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ABSTRACT 

Expressions are derived that describe the behaviour of a condenser the capacity of which 
varies linearly with time under potentiostatic and galvanostatic a.c. conditions. The "impe- 
dances" are found to be different. Application to the dropping mercury electrode is indicated. 
Also the behaviour of a constant capacitor subject to a frequency swept a.c. potential or 
current is calculated. The admittance of the capacitor is found to have increased in the latter 
two cases. 

INTRODUCTION 

R e c e n t l y  we c o m m u n i c a t e d  on the  i n s t rumen ta l  a r tefac ts  tha t  as a conse- 
quence  of  s low response  of  a d e t e c t o r  can mar  impedance  m e a s u r e m e n t s  per- 
f o r m e d  on  t i m e - d e p e n d e n t  objects  [ 1 ]. However ,  also the  c o n c e p t  of  impedance  
itself somet imes  becomes  m o r e  c o m p l e x  in such a case. We wish to show this 
c o m p l i c a t i o n  on a pure  capac i to r  the  capac i tance  of  which  varies l inear ly  wi th  
times" 

C = a t  (1) 

By def in i t ion  the charge on  the condense r  is re la ted  to the  vol tage across it by 

O : C V  (2) 

In case of  a s inusoidal ly vary ing  vol tage 

V = Vn~ sin w t  (3) 

(1),  (2),  and (3) lead to  

Q = a t  V ~  sin ~ t  (4) 

whence ,  for  the  cu r r en t  i = d Q / d t  one  ob ta ins  

i = a V ~  sin cot + ~ a t V m  cos cot (5) 

Ev iden t ly  in add i t ion  to  the  t e r m  to be expec ted ,  a t c o V ~  cos cot, an in-phase 
c o m p o n e n t  a Vm sin cot is ob ta ined .  In o t h e r  words ,  in case of this t ime-depen-  
den t  capac i to r  the observed  a d m i t t a n c e  Y is c o m p l e x  ins tead  of  being imaginary" 

Y =  a + j ~ a t  = a + jcoC(t) (6a) 
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and its reciprocal, the impedance Z is: 

1 cot 
Z = a(1 + co2t2) -- j a(1 + co2t2) (6b) 

instead of Z = - - j / c o C ( t ) .  

If similar reasonings are applied to a t ime dependent  resistor no complicat ion 
is met,  because only in cases where the derivation involves differentiat ion with 
respect to t an extra te rm arises. 

Thus far the exper iment  was supposed to be conduc ted  potent iostat ical ly  
(cf. eqn. 3) and one may wonder  how a t ime-dependent  condenser  behaves under  
galvanostatic condit ions,  i.e. 

i = im sin co t (7) 

Combinat ion  of eqns. (1), (2), and (7) leads to 

Q r i m  sin cot d t im . . . .  cos c o t  = a t  V 
09 

Whence 

V -  im cos wt  (8) 
c o a t  

Comparing eqns. (7) and (8) it is evident tha t  under  galvanostatic condit ions the 
condenser presents the characteristics expected f rom its impedance 

1 
Z = jc0C (9) 

irrespective whether  C is a funct ion of t ime or not .  
From the foregoing it must  be concluded that  the concept  of impedance 

should be applied with care to t ime-dependent  objects: the impedance measured 
will be dependent  on the way the exper iment  is conducted .  

Because in a bridge the object conducts  electric current  neither under  poten- 
t iostatic nor under  galvanostatic condi t ions its behaviour cannot  easily be pre- 
dicted. 

In case of a t ime-dependent  self inductance it can be shown in an analogous 
way that  the object behaves normal under  potent iostat ic  condit ions and presents 
a real componen t  under  galvanostatic condit ions.  

APPLICATION TO A DROPPING MERCURY ELECTRODE 

It easily can be shown that  also for this object the galvanostatic exper iment  
gives no special effect. Therefore we confine to the potent iostat ic  exper iment  
and for the sake of simplicity in this Section we restrict to a theoretical electrode 
wi thout  faradaic process and wi thout  series resistance. The double layer capacity 
of this electrode will be proport ional  to the electrode surface area, so on the 
assumption of constant  mercury flow 

C = a t  2/3 (10) 

Then with (3) following the same reasoning as before we find an expression for 
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the cell current  

i = aVm(~t  -~/3 sin cot + cot 2t3 cos cot) (11) 

Again, in addi t ion to the "no rma l "  response VmcoC(t) cos cot, the current  con- 
tains an in-phase componen t ,  2 /3aVm t-1/3 sin cot. Evidently, in this case of the 
dropping mercury electrode, this term extinguishes slowly. It is interesting to cal- 
culate on which condi t ion the "e r ro r"  is negligible. 

An acceptable error in the phase angle is 0.2 degree, which corresponds with 
tg~ < O.OO35. 

From eqn. (11) it follows tg~ = 2/3cot, whence cot > 200. For  a drop life of 
three seconds the lowest  allowed frequency is hencefor th  found to be about  10 
Hz. However, if one intends to apply the so-called rapid a.c. polarography tech- 
nique as proposed by Zatka [2],  Bond et al. [3,4] and Canterford [5] ,  the small 
t ime values involved (t = 0.16 s), require a frequency limit f > 200 Hz. 

APPLICATION TO MORE COMPLEX EQUIVALENT CIRCUITS 

Calculation of the current  response of an R C  series combina t ion  where both  
R and C are functions of t ime requires solving the differential equat ion 

E )1 ) 
~ +  + i - -  = 0  (12 
dt  dt  R ( t ) C ( t  R - ~  d t  

in which for a practical dropping mercury electrode C(t) = at 2/3 and R ( t )  = 
Rhom + bt -1/3. As ye t  no analytical solut ion of this differential equat ion could 
be found.  

SWEPT FREQUENCY IMPEDANCE MEASUREMENTS 

Now that  voltage control led oscillators and phase locked detectors are avail- 
able it is tempt ing  to const ruct  a ne twork  analysing system that  automatical ly  
measures the cell impedance or admit tance  at a cont inuously  varying frequency. 
Again the general feeling will be that  the rate of change of the frequency should 
be low compared to the frequency applied. We believe it is interesting to know 
more quanti tat ively the errors involved and also to known the nature  of the 
error, viz. whether  something happens to the in-phase componen t  or the quadra- 
ture. Again we treat  the problem independent ly  of the effects of non-zero time 
constants  discussed in ref. 1. 

For  the sake of simplicity we restrict this discussion to a capacitor with a 
t ime- independent  capacity. 

If the frequency is swept linearly with time 

¢ o = a +  bt  

a potent ios ta t ic  per turbat ion  applied (cf. eqn. 3) becomes 

V = Vm sin(at + bt  2) (13) 

whence with i = Cd V / d t  

i = (a + 2 b t ) C V m  cos(at + bt 2) (14) 
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Comparison of eqns. (13) and (14) leