(I ; X ) = ∐

x∈Bρ

β
(I ;X )

Bρ(I ; x∗(TX )). (3.48)

A curve δx lives above a specific base curve x, so there is no direct way of comparing
two curves δx1, δx2 with different base curves x1, x2; (3.48) was constructed as a
coproduct without topological structure. We add a topology based on parallel
transport. This requires the base curves x ∈ Bρ

β
(I ; X ) to be differentiable, so we

consider the bundle
T˜Bρ

β
(I ; X )

∣∣
C 1 (3.49)

restricted to differentiable9 base curves x ∈ Bρ

β
(I ; X ) ∩C 1. Variational curves

δx ∈ Bρ(I ; x∗(TX )) are isometrically mapped onto curves δ̃x ∈ Bρ(I ;Tx(0)X ) =
9This does not cause problems since TX actually maps into curves x ∈C 1. The fiber contraction

theorem only requires that the base space has a globally attractive fixed point. Since the fixed point
is a C 1 curve, we can simply restrict to this subset of curves.
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(
C 0(I ;Tx(0)X ),‖·‖ρ

)
by

Π̃x : δx 7→ δ̃x, δ̃x(t ) =Π(x|t0)−1δx(t ). (3.50)

Let the normal coordinate radius δX be X -small as in Definition 2.8. If we now
restrict all base curves x under consideration to a small neighborhood

Ux = {
x ∈Bρ

β
(I ; X )∩C 1

∣∣ x(0) ∈ B(x;δX )
}
, (3.51)

i.e., the curves x that start in the open ball B(x;δX ) ⊂ X , then there exists a unique
shortest geodesic γx,x(0) from x(0) to x for each x ∈Ux . Parallel transport along
these geodesics induces a local trivialization10 of TB(x;δX ). This in turn induces a
local trivialization of T˜Bρ

β
(I ; X )

∣∣
C 1 :

T˜Bρ

β
(I ; X )|Ux

π

��

τx // Ux ×Bρ(I ;Tx X )

p1

{{
Bρ

β
(I ; X )|C 1 ⊃Ux

(3.52)

The trivialization map is given by τx (x,δx) = (
x,Π(γx,x(0)) ◦ Π̃x (δx)

)
. The transi-

tion maps between overlapping local trivializations Ux1 ∩Ux2 6= ; are induced by
transition functions

ϕ2,1 :
(
B(x2;δX )∩B(x1;δX )

)×Tx2 X → Tx1 X : (ξ,ν) 7→Π(γx2,ξ ◦γξ,x1 ) ·ν

between local trivializations of TB(xi ;δX ). The map ϕ2,1 is uniformly Lipschitz by
Lemma 2.6 and linear in the fiber. This induces a Lipschitz continuous transition
function τx2

◦ τ−1
x1

that depends on the base curve x ∈ Ux1 ∩Ux2 only through
x(0) ∈ X ; this dependence is uniform since X has bounded geometry. Thus the
bundle satisfies Definition 2.14, and the order of bounded geometry is actually
equal to k −2 when X has k-th order bounded geometry.

We endow the bundle T˜Bρ

β
(I ; X )

∣∣
C 1 with the topology induced by these local trivial-

izations. Note that this topology is induced by a locally defined distance function,
so we can express uniform and Hölder continuity of maps on T˜Bρ

β
(I ; X )

∣∣
C 1 . That is,

10We make the specific choice to trivialize TB(x;δX ) by parallel transport along geodesics. Any
other trivialization with uniformly bounded transition maps would also suffice for our purposes and
induce a trivialization of T˜Bρβ(I ; X )|Ux

(see also the alternative viewpoint on this trivialization below).

This explicit choice is somewhat natural in this context, though, and it shows that a trivialization
with these properties does exist.
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if (x1,δx1) and (x2,δx2) are elements of T˜Bρ

β
(I ; X )

∣∣
C 1 such that dρ(x1, x2) < δX , then

the topology is induced by the locally defined distance function

d
(
(x1,δx1), (x2,δx2)

)= dρ(x2, x1)+‖Π(γx1(0),x2(0))Π̃x2 (δx2)− Π̃x1 (δx1)‖ρ . (3.53)

The transition functions τx2
◦τ−1

x1
are uniformly Lipschitz, so they preserve uniform

and Hölder continuity moduli up to a constant. Therefore, overlapping trivial-
izations define the same topology on their intersection, with compatible local
distances. To summarize, we have

Proposition 3.31. The spaces T˜Bρ
η (I ;Y ) and T˜Bρ

β
(I ; X )

∣∣
C 1 are well-defined normed

vector bundles of bounded geometry, and they have a (local) distance structure.

The topologies introduced above allow us to express uniform and Hölder continuity
of the maps (3.43). The topology on T˜Bρ

η (I ;Y ) is clear and explicit from the topology
on Bρ(I ;Y ). For T˜Bρ

β
(I ; X )

∣∣
C 1 let x ∈Bρ

β
(I ; X )∩C 1 be a curve and δx ∈ Bρ(I ; x∗(TX ))

a variational curve at x. The topology is induced by the isometric representa-
tion

δ̃x =Π(γx,x(0)) · Π̃x ·δx ∈ Bρ(I ;Tx X )

of δx. Uniform continuity of maps (3.43) that have T˜Bρ

β
(I ; X )

∣∣
C 1 as (co)domain can

thus be checked by switching to a local trivialization, that is, substitute

δx(t ) =Π(x|t0) ·Π(γx(0),x ) · δ̃x(t )

and then use the known topology on Ux ×Bρ(I ;Tx X ). In explicit calculations
of continuity with respect to the base Bρ

β
(I ; X )∩C 1, we shall thus add parallel

transport terms such as those above to the maps (3.43) and let these act on δ̃x ∈
Bρ(I ;Tx X ).

Alternative viewpoints

Instead of the immediate trivialization (3.52) of the bundle T˜Bρ

β
(I ; X )

∣∣
C 1 , we can

also introduce an intermediate viewpoint that corresponds to only applying the
parallel transport term Π̃x , but not Π(γx,x(0)) in the local neighborhood B(x;δX ).
We view ev0 : Bρ

β
(I ; X )→ X as a bundle; this identifies T˜Bρ

β
(I ; X )

∣∣
C 1 as a bundle over

X as well, via ev0 ◦π. Let Bρ(I ;TX )X denote the space of (continuous, exponential
growth) functions δ̃x : I → TX such thatπ◦δ̃x is constant into X , viewed as a bundle
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over X .

T˜Bρ

β
(I ; X )

∣∣
C 1

π

��

Π̃ // Bρ

β
(I ; X )|C 1 ×X Bρ(I ;TX )X

p1
zz

evt◦p2

zz
Bρ

β
(I ; X )|C 1

ev0

��

TX

π

yy
X

(3.54)

This commutative diagram shows that T˜Bρ

β
(I ; X )

∣∣
C 1 can be identified via Π̃with the

fiber product bundle Bρ

β
(I ; X )|C 1 ×X Bρ(I ;TX )X over X . This identification is natural

in the sense that no local trivialization of X or TX is used. The second component
Bρ(I ;TX )X of this bundle contains the variational curves δ̃x. This is a (nontrivial)
bundle over X , but its projection onto the base π ◦ evt : Bρ(I ;TX )X → X factors
through TX . The fact that π◦evt is constant for t ∈ I simply expresses that each
δ̃x ∈ Bρ(I ;TX )X maps into a fixed tangent space TξX . This shows that a local trivial-
ization σ : TX |B(x;δX ) → B(x;δX )×Rn naturally lifts to a local trivialization

σ̃ : Bρ(I ;TX )|B(x;δX ) → B(x;δX )×Bρ(I ;Rn).

We have chosen local trivializations of TX by parallel transport along geodesics,
i.e. Π(γx,ξ), since this construction is compatible with the bounded geometry
of X in the sense that trivialization chart transitions are C k

b maps by Proposi-
tion 2.13.

We also introduce a reformulation of the topology on T˜Bρ

β
(I ; X )

∣∣
C 1 using frames, as

an alternative to the explicit formulation in terms of parallel transport above. This
allows us to abstract away these ideas into a lighter notation in the next section
and only recall the full details when required.

Let ex : Rn → Tx X be a choice11 of orthonormal frame at x ∈ X . We can extend this
to an orthonormal frame e on TB(x;δX ) by parallel transport of the frame ex along
geodesics emanating from x. As a second step, we further extend the frame e along
any curve x ∈Ux , again by parallel transport12.

11The precise choice does not matter and will drop out in the final, relevant equations. The relative
choice of frame along curves is what matters.

12Note that e does not define a (global) frame on TX . The choice of frame at x(t ) depends not just
on the point x(t ) ∈ X , but on the whole curve x ∈Bρ

β
(I ; X )|C 1 . Another curve x̃ with x(t ) = x̃(t ) will

generally induce a different frame in Tx(t ) X .
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We adopt the notation v f = f −1 · v to express a vector v ∈ Tx X with respect to a
frame f at x, and use this notation more generally on the tensor bundle of X . Now
let v be a vector field and ω a one-form on X , then the construction of e above
leads to

v(x(t ))e = e−1
x ·Π(γx,x(0)) ·Π(x|0t ) · v(x(t )),

ω(x(t ))e =ω(x(t )) ·Π(x|t0) ·Π(γx(0),x ) ·ex ,
(3.55)

and naturally extends to the tensor bundle of X .

3.7.5 Continuity of the fiber maps

We prove the uniform and Hölder continuous dependence on x, y , and x0 of the
maps (3.43) using a combination of techniques. One is the variation of constants
formula to get expressions for the variation of flows when changing a parameter.
Such variations require us to compare the variational curves over different base
curves; for this, we use the topologies of the formal tangent bundles in Section 3.7.4,
while we measure the variation of vector fields with the formulation of continuity
via parallel transport in Proposition 2.13. Together these lead to holonomy terms
along the base paths (see Figure 3.7), in addition to the variation of constants terms
that would simply occur in Rn . These holonomy terms can be estimated with
Lemma 2.19 and do not essentially alter the estimates.

γt

x2(t )

x
γ0

x1(t )

Figure 3.7: Paths involved in the holonomy term.

We use Nemytskii operator techniques as laid out in Appendix B to conclude that
functions such as A and f can be interpreted as uniformly continuous maps onto
curves with some µ< 0 exponential growth norm. Instead of uniform continuity,
we can also obtain Hölder continuity if the original maps are Hölder continuous
and if we view the Nemytskii operator as a mapping into a space with norm
‖·‖αρ . In other words, we replace the uniform continuity modulus by the explicit
α-Hölder continuity modulus. Hölder continuity precisely fits the problem, so in
that case there is no need anymore to add a small µ< 0 to the exponential growth
norms.
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One example in full detail

As an example, let us consider continuity of the map (3.43c) with respect to
x ∈ Bρ

β
(I ; X ), that is, x 7→ D˜ x TY (x, y). To be able to explicitly use the topology on

T˜Bρ

β
(I ; X )

∣∣
C 1 , we switch to a local trivialization neighborhoodUx 3 x1, x2 as in (3.51).

We choose x = x1(0) to simplify expressions; any other choice for x can be obtained
by a transition of trivialization charts. Let δ̃x ∈ Bρ(I ;Tx X ) be the representation of
an arbitrary variational curve in the fiber of this trivialization.

Note that (3.43c) is defined in terms of (3.43e). We estimate continuity of the
separate components and build towards the full expression. Let us first focus on
the continuity of x 7→Ψx (t ,τ), which is a map Bρ

β
(I ; X ) → L(Y ) for fixed t , τ ∈ I .

Proposition 3.32. For any µ< 0, the variation

Υt ,τ =Ψx2 (t ,τ)−Ψx1 (t ,τ) (3.56)

of the linear flowΨx on Y satisfies continuity estimate (3.57).

Proof. We extend the ideas from the proof of Lemma C.8. The variation Υt ,τ

satisfies the differential equation

d

dt
Υt ,τ = A(x2(t ))Ψx2 (t ,τ)− A(x1(t ))Ψx1 (t ,τ)

= A(x2(t ))Υt ,τ+ [
A(x2(t ))− A(x1(t ))

]
Ψx1 (t ,τ),

which leads to a variation of constants integral that can be estimated as

‖Υt ,τ‖ ≤
∫ t

τ
‖Ψx2 (t ,σ)‖‖A(x2(σ))− A(x1(σ))‖‖Ψx1 (σ,τ)‖ dσ

≤
∫ t

τ
CY eρY (t−σ) εÃ(dρ(x2, x1))eµσCY eρY (σ−τ) dσ

≤C 2
Y eρY (t−τ) εÃ(dρ(x2, x1))

eµτ

−µ . (3.57)

Here we use ideas from Appendix B; we applied Corollary B.3 to obtain A as
a uniformly continuous fiber mapping Bρ

β
(I ; X ) → Bµ(I ;L(Y )) with continuity

modulus εÃ (that depends on µ).

Thus, the flowΨt ,τ
x depends uniformly continuously on x ∈Bρ

β
(I ; X ) when viewed

as a flow with ρY -exponential growth and measured with an additional exponential
factor eµτ.
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Remark 3.33. In the previous proposition, if A isα-Hölder continuous, then we can
replaceµ byαρ to obtain a similar,α-Hölder continuous result using Lemma B.2.♦

To show that x 7→ D˜ xΨx (t ,τ) is continuous as well, we first write down the corre-
sponding variation in the bundle trivialization chart:(

D˜ xΨx2 · δ̃x −D˜ xΨx1 · δ̃x
)
(t ,τ)

=
∫ t

τ
Ψx2 (t ,σ)

[
DA(x2(σ))Π(x2|σ0 )Π(γx2(0),x ) δ̃x(σ)

]
Ψx2 (t ,σ)− (2 1) dσ

=
∫ t

τ
Ψx2 (t ,σ)

[
DA(x2(σ))e δ̃x(σ)

]
Ψx2 (t ,σ)− (2 1) dσ, (3.58)

where the notation (2 1) means that we take the first expression and replace all
2’s by 1’s (note that γx2(0),x = γ0 in the first term and Π(γx1(0),x ) = 1 in the second
term). The last line is just a rewrite in terms of the frame as in (3.55) and suppresses
all parallel transport terms. We separately estimate continuity of the three factors
in the integrand, and insert the estimate of Proposition 3.32 for the variationΨ• in
the first and third factor. Note that δ̃x is the same over both curves x1 and x2 in this
trivialization.

For the middle factor DA(x(t ))e , we again apply Nemytskii operator techniques
from Appendix B. But in this case we have to combine these with holonomy terms,
due to the fact that comparison of DA at nearby points ξ2, ξ1 ∈ X only makes sense
after identification of the tangent spaces Tξ2 X and Tξ1 X .

Proposition 3.34. Let A ∈C 1
b,u according to Definition 2.9. Then for any µ< 0, the

map

x 7→ (
t 7→ DA(x(t ))e

)
: Ux ⊂Bρ

β
(I ; X ) → Bµ

(
I ;L(Tx X ;L(Y ))

)
(3.59)

is uniformly continuous. If moreover A ∈C 1,α
b,u , then the map (3.59) is α-Hölder with

µ replaced by αρ.

Proof. Let x1, x2 ∈Ux . We introduce another frame f to directly compare DA at
points x1(t ), x2(t ). Let fx1(t ) = ex1(t ) : Rn → Tx1(t )X and define fx2(t ) =Π(γt ) · fx1(t ).
Thus, the frames e and f at x2(t ) are both defined in terms of the frame ex ; ex2(t )

by parallel transport along x2 ◦γ0 and fx2(t ) by parallel transport along γt ◦x1, see
Figure 3.7. Since fx1(t ) = ex1(t ), we can rewrite the difference of (3.59) at points on
these curves as

DA(x2(t ))e −DA(x1(t ))e =
[
DA(x2(t ))e −DA(x2(t )) f

]+ [
DA(x2(t )) f −DA(x1(t )) f

]
.
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The first term can be estimated by the holonomy defect along the loop

γ−1
0 ◦x2|0t ◦γt ◦x1|t0

using Lemma 2.19 and the second term using the continuity of DA and Proposi-
tion 2.13. Together, this leads to

‖DA(x2(t ))e −DA(x1(t ))e‖
≤ ‖DA‖∥∥1−Π(

γ−1
0 ◦x2|0t ◦γt ◦x1|t0

)∥∥+εDA
(
d(x2(t ), x1(t ))

)
≤Cv C dρ(x2, x1)eρ t +εDA

(
d(x2(t ), x1(t ))

)
.

If dρ(x2, x1)eρ t ≥ δX , then we use the boundedness estimate ‖1−Π(γ)‖ ≤ 2 for any
closed loop γ and Remark 2.12 to effectively extend the local to a global continuity
modulus. We can recover any α-Hölder continuity from the Lipschitz holonomy
estimate, again by using the fact that the holonomy is bounded by 2 in combination
with Lemma 1.17.

With the same arguments as in Lemma B.2, it follows that x 7→ (
t 7→ DA(x(t ))e

)
is

uniformly or α-Hölder continuous, and we denote its continuity modulus by εD̃A .
Note that εD̃A does not depend on the trivialization chart since all estimates are
uniform with respect to these charts.

Proposition 3.35. For any µ< 0 and uniformly in x ∈ X , the map x 7→ D˜ xΨx (t ,τ)
satisfies continuity estimate (3.60) in a trivialization neighborhood Ux ⊂Bρ

β
(I ; X ).

Proof. We combine the estimates from Propositions 3.32 and 3.34 and obtain
for (3.58)∥∥∥(

D˜ xΨx2 · δ̃x −D˜ xΨx1 · δ̃x
)
(t ,τ)

∥∥∥
≤

∫ t

τ

∥∥Ψx2 (t ,σ)
[
DA(x2(σ))e δ̃x(σ)

]
Ψx2 (σ,τ)− (2 1)

∥∥ dσ

≤
∫ t

τ

(∥∥Ψx2 (t ,σ)−Ψx1 (t ,σ)
∥∥‖DA(x2(σ))e‖‖Ψx2 (σ,τ)‖

+‖Ψx1 (t ,σ)‖∥∥DA(x2(σ))e −DA(x1(σ))e
∥∥‖Ψx2 (σ,τ)‖

+‖Ψx1 (t ,σ)‖‖DA(x1(σ))e‖
∥∥Ψx2 (σ,τ)−Ψx1 (σ,τ)

∥∥)
‖δ̃x‖ρ eρσ dσ

≤
∫ t

τ

(
C 2

Y eρY (t−σ) εA(dρ(x2, x1))
eµσ

−µ Cv CY eρY (σ−τ)

+CY eρY (t−σ) εD̃A(dρ(x2, x1))eµσCY eρY (σ−τ)

+CY eρY (t−σ) Cv C 2
Y eρY (σ−τ) εA(dρ(x2, x1))

eµτ

−µ
)
‖δ̃x‖ρ eρσ dσ
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≤C eρY (t−τ) ε(dρ(x2, x1))e(ρ+µ)τ ‖δ̃x‖ρ . (3.60)

We absorbed all constants and integration factors such as 1
−µ into the general

constant C and combine the continuity moduli into one; Cv is a global bound on
all vector fields including A and its derivatives.

We finally plug estimate (3.60) into equation (3.43c). We repeat the Nemytskii and
holonomy arguments for f̃ and Dx f̃ (just as for A and DA) to obtain a uniform
continuity estimate for

x 7→ D˜ x TY (x, y) : Ux →L
(
Bρ(I ;Tx X );Bρ+µ(I ;Y )

)
.

both for any µ< 0, or with µ= αρ when A, f ∈C 1,α
b,u . That is, D˜ x TY ( · , y) is a map

that given a curve x ∈Bρ

β
(I ; X )|C 1 , linearly maps a variational curve δx over x to a

variational curve δy in the trivial bundle T˜Bρ
η (I ;Y ). We can formulate this more

abstractly as

D˜ x TY ( · , y) ∈ Γαb,u

(
Bρ

β
(I ; X )|C 1 ;L

(
T˜Bρ

β
(I ; X )

∣∣
C 1 ;Bρ+µ(I ;Y )

))
,

that is, D˜ x TY ( · , y) is a uniformly α-Hölder bounded section of the bounded geom-
etry bundle

π : L
(
T˜Bρ

β
(I ; X )

∣∣
C 1 ;Bρ+µ(I ;Y )

)→Bρ

β
(I ; X )|C 1 .

Continuity in the other cases

We treated the continuity for one of the maps (3.43) with respect to a single variable.
The continuity in all other cases can be shown in a similar fashion. Many argu-
ments can be repeated, but each of these maps also has its own peculiar details
which makes that I have not been able to find one general, abstract way to prove
continuity of all of these maps at once. In this section we shall focus on these
specific details and not repeat the recurring elements. Let me reiterate that the
uniform continuity results hold for any µ< 0 sufficiently small, and these can be
replaced by α-Hölder continuity when µ is replaced by αρ and the spectral gap
condition (1.10) is satisfied for r = 1+α.

First of all, note that continuity with respect to the combined variables follows
directly from continuity with respect to each separate variable since we have
explicit uniform or Hölder continuity moduli. If f (x, y) has continuity moduli
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εx , εy with respect to x, y , respectively, then

‖ f (x2, y2)− f (x1, y1)‖ ≤ ‖ f (x2, y2)− f (x1, y2)‖+‖ f (x1, y2)− f (x1, y1)‖
≤ εx (d(x2, x1))+εy (d(y2, y1))

≤ (εx +εy )
(
d((x2, y2), (x1, y1))

)
shows that εx +εy is a continuity modulus for f . We assumed w.l.o.g. that εx , εy are
non-decreasing, while all choices of distance on the product space are equivalent,
so we leave it unspecified.

Let us start with the easy cases. Continuity of the map (3.43c) as a function of y ,
that is,

y 7→ D˜ x TY (x, y) : Bρ
η (I ;Y ) →L

(
Bρ(I ; x∗(TX ));Bρ+µ(I ;Y )

)
,

requires no additional details: only f and Dx f depend on y ∈ Y , and we can reapply
the arguments above to show that these depend continuously on y ∈ Bρ

η (I ;Y ). No
holonomy terms are present since T˜Bρ

η (I ;Y ) is a trivial bundle. That is, we can
directly compare D˜ x TY at different y1, y2 ∈ Bρ

η (I ;Y ); keeping x ∈ Bρ

β
(I ; X ) fixed

means that everything is situated in the fixed fiber T˜ xB
ρ

β
(I ; X )|C 1 = Bρ(I ; x∗(TX ))

and no holonomy terms are required.

Continuity of the map (3.43d), i.e. D˜ y TY (x, y), both with respect to x and y follows
along the same lines. Neither case requires holonomy arguments; we just apply the
Nemytskii technique to Dy f and reuse Proposition 3.32 to show continuity with
respect to x.

The formal derivatives (3.43a) and (3.43b) of TX map into T˜Bρ

β
(I ; X )

∣∣
C 1 ; here we

have to apply holonomy arguments in the codomain. Let us first focus on

x0 7→ D˜ x0 TX (y, x0) : X →L
(
Tx0 X ;Bρ+µ(I ;Tx X )

)
with a local trivializationUx×Bρ+µ(I ;Tx X ) within13 the bundle T˜Bρ+µ

β
(I ; X )

∣∣
C 1 with

additional µ in the exponential growth norm on the fibers. Note that D˜ x0 TX (y, · )
could actually be considered as a bundle map on the vector bundle TX that is linear
on each tangent space Tx0 X . We consider a local trivialization of TB(x;δX )⊂ TX by
parallel transport along geodesics: this is equivalent to trivialization by a normal
coordinate chart for the purpose of measuring continuity, while it matches the
trivialization of T˜Bρ

β
(I ; X )|Ux

. This will lead to a holonomy term.

13Embeddings Bρ ,→ Bρ+µ are continuous, so we can view Ux ×Bρ+µ(I ;Tx X ) as a local trivializa-

tion of a subset of T˜Bρ
′

β
(I ; X ) with ρ′ = ρ+µ.
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For any x0 ∈ B(x;δX ) we have TX (y, x0) ∈Ux by construction, so let e denote the
frame introduced by the trivialization of T˜Bρ

β
(I ; X )|Ux

, i.e. by parallel transport
along solution curves TX (y, x0). On the other hand, let f denote a frame introduced
by local parallel transport. We define

fx1(t ) = ex1(t ) and fx2(t ) =Π(γt ) · fx1(t ).

It follows from Lemma C.10 that D˜ x0 TX (y, · )= (
t 7→ DΦy (t ,0, · )) satisfies the correct

type of continuity estimates, but with respect to local charts (or equivalently, with
respect to f determined by local parallel transport) instead of the choice of frame
e, defined by the topology of T˜Bρ

β
(I ; X )

∣∣
C 1 . To examine the difference, let x0,1, x0,2 ∈

B(x;δX ) denote two initial conditions and xi = TX (y, x0,i ), i = 1,2, their respective
solution curves for a fixed y ∈ Bρ

η (I ;Y ). We also fix x0,1 = x for convenience. Then
we have

DΦy (t ,0, x0,2)e −DΦy (t ,0, x0,1)e

= [
DΦy (t ,0, x0,2)e −DΦy (t ,0, x0,2) f

]+ [
DΦy (t ,0, x0,2) f −DΦy (t ,0, x0,1) f

]
= [
Π(γ−1

0 ◦x2|0t )−Π(x1|0t ◦γ−1
t )

] ·DΦy (t ,0, x0,2) ·Π(γ0)

+ [
DΦy (t ,0, x0,2) f −DΦy (t ,0, x0,1) f

]
.

This shows that uniform and Hölder continuity with respect to the topology of
T˜Bρ

β
(I ; X )

∣∣
C 1 is equivalent to the same continuity with respect to normal coordinate

charts, since the additional holonomy term can be estimated in the same way as in
Proposition 3.34. Continuity of

y 7→ D˜ x0 TX (y, x0) : Bρ
η (I ;Y ) →L

(
Tx0 X ;Bρ+µ(I ;Tx X )

)
follows in the same way, if we first apply Corollary C.12 to obtain the continuity
estimates with respect to the frame f .

Finally, we consider continuity of the map (3.43b),

D˜ y TX (y, x0) ∈L
(
Bρ(I ;Y );Bρ+µ(I ;Tx X )

)
with respect to y ∈ Bρ

η (I ;Y ) and x0 ∈ X . We apply Corollary C.12 and Lemma 3.29
to conclude that DΦy (t ,τ, xy (τ)) depends α-Hölder or uniformly continuously on
y . Lemma 3.29 in combination with a Nemytskii operator argument shows that
Dy ṽ X induces a uniformly continuous map

y 7→ (
t 7→ Dy ṽ X (xy (t ), y(t ))

)
: Bρ

η (I ;Y ) → Bµ
(
I ;L(Y ;TX )

)
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with µ replaced by αρ in the Hölder case. For continuity with respect to x0 ∈ X we
need to replace application of Corollary C.12 by that of Lemma C.10 for dependence
of xy = TX (y, x0) on x0. Again the continuity estimates obtained are with respect
to the frame e and we use Lemma 2.19 to estimate the additional holonomy term
when switching to the frame f .

3.7.6 Application of the fiber contraction theorem

In Section 3.7.3 we already established that the fiber mapping (T, D˜ T ) in for-
mula (3.46) is uniformly contractive. With the results of the previous sections
on formal tangent bundles and continuous formal derivatives, we can now apply
the fiber contraction theorem, see Appendix D.

Proposition 3.36. For any µ< 0, the fiber mapping (3.46) has a unique, globally
attractive fixed point (Θ∞, D˜Θ∞) ∈S0 ×Sµ1 , while it also holds that D˜Θ∞ ∈S0

1 .

Proof. In the notation of Theorem D.1 we take X = S0 and Y = Sµ1 as in (3.45)
with ρ, µ such that ρY < ρ+µ< ρ < ρX holds. The fiber mapping is F = (T, D˜ T ), as
in (3.46). The first two conditions of Theorem D.1 are satisfied due to the arguments
in Section 3.7.3, while the third condition that D˜ T is continuous can be obtained
from the results in Section 3.7.5 as follows.

First, note that (T, D˜ T ) is a well-defined, uniformly contractive fiber mapping
both when acting on Bρ(I ;Y ) and on Bρ+µ(I ;Y ) variational curves. Thus, for each
n ≥ 0 we have D˜Θn ∈ S0

1 ,→ Sµ1 , where the embedding is continuous. The same
conclusion holds for D˜Θ∞ by a simple uniform contraction argument. Next, we
view D˜ T as a map

D˜ T : S0 ×S0
1 →Sµ1 . (3.61)

Note that we set µ = 0 in the domain only. To obtain continuity of (3.61) with
respect to the base variableΘ ∈S0, it is sufficient to check that the maps

y 7→ D˜ y T (y, x0) : Bρ
η (I ;Y ) →L

(
Bρ(I ;Y );Bρ+µ(I ;Y )

)
,

y 7→ D˜ x0 T (y, x0) : Bρ
η (I ;Y ) →L

(
Tx0 X ;Bρ+µ(I ;Y )

) (3.62)

are uniformly continuous, uniformly in x0 ∈ X . Continuity of (3.61) with respect
to the base S0 (with fixed fiber part D˜Θ ∈S0

1 ,→Sµ1 ) then follows from the interpre-
tation of (3.62) as acting on maps (Θ,D˜Θ) with the supremum norm on S0. The
maps (3.62) are defined by the chain rule formula (3.44) in terms of the derivative
maps (3.43). A variation of y ∈ Bρ

η (I ;Y ) can be distributed over the product (we
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only estimate the variation of D˜ y T with respect to y , but the variation of D˜ x0 T is
completely analogous),

‖D˜ y T (y2, x0)−D˜ y T (y1, x0)‖ρ+µ,ρ

≤ ∥∥D˜ x TY (xy2 , y2) · [D˜ y TX (y2, x0)−D˜ y TX (y1, x0)
]∥∥

ρ+µ,ρ

+∥∥[
D˜ x TY (xy2 , y2)−D˜ x TY (xy1 , y1)

] ·D˜ y TX (y1, x0)
∥∥
ρ+µ,ρ

≤ ‖D˜ x TY (xy2 , y2)‖ρ+µ,ρ+µ · ‖D˜ y TX (y2, x0)−D˜ y TX (y1, x0)‖ρ+µ,ρ

+‖D˜ x TY (xy2 , y2)−D˜ x TY (xy1 , y1)‖ρ+µ,ρ · ‖D˜ y TX (y1, x0)‖ρ,ρ .

(3.63)

The ‖·‖ρ2,ρ1
denote operator norms on linear (bundle) maps from Bρ1 to Bρ2

spaces. In the factor that is not varied we can simply take the operator norm
between functions of either ρ or ρ+µ exponential growth: in Section 3.7.3 we
have seen that the fiber maps are uniformly bounded linear in both cases. The
factor that is varied satisfies a uniform continuity estimate in ‖·‖ρ+µ,ρ-norm, a
result from Section 3.7.5. Note that we use the topology defined in Section 3.7.4 on
the intermediate space T˜Bρ

β
(I ; X )

∣∣
C 1 , as well as a local trivialization to express the

difference D˜ y TX (y2, x0)−D˜ y TX (y1, x0).

As a result of the fiber contraction theorem, we conclude that there is a unique,
globally attractive fixed point (Θ∞, D˜Θ∞) of the fiber mapping (3.46). Note that
D˜Θ∞ is already well-defined as an element of S0

1 , although it is only proven to be
attractive in Sµ1 .

As a next step, we show that the fixed point map D˜Θ∞ that we found is actually
continuous. This follows from a standard uniform contraction argument.

Proposition 3.37. For any µ< 0, the map D˜Θ∞ ∈Sµ1 is uniformly continuous. If we
set µ≤αρ and the assumptions of Theorem 3.2 are satisfied with r ≥ 1+α, then it
is α-Hölder continuous.

Proof. First note that it is sufficient to prove the statement for µ< 0 sufficiently
small, or µ = αρ in case of α-Hölder continuity; by continuous embedding of
exponential growth spaces, it then automatically follows for any µ that is more
negative. We use local trivializations by parallel transport to express continuity
moduli of functions with domain TX .

The assumptions of Theorem 3.2 imply that the spectral gap condition ρY < ρ+µ<
ρ < ρX is satisfied. Since D˜Θ∞ is (the fiber part of) the fixed point of the uniform
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contraction (T, D˜ T ), we have for any two x1, x2 ∈ B(x;δX ) ⊂ X that

‖D˜Θ∞(x2)−D˜Θ∞(x1)‖ρ+µ
= ∥∥D˜ y T (Θ∞(x2), x2) ·D˜Θ∞(x2)+D˜ x0 T (Θ∞(x2), x2)− (2 1)

∥∥
ρ+µ

≤ ∥∥D˜ y T (Θ∞(x2), x2)−D˜ y T (Θ∞(x1), x1)
∥∥
ρ+µ,ρ · ‖D˜Θ∞(x2)‖ρ

+∥∥D˜ y T (Θ∞(x1), x1)
∥∥
ρ+µ,ρ+µ ·

∥∥D˜Θ∞(x2)−D˜Θ∞(x1)
∥∥
ρ+µ

+∥∥D˜ x0 T (Θ∞(x2), x2)−D˜ x0 T (Θ∞(x1), x1)
∥∥
ρ+µ

≤ εD˜ y T
(
(L+1)d(x2, x1)

)+q ‖D˜Θ∞(x2)−D˜Θ∞(x2)‖ρ+µ
+εD˜ x T

(
(L+1)d(x2, x1)

)
.

Here L = Lip(Θ∞) denotes the Lipschitz constant of Θ∞ ∈ S0, while q < 1 is the
uniform contraction factor of D˜ y T on the fibers of Bρ

η (I ;Y )×Bρ+µ(I ;Y ). We saw
in Section 3.7.5 that the maps D˜ y T, D˜ x T have appropriate continuity moduli into
Bρ+µ(I ;Y ). Finally, we move the contraction term to the left-hand side, divide by
1−q , and obtain

‖D˜Θ∞(x2)−D˜Θ∞(x1)‖ρ+µ ≤
1

1−q

[
εD˜ y T

(
(L+1)d(x2, x1)

)+εD˜ x T
(
(L+1)d(x2, x1)

)]
.

This shows that D˜Θ∞ ∈Sµ1 has the same type of continuity modulus as D˜ T .

3.7.7 Derivatives on Banach manifolds

We can recover the maps (3.43) as true derivatives on Banach manifolds if we
restrict to bounded time intervals J ⊂ I =R≤0. The maps TX , TY naturally restrict to
such intervals, either exactly, or in a well-behaved approximate way. By restricting
to intervals J = [a,0] with a < 0, the spaces Bρ

η (J ;Y ) and Bρ

β
(J ; X ) become Banach

manifolds and the restrictions of TX , TY become continuously differentiable maps
on these.

Lemma 3.38. For any −∞< a < 0, the spaces Bρ
η (J ;Y ) and Bρ

β
(J ; X ) with J = [a,0]

a bounded interval are well-defined Banach manifolds.

Proof. We first treat the easy case Bρ
η (J ;Y ). For any −∞< a < 0, the norms ‖·‖ρ

and ‖·‖0 are equivalent on Bρ(J ;Y ). The set Bρ
η (J ;Y ) is an open ball of radius η in

the Banach space B 0(J ;Y ), so it follows that Bρ
η (J ;Y ) is a Banach manifold as an

open subset of Bρ(J ;Y ).

In the same way, the metrics dρ and d0 are equivalent on Bρ(J ; X ), but here we
need to do a little more work to show the following.
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Proposition 3.39. The set Bρ

β
(J ; X ) is open in Bρ(J ; X ).

Proof. Let x ∈ Bρ

β
(J ; X ), hence by Definition 3.19, x is approximated on each

interval of length |[t1, t2]| ≤ T by t 7→ Φ(t , t2, x(t2)), where Φ denotes the flow of
vX ◦ g , the horizontal part of the unperturbed vector field (3.10). The map

(t , t2) 7→ d
(
x(t ),Φ(t , t2, x(t2))

)
is continuous, and since it is defined on a compact subset of J × J , it attains its
supremum

η1 = sup
t2∈J

sup
t∈[t2−T,t2]

d
(
x(t ),Φ(t , t2, x(t2))

)
,

so it must hold that η1 <β. Let x̃ ∈ B(x;η2) ⊂Bρ(J ; X ) with

η2 = (β−η1)
e−ρ a

1+CX eρX T
.

We apply the triangle inequality and obtain

d
(
x̃(t ),Φ(t , t2, x̃(t2))

)≤ d
(
x̃(t ), x(t )

)+d
(
x(t ),Φ(t , t2, x(t2))

)
+d

(
Φ(t , t2, x(t2)),Φ(t , t2, x̃(t2))

)
≤ eρ a η2 +η1 +CX eρX T eρ a η2

≤ (
1+CX eρX T )

eρ a η2 +η1 <β.

This shows that all functions in the ball B(x;η2) ⊂Bρ(J ; X ) are still (β,T )-approxi-
mate solutions of vX ◦ g , and thus Bρ

β
(J ; X ) is open.

From here on we shall not always precisely distinguish between Bρ

β
(J ; X ) and

Bρ(J ; X ) anymore.

We introduce a local coordinate chart κx around a curve x ∈ Bρ(J ; X ) using the
exponential map (see also [Kli95, Sect. 2.3]):

κx : Ux ⊂Bρ(J ; X ) → Bρ(J ; x∗(TX )) : ξ 7→ (
t 7→ exp−1

x(t )(ξ(t ))
)
. (3.64)

The vector bundle x∗(TX ) is trivial, so the space of sections Bρ(J ; x∗(TX )) is
isomorphic to Bρ(J ;Rn). An explicit trivialization of x∗(TX ) (and thus isomor-
phism of sections) can be obtained, for example if x ∈C 1, using parallel transport
as in (3.50) and identification of Tx(0)X ∼= Rn by a choice frame, but we refrain
from making such a choice here; one reason is that curves x ∈ Bρ(J ; X ) are only
assumed continuous. The chart κx bijectively covers a full rinj(X ) neighborhood
of x with respect to the metric d0, hence a neighborhood of size rinj(X ) e−ρ a > 0
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with respect to dρ . Recall that δX is X -small as in Definition 2.8; let us choose a
radius δa = δX e−ρ a , such that all bounded geometry results also hold true in these
induced charts κx . Then the coordinate transition map

κx2 ◦κ−1
x1

: Bρ(J ; x∗
1 (TX )) → Bρ(J ; x∗

2 (TX )) (3.65)

is a bijection between isomorphic Banach spaces that is as smooth as the exponen-
tial map of X .

Remark 3.40. We could choose isomorphisms τx : Bρ(J ; x∗(TX )) → Bρ(J ;Rn) to
obtain one fixed Banach space Bρ(J ;Rn) as model for the manifold Bρ(J ; X ). The
τx are linear isometries so they preserve norms and smoothness, hence there is no
need to explicitly make this identification. Specifically, note that the construction
of Bρ(J ; x∗(TX )) as the pullback along a curve x that is merely continuous, does
not influence the smoothness of coordinate transformations on Bρ(J ; X ). ♦

We shall again call charts in this atlas ‘normal coordinate charts’, since they are
induced by normal coordinates on X along the curve x ∈Bρ(J ; X ). By construction
all bounded geometry results carry over to these induced charts. In particular, we
can measure maps in terms of their coordinate representations. We will use this
fact without always explicitly mentioning it.

The tangent space of Bρ(J ; X ) at a point x can be canonically identified as

TxBρ(J ; X ) ∼= Bρ(J ; x∗(TX )) (3.66)

as follows. Let s 7→ xs : (−ε,ε) ⊂R→Bρ(J ; X ) be a C 1 family of curves such that x0 =
x and let ξs = κx (xs) be their representation in the coordinate chart Bρ(J ; x∗(TX )).
The chart κx is induced by normal coordinates, so

dρ(x0, xs) = sup
t∈J

d(x0(t ), xs(t ))eρ t = sup
t∈J

‖exp−1
x0(t )(xs(t ))‖eρ t = ‖ξs‖ρ

shows that ‖·‖ρ is the canonical norm on the chart Bρ(J ; x∗(TX )). Then v =
d

ds ξs
∣∣

s=0 represents a tangent vector in TxBρ(J ; X ), while v ∈ Bρ(J ; x∗(TX )) by
construction.

This completes our exposition of the manifold structure of Bρ(J ; X ). We shall again
exclusively make use of induced normal coordinate charts (3.64), in order to use
results on bounded geometry.

The map TX can be restricted to curves on any subinterval J = [a,0] ⊂ I =R≤0. Let
us introduce the restriction operator on curves

ρa : C (I ; Z ) →C (J ; Z ) : z 7→ z|J . (3.67)



3.7. Smoothness 141

This operator acts naturally on Bρ
η (I ;Y ) and Bρ

β
(I ; X ) and there is a natural family

of restrictions T a
X of TX such that

T a
X ◦ρa = ρa ◦TX for any −∞< a < 0. (3.68)

Proposition 3.41. Let J = [a,0] with −∞< a < 0. Then

T a
X : Bρ

η (J ;Y )×X →Bρ

β
(J ; X ) (3.69)

is a differentiable map between Banach manifolds with partial derivatives given by
a natural restriction of the maps (3.43a) and (3.43b).

Proof. Let s 7→ y + s δy ∈ Bρ
η (J ;Y ) be a one-parameter family of curves and let

κx : B(x;δa) ⊂Bρ

β
(J ; X ) → Bρ(J ; x∗(TX ))

be an induced normal coordinate chart centered around the curve x = T a
X (y, x0).

The map TX is Lipschitz, so for s sufficiently small, T a
X (y + s δy, x0) maps into

B(x;δa). The vector field ṽ X ( · , (y + s δy)(t )) depends smoothly on the parameter s
and generates xs = T a

X (y + s δy, x0). We apply Theorem E.2 with

d

ds

[
ṽ X

(
x(t ), (y + s δy)(t )

)]
s=0

= Dy ṽ X (x(t ), y(t )) ·δy(t )

to obtain (3.43b) as the pointwise derivative of evt ◦T a
X , for any t ∈ J .

Now we only need to show that (3.43b) viewed as derivative pointwise in t satisfies
linear approximation estimates, uniformly for all t ∈ J with respect to dρ . We
work in the local chart κx , so xs(t ) is represented in the normal coordinate chart
centered at x(t ), while the curve s 7→ y + s δy is canonically represented in Bρ(I ;Y )
with derivative δy .

Since s 7→ (
κx ◦T a

X (y + s δy, x0)
)
(t ) ∈ C 1(R;Tx(t )X ), we can apply the mean value

theorem to estimate∥∥[
T a

X (y + s δy, x0)−T a
X (y, x0)−D˜ y TX (y, x0) · s δy

]
(t )

∥∥
≤ ∥∥[(

D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)
) · s δy

]
(t )

∥∥
≤ ∥∥D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)

∥∥‖δy‖ρ eρ t |s|
(3.70)

for someσt ∈ (0, s). Note thatσt will in general depend on t ∈ J , so there is (a priori)
not one curve y +σδy such that (3.70) holds for all t ∈ J at once. In Section 3.7.5
we showed that D˜ y TX : T˜Bρ

η (I ;Y ) → T˜Bρ+µ(I ; X )|C 1 is continuous; on the bounded
interval J the norms ‖·‖ρ and ‖·‖ρ+µ are equivalent, so D˜ y TX is continuous into



142 Chapter 3. Persistence of noncompact NHIMs

Bρ(J ; x∗(TX )) as well. Using this fact, we plug the result above into the definition
of (directional) derivative and verify

lim
s→0

1

s

∥∥T a
X (y + s δy, x0)−T a

X (y, x0)−D˜ y TX (y, x0) · s δy
∥∥
ρ

≤ lim
s→0

sup
t∈J

|s|
s

∥∥D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)
∥∥‖δy‖ρ = 0.

Therefore, the derivative of T a
X at (y, x0) in the direction ofδy is given by D˜ y TX (y, x0)·

δy restricted to the interval J . The limit is uniform on ‖δy‖ρ = 1 and this map is
continuous and linear in δy , so T a

X is continuously partially differentiable with
respect to y .

If we use a local chart around x0 ∈ X , then we find in the same way that T a
X is

continuously partially differentiable with respect to x0. Thus, T a
X is (continuously)

differentiable.

The map TY does not have a similarly natural restriction since it depends on
the complete ‘history’ of the curves x, y through the integral from −∞. The de-
pendence on earlier times is exponentially suppressed, though. Therefore, we
construct a family of restrictions that approach TY when the amount of additional
history in the input goes to infinity. Let −∞< a ≤ b < 0 and define the family Tb,a

Y

of restrictions as

Tb,a
Y : Bρ

β
([a,0]; X )×Bρ

η ([a,0];Y ) → Bρ
η ([b,0];Y ),

(x, y) 7→
(
t 7→

∫ t

a
Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ

)
for each t ∈ [b,0].

(3.71)

Proposition 3.42. The family T b,a
Y approximates TY in the sense that for any fixed

b ∈ (−∞,0], we have

T b,a
Y ◦ρa → ρb ◦TY (3.72)

when a →−∞, uniformly in x, y ∈Bρ

β
(I ; X )×Bρ

η (I ;Y ).

Proof. This follows from straightforward estimates:

∥∥T b,a
Y ◦ρa(x, y)−ρb ◦TY (x, y)

∥∥
ρ ≤ sup

t∈[b,0]
e−ρ t

∫ a

−∞
‖Ψx (t ,τ) f̃ (x(τ), y(τ))‖ dτ

≤ sup
t∈[b,0]

e−ρ t
∫ a

−∞
CY eρY (t−τ) ζ dτ

≤ CY ζ

−ρY

eρY (b−a)−ρ b .
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In a same way we define approximate families for (3.43c) and (3.43d), denoted by
D˜ x T b,a

Y and D˜ y T b,a
Y , respectively.

Corollary 3.43. The families D˜ x T b,a
Y and D˜ y T b,a

Y approximate (3.43c) and (3.43d)
in the same way as in Proposition 3.42.

Proposition 3.44. Let −∞< a ≤ b < 0. Then T b,a
Y is a differentiable map between

Banach manifolds.

Proof. We shall only show that T b,a
Y is continuously partially differentiable respect

to x. Continuous partial differentiability with respect to y follows along the same
lines and total differentiability then is a direct consequence of these (also in the
Banach manifold setting, see [Lan95, Prop. 3.5]).

Let x ∈ Bρ

β
(J ; X ) and y ∈ Bρ

η (J ;Y ) with J = [a,0]. Let κx be an induced normal
coordinate chart around x and let

xs = x + s δx ∈ Bρ(J ; x∗(TX ))

be a one-parameter family of curves in Bρ

β
(J ; X ), represented in the chart κx (for s

sufficiently small). Then δx ∈ Bρ(J ; x∗(TX )) is naturally identified as the derivative
d

ds xs
∣∣

s=0.

We shall show that the partial derivative Dx T b,a
Y is given by the formal deriva-

tive (3.43c), but with J as domain of integration and interpreted as a mapping into
Bρ([b,0];Y ). Again, we split the full expression into manageable pieces and apply
the mean value theorem.∥∥[

T b,a
Y (xs , y)−T b,a

Y (x, y)−Dx T b,a
Y (x, y) · s δx

]
(t )

∥∥
≤

∫ t

a

∥∥Ψxs (t ,τ) f̃ (xs(τ), y(τ))−Ψx (t ,τ) f̃ (x(τ), y(τ))

−Ψx (t ,τ)Dx f̃ (x(τ), y(τ)) s δx(τ)− (D˜ xΨx · s δx)(t ,τ) f̃ (x(τ), y(τ))
∥∥ dτ

≤
∫ t

a

∥∥Ψxs (t ,τ)−Ψx (t ,τ)− (
D˜ xΨx · s δx

)
(t ,τ)

∥∥‖ f̃ (x(τ), y(τ))‖
+‖Ψx (t ,τ)‖∥∥ f̃ (xs(τ), y(τ))− f̃ (x(τ), y(τ))−Dx f̃ (x(τ), y(τ)) s δx(τ)

∥∥
+∥∥Ψxs (t ,τ)−Ψx (t ,τ)

∥∥∥∥ f̃ (xs(τ), y(τ))− f̃ (x(τ), y(τ))
∥∥ dτ

and application of Theorem E.2 shows that formula (3.43e) for D˜ xΨxs ·δx is the
derivative ofΨxs . We use this for a mean value theorem estimate14 in the first and
third15 term to arrive at

≤
∫ t

a

∥∥(
D˜ xΨxσ · s δx

)
(t ,τ)− (

D˜ xΨx · s δx
)
(t ,τ)

∥∥ζ
+CY eρY (t−τ)

∥∥Dx f̃ (xσ(τ), y(τ))−Dx f̃ (x(τ), y(τ))
∥∥ |s|‖δx‖ρ eρ τ

+∥∥(
D˜ xΨxσ · s δx

)
(t ,τ)

∥∥‖Dx f̃ (xσ(τ), y(τ))‖|s|‖δx‖ρ eρ τ dτ
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≤
∫ t

a
C eρY (t−τ) ε(|σ|‖δx‖ρ)e(ρ+µ)τ |s|‖δx‖ρ ζ
+CY eρY (t−τ) εDx f

(|σ|‖δx‖ρ eρ τ
) |s|‖δx‖ρ eρ τ

+ C 2
Y Cv

−ρ ‖δx‖ρ eρY (t−τ) eρ t ζ |s|‖δx‖ρ eρ τ dτ.

We applied Proposition 3.35 to estimate the variation of D˜ xΨ; the induced normal
coordinate charts and Proposition 2.13 allow us to freely switch between parallel
transport and normal coordinates for estimating differences. All exponential norms
are equivalent on the compact interval J , so with the usual estimates we see that
this expression is o(|s|), uniformly for all ‖δx‖ρ = 1.

We have thus converted the map T = TY ◦ (TX , pr1) to a Banach manifold setting by
defining it on curves restricted to compact time intervals. Although all estimates
were already in place, this technicality allows us to draw the conclusions of the
final points vi and vii in the scheme in Section 3.7.1.

Lemma 3.45 (TheΘn have true derivatives).
Fix µ < 0 and let Θn : X → Bρ

η (I ;Y ) be differentiable into Bρ+µ(I ;Y ). Recursively
defineΘn+1(x0) = T (Θn(x0), x0). ThenΘn+1 is again differentiable into Bρ+µ(I ;Y ).

Proof. We define DΘn+1 ∈ S0
1 using (3.46) and proceed to show that it is the

derivative ofΘn+1 as a function DΘn+1 ∈Sµ1 by a direct estimate

‖Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h‖ρ+µ ≤ ε‖h‖,

with x0, x0 +h ∈ X represented in normal coordinate charts.

First, we use the Nemytskii operator technique to get rid of the infinite tail t →−∞.
For any given ε> 0, we have on (−∞,b] the crude estimate

sup
t≤b

∥∥[
Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h

]
(t )

∥∥e−(ρ+µ) t

≤
(
‖Θn+1(x0 +h)−Θn+1(x0)‖ρ+‖DΘn+1(x0) ·h‖ρ

)
e−µb

≤ (
Lip(Θn+1)+‖DΘn+1‖)‖h‖e−µb ≤ ε‖h‖

14The intermediate point σ in the mean value theorem implicitly depends on both t and τ and will
be different in each term. This does not affect the uniform estimates, so we suppress this dependence
in the notation.

15We applied the intermediate value theorem to both factors in the third term. This is not strictly
necessary: we could also have applied it to only one of these, and apply a uniform continuity estimate
to the other term. That would still have yielded a size estimate ε(|s|) |s| = o(|s|). When we generalize
to higher derivatives, we shall make use of this fact: at least one of the factors will be differentiable
and yield a factor |s|, while the other term(s) can be estimated by a continuity modulus ε(|s|).
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for some b(ε) that is sufficiently negative. We use the differentiability of T b,a =
T b,a

Y ◦(T a
X , pr1) on the finite interval [b,0] that is left. We defineΘn+1

b,a = T b,a◦ρa◦Θn

and estimate

sup
t∈[b,0]

∥∥[
Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h

]
(t )

∥∥e−(ρ+µ) t

≤ ‖ρb ◦Θn+1(x0 +h)−Θn+1
b,a (x0 +h)‖ρ+µ+‖ρb ◦Θn+1(x0)−Θn+1

b,a (x0)‖ρ+µ
+∥∥[

ρb ◦DΘn+1(x0)−DΘn+1
b,a (x0)

] ·h
∥∥
ρ+µ

+‖Θn+1
b,a (x0 +h)−Θn+1

b,a (x0)−DΘn+1
b,a (x0) ·h‖ρ+µ.

This holds for all a ≤ b and the first three terms can be made arbitrarily small when
a →−∞ due to Proposition 3.42 and Corollary 3.43, while the last term is o(‖h‖)
sinceΘn+1

b,a is differentiable by the chain rule. If the estimate o(‖h‖) is independent
of a, then we can finally, for any ε> 0 and ‖h‖ ≤ δ sufficiently small, estimate this
by ε‖h‖.

That the term o(‖h‖) is independent of a follows from another application of the
mean value theorem:∥∥Θn+1

b,a (x0 +h)−Θn+1
b,a (x0)−DΘn+1

b,a (x0) ·h
∥∥
ρ+µ

≤ ∥∥DΘn+1
b,a (ξ)−DΘn+1

b,a (x0)
∥∥
ρ+µ ‖h‖ where d(ξ, x0) ≤ ‖h‖

= ∥∥DT b,a(Θn(ξ),ξ) ·ρa ◦DΘn(ξ)−DT b,a(Θn(x0), x0) ·ρa ◦DΘn(x0)
∥∥
ρ+µ ‖h‖

≤
(∥∥DT b,a(Θn(ξ),ξ)−DT b,a(Θn(x0), x0)

∥∥
ρ+µ,ρ ‖DΘn(x0)‖ρ

+∥∥DT b,a(Θn(x0), x0)
∥∥
ρ+µ,ρ+µ ‖DΘn(ξ)−DΘn(x0)‖ρ+µ

)
‖h‖

≤ ε(d(ξ, x0))‖h‖

since the continuity estimates for the formal derivatives D˜ T directly translate
into the same estimates for the true derivative counterparts DT b,a on restricted
intervals.

Thus, we can now conclude by induction, starting at Θ0 ≡ 0, that for each n ≥ 0
the map Θn ∈ S0 is differentiable when viewed as map into Bρ+µ(I ;Y ), while the
results in Section 3.7.5 show that we actually have

Θn ∈C 1,α
b,u

(
X ;Bρ+µ(I ;Y )

)
. (3.73)

Finally, we have uniformly convergent sequences

Θn →Θ∞ ∈S0 and DΘn → D˜Θ∞ ∈Sµ1 (3.74)
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by the fiber contraction theorem, so now we apply Theorem D.2 (taking into
account Remark D.3) to conclude that D˜Θ∞ is the derivative of Θ∞ as a map
X → Bρ+µ(I ;Y ). It was already shown in Proposition 3.37 that D˜Θ∞ is bounded
and continuous, just as the DΘn in (3.73).

Remark 3.46 (on topologies used).
The convergence in (3.74) is with respect to uniform supremum norms as in
Definition 2.9. These induce a topology that is stronger than the weak Whitney
(or compact-open) topology, cf. Section 1.7. The convergence in Theorem D.2 is
with respect to the weak Whitney topology, both the assumption and result. This is
sufficient, since we are primarily interested in the result thatΘ∞ is differentiable,
not in what senseΘn and its derivatives converge toΘ∞. On the other hand, we did
already have convergence of DΘn → D˜Θ∞ = DΘ∞ with respect to these stronger
uniform norms, so clearlyΘn →Θ∞ in uniform C 1-norm as well. ♦

3.7.8 Conclusion for the first derivative

The evaluation map ev0 : Bρ+µ(I ;Y ) → Y is bounded linear so the graph (3.41) of
the persistent invariant manifold also satisfies

h̃ = ev0 ◦Θ∞ ∈C 1,α
b,u (X ;Y ).

The size of Dh̃ can be estimated using the fixed point equation for D˜Θ∞. This
yields

‖D˜Θ∞‖ρ ≤
q

1−q
‖D˜ x0 TX‖,

and the contraction factor q < 1 can be made arbitrarily small by choosing ζ small.
As indicated in (3.18), ζ is in turn controlled by δ, σ1 from Theorem 3.2, and ν from
Lemma 3.12, which can be chosen arbitrarily small. This completes the proof of
all statements in Theorem 3.2 for r = 1+α with α ∈ [0,1]. Note that this is the case
k = 1 as in Remark 3.3, v.

3.7.9 Higher order derivatives

To obtain higher order smoothness of the perturbed invariant manifold, we con-
sider equation (3.42) for k > 1. The principal term governing the contraction is still
D˜ y T (Θ(x0), x0), now acting on multilinear maps D˜ kΘ(x0) ∈Lk

(
TX ;B kρ+µk (I ;Y )

)
.

The remaining terms only depend on lower order derivatives of Θ(x0), hence
they do not influence the contractivity estimate in the fiber contraction theorem.
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It must be verified, though, that these terms depend continuously on the lower
order derivatives as mappings into B kρ+µk (I ;Y ). Note again that we set µk =αρ in
case of α-Hölder continuity; in case of uniform continuity (denoted by α= 0) we
choose a sequence {µ j }1≤ j≤k such that the following hold true:

i. µ j < 0 for each j ;

ii. the spectral gap condition ρY < k ρ+µk < ρ < ρX still holds;

iii. there exists a ρ̃ < ρ such that

k ρ+µk < k ρ̃ and j ρ̃ ≤ j ρ+µ j for any j < k. (3.75)

It follows that the sequence µ j ’s is strictly decreasing (i.e. increasing in absolute
value), and that we have continuous embeddings B kρ̃ ,→ B kρ+µk and B jρ+µ j ,→ B j ρ̃ ;
in the first embedding we reserved some spectral space to apply Corollary B.3.
These choices—as well as more ideas in this section—are inspired by [Van89,
Sec. 3], which is an interesting read for comparison in a simpler setting.

We reuse the scheme already defined in Section 3.7.1 for the first order deriva-
tives (3.43). Let us walk through these items step by step and indicate the changes
that need to be made.

i. Candidate functions for the higher order derivatives can be found by formal
differentiation and application of Theorem E.2. This is a straightforward
procedure, although tedious and quite unenlightening to perform. Let us
show just one example16:

D˜ 2
y TX (y, x0)

(
δy1,δy2

)
(t ) =∫ 0

t

(
DΦy (t ,τ, xy (τ)) ·

[
D2

y ṽ X (xy (τ), y(τ))
(
δy1(τ),δy2(τ)

)
+Dx Dy ṽ X (xy (τ), y(τ))

(
δy1(τ),

(
D˜ y TX (y, x0)δy2

)
(τ)

)]
+

[
D2Φy (t ,τ, xy (τ)) · (D˜ y TX (y, x0)δy2

)
(τ)

+
∫ τ

t
DΦy (t ,σ, xy (σ)) · [Dy Dx ṽ X (xy (σ), y(σ)) ·δy2(σ)

] ·DΦy (σ,τ, xy (τ)) dσ
]

·Dy ṽ X (xy (τ), y(τ)) ·δy1(τ)

)
dτ. (3.76)

16Even though it is not obvious from (3.76), this expression is in fact symmetric in δy1, δy2. To
verify this for the terms containing Dx Dy ṽ X , one should change the order of integration of τ, σ and
expand the expression

(
D˜ y TX (y, x0)δy2

)
(τ) using (3.43b).
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ii. For contractivity in the fibers we still only need to consider the map D˜ y T as
in (3.44), since that is the principal term in (3.42). This map is contractive for
any ρ′ ∈ (

ρY ,ρX

)
, hence also for ρ′ = k ρ+µ for any µ ≤ 0 sufficiently small,

when ρ ∈ (
ρY ,ρX

)
is chosen appropriately. The other terms in (3.42) are boun-

ded maps as well, and linear in the D˜ jΘ(x0). It follows from Proposition C.3
that each of these terms has weighted degree

k−1∑
i=1

i ·pi = k −m

with respect to the D˜ jΘ(x0), while they incur an additional exponential factor
em ρ t from taking m derivatives with respect to x0 ∈ X , due to Lemma C.1.
Thus the combined exponential growth rates sum to k ρ, and ρY < k ρ implies
that the variation of constants integrals still converge, so these terms are
bounded maps into B kρ spaces. This still holds if we add µ j ’s that satisfy the
conditions set out above.

In the notation of Appendix C we define spaces of higher order derivatives,

Sµk = Γb
(
Lk(

TX ;B kρ+µ(I ;Y )
))

(3.77)

with norms
‖D˜ kΘ‖ = sup

x0∈X
‖D˜ kΘ(x0)‖Lk (Tx0 X ;B kρ+µ(I ;Y ))

extending (3.45). Similarly, we define as extensions of (3.46), higher order fiber
mappings

F (k) = (T, D˜ 1T, . . . , D˜ k T ) on S0 ×Sµ1

1 ×·· ·×Sµk

k . (3.78)

These are again uniform fiber contractions with respect to the final factor Sµk

k
as fiber, for any choice of µ j ≤ 0 sufficiently small.

iii. Instead of trying to construct higher order formal tangent bundles, we repre-
sent the higher derivatives on ‘formal tensor bundles’

T˜Bρ

β
(I ; X )k = ∐

x∈Bρ

β
(I ;X )

Bρ(I ; x∗(TX ))⊗k . (3.79)

Note that this choice of representation along base curves x matches our
choice to represent higher derivatives as in Definition C.6 when the former is
evaluated at a fixed t . The trivializations, then, are defined by tensor products
of parallel transport terms Π(x|t0)⊗k , again when restricted to curves x ∈C 1.
The resulting holonomy terms can be estimated by either the k-th power of
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the single holonomy term, or, k − 1 factors can be bounded by ‖Π(γ)‖ ≤ 2
such that the remaining factor fulfills the required α-Hölder estimate. Then,
all details in Section 3.7.5 can be repeated to obtain uniform or α-Hölder
continuity of the higher derivatives of TX , TY as maps on these formal tensor
bundles. Note that we can break each expression into parts such that only one
factor is varied for the continuity estimate and thus only once adds either αρ
or µ to the exponential growth rate. Thus, the spectral gap condition is still
satisfied.

iv. We apply the fiber contraction theorem to (3.78) with base S0×Sµ1

1 ×·· ·×Sµk−1

k−1
and fiber Sµk

k . In case of α = 0, we again seize some of the unused spectral
space for the carefully chosen µ j ’s, such that condition iii of Theorem D.1
holds. Let us assume by induction that F (k−1) already is a globally attractive
fiber map. The conditions (3.75) imply that if we insert elements D˜ jΘ ∈ Sµ j

j

into F (k), then their exponents sum at most to k ρ̃, so the mapping onto
the fiber Sµk

k is continuous by application of Corollary B.3. For α-Hölder
continuity we can simply choose µ j = αρ for all 1 ≤ j ≤ k. Thus, we find a
globally attractive fixed point

(Θ∞, D˜Θ∞, . . . , D˜ kΘ∞) ∈S0 ×Sµ1

1 ×·×Sµk

k with D˜ kΘ∞ ∈Cα
b,u .

v. We constructed a manifold structure on Bρ(J ; X ) (and a trivial one on Bρ
η (J ;Y )

as well) with an atlas of charts induced by normal coordinate charts of the
underlying manifold X . We represent higher17 derivatives in these induced
normal coordinate charts Bρ(J ; x∗(TX )). Thus, we have for example

Dk
x T a

X (x, y) ∈Lk(
Bρ(J ; x∗(TX ));Bρ(J ;Y )

)
.

This precisely matches the representation of the formal higher derivatives on
the tensor space Bρ(I ; x∗(TX ))⊗k in point iii . Higher differentiability of the
restricted maps T a

X and T b,a
Y follows as in Section 3.7.7.

vi. Lemma 3.45 can be generalized to prove by induction over n that higher
derivatives DkΘn exist; we define DkΘn+1 ∈S0

k by (3.78).

vii. By induction we may assume that it was already proven that

Θn →Θ∞ ∈C k−1
b,u

(
X ;B (k−1)ρ+µk−1 (I ;Y )

)
as n →∞.

17It would probably be more natural to consider the higher derivatives as maps into Banach
manifolds with exponents k ρ, but these norms are equivalent anyways.
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We apply Corollary D.4 to conclude thatΘn →Θ∞ as sequence of C k functions
and that Θ∞ ∈C k

b,u

(
X ;B kρ+µk (I ;Y )

)
. The convergence is with respect to our

uniform supremum norms, see Remark 3.46.

Just as in Section 3.7.8, this finalizes the proof of all statements in Theorem 3.2,
but now for r = k +α with k > 1 and α ∈ [0,1]. It follows that h̃ ∈C k,α

b,u , but the last
part that remains to be shown, though, is that ‖h̃‖k−1 can be made as small as
desired.

From the fixed point equation (3.42) it follows that

‖Dk−1Θ∞(x0)‖ ≤ 1

1−q

∑
l ,m≥0

l+m≤k−1
(l ,m)6=(0,0),(1,0)

∥∥Dl
y Dm

x0
T (Θ∞(x0), x0) ·Pl ,k−m

(
D•Θ∞(x0)

)∥∥.

Each term with l ≥ 1 contains at least one factor DjΘ∞(x0) with j < k−1; these can
be assumed to be small by induction. The one remaining term with (l ,m)= (0,k−1)
can be expanded using Proposition C.3. This yields, suppressing argumentsΘ∞(x0)
and x0,

Dk−1
x0

T =
k−1∑
j=1

D j
x TY ·P j ,k−1(D•

x0
TX ).

Since all terms are uniformly bounded in appropriate norms, it suffices to show
that the D j

x TY can be made small. Recall formula (3.43c) and the fiber contraction
estimate for Dx TY in Section 3.7.3, where we saw that Dx TY could be made small by
choosing ‖ f̃ ‖,‖Dx f̃ ‖ ≤ ζ small. The higher derivatives D j

x TY , too, contain a factor
Di

x f̃ with 0 ≤ i ≤ j in each term, so by Proposition 3.14 these can be made small.
Hence, Dk−1Θ∞ and consequently ‖h̃‖k−1 can be made uniformly small. Note that
‖h̃‖k cannot be made small though, see Remark 3.15.



Chapter 4

Extension of results

In this chapter we discuss some ways to extend the main result of Theorem 3.1 to
slightly more general situations. These extensions are known from the compact and
Euclidean settings, but a bit scattered over the literature. We try to collect a number
of these results here, while extending them to our noncompact setting.

4.1 Non-autonomous systems

We proved the main theorem for an autonomous system and perturbation. The
Perron method admits without difficulty a time-dependent formulation; we re-
frained from including this, since it would only have cluttered the already detailed
proof, while time-dependence is easily added as an afterthought, as already noted
in Section 1.6.1.

Let us assume that M is an r -NHIM for the (time-independent) vector field v
on (Q, g ) and that all assumptions of Theorem 3.1 are fulfilled. We can allow
time-dependent perturbations by the standard trick to extend the phase space of
the system by R 3 t . Define

Q̂ =R×Q with metric ĝ = dt 2 + g . (4.1)

Then (Q̂, ĝ ) is again of bounded geometry. We trivially extend the vector field v to

v̂(t , x) = (
1, v(x)

) ∈ T(t ,x)Q̂ (4.2)

and set M̂ =R×M ⊂ Q̂. Then the flow Φ̂ of v̂ has the same hyperbolicity properties
as Φ since the additional flow along ṫ = 1 is completely neutral and decoupled
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from the original system. It follows that M̂ is again an r -NHIM for the dynamical
system (Q̂,Φ̂,R). Note that we need a theory for noncompact NHIMs to perform
this extension by the time interval R. Now we can choose a perturbed vector ṽ that
depends explicitly on time, as long as ṽ ∈C k,α

b,u (Q̂) is close to v̂ . This means that the

perturbation must be small in C k,α-norm (including derivatives with respect to
time), uniformly for all time. As a result we find that the perturbed manifold M̃ will
depend on time, i.e. it is not exactly of the form M̃ =R×M for some M⊂Q. We
do find that M̃ is uniformly close to M̂ =R×M , however, so M̃ is approximately of
this product form.

Remark 4.1. A direct application of Theorem 3.1 requires the perturbed vector
field to be C k,α with respect to time, too, since t ∈ R is added to the phase space
variables. Note that the result thus depends C k,α smoothly on time as well. A closer
inspection of the proof shows that this can in fact be replaced by the condition that
v̂(t , · ) ∈C k,α

b,u , uniformly in t ∈ R, just as in Remark A.7. In that case the resulting
manifold M̃ cannot be expected to be differentiable with respect to time anymore,
but it still satisfies all uniform C k,α smoothness and boundedness properties with
respect to x ∈ Q. In particular, M̃ is still uniformly close to M̂ , uniformly for all
t ∈R. ♦

Instead of starting with an autonomous system v , we can also take an initial
non-autonomous system v̂ and perturb that. As long as v̂ truly describes a non-
autonomous system, that is, it is defined on a space R×Q and has component 1
along R, then normal hyperbolicity is easily tested. The R-component of the flow
is trivially neutral, while the other Q-component must be checked in a context
where, for example, also the invariant splitting (1.8) may depend on time, but this
introduces no fundamental changes.

4.2 Smooth parameter dependence

Another interesting question for applications is if the persistent manifold depends
smoothly on the perturbation parameter. This result can be obtained in a similar
way as time-dependence, now adding a parameter p ∈ P to the phase space with
trivial dynamics ṗ = 0. The noncompact theory is not essential here, but it does
allow for a simple proof.

Let again (Q, g ) and v = v(p, x) describe the system, where p ∈ P denotes the
parameter. For simplicity we assume that P = Rn and that p = 0 corresponds to
the unperturbed system for which we have M as r -NHIM. We consider again an
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extended system Q̂ = P ×Q and M̂ = P ×M . The extended vector field we choose
slightly differently: we use an external scaling parameter α≥ 0 to slowly ‘turn on’
the parameter dependence. Let χ ∈C∞(R≥0; [0,1]) be a radial cut-off function such
that χ(r ) = 1 for r ≤ 1 and χ(r ) = 0 for r ≥ 2, and define

v̂α(p, x) = (
0, v

(
χ(‖p‖)αp, x

))
(4.3)

as a vector field on Q̂. Note that M̂ is an r -NHIM for v̂0 by trivial extension. One
can verify that ‖v̂α− v̂0‖r can be chosen small with α. Uniformity with respect to
p follows automatically from χ having compact support. As a result of Theorem 3.1
we conclude that there exists an α > 0 such that v̂α has a C r family of invariant
manifolds

M̃ = ∐
p ′∈P

M̃ p ′ , (4.4)

where M̃ p ′ is the invariant manifold corresponding to the vector field v(p, · ) with
p =χ(‖p‖)αp ′. This parametrizes a full neighborhood B(0;α) ⊂ P .

4.3 Overflowing invariant manifolds

Overflowing invariance is a useful tool to study invariant manifolds whose nor-
mal hyperbolicity properties break down beyond a certain domain, see also Sec-
tion 1.6.3. We shall indicate here how our main result can be extended to overflow-
ing invariant manifolds. We provide conditions for persistence that are slightly
weaker than those in the literature. These might prove useful for some applica-
tions.

The following definition extends that in [Fen72] and is equivalent to Definition 2.1
in [BLZ99].

Definition 4.2 (Overflowing invariant manifold).
Let (Q, g ) be a Riemannian manifold, M ⊂ Q a C 1 submanifold with boundary
∂M ∈ C 1, and v ∈ C 1 a vector field on Q with flow Φ. Let n denote the outward
normal at ∂M. Then M is called overflowing invariant under v if the following hold:

i. backward orbits stay in M, i.e. ∀m ∈ M , t < 0: Φt (m) ∈ M;

ii. the vector field v points uniformly strictly outward at ∂M, i.e. there exists some
ε> 0 such that ∀m ∈ ∂M : gm(v,n) ≥ ε.

Definition 1.6 of normal hyperbolicity can be adapted to this setting (only condi-
tion i is necessary): we assume that only stable normal directions are present and
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we only require M to be negatively invariant, while the exponential rate conditions
must hold along orbits as long as they stay inside M .

Remark 4.3. Note that the uniformity in condition ii reduces to the standard
‘strictly outward’ if M = M ∪∂M is compact. This is the natural generalization
for noncompact manifolds, since the condition is used to guarantee that under
small perturbations and in a small tubular neighborhood the vector field is still
pointing outward. ♦

The Perron method uses orbits as fundamental objects and constructs a contrac-
tion operator on these. The essence of Definition 4.2 is to guarantee condition i
that backward orbits stay inside M , even under a small perturbation of the vector
field. This provides an idea to slightly weaken the overflow invariance definition
into an a priori argument. If any orbits considered in the Perron method proof stay
inside M , then all assumptions throughout the proof are still valid and we obtain
a persistent manifold M̃ . To make this idea explicit, we choose the trivial bundle
setting of Theorem 3.2 and introduce the following weakened definition.

Definition 4.4 (A priori overflowing invariance).
Let (X , g ) be a Riemannian manifold and let M ⊂ X an open submanifold, i.e. of
the same dimension, with boundary ∂M ∈C 1. Let Y be a Banach space, and v ∈C 1

a vector field on X ×Y with flow Φ. Let n denote the outward normal at ∂M. Let ṽ
be a perturbation of v. Then M is called a priori overflowing invariant for the pair
(v, ṽ) if the following hold:

i. backward orbits of v stay in M, i.e. ∀m ∈ M , t < 0: Φt (m) ∈ M;

ii. the vector field ṽ points (non-strictly) outward at a tubular neighborhood over
∂M, i.e. there exists some η> 0 such that

∀ (m, y) ∈ ∂M ×Y≤η : g
(
DπX · v(m, y),n(m)

)≥ 0.

Remark 4.5. Note that Definition 4.2 implies 4.4 when ‖ṽ − v‖1 is small enough
and ṽ ∈C 1

b,u .

Remark 4.6. A useful generalization of Definition 4.4 to the setting of Theorem 3.1
is less trivial. There we do not have canonical vertical fibers over ∂M in the tubular
neighborhood, nor the associated projection of v onto TX at ∂M . We cannot simply
take a non-vertical fiber; the Perron method adapts the curves x and y separately,
so it may happen that while x(0) ∈ ∂M is kept fixed, y(0) is updated to a new value
such that (x(0), y(0)) lies outside of the tubular neighborhood over M , and control
is lost. ♦
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Let us demonstrate the application of this more general definition with the follow-
ing simple example, see also Figure 4.1.

Example 4.7 (Persistence under a priori overflowing invariance).
Let X ×Y =R×R and let the unperturbed vector field be given by

v(x, y) = (− (x −1)2, (x2 −4) y
)
.

Note that M = (−1,1) ⊂ X is strictly overflowing invariant at its left boundary x =−1
(we could choose other values as well), but non-strictly so at the right boundary
x = 1, which is a degenerate stationary point. The vector field is normally attracting
over the interval (−2,2) and uniformly so over any closed subinterval. Note that
there does not exist a subinterval of X that is overflowing invariant according to
Definition 4.2.

Let us choose a family vδ of perturbations of v such that ‖vδ− v‖1 ≤ δ and v = vδ
on a neighborhood of (1,0) ∈ X ×Y . Then M satisfies Definition 4.4 for this family
vδ and application of Theorem 4.8 below shows that for δ sufficiently small, there
exists a unique negatively invariant manifold M̃ = Graph(h̃) for the flow of vδ such
that h̃ : [−1,1] ⊂ X → [−η,η

] ⊂ Y . For any r ≥ 1 there exists a δ such that h̃ ∈ C r

holds. ©

Y

0 1 2

M

−1
X

Figure 4.1: a priori overflowing invariance for the manifold M .

Theorem 4.8 (Persistence under overflowing invariance).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (X , g ) be a smooth, complete, connected

Riemannian manifold of bounded geometry and Y a Banach space. Let vδ ∈C k,α
b,u be

a family of vector fields defined on a uniformly sized neighborhood of the zero-section
in X ×Y such that ‖vδ− v0‖1 ≤ δ. Let M satisfy Definition 4.4 for the pair (v0, vδ)
for any δ ∈ (0,δ0] and let M be r -normally attracting for the flow defined by v0, that
is, M satisfies the overflowing invariant version of Definition 1.9 with rank(E+) = 0.
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Then for each sufficiently small η> 0 there exist δ1 > 0 such that for any δ ∈ (0,δ1],
there is a unique manifold with boundary M̃ = Graph(h̃), h̃ : M → Y , ‖h̃‖0 ≤ η such
that M̃ is negatively invariant under the flow defined by vδ. Moreover, h̃ ∈C k,α

b,u and
‖h̃‖k−1 can be made arbitrary small by choosing ‖vδ−v0‖k−1 sufficiently small. The
function h extends continuously to ∂M.

Remark 4.9. In this overflowing invariance setting, the condition that rank(E+)= 0
is really necessary and not an artifact of our proof. The same results hold for
inflowing invariance with no stable normal directions present. Definition 4.4 can
be extended to full normal hyperbolicity with both stable and unstable normal
directions present. This requires full invariance of a tubular neighborhood of M
under both the forward and backward orbits.

M
x1

x2

Figure 4.2: a nonconvex
subset M ⊂ X .

Remark 4.10. We can restrict to a smaller open subset
U of X that contains M , so we do not need vδ ∈C k,α

b,u to
hold on all of X . If this subset U is not convex, though,
we may run into difficulties when applying the mean
value theorem, see Figure 4.2: an intermediate point
ξ 6∈ M on the line between x1, x2 may be selected, so
we need to make sure that the uniform estimates still
hold there. Thus the need for U ⊃ M to be convex, see
also the remark in [Hen81, p. 289]. ♦

Proof. The proof of Theorem 3.2 requires minimal changes. Note that regardless
of the modifications and smoothing preparations performed in Section 3.4, the
vector field ṽ X is precisely the horizontal component of the perturbed vector field
vδ. In Section 3.6 where we proved existence and uniqueness of M̃ , we take η

small enough that it satisfies condition ii of Definition 4.4. This guarantees that
x = TX (y, x0) is a solution curve such that x

(
(−∞,0]

)⊂ M for any y ∈ Bρ
η (I ;Y ) and

x0 ∈ M . Hence, the contraction mapping T = TY ◦ (TX , pr1) is well-defined with
intermediate space Bβ(I ; M) and we find a unique Lipschitz continuous fixed point
mapΘ∞ : M → Bρ

η (I ;Y ).

No essential changes are needed with respect to the smoothness proof in Sec-
tion 3.7. The formal derivatives (3.43) are well-defined along all curves x and
y that are considered, since the derivatives of ṽ X , A, f are defined on an open
neighborhood of M . In Section 3.7.7 we use the mean value theorem to prove that
the restricted maps T b,a have true derivatives. Remark 4.10 is not problematic
here, since T b,a is defined on the finite interval J = [a,0] and thus we can restrict
to arbitrarily small open neighborhoods along the curves x, y when restricted to J .
Hence we find thatΘ∞ ∈C k,α

b,u on M .
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4.4 Full normal hyperbolicity

We made the assumption in our main theorems that the unstable bundle E+ was
absent, that is, that M was a normally attracting invariant manifold. As already
noted in Remark 3.3, viii , it should be possible to generalize this to the case of
full normal hyperbolicity where both stable and unstable normal directions are
present. Let us indicate here how this more general result can be obtained.

Assume that in Theorem 3.1 we have an invariant splitting (1.8) with both stable
and unstable bundles present. The reduction principle in Section 2.6 leads to a
formulation of Theorem 3.2 with a trivial bundle

π : X × (
Y ×Z

)→ X , (4.5)

where the Banach spaces Y , Z are approximate representations of the stable and
unstable bundles E± of M . This means that M is again represented as the graph
of an approximate zero section hσ : X → Y × Z ; now, the subbundles X ×Y and
X × Z are approximately invariant under vσ. The deviation from invariance is
controlled by σ, the parameter of the smoothing approximation of M . We find
linear operators A±(x) on Y and Z respectively, that approximate the linearizations
of vY and vZ , and corresponding flowsΨ± with approximate growth rates. We add
a map1

TZ (x, y, z)(t ) =
∫ ∞

t
Ψ+

x (t ,τ) f̃ +(
x(τ), y(τ), z(τ)

)
dτ (4.6)

with z ∈ Bρ
η (R≥0; Z ) and adapt the other maps to incorporate z as an argument. We

use Lemma 3.30 and extend all curves in X , Y , Z to the full real line. This should
yield a contraction

T = (TY ,TZ )◦ (
TX , pr1 , pr2

)
on Bρ

η (R≤0;Y )×Bρ
η (R≥0; Z ), (4.7)

again with x0 ∈ X as initial value parameter. We obtain a pair (Θ−,Θ+) of fixed
point maps, and after evaluation we find

(h̃−, h̃+) : X → Y ×Z , (4.8)

which describes the persistent invariant manifold M̃ .

1Note that since t ≤ τ, we have a reverse flow Ψ+(t ,τ) for the unstable directions, which indeed
satisfies the growth estimates (1.9).
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Appendix A

Explicit estimates in the implicit
function theorem

In this appendix, we carefully examine the implicit function theorem. We extend
this standard theorem to classes of functions with additional properties such as
boundedness and uniform and Hölder continuity. The crucial ingredient is the
explicit formula (A.2) for the derivative of the implicit function, which allows us to
transfer regularity conditions onto the implicit function.

As an application of the implicit function theorem in Banach spaces, we will
establish existence, uniqueness and smooth dependence on parameters for the
flow of a system of ordinary differential equations. Essentially, these are standard
results from differential calculus, see e.g. Zeidler [Zei86, p. 150,165] or [Rob68;
Irw72]. We consider a general setting of ODEs in Banach spaces and show smooth
dependence, both on the initial data, as well as on the vector field itself. Moreover,
our extension of the implicit function theorem yields boundedness and uniform
continuity results.

We start with some results on inversion of linear maps.

Lemma A.1 (Invertibility of linear maps).
Let X be a Banach space and let A ∈ L(X ) be a continuous linear operator with
continuous inverse. Let B ∈L(X ) be another linear operator such that ‖B‖ < 1

‖A−1‖ .
Then A+B is also a continuous linear operator with continuous inverse, given by
the absolutely convergent series

(
A+B

)−1 = ∑
n≥0

(− A−1B
)n

A−1 = ∑
n≥0

A−1 (−B A−1)n
. (A.1)
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Proof. First of all, note that there exists an M ≥ 1 such that ‖A‖,‖A−1‖ ≤ M . The
base of the geometric series can be estimated in operator norm as ‖−A−1B‖ < 1,
so the series is absolutely convergent and the limit is a well-defined continuous
linear operator, whose operator norm can be estimated as

‖(A+B)−1‖ ≤ ‖A−1‖ ∑
n≥0

‖−A−1B‖n ≤ ‖A−1‖
1−‖A−1B‖ <∞.

That the limit is again a well-defined linear operator follow from the fact that L(X )
is a Banach space.

Applying A +B to the left-hand side of (A.1), we see that the candidate is a right
inverse:

(A+B)
∑

n≥0
A−1 (−B A−1)n = ∑

n≥0

(−B A−1)n − ∑
n≥0

(−B A−1)n+1 = 1.

Similarly the candidate can be shown to be a left inverse of A +B . Now we have
that the candidate is continuous and a full inverse and furthermore, A+B itself is
clearly a continuous operator as the sum of two continuous operators, so the proof
is completed.

Corollary A.2 (Linear inversion is analytic).
Let I : A 7→ A−1 be the inversion map defined on continuous, linear mappings
A ∈L(X ) with continuous inverse, where X is a Banach space. The map I is analytic
with radius of convergence ρ(A) ≥ 1/‖A−1‖. When X is finite-dimensional, I is a
fortiori a rational map.

Proof. Extending well-known results on analytic functions to Banach spaces (see
e.g. [Muj86]), we read off from (A.1) that the inversion map I can be given around A
by an absolutely convergent power series with ρ(A) ≥ 1/‖A−1‖ and is thus analytic.
When X is finite-dimensional, det(A) 6= 0 implies that A−1 is a rational expression
in the matrix coefficients of A according to Cramer’s rule.

The inversion map I is locally Lipschitz, like every C 1 mapping:

‖(A+B)−1 − A−1‖ ≤ ∑
n≥1

‖−A−1B‖n ‖A−1‖ ≤ ‖A−1‖2

1−‖A−1B‖ ‖B‖.

However, when we restrict to a domain bounded away from non-invertible opera-
tors A, that is, when ‖A−1‖ ≤ M , then the Lipschitz constant is bounded for small B .
This implies that when A = A(x) depends on a parameter via a certain continuity
modulus, then A(x)−1 will have the same continuity modulus up to the Lipschitz
constant, at least in small enough neighborhoods.

The standard implicit function theorem on Banach spaces can be stated as
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Theorem A.3 (Implicit function theorem).
Let X be a Banach space, Y a normed linear space, and let f ∈C k≥1(X ×Y ; X ). Let
(x0, y0) ∈ X ×Y and assume that f (x0, y0) = 0 and that D1 f (x0, y0)−1 ∈L(X ) exists
as a continuous, linear operator.

Then there exist neighborhoods U ⊂ X of x0 and V ⊂ Y of y0, and a unique function
g : V →U such that f (g (y), y)= 0. Furthermore, the map g is C k and the derivative
of g is given by the formula

Dg (y) =−D1 f (g (y), y)−1 ·D2 f (g (y), y). (A.2)

See [Zei86, p. 150–155] for a proof. Note that we do not need to assume that Y is a
complete space, as the contraction theorem is only applied on X . Recall that we
use notation where D denotes a total derivative, while Di with index i ∈N denotes
a partial derivative with respect to the i -th argument.

Formula (A.2) for the derivative of the implicit function g will be crucial for the
extension of the implicit function theorem to many classes of regularity, extending
C k smoothness. We use the Lipschitz estimate for the inversion map and require
that the regularity conditions are preserved under composition, addition, multipli-
cation and localization of functions. By Proposition C.3, the derivatives of g are
expressed in terms of D1 f (g (y), y)−1 acting on a polynomial expression of same or
lower order derivatives of f and strictly lower order derivatives of g .

As an example, let us take C k,α
b functions. Using Lemma 1.16 and induction over k,

this function class is preserved under products. For composition, we check Hölder
continuity,

‖ f (g (x2))− f (g (x1))‖ ≤C f
(
Cg ‖x2 −x1‖α

)α ≤ (C f Cα
g )‖x2 −x1‖α

for 0<α≤ 1, when ‖x2 −x1‖ ≤ 1. In case ‖x2 −x1‖ > 1 however, we can directly use
the boundedness of f :

‖ f (g (x2))− f (g (x1))‖ ≤ ‖ f (g (x2))‖+‖ f (g (x1))‖ ≤ 2‖ f ‖0 ‖x2 −x1‖α.

Thus, Hölder continuity is preserved with some new Hölder constant, while bound-
edness is trivially preserved as well. We conclude that if f ∈C k,α

b , and (D1 f )−1 is

globally bounded, then we can read off from formula (A.2) that g ∈C k,α
b . The same

results hold for the class of C k
b,u functions, or any other class of functions whose

properties are preserved when inserted into (A.2). Together, interpreting α= 0 as
an empty condition, these lead to
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Corollary A.4. Let in the Implicit Function Theorem A.3, f ∈C k,α
b,u with k ≥ 1 and

0 ≤α≤ 1. Assume moreover that ‖D1 f (x, y)−1‖ ≤ M is bounded on U ×V for some
constant M <∞. Then g ∈ C k,α

b,u , and the boundedness and continuity estimates
depend in an explicit way on those of f .

Remark A.5. Formula (A.2) only provides control on the derivatives of the implicit
function, but the size of g itself can be controlled by choice of the neighborhood U .
In our applications, this will match up with choosing coordinate charts around the
origin in Rn . ♦

Let us now consider an ordinary differential equation

ẋ = f (t , x), x(t0) = x0, (A.3)

where x takes values in a Banach space B and f ∈C k,α
b,u (R×B ;B) with k ≥ 1, 0≤α≤ 1.

We consider solutions x ∈ X =C 0(I ;B) equipped with the supremum norm, which
turns X into a Banach space1. We choose I to be a closed interval I = [a,b] ⊂ R.
The Picard integral operator

T : X → X : x(t ) 7→ F (x)(t ) = x0 +
∫ t

t0

f (τ, x(τ)) dτ (A.4)

has exactly the solution curves of (A.3) as fixed points. It also implicitly depends on
f ∈C k,α

b,u (R×B ;B) and (t0, x0) ∈ I×B . From now on we denote by Dx a partial deriva-
tive with respect to the argument that is typically described by the variable x.

This T is a contraction for |I | = b −a small enough:

‖T (x1)−T (x2)‖ = sup
t∈I

‖
∫ t

t0

f (τ, x1(τ))− f (τ, x2(τ)) dτ‖

≤ sup
t∈I

∫ t

t0

‖Dx f (τ,ξ(τ))‖‖x1(τ)−x2(τ)‖ dτ

≤ sup
t∈I

|t − t0|‖Dx f ‖‖x1 −x2‖

≤ |I |‖Dx f ‖‖x1 −x2‖.

We restrict T to a bounded subset of argument functions f ,

F ⊂C k,α
b,u (R×B ;B), sup

f ∈F
‖ f ‖k,α ≤ R.

1Note that any actual solution x will be C 1 at least, but only x ∈C 0 is required. This makes X a
complete space without the need to introduce norms more complicated than the supremum norm.
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Thus, choosing |I | ≤ 1
2R turns T into a q = 1

2 contraction, which shows that there is
a unique x ∈ X satisfying T (x) = x and therefore (A.3).

Next, we consider small perturbations of both (t0, x0) and f . To apply the implicit
function theorem, we define F (x) = x −T (x). This function has a unique zero and
DF (x) is invertible, as

F (x +δx)(t )−F (x)(t )

= δx(t )−
∫ t

t0

Dx f
(
τ,ξ(τ)

) ·δx(τ) dτ

= δx(t )−
∫ t

t0

Dx f
(
τ, x(τ)

) ·δx(τ)+O
(‖ξ(τ)−x(τ)‖)‖δx(τ)‖ dτ

= (
DF (x) ·δx

)
(t )+o

(‖δx‖) (A.5)

The neglected terms are o
(‖δx‖) since Dx f is uniformly continuous on I , so DF (x)

exists. From the expression above, we can also easily read off continuity of DF (x)
as a linear operator, by writing DF (x) = 1+ A(x) and noticing that

‖A(x)‖ ≤ |I |‖Dx f ‖ < 1
2 ,

thus DF (x) is a bounded, invertible linear operator such that ‖DF (x)−1‖ ≤ 2.

By similar estimates, the derivatives of F with respect to the parameters t0, x0, and
f can be calculated as

Dt0 F (x) = f (t0, x(t0)),

Dx0 F (x) =−1,(
D f F (x) ·δ f

)
(t ) =−

∫ t

t0

δ f (τ, x(τ)) dτ.

(A.6)

Note that these are all bounded linear operators; Dt0 F (x) is because ‖ f ‖ ≤ R.
Hence, F ∈C 1

b as a function of x, t0, x0, f , so by the implicit function theorem, the
solution x(t ; t0, x0, f ) depends C 1

b on t0, x0, f .

Next, we establish C k,α
b,u dependence on the initial conditions t0, x0 and C k

b de-
pendence on f and t0, x0 together. Uniform and Hölder dependence on f are
lost because the variations δ f ∈C k,α

b,u are not uniformly equicontinuous. The first
derivatives can be differentiated another k −1 times with respect to each of the
variables, using similar estimates as in (A.5). These derivatives are continuous as
f is uniformly continuous on the interval I . Uniform and Hölder continuity with
respect to t0, x0 can be read off directly from the expressions (A.5),(A.6) or their
higher order derivatives, as f ∈C k,α

b,u . The implicit function theorem only gives an
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explicit formula (A.2) for the derivative. Here, this translates into the fact that no
boundedness follows for the C 0-norm of the solution curve, only for the norms on
the derivatives.

We have thus shown that the conditions of Corollary A.4 of the implicit function
theorem have been satisfied, so there exists a neighborhood of (t0, x0, f ) in I ×B×F
such that for each (t ′0, x ′

0, f ′) in that neighborhood there is a unique solution to (A.3)
and the solutions x depend in a C k,α

b,u way on t ′0, x ′
0 and C k

b on all of t ′0, x ′
0, f ′. Note

that this result is obtained only on the interval I . We can however extend these
results to any bounded interval, by using the composition property of a flow; the
estimates may grow with interval size though. Hence, we have the following result,
see also [DK00, appendix B].

Theorem A.6 (Uniform dependence on parameters of ODE solutions).
Let an ordinary differential equation (A.3) be given, where f ∈F ⊂C k,α

b,u (R×B ;B)
with k ≥ 1, 0 ≤ α ≤ 1, B a Banach space, and F a bounded subset. Let I ⊂ R be a
bounded interval and X =C 0(I ;B) the Banach space of (solution) curves, endowed
with the supremum norm.

Then the flowΦ is a C k
b mapping

Φ : I ×B ×F → X : (t0, x0, f ) 7→ (
t 7→ x(t )

)
.

The boundedness is understood to hold only for the derivatives. Moreover,Φ ∈C k,α
b,u

holds as a mapping from I ×B for fixed f ∈F .

Remark A.7. Differentiable dependence on time can be dropped from this theo-
rem. That is, let us instead assume that f (t , x) and its derivatives Di

x f (t , x), i ≤ k
with respect to x are bounded continuous with respect to (t , x). Then the flow is a
C k

b mapping
Φ : B ×F → X : (x0, f ) 7→ (

t 7→ x(t )
)

when I ⊂R is a bounded interval. This result follows directly from the proof, since
we only used differentiability with respect to t for differentiable dependence ofΦ
on t .

Remark A.8. Instead of a Banach space B , we can also choose the setting of a
Riemannian manifold (M , g ). Solving for the flow of a differential equation is
defined in terms of local charts, so by standard arguments the C k smoothness
result extends to this setting.

If we assume moreover in the context of Chapter 2 that (M , g ) has bounded ge-
ometry and that f ∈ C k,α

b,u , then we can obtain stronger results close to those of
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Theorem A.6. In any single normal coordinate chart the results of Theorem A.6
hold. To extend the flow beyond one chart, we use the fact that coordinate chart
transitions are uniformly C k -bounded maps. It follows that Φ ∈C k,α

b,u on any do-
main such that all image curves are covered by a uniformly bounded number of
charts. This includes the domain M × I for any finite interval I ⊂ R, since f itself is
assumed bounded. The bounds and continuity moduli will depend on |I | though.

Alternatively, uniform (Hölder) continuity estimates independent of charts can
be obtained by using Proposition 2.13 to express continuity moduli in terms of
parallel transport. See Lemma C.10, which is proven via a variation of constants
method. ♦
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The Nemytskii operator

The Nemytskii operator creates a mapping on curves from a simple function
between spaces. That is, in its simplest form, if we have a function f : Rn → Rm ,
then the associated Nemytskii operator

F : C (R;Rn) →C (R;Rm), F (x)(t ) = f (x(t )),

maps curves x in Rn to curves y = F (x) = f ◦ x in Rm . See also [Van89, p. 103–109]
for a clear presentation.

We investigate continuity of the Nemytskii operator for certain classes of curves.
The following definition of the Nemytskii operator in a somewhat more abstract
context on bundles over R allows e.g. for the map f to be time-dependent.

Definition B.1 (Nemytskii operator).
Let I ⊂R and let X ,Y be normed vector bundles1 over I . Furthermore, let f : X → Y
be a bundle map, i.e. a fiberwise mapping that covers the identity on I , but which is
not necessarily linear in the fibers. We define the corresponding Nemytskii operator

F : Γ(X ) → Γ(Y ) : x 7→ f ◦x, (B.1)

mapping continuous sections of X to continuous sections of Y .

In the previous definition as well as in the following lemma, we need not restrict to
vector bundles; we shall also require the case that X is a trivial fiber bundle with a

1For our purposes, a sufficient definition of a normed vector bundle π : X →R is that there exist
local trivializations τ : π−1(U ) →U ×F that are isometric with respect to the norms on X and the
normed linear space F . Note that we canonically have such trivializations by parallel transport,
see (3.52) and Proposition 3.34.
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metric space as fiber (e.g. the bundle Bρ

β
(I ; X ) in the context of Chapter 3). Recall

that the space of sections Γ(X ) can be endowed with an exponential growth dis-
tance (1.16) or norm (1.15), respectively. This turns Γ(X ) into a metric (or normed
linear) space denoted by Γρ(X ) with exponent ρ ∈R. The distance dρ(x1, x2) may
be infinite for some x1, x2 ∈ Γρ(X ) if X is a trivial metric fiber bundle. This is not
a problem, since it is only used to obtain (local) continuity estimates for sections
such that dρ(x1, x2) <∞.

Lemma B.2 (Continuity of the Nemytskii operator).
Let X , Y be normed vector bundles over I = R≥0, or alternatively let X be a trivial
fiber bundle of a metric space. Let f ∈C 0(X ;Y ) be a continuous fiberwise mapping
and let F : Γ(X ) → Γ(Y ) be defined as in B.1. Let ρ1,ρ2 ∈R and assume that one of
the following holds:

i. ρ2 > 0 and f is bounded into the normed vector bundle Y ;

ii. ρ2 ≥αρ1 and f is α-Hölder continuous with 0 <α≤ 1, uniformly with respect
to the fibers.

Then F is continuous as a map Γρ1 (X ) → Γρ2 (Y ) and under ii, F is moreover
α-Hölder continuous again.

Proof. We first prove the statement under assumption i . Fix x1 ∈ Γρ1 (X ), let ε> 0
be given, and let x2 ∈ Γρ1 (X ) be arbitrary. As f is bounded and ρ2 > 0, we can
choose a T > 0 such that

∀ t > T : ‖ f (x1(t ))− f (x2(t ))‖e−ρ2 t ≤ 2‖ f ‖e−ρ2 T ≤ ε.

This leaves only the compact interval [0,T ] for which we still have to show that
‖ f (x1(t ))− f (x2(t ))‖e−ρ2 t ≤ ε. Let us denote g : I → R : t 7→ e−ρ2 t , then the con-
tinuity estimate of f · g : X → Y is uniform on the compact set x1([0,T ]). Hence,
there exists a δ′ > 0 such that for all t ∈ [0,T ] and ξ2 ∈π−1(t ) ⊂ X ,

d(x1(t ),ξ2) ≤ δ′ =⇒ e−ρ2 t ‖ f (x1(t ))− f (ξ2)‖ ≤ ε.

We have that d(x1(t ), x2(t ))≤ e |ρ1 T | dρ1 (x1, x2), so choosing δ= e−|ρ1 T |δ′ yields the
required estimate for dρ1 (x1, x2) ≤ δ. This proves that F is continuous at x1.

Secondly, assume ii and let Cα be the Hölder coefficient of f . Then we can estimate

‖F (x1)−F (x2)‖ρ2
= sup

t≥0
e−ρ2 t ‖ f (x1(t ))− f (x2(t ))‖

≤ sup
t≥0

e−ρ2 t Cα

(
dρ1 (x1, x2)eρ1 t )α =Cαdρ1 (x1, x2)α,

which shows that F is α-Hölder continuous again with coefficient Cα.
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Corollary B.3. Let the assumptions of Lemma B.2 with condition i be satisfied. If f
is fiberwise uniformly continuous with continuity modulus independent of the fiber,
then also F is uniformly continuous.

Proof. This follows easily: in the proof above, the uniform continuity on the
compact set x1([0,T ]) can be replaced by the uniform continuity modulus of f
itself. This does not depend on x1, x2 anymore, only on their distance, so it leads to
a uniform continuity modulus of F .

Remark B.4. The previous results also hold under time inversion. That is, if we
consider the interval I =R≤0 and invert the inequalities for ρ1, ρ2 in conditions i
and ii , then Lemma B.2 and Corollary B.3 still hold true. We use this time inverted
version in Chapter 3. ♦
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Exponential growth estimates

In this appendix we investigate the growth rate of higher order derivatives of a
general flow on a Riemannian manifold. Basically, if the growth of the tangent
flow is proportional to exp(ρ t ), then the growth of the r -th order derivative is of
order exp(r ρ t ). This even extends to ‘fractional’ derivatives, that is, the C k,α-norm
(which includesα-Hölder continuity bounds) has this growth behavior for r = k+α.
These results will be used to obtain continuity and higher order smoothness of
the persisting NHIM. The particular exponential growth behavior exp(r ρ t ) will
precisely prescribe the spectral gap condition: to construct a contraction on the
r -th derivative, the normal contraction of order exp(ρY t ) must dominate the higher
order exp(r ρX t ) along the invariant manifold, hence ρY < r ρX is required1.

These results are based on estimating variation of constants integrals and similar
in spirit to Gronwall’s lemma. We work on Riemannian manifolds, however. This
complicates matters with a lot of technicalities, but the basic ideas are still the
same. We do require uniform bounds and bounded geometry of the manifold, see
Chapter 2. Let us first show the idea for a flow on Rn and then introduce some
concepts and notation to finally treat the general case.

Lemma C.1 (Exponential growth estimates for a flow).
Let Φt ,t0 ∈C k≥1 be the flow of a time-dependent vector field v on Rm . Let v(t , · ) ∈
C k

b (Rm) with all derivatives jointly continuous in (t , x) ∈ R×Rm and uniformly
bounded by V <∞. Suppose that ‖DΦt ,t0 (x)‖ ≤C1 eρ(t−t0) for all x ∈Rm , t ≥ t0 and

1We formulate all statements in this section with respect to exponentially bounded flows in the
(more natural) forward time direction. That is, we work with t ∈R≥t0 and typical exponents ρ > 0. In
our applications in Chapter 3 we use the time-reversed statements. See also Remark 1.15.
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fixed C1 > 0, ρ 6= 0. Then for each n, 1 ≤ n ≤ k there exists a bound Cn > 0 such that

∀x ∈Rm , t ≥ t0 : ‖DnΦt ,t0 (x)‖ ≤
{

Cn en ρ(t−t0) if ρ > 0,

Cn eρ(t−t0) if ρ < 0.
(C.1)

Proof. Let D denote the partial derivative with respect to the spatial variable
x ∈Rm . We suppress the time dependence in the notation of v since we have the
bound ‖Dn v‖ ≤V for all 1 ≤ n ≤ k, uniformly in space and time.

SinceΦt ,t0 is a flow, we have

DΦt0,t0 (x) =1 and DnΦt0,t0 (x) = 0, 2 ≤ n ≤ k. (C.2)

For 1 ≤ n ≤ k we can write, suppressing arguments t0, x,

d

dt
DnΦt = Dn(v ◦Φt ) = Dv ◦Φt ·DnΦt +

n∑
l=2

Dl v ◦Φt ·Pl ,n
(
D1Φt , . . . ,Dn−1Φt ), (C.3)

where the Pl ,n are homogeneous, weighted polynomials as in Definition C.2 below.
In the first equality, the switching of partial derivatives is well-defined, because
the spatial derivative in the middle expression is well-defined and the resulting
function continuous. In the right-hand expression we have already used Proposi-
tion C.3 and separated the homogeneous term with DnΦt (when l = 1). The result
is a linear differential equation for DnΦt with the inhomogeneous terms in the
sum consisting of lower order derivatives DiΦt , i < n, only.

For n = 1, statement (C.1) is already true by assumption and in that case we also
see that (C.3) is a homogeneous linear differential equation. Denote by Ψx (t , t0)
the solution operator for this system with initial point x ∈Rm , then

DΦt ,t0 (x) =Ψx (t , t0)
(
DΦt0,t0 (x)

)=Ψx (t , t0) ·1=Ψx (t , t0). (C.4)

This solution operator acts by left-composition on linear maps, so we read off that
Ψx (t , t0) = DΦt ,t0 (x) and find the estimate ‖Ψx (t , t0)‖ ≤C1 eρ(t−t0). Now we turn to
the induction step. For n > 1, we still have essentially the same solution operator
Ψx (t , t0) for the homogeneous part, only now acting by composition on multilinear
maps DnΦt ,t0 (x) ∈Ln(Rm): the solution operator is not influenced by considering
multilinear maps, as Dv andΨ act by linear composition from the left, essentially
on tangent vectors. Therefore, the same growth estimate forΨx (t , t0) still holds.

The inhomogeneous terms in (C.3) depend only on the DiΦt , i < n and by the in-
duction hypothesis we can estimate ‖DiΦt‖ ≤Ci e i ρ t . Using variation of constants,
the solution can now be written as

DnΦt (x) =
∫ t

t0

Ψx (t ,τ) ·
n∑

l=2
Dl v ◦Φτ ·Pl ,n

(
D1Φτ, . . . ,Dn−1Φτ

)
dτ, (C.5)



Exponential growth estimates 173

where the homogeneous part of the solution is zero because DnΦt0,t0 (x) = 0 for
n > 1. Given that the weighted degree of Pl ,n is n, we can directly estimate

‖DnΦt (x)‖ ≤
∫ t

t0

‖Ψx (t ,τ)‖
n∑

l=2

∥∥Dl v
∥∥‖Pl ,n

(
D1Φτ, . . . ,Dn−1Φτ

)‖ dτ

≤
∫ t

t0

C1 eρ(t−τ) V R
(
{Ci }i<n

)
en ρ(τ−t0) dτ

=C1 V R
(
{Ci }i<n

) en ρ(t−t0) −eρ(t−t0)

(n −1)ρ
. (C.6)

The bound R depends on finite sums and products of finite terms, so is finite again.
When ρ > 0, the denominator is positive and the numerator can be estimated by
en ρ(t−t0); when ρ < 0, the numerator can be estimated by eρ(t−t0), adding a minus
sign to both parts of the fraction. Thus, in both cases (C.1) holds. This completes
the induction step.

Before generalizing this lemma to Riemannian manifolds, we first refine some
previous notation. Instead of Rm , we more generally consider linear spaces V ,W
and spaces Lk (V ;W ) of (multi)linear maps for the (higher order) derivatives of
maps f : V →W .

Definition C.2 (Homogeneous weighted polynomial).
Let Pa,b(y1, . . . , yn) be a polynomial in the variables y1 to yn . We call P a homoge-
neous weighted polynomial of degree (a,b) if it is a homogeneous polynomial of
degree a and moreover, each term y p1

1 . . . y pn
n has weighted degree

n∑
i=1

i ·pi = b. (C.7)

As a consequence, such a polynomial cannot have factors yn for n > b and the
factor yb can only occur as a term on itself when a = 1.

This definition can now be used to denote the higher derivatives of a composition
of two functions f , g on vector spaces.

Proposition C.3 (Higher order derivatives of compositions of functions).
Let the mapping x 7→ f (g (x), x) be given with f : V ×U → W and g : U → V two
sufficiently differentiable functions between vector spaces U ,V ,W . Then the k-th
order derivative of this mapping with respect to x is of the form( d

dx

)k
f (g (x), x) = ∑

l ,m≥0
l+m≤k

(l ,m)6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k−m
(
D1g (x), . . . ,Dk−m g (x)

)
, (C.8)
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where Pl ,k−m is a homogeneous weighted polynomial of degree (l ,k−m) with l higher
order derivatives Di g (x) in each term, and weighted degree k−m: the total number
of derivatives that either produced an additional Dg (x) term or differentiated an
existing one.

Remark C.4. We will shorten the notation Pl ,k
(
D1g (x), . . . ,Dk g (x)

)= Pl ,k
(
D•g (x)

)
.

Remark C.5. Note that Dl
1Dm

2 f (g (x), x) is actually an element of the tensor product

space W ⊗ (
V ∗)⊗l ⊗ (

U∗)⊗m and Pl ,k−m an element of the (l ,k−m)-linear maps

V ⊗l ⊗ (
U∗)⊗k−m , or (l ,k−m) tensors, so the composition is indeed a mapping in

W ⊗ (
U∗)⊗k =Lk (U ;W ), as expected. ♦

Proof. This is easily proven by induction. For k = 1 we have

d

dx
f (g (x), x) = D1 f (g (x), x) ·Dg (x)+D2 f (g (x), x),

which satisfies (C.8). For the induction step we have( d

dx

)k+1
f (g (x), x) = d

dx

∑
l ,m≥0

l+m≤k
(l ,m) 6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k−m
(
D•g (x)

)

= ∑
l ,m≥0

l+m≤k
(l ,m) 6=(0,0)

[
Dl+1

1 Dm
2 f (g (x), x) ·D1g (x) ·Pl ,k−m

(
D•g (x)

)
+Dl

1Dm+1
2 f (g (x), x) ·Pl ,k−m

(
D•g (x)

)
+Dl

1Dm
2 f (g (x), x) · d

dx
Pl ,k−m

(
D•g (x)

)]
= ∑

l ,m≥0
l+m≤k

(l ,m) 6=(0,0)

[
Dl+1

1 Dm
2 f (g (x), x) ·Pl+1,k+1−m

(
D•g (x)

)
+Dl

1Dm+1
2 f (g (x), x) ·Pl ,k+m

(
D•g (x)

)
+Dl

1Dm
2 f (g (x), x) ·Pl ,k+1−m

(
D•g (x)

)]
= ∑

l ,m≥0
l+m≤k+1
(l ,m) 6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k+1−m
(
D•g (x)

)
.

This is again of the form (C.8): k−m = (k+1)−(m+1), so all terms can be absorbed
in the new sum for k +1.

Let us make a few remarks on the form of (C.8). The P0,m for m < k are zero,
because then we have too few derivatives with respect to x; we have P0,k = 1
though. After Definition C.2 it was already noted that in a polynomial of weighted
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degree k, the factor yk can only occur as a term on itself, up to a constant factor.
More specifically in this case, Dk g (x) occurs exactly once, in the term

D1 f (g (x), x) ·Dk g (x).

This can easily be seen by direct calculation or induction. Finally, when the com-
position mapping is of the form x 7→ f (g (x)), then we only have terms with m = 0
and all polynomials in (C.8) have weighted degree k in that case.

The next step is to generalize Lemma C.1 to a Riemannian manifold (M , g ). Here
we first need to define what we mean by higher derivatives of the flow. The tangent
flow DΦt is well-defined as a mapping on TM , but higher derivatives live on higher
order tangent bundles Tk M . These abstract bundles make doing explicit estimates
as in the proof of Lemma C.1 difficult. Instead, we reuse the idea of Definition 2.9
and introduce a different representation of higher derivatives in terms of normal
coordinate charts.

Definition C.6 (Higher derivative on Riemannian manifolds).
Let M , N be Riemannian manifolds and f : M → N a smooth map. With the
notation fx = exp−1

f (x) ◦ f ◦ expx of f represented in normal coordinate charts, we
define for k ≥ 1 and x ∈ M the higher order derivative

Dk f (x) = Dk fx (0) = Dk[
exp−1

f (x) ◦ f ◦expx

]
(0) (C.9)

as an element of Lk (Tx M ;T f (x)N ).

Remark C.7. Definition C.6 can be viewed as creating a more explicit representa-
tion of the jet bundle of the trivial fiber bundle π : M ×N → M . A map f : M → N is
a section of this trivial bundle and the k-jet of f at a point x is fixed in terms of the
derivatives in (C.9) up to order k, in the normal coordinate chart centered at x. We
shall see below that this representation is still a (global) bundle, while the explicit
choice of normal coordinate charts introduces a convenient norm to measure the
jets. ♦

Let us make a few remarks on this choice of representation of higher derivatives.
First of all, for k = 1 this definition coincides with the ordinary tangent map, as
Dexpx (0) = 1Tx M by the natural identification T0(Tx M) ∼= Tx M . Furthermore, this
representation of derivatives admits operator norms, and all this behaves nicely
under composition of maps by virtue of the property ( f ◦ g )x = fg (x) ◦ gx for local
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coordinate charts:∥∥D2( f ◦ g )(x)
∥∥= ∥∥D2[ fg (x) ◦ gx

]
(0)

∥∥
= ∥∥D2 fg (x)(0)

(
Dgx (0),Dgx (0)

)+D fg (x)(0)
(
D2gx (0)

)∥∥
= ∥∥D2 f (g (x)) ·Dg (x)⊗2 +D f (g (x)) ·D2g (x)

∥∥
≤ ‖D2 f (g (x))‖ · ‖Dg (x)‖2 +‖D f (g (x))‖ ·‖D2g (x)‖,

that is, these operator norms as defined via normal coordinate charts are truly
norms and satisfy the usual product rules for compositions of (multi)linear maps.

The operator norms are induced by the norms on the tangent spaces of TM , which
in turn are induced by the metric. These norms depend smoothly on the base
point, so they glue together to a smooth function ‖·‖ : TM →R≥0 that we will call a
‘bundle norm’ on the tangent bundle2 or sometimes refer to as just a norm on TM .
Higher derivatives can be viewed as partial sections of the vector bundle

Lk (TM ;TN ) = TN� (TM∗)⊗k . (C.10)

That is, we define Lk (TM ;TN ) as a bundle over M ×N with fiber Lk (Tx M ;Ty N )
over the point (x, y) ∈ M ×N . This is indicated by the operator �, which differs
from the usual tensor product ⊗ in the sense that the new bundle is constructed on
the product of the base spaces instead of one common base. Now the k-th order
derivative (as in Definition C.6) of a map f : M → N is a section of the bundle (C.10)
restricted to the base submanifold Graph( f ) ⊂ M ×N and the derivative Dk f (x) is
the point in the section over (x, f (x)). More generally, we can define vector bundles
of (l ,k)-linear maps

Ll ,k (TM ;TN ) = (TN )⊗l � (TM∗)⊗k (C.11)

and the disjoint union of all these bundles. The bundle norms on TM and TN
together naturally induce bundle operator norms on these. From here on, we set
M = N and assume that f =Φt is a flow.

To finally generalize Lemma C.1 to Riemannian manifolds, there is still one issue
to tackle. When taking the time-derivative as in (C.3), the target base point Φt (x)
changes. This suggests that a covariant derivative is required. TheLl ,k (TM ;TM) are
smooth manifolds in a natural way, however, so both the tangent vector d

dt DkΦt (x)
and the differential of ‖·‖ are well defined in this interpretation and independent

2Note that this is stronger than a Finsler manifold as the Finsler structure F : TM →R≥0 is allowed
to be asymmetric, that is, on each tangent space, F need only scale linearly for positive scalars. I did
not investigate whether it is possible to generalize this theory to Finsler manifolds.
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of a connection, and certainly their product d
dt ‖DkΦt (x)‖ is. The tangent expo-

nential maps D exp at x and Φt (x) together induce a local coordinate chart on
Ll ,k (TM ;TM) in a neighborhood of Ll ,k (Tx M ;TΦt (x)M). We will use these local
coordinates for explicit calculations.

The dependence on the base point of the norms and normal coordinate charts
in (C.9) introduces additional terms when formulating equations (C.3) and (C.5) on
a Riemannian manifold. Under the assumption that (M , g ) is of bounded geometry,
however, all these additional terms will be globally bounded. Hence, these will
only contribute to the overall constants Cn in Lemma C.1, but not influence the
basic result.

Lemma C.8 (Exponential growth estimates on a Riemannian manifold).
Let Φt ,t0 ∈ C k≥1 be the flow of a time-dependent vector field v on a Riemannian
manifold (M , g ) of (k+3)-bounded geometry. Let v(t , · ) ∈Xk

b(M) with all derivatives
jointly continuous in (t , x) ∈R×M and uniformly bounded by V <∞ with respect to
Definition C.6. Suppose that ‖DΦt ,t0 (x)‖ ≤C1 eρ(t−t0) for all x ∈ M , t ≥ t0 and fixed
C1 > 0, ρ 6= 0. Then for each n, 1 ≤ n ≤ k there exists a bound Cn > 0 such that

∀x ∈ M , t ≥ t0 : ‖DnΦt ,t0 (x)‖ ≤
{

Cn en ρ(t−t0) if ρ > 0,

Cn eρ(t−t0) if ρ < 0.
(C.12)

Proof. The proof is basically the same as the proof of Lemma C.1, with additional
technicalities due to M being a manifold. We will focus on these.

Equation (C.3) can be formulated in terms of the tangent normal coordinate chart

Dexp−1
y : TB(y ;δ) ⊂ TM → T(Ty M) ∼= (Ty M)2

with y =Φt (x) fixed. Note that we are finally interested in the growth behavior of
t 7→ ‖DnΦt (x)‖; this is defined in a coordinate-free way, so it is not influenced by
our choice of intermediate coordinates. In these normal coordinates, both the
metric and its derivatives are bounded due to Theorem 2.4, and the vector field is
C k bounded by assumption. We have

d

dt
Dexp−1

y ◦DnΦt (x)

= d

dt
Dexp−1

y ◦Dn[
exp−1

Φt (x) ◦Φt ◦expx

]
(0)

= d

dt
Dexp−1

y ◦
n∑

l=1
Dl [exp−1

Φt (x) ◦expy

]
(0) ·Pl ,n

(
D•[exp−1

y ◦Φt ◦expx

]
(0)

)
.
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This splits the dependence on t in the target base point Φt (x) from that in the
derivatives DnΦt itself. Note that the sum must be interpreted as a sum of terms in
the single fiber Ln(Tx M ;Ty M) over the base point (x, y). By using the coordinate
map Dexp−1

y , we transferred the problem to fixed linear spaces, which allows us to
make sense of the differentiation with respect to t . In other words, Dexp−1

y induces
locally trivializing coordinates for Ln(Tx M ;TM) in a neighborhood of y with x
fixed. As Dexp−1

y is linear on the fibers, we can distribute it over the sum to further
obtain

=
n∑

l=1

d

dt

[
Dexp−1

y ◦Dl [exp−1
Φt (x) ◦expy

]
(0) ·Pl ,n

(
D•[exp−1

y ◦Φt ◦expx

]
(0)

)]
= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0) ·Dn[

exp−1
y ◦Φt ◦expx

]
(0)

]
+

n∑
l=2

d

dt

[
. . .

]
.

(C.13)

In the last line, the homogeneous part is separated from the non-homogeneous
terms as in (C.3).

Working out the details of the homogeneous part, we obtain3

d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0) ·Dn[

exp−1
y ◦Φt ◦expx

]
(0)

]
= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0)

]
·DnΦt (x)

+D
[
Dexp−1

y

] ·Dn d

dt

[
exp−1

y ◦Φt ◦expx

]
(0)

= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0)

]
·DnΦt (x)

+D
[
Dexp−1

y

] · n∑
l=1

Dl [Dexp−1
y ◦v ◦expy

]
(0) ·Pl ,n(D•Φt (x)).

Note that again all terms l ≥ 2 in the sum are inhomogeneous terms that we will
add to those already present in (C.13). The homogeneous term is some linear
vector field acting (from the left) on DnΦt (x) and it is precisely the vector field
generating DΦt (x), which is the original case n = 1. Hence, we can again define
the operatorΨt ,t0

x as post-composition with DΦt (x) and write the flow of DnΦt (x)
using a variation of constants integral with all the non-homogeneous terms. These
terms again contain only lower order derivative flows DlΦt (x), l < n.

3The time derivative of D exp−1
y ◦D

[
exp−1

Φt (x)
◦expy

]
(0) actually turns out to be zero in local

coordinates. This follows from an analysis of the exponential map as the time-one geodesic flow
in normal coordinates around y . This result is not relevant for us, so we leave out this tedious
calculation.
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We can now take the operator norm of this expression. In principle we should
be careful that this bundle norm depends on the changing target point Φt (x).
The normal coordinates were chosen around y = Φt (x), however, and in these
coordinates the derivative of the metric at the origin (corresponding to y) is zero,
hence the norm has zero derivative. We can thus simply apply the operator norm to
the variation of constants integral and obtain estimates as in (C.6). The additional
factors introduced by differentiation of normal coordinate transition maps are
bounded by Lemma 2.6 under the assumption that (M , g ) is of (k+3)-bounded
geometry. The inhomogeneous terms still contain at least one factor DlΦt (x), so
the result in case ρ < 0 holds as well.

These exponential growth results can be extended further to uniform and Hölder
continuity in the highest derivatives. The Hölder continuity then is with respect
to the growth rate (k +α)ρ, where k is the order of the derivative and 0 < α ≤ 1
the Hölder constant. Thus, α-Hölder continuity can be viewed as a fractional
derivative; Lipschitz continuity (when α = 1) can indeed be viewed as almost
differentiability to one higher order. The case α= 0 we shall identify with uniform
continuity. Here we have no explicit modulus of continuity, which requires an
arbitrarily small additional µ> 0 in the exponent k ρ+µ to compensate.

Remark C.9 (On using a global continuity modulus).
In the next lemma, as well as in Corollary C.12 below, we shall make abuse of
notation in writing expressions such as ‖s(x2)− s(x1)‖, where s is a section of a
vector bundle, cf. (C.15), that is, we compare objects that live in different fibers of
a vector bundle4. This notation should be interpreted according to Remark 2.12.
That is, if x1, x2 are M-close in the spirit of Definition 2.8, then this is well-defined
in terms of local charts, and for continuity estimates this is equivalent to an es-
timate by identification of the vector bundle over x1, x2 via parallel transport, cf.
Proposition 2.13. If x1 and x2 are not close, then we can use any choice of isometric
identification of the vector bundle over these points, such as the construction of
parallel transport along solutions curves in Section 3.7.4. In this case the notation
can effectively be interpreted as an estimation by the sum of the norms of the
separate terms with the triangle inequality. When applying this lemma, we shall
always have such an isometric identification at hand, hence these arguments can
be made rigorous, and the notation provides a sensible heuristic then. ♦

4Note that the higher derivatives DkΦt (x) of a flow are actually interpreted as elements of a
bundle of type (C.10). These bundles are still naturally induced by the tangent bundles of underlying
manifolds, so all bounded geometry techniques, such as uniformity of normal coordinate charts,
unique local trivializations by parallel transport, are induced on these bundles as well.
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Lemma C.10 (Exponential growth estimates with Hölder continuity).
Let Φt ,t0 ∈ C k≥1 be the flow of a time-dependent vector field v on a Riemannian
manifold (M , g ) of (k+3)-bounded geometry. Let D denote the partial derivative
with respect to the spatial variable x ∈ M as in Definition C.6 and let v(t , · ) ∈
Xk,α

b,u (M), 0<α≤ 1 with all derivatives jointly continuous in (t , x) ∈R×M. Suppose

that ‖DΦt ,t0 (x)‖ ≤C1 eρ(t−t0) for all x ∈ M , t ≥ t0 and fixed C1 > 0, ρ > 0.

Then in addition to the results of Lemma C.8, there exists a bound Ck,α > 0 such that

∀ t ≥ t0 : ‖DkΦt ,t0‖α ≤Ck,α e(k+α)ρ(t−t0). (C.14)

If instead v(t , · ) ∈Xk
b,u(M), i.e. the special case α= 0, then for each µ> 0 there exists

a continuity modulus εk,µ such that

∀ t ≥ t0 : ‖DkΦt ,t0 (x2)−DkΦt ,t0 (x1)‖ ≤ εk,µ(d(x1, x2))e(k ρ+µ)(t−t0), (C.15)

that is, x 7→ (
t 7→ DkΦt ,t0 (x)

)
is uniformly continuous in x, in ‖·‖k ρ+µ-norm.

Remark C.11. We restricted this lemma to the case ρ > 0 only. A result similar to
that in C.8 for ρ < 0 could be obtained for completeness sake, but it clutters the
already detailed proof, while we do not need the result. ♦

Proof. The idea of the proof is essentially the same as that of Lemma C.8. The
additional difficulty is that (Hölder) continuity requires finite, non-differential
estimates when comparing any two flows starting from different initial points
x1, x2 ∈ M .

Let d(x1, x2) < δM where δM is M-small as in Definition 2.8. We drop t0 from the
notation and define ξi (t ) =Φt (xi ), i = 1,2 as the solution curves with xi as initial
conditions. We want to study the growth behavior of

t 7→ DkΦt (x2)−DkΦt (x1). (C.16)

Note that this difference is defined with respect to coordinate charts at source and
target that contain x1, x2 and ξ1(t ), ξ2(t ), respectively, but not in general.

We denote by γt the unique shortest geodesic that connects ξ1(t ) to ξ2(t ) when
d(ξ1(t ),ξ2(t )) < δM . Next, we set

Υt = DkΦt (x2) ·Π(γ0)⊗k −Π(γt ) ·DkΦt (x1) ∈Lk(
Tx1 M ;Tξ2(t )M

)
(C.17)

to be the difference of the respective k-th order derivative flows, parallel trans-
ported to matching spaces at their source and target. It is easily verified that Υt

satisfies initial conditionsΥt0,t0 = 0 for any k ≥ 1.
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Due to Proposition 2.13, the formulation in (C.17) with parallel transport to mea-
sure variation of the flows is equivalent to measuring (C.16) in normal coordinate
charts. Hence, if we study ‖Υt‖ in charts, we may drop5 the parallel transport
terms at the cost of an (unimportant) global factor in the estimates. We assume
that d(ξ1(t ),ξ2(t )) < δM and studyΥt in a normal coordinate chart covering both
points. Taking the difference of (C.3) with x1, x2 inserted, we see thatΥt satisfies
the differential equation

d

dt
Υt = Dv ◦Φt (x2) ·Υt + [

Dv ◦Φt (x2)−Dv ◦Φt (x1)
] ·DkΦt (x1)

+
k∑

l=2
Dl v ◦Φt (x2) ·Pl ,k

(
D•Φt (x2)

)− (x2 x1).

This equation provides a variation of constants integral for Υt based on the flow
Ψx2 (t , t0):

Υt =
∫ t

t0

Ψx2 (t ,τ) · [Dv ◦Φτ(x2)−Dv ◦Φτ(x1)
] ·DkΦτ(x1)

+Ψx2 (t ,τ) ·
[ k∑

l=2
Dl v ◦Φτ(x2) ·Pl ,k

(
D•Φτ(x2)

)− (x2 x1)

]
dτ.

(C.18)

We proceed by induction over k. For k = 1 we only have the first term of the
integrand. Using that Dv is uniformly α-Hölder, we have

‖Υt‖ ≤
∫ t

t0

‖Ψx2 (t ,τ)‖‖Dv ◦Φτ(x2)−Dv ◦Φτ(x1)‖‖DΦτ(x1)‖ dτ

≤
∫ t

t0

C1 eρ(t−τ) ‖Dv‖α ‖Φτ(x2)−Φτ(x1)‖αC1 eρ(τ−t0) dτ

≤C 2
1 ‖Dv‖α eρ(t−τ)

∫ t

t0

(
C1 eρ(τ−t0) ‖x2 −x1‖

)α
dτ

≤C 2+α
1 ‖Dv‖α eρ(t−τ) ‖x2 −x1‖α eαρ(t−t0)

αρ
.

Next, in the induction step for k > 1, we get the additional terms from (C.18) in the
integrand. These are (up to constants) a product of the flow Ψ, Dl v ◦Φτ(x) and
DiΦ(x)’s with weighted degree k. The terms Dl v ◦Φτ(x) are uniformly α-Hölder
continuous in x analogous to the case k = 1 above. Each of the DiΦ(x)’s satisfies
the Hölder estimate of this lemma by the induction hypothesis and the growth

5We could include the parallel transport terms, repeat similar arguments as in the proof of
Lemma C.8 and express everything in (induced) normal coordinate charts, but this would clutter
the proof here even more. These terms would all be bounded and Lipschitz continuous by bounded
geometry, hence not essentially alter the result.
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estimates of Lemma C.1. Hence, for each term in the integrand, we obtain Hölder
continuity with respect to x with growth behavior at most eρ(t−τ) e(k+α)ρ(τ−t0).
Integration then yields the stated result.

Finally, the uniformly continuous case is an extension along the same lines as
Corollary B.3. The map x 7→ Dl v ◦Φτ(x) is uniformly continuous when measured
in ‖·‖µ-norm and by induction the alternative result (C.15) follows.

Finally, we extend the Hölder continuous growth estimates to a parameter depen-
dent version. This is formulated to exactly fit the context of derivatives of TX with
respect to y ∈ Bρ

η (I ;Y ), such as in (3.43b). Note that Remark C.9 applies again.

Corollary C.12 (Exponential growth with Hölder continuity and a parameter).
Assume the setting of Lemma C.10. Let the vector field v furthermore depend on
a third variable y ∈ Y such that Dl

x v(t , x, · ) ∈ Cα
b,u for all 0 ≤ l ≤ k, uniformly in

t , x and that all original bounds are uniform in y as well. Let η ∈ Bρ(R;Y ) denote
a curve in Y and Φt ,t0

η the flow of v(t , · ,η(t )). Assume that η 7→ (
t 7→ Φ

t ,t0
η (x)

)
is

uniformly Lipschitz with respect to the distance function dρ on curves C (R≥t0 ; X ).

Then the map η 7→ DkΦη is Hölder continuous in the sense that there exists a bound
Ck,α,Y > 0 such that

∀ t ≥ t0, x ∈ X : ‖η 7→ DkΦ
t ,t0
η (x)‖α ≤CY ,α e(k+α)ρ(t−t0). (C.19)

In case of uniform continuity (i.e. α= 0), then for each µ> 0 there exists a continuity
modulus εk,µ,Y such that

∀ t ≥ t0, x ∈ X : ‖DkΦ
t ,t0
η2

(x)−DkΦ
t ,t0
η1

(x)‖ ≤ εk,µ,Y (d(η1,η2))e(k ρ+µ)(t−t0). (C.20)

In both cases we interpret the continuity moduli as globally defined using Re-
mark 2.12.

Proof. The proof closely follows that of Lemma C.10; let us indicate the differences.

We define the variation

Υt = DkΦt
η2

(x) ·Π(γ0)⊗k −Π(γt ) ·DkΦt
η1

(x) (C.21)

and study it by a variation of constants integral in local charts, similar to (C.18). In
this case we obtain

Υt =
∫ t

t0

Ψη2 (t ,τ) ·
([

Dv
(
τ,Φτ

η2
(x),η2(τ)

)−Dv
(
τ,Φτ

η1
(x),η1(τ)

)] ·DkΦτ
η2

(x)

+
[ k∑

l=2
Dl v

(
τ,Φτ

η2
(x),η2(τ)

) ·Pl ,k
(
D•Φτ

η2
(x)

)− (2 1)

])
dτ. (C.22)
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As in Lemma C.10, the factorsΨη2 (t ,τ) and DlΦτ
η2

(x) satisfy appropriate exponen-
tial growth conditions. By induction over l < k the maps η 7→ DlΦt

η(x) areα-Hölder
continuous, while all Dl v are uniformly α-Hölder in x, y , and η 7→ DlΦt

η(x) is
uniformly Lipschitz by assumption, so η 7→ Dl v

(
t ,Φt

η(x),η(t )
)

is also α-Hölder
when measured in ‖·‖αρ-norm (or in ‖·‖µ-norm in case of uniform continuity, see
Appendix B).

In each term of the integrand, we can estimate the variation with respect to η as a
sum of the variations with respect to each factor (a product rule). The factor that is
being varied adds eαρ(τ−t0) (or eµ(τ−t0) in case α= 0) to the overall growth estimate.
The proof is completed by inserting all these estimates into (C.22) and again using
the fact that we have a finite number of globally bounded terms.
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Appendix D

The fiber contraction theorem

In this appendix, we give a proof of the fiber contraction theorem. This result
is originally due to Hirsch and Pugh [HP70]; the proof presented here is taken
from Vanderbauwhede [Van89, p. 105]. The fiber contraction theorem is a conve-
nient general tool to obtain convergence of functions in C k -norm when a direct
contraction in C k -norm is not available. Instead, one inductively constructs con-
tractions for the k-th derivative with all lower order derivatives assumed fixed. If
this contraction depends continuously on the lower order derivatives, then the
fiber contraction theorem can be applied to conclude that the sequence of the
function together with its derivatives converges to a fixed point. With the additional
theorem on the differentiability of limit functions, it can then be concluded that
the sequence converges in C k -norm.

Theorem D.1 (Fiber contraction theorem).
Let X be a topological space, (Y ,d) a complete metric space and let F : X ×Y → X ×Y
be a fiber mapping, that is, F (x, y) = (

F1(x),F2(x, y)
)
, with the following properties:

i. F1 has a unique, globally attracting fixed point x? ∈ X , that is,

∀x ∈ X : lim
n→∞F n

1 (x) = x?;

ii. there is a neighborhood U ⊂ X of x?, such that F2 : U ×Y → Y is a uniform
contraction on Y with contraction factor q < 1; let y? ∈ Y denote the unique
fixed point of F2(x?, · ) : Y → Y , as given by the Banach fixed point theorem;

iii. the mapping F2( · , y?) : X → Y is continuous.

If only properties i and ii are assumed, then (x?, y?) is the unique fixed point of F . If
moreover iii holds, then this fixed point is globally attractive.
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Proof. The point (x?, y?) is clearly the unique fixed point of F , where property i
implies uniqueness of x? as fixed point of F1 and ii uniqueness of y? under
F2(x?, · ).

The point x? is by assumption attractive under F1, thus for the final conclusion of
global attractivity, it remains to show that y → y? under F .

Let (x, y) ∈ X ×Y be arbitrary and consider the sequence (xn , yn) = F n(x, y) for
n ≥ 0. Since xn → x∗ ∈U , there exists an N ∈N such that xn ∈U for all n ≥ N . By
shifting the sequence (xn , yn), we can assume without loss of generality that xn ∈U
for all n ≥ 0 and use property ii to estimate

d(yn+1, y?) = d(F2(xn , yn),F2(x?, y?))

≤ d(F2(xn , yn),F2(xn , y?))+d(F2(xn , y?),F2(x?, y?))

≤ q d(yn , y?)+αn . (D.1)

On the other hand, αn = d(F2(xn , y?),F2(x?, y?)) → 0 as n →∞ from properties i
and iii . Let αk = supn≥k αn , then we also have αk → 0.

For each k ∈ N, let δk,k = d(yk , y?) and recursively define δn+1,k = q δn,k +αk .
From (D.1) we see that d(yn , y?) ≤ δn,k when n ≥ k. Now the map f : δ 7→ q δ+α
is a contraction for any α ∈R, so it has a unique, attractive fixed point δ?(α) and
solving the equation f (δ?) = δ? yields

δ? = α

1−q
.

Let ε> 0 be given and choose k large enough thatαk < 1
2 (1−q)ε. As limn→∞δn,k =

δ?k we see that there exists some N such that

∀ n ≥ N : δn,k < 2δ?k = 2αk

1−q
< ε.

From this we conclude that d(yn , y?) < ε for all n ≥ N .

The following theorem is quite standard. We shall extend it to smooth manifolds
and higher derivatives, though.

Theorem D.2 (Differentiability of limit functions).
Let Y be a Banach space and let C k (Rn ;Y ) denote the space of C k functions Rn → Y
equipped with the weak Whitney topology. Let { fn}n≥0 be a sequence in C 1(Rn ;Y )
that converges to f ∈ C 0(Rn ;Y ) with respect to the C 0 topology, and assume that
there is a function g ∈C 0(Rn ;L(Rn ;Y )) such that D fn → g .

Then D f = g , or in other words, fn → f in C 1(Rn ;Y ) with respect to the weak
Whitney topology.
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Proof. By the fundamental theorem of calculus we have

fn(x + t h) = fn(x)+
∫ t

0

d

dτ
fn(x +τh) dτ= fn(x)+

∫ t

0
D fn(x +τh) ·h dτ.

Uniform convergence of D fn → g on the compact set {x +τh | τ ∈ [0, t ]} allows us
to take the limit n →∞ inside the integral to obtain

f (x + t h) = f (x)+
∫ t

0
g (x +τh) ·h dτ,

and by differentiation with respect to t we conclude that g (x) ·h is the directional
derivative of f at x along h.

Note that g (x) : Rn → Y is a bounded linear operator by assumption, so let us verify
that it is the total derivative, D f (x) = g (x), that is,

lim
h→0

‖ f (x +h)− f (x)− g (x) ·h‖
‖h‖ = 0.

Using the mean value theorem, we have

‖ f (x +h)− f (x)− g (x) ·h‖ ≤ sup
ξ∈[0,1]

∥∥g (x +ξh)− g (x)
∥∥‖h‖

and g is continuous, so indeed differentiability holds and D f (x) = g (x).

Remark D.3. The statement that f is differentiable at x is local, so this result
immediately translates to maps C 1(X ;Y ) with X a smooth manifold by considering
a local coordinate chart around x ∈ X .

This theorem could probably be generalized even further such that X , Y are al-
lowed to be Banach manifolds. The fact that g is continuous linear by assumption
mitigates possible convergence problems when having to consider infinitely many
independent partial derivatives. We should be careful though, since the weak
Whitney (or compact-open) topology is not clearly defined anymore when X is
infinite-dimensional. ♦

Corollary D.4. Assume the setting of Theorem D.2. Let { fn}n≥0 be a sequence
in C k≥2(Rn ;Y ) that converges to f in C k−1(Rn ;Y ) and let Dk fn → g converge in
C 0(Rn ;Lk (Rn ;Y )). Then fn → f converges in C k (Rn ;Y ).

This is a trivial extension of Theorem D.2 when using the natural identification
L(Rn ;Lk−1(Rn ;Y )) ∼=Lk (Rn ;Y ).
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Appendix E

Nonlinear variation of flows

In this appendix we collect two results on variation of nonlinear flows. The first
is a generalization of Lagrange’s variation of constants formula and the second is
an application of it to calculate the derivative of a flow with respect to parameters.
Both results are formulated for fully nonlinear flows.

The classical variation of constants integral due to Lagrange is well known. Al-
though Lagrange applied this method to the nonlinear problem of orbital mechan-
ics, a less known result of Alekseev [Ale61] (see also [LL69, p. 78]) generalizes the
variation of constants integral to the full nonlinear case.

Theorem E.1 (Nonlinear variation of constants).
Let X be a smooth manifold and let Φt ,t0 (x) be the flow generated by the time-
dependent vector field v(t , x), locally Lipschitz in x. Let r (t , x) be an arbitrary (not
necessarily small) perturbation, locally Lipschitz in x as well. Then Φt ,t0

r (x) is the
flow generated by v + r if and only if it satisfies the nonlinear variation of constants
formula

Φ
t ,t0
r (x) =Φt ,t0 (x)+

∫ t

t0

DΦ(t ,τ,Φτ,t0
r (x))r (τ,Φτ,t0

r (x)) dτ. (E.1)

Proof. Using uniqueness of solutions, it is sufficient to show that (E.1) satisfies
the differential equation and initial conditions Φt ,t

r (x) = x. The latter follows
automatically fromΦt ,t (x) = x. For the first part, we differentiate

d

dτ

[
Φt ,τ ◦Φτ,t0

r (x)
]
= ∂

∂τ
Φt ,τ(y)

∣∣∣
y=Φτ,t0

r (x)
+DΦt ,τ(Φτ,t0

r (x)) · d

dτ
Φ
τ,t0
r (x)

=−DΦt ,τ(Φτ,t0
r (x)) · v(τ,Φτ,t0

r (x))

+DΦt ,τ(Φτ,t0
r (x)) · (v + r )(τ,Φτ,t0

r (x))

= DΦt ,τ(Φτ,t0
r (x)) · r (τ,Φτ,t0

r (x)).
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This expression yields (E.1) when integrated from t0 to t .

Notice that (E.1) looks ill-defined on a manifold, but should be read as integration
from the point x along the vector field defined by the integrand, which is indeed,
for each τ ∈ [t0, t ], exactly defined to be the tangent vector to the curve τ 7→Φt ,τ ◦
Φ
τ,t0
r (x), making the equation self-consistent. If (X , g ) is a Riemannian manifold,

then this formula yields the distance estimate

d
(
Φ

t ,t0
r (x),Φt ,t0 (x)

)≤ ∫ t

t0

∥∥DΦ(t ,τ,Φτ,t0
r (x))r (τ,Φτ,t0

r (x))
∥∥ dτ. (E.2)

As a differential variant of the previous result, we state the following.

Theorem E.2 (Differentiation of a flow).
Let Φt ,t0

s (x0) be a flow on a manifold X , defined by a vector field vs(t , x) that also
depends on time and an external parameter s ∈ R. Let (s, x) 7→ vs(t , x) ∈ C 1

b with
derivative jointly continuous in (s, t , x). Then the derivative of the flow with respect
to s is given by

d

ds
Φ

t ,t0
s (x0) =

∫ t

t0

DΦt ,τ
s (x(τ))

d

ds
vs(τ, x(τ)) dτ, (E.3)

for any fixed t , t0, and where x(τ) =Φτ,t0
s (x0).

See [DK00, Thm B.3] for a proof of the formula for differentiation of a flow with
respect to a parameter. This is a slightly modified case where the vector field
is time-dependent. Theorem A.6 and Remark A.7 show that the result can be
generalized to the non-autonomous case and differentiable time-dependence of v
is not required.



Appendix F

Riemannian geometry

In this appendix we recall standard facts from Riemannian geometry and establish
some notational conventions. This appendix is targeted at the reader who has
basic knowledge of Riemannian manifolds, but wants to have a quick refresh. For
more detailed expositions see for example [Jos08; GHL04], or [Lan95] for a more
abstract presentation in the context of Banach manifolds. We shall not try to be
exhaustive or as general as possible in this overview.

A Riemannian manifold (M , g ) is a pair of a smooth (or at least C 1, respectively
C 2 for defining curvature) manifold together with a metric g : a family of positive-
definite bilinear forms gx on each tangent space Tx M . The metric is a generaliza-
tion of the Euclidean inner product on Rn and gx depends in a smooth way on
the point x ∈ M in the manifold. The metric can be used to measure angles and
lengths of tangent vectors, so we can define the length of a piecewise C 1 curve
γ : [a,b] → M as

l (γ) =
∫ b

a

√
gγ(t )(γ′(t ),γ′(t )) dt .

This length functional induces the distance function

d(x, y) = inf
γ

l (γ) (F.1)

on M , where the infimum is taken over all piecewise C 1 curves γ connecting the
points x and y . This turns M into a metric space.

Simple examples of Riemannian manifolds are Rn with the standard Euclidean
inner product and the sphere Sn−1 ⊂ Rn with the induced metric on its tangent
bundle. Due to the Nash embedding theorem, any C k≥3 Riemannian manifold
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can actually be realized as a submanifold of Rn equipped with the induced met-
ric.

Each Riemannian manifold (M , g ) has an associated linear connection, or, covari-
ant derivative ∇ on the tangent bundle TM . This so-called Levi-Civita connection
is uniquely defined by the requirements that it is torsion-free and compatible with
the metric, i.e.

∇X Y −∇Y X = [X ,Y ] and X g (Y , Z ) = g (∇X Y , Z )+ g (Y ,∇X Z )

for all smooth vector fields X ,Y , Z on M . The connection is given in local coordi-
nates xi by the Christoffel symbols Γi

j k ,

∇∂ j ∂k = Γi
j k ∂i ,

where we used the Einstein summation convention for the repeated index i . The
connection can be extended to the tensor bundle of M so that it satisfies the Leibniz
rule.

A connection, more generally on a vector bundle π : E → M , can also be viewed
as a choice of a horizontal subbundle in TE . There is a naturally defined vertical
subbundle Vert(E) ⊂ TE where Vert(E)ξ = TξEx for ξ ∈ Ex = π−1(x). A horizontal
bundle Hor(E) is any subbundle complementary to the vertical bundle, so

TE = Hor(E)⊕Vert(E).

This definition of a connection is related to the definition via the covariant deriva-
tive. The horizontal bundle precisely corresponds to the tangent plane to a section
s of E that is flat at a given point x ∈ M :

Hor(E)s(x) = Im
(
Ds(x)

) ⇐⇒ (∇• s)(x) = 0.

The Levi-Civita connection induces two important concepts: the geodesic flow
and parallel transport. Intuitively, the geodesic flow says how to follow a straight
line from an initial point along a given direction, while parallel transport defines
how to keep a tangent vector fixed while carrying it along a path1. Both maps are
defined in local coordinates as solutions of (subtly different) differential equations
involving the Christoffel symbols.

1If the path is a geodesic, then parallel transport carries the initial velocity vector to the velocity
vector along the entire path.
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The geodesic flow Υt is a flow on the tangent bundle TM and defined in local
coordinates xi by

ẋi = v i ,

v̇ i =−Γi
j k (x) v j vk .

(F.2)

Here, the v i denote the induced additional coordinates on the tangent bundle. This
geodesic flow need not be complete, that is, defined for all times. However, by the
Hopf–Rinow theorem, the geodesic flow is complete if and only if M is complete
as a metric space with respect to (F.1). In the following we shall assume that M is
complete to simplify the exposition.

If we restrict the geodesic flow map to the tangent space Tp M at a fixed point p ∈ M
and to time t = 1, and finally project onto M , then we obtain the exponential map

expp =π◦Υ1|Tp M : Tp M → M .

We have D expp (0p ) = 1Tp M , so by the inverse function theorem, expp is a local
diffeomorphism at 0p . The local inverse ϕx = exp−1

x of the exponential map
can be viewed as a coordinate chart since Tp M ∼= Rn isometrically. An explicit
identification would require a choice of orthonormal basis in Tp M , which we shall
refrain from.

Such coordinates are called normal coordinates, and locally around the point p
these coordinates make M resemble Rn as close as possible, in the sense that
the metric at p in these coordinates is equal to the Euclidean metric and the
Christoffel symbols are zero. The exponential map is only a local diffeomorphism,
and generally there is a maximum radius r > 0 such that expp : B(0;r )⊂ Tp M → M
is a diffeomorphism onto its image. This is called the injectivity radius rinj(p) of M
at the point p. The global injectivity radius of M is then defined as

rinj(M) = inf
p∈M

rinj(p).

If M is noncompact then this global injectivity radius need not be positive. The
shortest path from p ∈ M to any point x within distance rinj(p) is uniquely realized
by one geodesic curve. In normal coordinates these curves are rays emanating
from the origin. That is, let v = exp−1

p (x) and γ(t ) = expp (t v) with t ∈ [0,1], then
d(p, x) = l (γ) = ‖v‖.

Let γ : [a,b] → M be a C 1 curve, then parallel transport is a linear isometry (i.e. it
preserves the metric g )

Π(γ) : Tγ(a)M → Tγ(b)M (F.3)
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between the tangent spaces at the endpoints. We use the notation Π(γ|ta) for
parallel transport along a part of the curve. Parallel transport is defined in local
coordinates xi by the differential equation

d

dt
Π(γ|ta)i =−Γi

j k (γ(t )) γ′(t ) j Π(γ|ta)k with Π(γ|aa) =1. (F.4)

In (F.4) the xi are local coordinates around the point γ(t ) with additional induced
coordinates ∂i on the tangent bundle. The representation Π(γ|ta)i is defined by
Π(γ|ta) = Π(γ|ta)i ∂i . Put more abstractly, parallel transport defines a horizontal
extension of a vector v ∈ Tγ(a)M to a section of the pullback bundle γ∗(TM), that
is, a vector field v(t ) defined along γ(t ), which has covariant derivative zero.

On a Riemannian manifold there is the concept of curvature. A manifold is flat,
i.e. it has zero curvature, if it is (locally) isometric to Rn . The Riemann curvature R
measures non-flatness on an infinitesimal level. It is given by

R(X ,Y ) Z =∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z ,

which measures how much the direction of a vector Z changes when parallel
transporting it around an infinitesimal loop spanned by the directions X ,Y . There
is a relation between the curvature and parallel transport that is important to us. If
we consider holonomy, that is, parallel transport along a closed loop γ, then the
deficitΠ(γ)−1 is (heuristically put) equal to the curvature form R integrated over
any surface enclosed by γ. This relation can be seen as an application of Stokes’
theorem and the differential statement is that the curvature R is the generator of
the infinitesimal holonomy group [AS53; RW06].
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Samenvatting

In deze samenvatting zal ik beschrijven waar ik me de afgelopen vijf jaar mee
bezig heb gehouden. Ik probeer hierbij geen specifieke wiskundige voorkennis
te veronderstellen bij de lezer. Deze tekst zal voor deskundigen ook niet geheel
nauwkeurig zijn.

Dit proefschrift gaat over verstoringen van differentiaalvergelijkingen, of anders
gezegd, van ‘dynamische systemen’. Een dynamisch systeem is een wiskundig
model om te beschrijven hoe iets in de loop van de tijd verandert. Dit klinkt
heel algemeen — en is dat ook. Voorbeelden zijn overal te vinden: de groei van
populaties prooi- en roofdieren, het slingeren van een klok, de stroming van lucht
rond een vleugel, de beurskoersen of het weer. Een dynamisch systeem is een
wiskundig model hiervan: een poging om met formules te beschrijven hoe het
systeem zich gedraagt. De hoop is dat we daarmee ook kunnen voorspellen wat er
in de toekomst mee gebeurt.

Voor sommige systemen werkt dat bijzonder goed: we kunnen tot op zeer grote
nauwkeurigheid voorspellen hoe een slinger blijft slingeren (of stil komt te staan
door wrijving), of hoe de planeten in het zonnestelsel bewegen en hoe we een
satelliet moeten lanceren zodat die een baan langs alle planeten aflegt. Aan de
andere kant hebben we grote moeite om het weer meer dan enkele dagen vooruit
te voorspellen; ook heeft niemand een nauwkeurig voorspellend model voor beurs-
koersen. Dat we geen goede voorspellingen kunnen doen, wil niet altijd zeggen dat
het model slecht is. Voor het weer bijvoorbeeld kunnen we zeer precies beschrijven
hoe luchtstromen zich gedragen. Dit gedrag is echter complex en hangt heel
gevoelig af van de begintoestand. Dit is een typisch voorbeeld van een chaotisch
systeem: hoe nauwkeurig we de modellen ook maken en hoeveel supercomputers
we er ook tegenaan gooien, we zullen nooit kunnen voorspellen of het over precies
een jaar hier zal regenen. Dit komt doordat hele kleine verstoringen op de lange
duur grote effecten kunnen hebben. Dit wordt weergegeven door de quote: “de
vleugelslag van een vlinder kan enkele weken later een cycloon op een ander
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continent veroorzaken”. Aan de andere kant werkt een heel eenvoudig model prima
om de planeetbanen te voorspellen: we beschouwen de planeten als ‘puntdeeltjes’
en vergeten daarbij alle details zoals bergen en de beweging in de atmosfeer van
iedere planeet. De zwaartekrachtformules van Newton beschrijven deze banen
prima. Waarom kunnen we hier wel met zo’n eenvoudig model wegkomen? En is
het voor het beschrijven van het weer ook mogelijk om een model te maken dat
simpeler1 is dan precies de luchtstroming bijhouden, maar dat toch een accurate
beschrijving geeft?

De wiskunde in dit proefschrift kan helpen bij het beantwoorden van dit soort
vragen. Het laat zien hoe onder bepaalde condities een dynamisch systeem zich
‘netjes gedraagt’ onder kleine verstoringen. Daardoor wordt het mogelijk om een
simpelere beschrijving van zo’n systeem te geven, die tegelijk toch nog nauwkeurig
is.

Ik zal eerst een voorbeeld met rollende ballen geven. Met behulp van de wiskunde
in dit proefschrift kunnen we de standaardbeschrijving van dit systeem versimpe-
len, als we aannemen dat de ballen (bijna) niet slippen tijdens het rollen. Daarna
zal ik proberen uit te leggen wat de inhoud van dit proefschrift is. Ik hoop in ieder
geval de titel van dit proefschrift te kunnen verklaren en het hoofdresultaat te
beschrijven. Daarvoor ga ik iets dieper in op twee afzonderlijke onderwerpen die
gezamenlijk de twee hoofddelen van mijn proefschrift vormen.

• Begrensde meetkunde: begrippen zoals afstanden en hoeken kunnen op alge-
menere (gekromde) ruimten gedefinieerd worden dan de twee- of driedimensio-
nale ruimte waar de meeste mensen vertrouwd mee zijn. In hoofdstuk 2 van dit
proefschrift bekijken we zulke algemenere ruimten, met als extra voorwaarde
dat de daarop gedefinieerde meetkunde ‘begrensd’ is. Dat wil zeggen dat de
ruimte weliswaar gekromd kan zijn, maar slechts ‘met mate’.

• Kleine verstoringen: wat gebeurt er bijvoorbeeld met het nulpunt van een func-
tie als we die functie een beetje veranderen? De wiskunde hiervan is gebaseerd
op hetzelfde idee als dat van verstoringen van differentiaalvergelijkingen. In
hoofdstuk 3 worden deze ideeën gebruikt om te bewijzen dat het gedrag van
een deel van een dynamisch systeem (bijna) hetzelfde blijft als we het systeem
een beetje aanpassen, dat wil zeggen, verstoren.

1Met simpeler bedoel ik hier lager-dimensionaal: er worden minder coördinaten gebruikt om het
systeem te beschrijven.
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Rollende ballen, hoepels en banden

Laten we een bal bekijken die over een oppervlak rolt. Voor het gemak kunnen we
aannemen dat het een perfect ronde bal is en het oppervlak helemaal vlak is, maar
dit is niet nodig; we kunnen evengoed hoepels, banden of glooiende oppervlakken
beschouwen. Hoe kunnen we zo’n bal beschrijven en hoe beweegt hij? En kunnen
we een simpelere beschrijving vinden als de bal bijvoorbeeld niet kan slippen? Dit
zijn de oorspronkelijke onderzoeksvragen die aanleiding hebben gegeven tot het
onderzoek in dit proefschrift.

Figuur 1: een rollende hoepel.

Een bal die over een oppervlak rolt, kunnen we
beschrijven door zijn positie en snelheid — als
deze tenminste niet slipt. Denk aan een hoepel, zie
figuur 1: als de hoepel naar rechts rolt, dan moet
hij ook met de klok mee draaien; de horizontale
snelheid bepaalt de draaisnelheid. Je kunt de hoe-
pel ook zo weggooien dat hij eerst slipt en daarna
terug komt rollen. Hierbij draait de hoepel eerst de andere kant op dan dat hij
beweegt: hij slipt. Als we toestaan dat de hoepel kan slippen, dan moeten dus we
ook zijn rotatiesnelheid in beschouwing nemen. Newtons wetten bepalen hoe zo’n
rollende én slippende hoepel (of bal) zich gedraagt.

Een slipvrij rollende bal gedraagt zich anders: denk aan een auto waarvan de
banden gewoon rollen op een stroef wegdek, maar kunnen gaan glijden als het
ijzig glad is. In het eerste geval is er een extra wrijvingskracht tussen de banden
en het wegdek die ervoor zorgt dat ze niet slippen. De banden kunnen nog steeds
slippen onder extreme omstandigheden, zoals wanneer je een heel scherpe bocht
instuurt. Daarom is het nog steeds nodig om ook de rotatiesnelheid mee te nemen
in de beschrijving. Als we ‘oneindig stroeve’ banden zouden hebben die helemaal
niet slippen, dan zouden we de rotatiesnelheid kunnen weglaten. Dit versimpelt
de beschrijving van het systeem, maar oneindig stroef is een wiskundige idealisatie
die in de praktijk niet voorkomt.

Met de wiskundige theorie in dit proefschrift kan bewezen worden dat hele stroeve
banden die bijna niet slippen, zich nagenoeg hetzelfde gedragen als perfect slipvrij
rollende banden die ‘oneindig stroef’ zijn; hiervoor vinden we dan ook een simpe-
lere beschrijving die nog steeds accuraat is. De reden is dat ‘heel stroef’ een kleine
verstoring is van ‘oneindig stroef’. Dit kan als volgt iets preciezer geformuleerd
worden. Als FW de wrijvingskracht voorstelt tussen de banden en het wegdek, dan
kunnen we die opschalen door hem te delen door een klein getal (in de wiskunde
typisch aangeduid met de Griekse letter ε); hoe kleiner ε wordt, des te groter wordt
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de totale wrijving
FW

ε
. (1)

Een grote wrijvingskracht wordt dus beschreven door een kleine ε, bijvoorbeeld
ε= 0,01, terwijl ε= 0 een oneindig2 grote wrijving geeft. Hier zien we dus dat de
waarde van ε voor de grote wrijvingskracht maar een klein beetje verschilt van
de waarde bij oneindige wrijving. Bij oneindige wrijving kunnen we de draaisnel-
heid van de bal vergeten, omdat die bepaald wordt door de horizontale snelheid.
Met behulp van de theorie van ‘normaalhyperbolisch invariante variëteiten’ volgt
dan dat we ook bij grote (maar eindige) wrijving de bal kunnen beschrijven met
alleen de horizontale snelheid, en dat deze beschrijving nauwkeurig is. Ik zal
deze en de andere termen uit de titel van mijn proefschrift hierna één voor één
uitleggen en afsluitend aangeven hoe we deze theorie op dit probleem toe kunnen
passen.

Begrensde meetkunde

Als we de ruimte om ons heen willen beschrijven, dan gebruiken we daar coördi-
naten voor: x en y als we een punt in het vlak beschrijven, en drie coördinaten
(inclusief hoogte) voor de driedimensionale ruimte om ons heen. De ruimte die we
zo beschrijven heet Euclidisch en de afstand c tussen twee punten die horizontaal
een lengte a en verticaal b uit elkaar liggen, wordt bijvoorbeeld gegeven door de
formule

c =
√

a2 +b2

die volgt uit de bekende stelling van Pythagoras.

Laten we bijvoorbeeld eens het aardoppervlak bekijken. Aan de ene kant kunnen
we dit zien als een object in de driedimensionale ruimte, maar (als we hoogte
vergeten) kunnen we het aardoppervlak ook als een tweedimensionale, zij het ge-
kromde, ruimte op zichzelf zien. In dit tweede geval kunnen we de afstandsformule
hierboven niet meer gebruiken, omdat we over het aardoppervlak moeten reizen
en niet in een rechte lijn door de aarde kunnen gaan. Ook werken coördinaten x
en y niet zomaar meer omdat het aardoppervlak geen plat vlak is. Dit probleem is
bekend van landkaarten. In figuur 2 rechts is bijvoorbeeld een Mercatorprojectie
te zien, maar afstanden zijn sterk vertekend in de buurt van de noord- en zuidpool,
terwijl de polen zelf niet eens weergegeven kunnen worden. Dit probleem kunnen

2Delen door nul is wiskundig niet gedefinieerd, maar kort door de bocht kunnen we zeggen dat
dit oneindig geeft; dit kan precies gemaakt worden door een limiet te nemen.
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Figuur 2: de aardbol en een kaart ervan in Mercatorprojectie3.

Figuur 3: twee voorbeelden van ruimten die geen begrensde meetkunde hebben.

we omzeilen door alleen naar kleine stukken aardoppervlak te kijken: een kaart is
vlak en tweedimensionaal en geeft een goede beschrijving zonder veel vertekening
aan de rand, zolang we de kaart niet al te groot maken. Als we voldoende kaarten
hebben, een atlas4, dan kunnen we iedere plek op de aardbol beschrijven met
coördinaten in een platte kaart, ondanks dat de bol gekromd is. Dit concept
kunnen we ook toepassen op meer abstracte gekromde ruimten. Zulke ruimten
noemen we in de wiskunde een ‘variëteit’5 of in het Engels een ‘manifold’.

Alles in dit proefschrift vindt plaats in de context van zulke algemenere (gekromde)
ruimten. Als vernieuwing ten opzichte van bestaand werk kijk ik naar verstoringen
van dynamische systemen in ruimten die onbegrensd zijn (de technische term

3 De aarde foto komt van alegriphotos.com onder de CC BY-3.0 licentie, de Mercator projectie
komt van Wikimedia Commons van gebruiker ‘Strebe’ onder de CC BY-SA-3.0 licentie.

4De begrippen ‘kaart’ en ‘atlas’ hebben in de wiskunde een heel precieze betekenis. Deze komen
overeen met het intuïtieve idee; dit maakt de wiskundige naamgeving zeer toepasselijk.

5Voor de wiskundigen: we beschouwen Riemannse variëteiten, omdat we impliciet aannemen dat
we over afstanden kunnen praten.
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is ‘niet-compact’). De aardbol is bijvoorbeeld begrensd: het totale oppervlak is
groot, maar eindig. Een abstract plat vlak is daarentegen onbegrensd: je kunt
oneindig ver weglopen van de oorsprong. Het platte vlak is een hele simpele
ruimte: zoals de naam al zegt is deze ‘plat’ en dus niet gekromd. Als we oneindig
grote, gekromde ruimten toelaten, dan kunnen die zich heel grillig gaan gedragen.
We zullen de conditie van ‘begrensde meetkunde’ opleggen om zulk gedrag uit
te sluiten. Let overigens op dat begrensdheid van de meetkunde niet hetzelfde
is als begrensdheid van de ruimte zelf. Een onbegrensde (d.w.z. oneindig grote)
ruimte kan prima begrensde meetkunde hebben. In figuur 3 zijn twee gekromde
ruimten te zien; links een ‘toeter’ en rechts een ‘eierkarton’. Als we deze ruimten
oneindig voort zouden zetten — wat het plaatje helaas niet toelaat — dan zien
we in beide gevallen voorbeelden van niet-begrensde meetkunde opduiken. De
omtrek van de toeter wordt willekeurig klein. Het probleem hiervan is dat kaarten
ver naar rechts om de toeter heen wikkelen en met zichzelf gaan overlappen. Bij
het eierkarton volgen de bobbels elkaar steeds sneller op naarmate we verder
naar rechts kijken. De kromming op de toppen wordt dus steeds groter. Beide
gevallen worden uitgesloten door begrensde meetkunde; het idee hierbij is dat
we best onbegrensde ruimten kunnen bekijken, zolang we nog maar eisen dat de
meetkunde erop begrensd is.

Zulke oneindig grote, gekromde ruimten duiken vanzelf op in vraagstukken, zoals
bijvoorbeeld bij het beschrijven van een bal die over een vlak rolt. Het vlak is
onbegrensd, maar tegelijkertijd moet de oriëntatie van de bal beschreven worden;
de abstracte ruimte die daarvoor nodig is, is gekromd, net zoals de bal zelf. Deze
gecombineerde ruimte6 is oneindig groot maar heeft wel begrensde meetkunde.
Dit voorbeeld kunnen we dus met onze theorie behandelen, terwijl dat met eerdere
theorie niet mogelijk was.

Kleine verstoringen

We hebben net het soort ruimten beschreven waarin alles in dit proefschrift plaats-
vindt. Nu moet het werkelijke probleem nog aangepakt worden: een dynamisch
systeem een klein beetje verstoren en kijken wat er dan mee gebeurt.

Laten we eerst een simpeler voorbeeld bekijken. De details in hoofdstuk 3 zijn in
principe slechts een complexere variant van hetzelfde probleem. Het probleem is
als volgt. We hebben een functie y = f (x) en een nulpunt van deze functie. Dat wil
zeggen dat er een getal a is zodat f (a)= 0, of in een plaatje gezien: de grafiek van de

6Voor de wiskundigen: deze ruimte is R2 ×SO(3), of eigenlijk de raakbundel hiervan.
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Figuur 4: grafieken van functies: in de bovenste figuren blijft het nulpunt bestaan nadat
de grafiek een beetje omhoog verschoven is, maar in de onderste verdwijnt het nulpunt.

functie doorsnijdt de x-as, zie figuur 4 linksboven. Stel dat we nu de grafiek (d.w.z.
de functie) een beetje aanpassen (verstoren), bijvoorbeeld door hem in zijn geheel
naar boven te schuiven; is er daarna nog steeds een nulpunt te vinden?

In de bovenste plaatjes is te zien dat dit inderdaad het geval is: het nulpunt is
een stukje naar links verschoven. Als we naar de twee grafieken eronder kijken
(een parabool van de vorm y = x2), dan is het nulpunt ineens verdwenen als we
de grafiek een beetje naar boven verschuiven. En als we de grafiek naar beneden
zouden schuiven, zouden we ineens twee nulpunten krijgen. In de bovenste
grafieken blijft het nulpunt bestaan omdat de helling van de grafiek daar niet
nul is. Bij de grafieken eronder is de helling inderdaad nul bij het nulpunt, dat
wil zeggen, de grafiek loopt daar vlak. Wiskundig is dit principe geformuleerd
in de ‘impliciete-functiestelling’. Deze zegt dat een nulpunt blijft bestaan onder
kleine verstoringen als de helling (of afgeleide) niet nul is; zo’n nulpunt noemen
we ‘persistent’.

Een differentiaalvergelijking, of dynamisch systeem, kan worden beschreven door
een vectorveld, zie figuur 5. Dit kan vergeleken worden met een water- of lucht-
stroom: de pijltjes geven aan hoe snel en in welke richting het water stroomt. Op
een plek waar het water stilstaat, heeft de pijl dus lengte nul; dit is bijvoorbeeld het
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geval op de stip in het midden van het plaatje. Deze stip is daarmee een nulpunt van
het vectorveld. Als we nu het systeem lichtelijk aanpassen door het vectorveld een
beetje te veranderen, dan kunnen we net als bij de grafieken hierboven opnieuw
een punt vinden waar ‘het water stilstaat’. Er moet dan wel aan een voorwaarde
voldaan worden vergelijkbaar met de eis dat de grafiek niet vlak loopt. Dit komt
er grofweg op neer dat de pijltjes voldoende moeten variëren in de buurt van het
nulpunt.

Figuur 5: een vectorveld met een nulpunt in het midden.

Zo’n punt waar het water stilstaat wordt ook wel ‘invariant’ genoemd: als je daar
een dobber in het water gooit dan verandert die niet van plaats. Dit kunnen we
veralgemeniseren. In plaats van één punt waar het water stilstaat, bekijken we een
heel gebied. Het water hoeft in zo’n gebied niet eens per se stil te staan om invariant
te zijn. Denk bijvoorbeeld aan een draaikolk in een rivierstroom: het water beweegt
wel, maar een dobber die in de draaikolk zit, blijft daar altijd in zitten (of in ieder
geval heel lang). Zo’n gebied dat behouden is onder de stroming noemen we een
‘invariante variëteit’7. Het blijkt dat zulke invariante gebieden, net als een nulpunt
van het vectorveld, ook persistent zijn als je het vectorveld een beetje aanpast,
wederom mits aan een bepaalde voorwaarde voldaan wordt. Deze voorwaarde is
‘normaalhyperboliciteit’. Dit betekent dat in de richtingen dwars op dit gebied alles
er (sterk) naartoe (of vanaf) moet stromen, zie figuur 6. Als de stroom parallel aan
M loopt, dan is M dus bijvoorbeeld niet normaalhyperbolisch.

7In het voorbeeld van de draaikolk heeft het gebied dezelfde dimensie (namelijk twee) als de
gehele (oppervlakte)waterstroom; in het algemeen kan deze invariante variëteit ook een lagere
dimensie hebben dan de omliggende ruimte.
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M

Figuur 6: een schematisch plaatje van de stroming rond een normaal-
hyperbolisch invariante variëteit M , de horizontale golvende lijn. In
de buurt stroomt alles er (langs de gestreepte lijnen) naartoe.

De hoofdstelling 3.1 in dit proefschrift kan nu (details daargelaten) als volgt gefor-
muleerd worden.

Stelling (Persistentie van normaalhyperbolisch invariante variëteiten).
Laat Q een ruimte zijn met begrensde meetkunde, v een vectorveld op Q en M een
(mogelijk) onbegrensde normaalhyperbolisch invariante variëteit voor de stroming
van v.

Als we v verstoren tot een nieuw vectorveld ṽ en de verstoring is voldoende klein,
dan bestaat er bij het verstoorde systeem ṽ weer een invariante variëteit M̃ en deze
ligt dicht bij de oorspronkelijke variëteit M.

Deze stelling was al bekend in het geval dat M begrensd (d.w.z. eindig groot) is;
mijn versie is een generalisatie naar oneindig grote ruimten.

We kunnen nu nog kort een terugblik werpen op de toepassing van rollende ballen.
In dat geval is het oorspronkelijke systeem gelijk aan de rollende bal met oneindige
wrijving8; we hebben ε = 0 gekozen in formule (1). De invariante variëteit M
beschrijft wanneer de bal slipvrij rolt. Dit kunnen we wiskundig uitdrukken met
een functie f die de slipsnelheid van de bal weergeeft: M bestaat precies uit de
verzameling nulpunten van f , dat wil zeggen, de toestanden waarin de slipsnelheid
van de bal nul is. Omdat het vectorveld v een bal met oneindige wrijving beschrijft,
zal deze nooit gaan slippen, oftewel de variëteit M , de ‘ruimte van slipvrij rollende
ballen’, is invariant.

8Eigenlijk bekijken we dat systeem, maar dan zodanig dat de tijd met een factor ε vertraagd is.
Hierdoor is de limiet ε→ 0 goed gedefinieerd, deze limiet wordt ook wel de ‘frozen time picture’
genoemd.
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Een systeem met eindig grote wrijving, d.w.z. met een kleine waarde voor ε, kan
gezien worden als een kleine verstoring hiervan en wordt beschreven door een
vectorveld ṽ . Met deze stelling kunnen we dan concluderen dat er in zo’n systeem
een variëteit M̃ bestaat die dichtbij M ligt, dus M̃ is een ruimte waarin de ballen
maar heel weinig slippen. Omdat M̃ invariant is en dichtbij M ligt, is het gedrag
van zo’n bal ook bijna hetzelfde als een perfect slipvrij rollende bal.
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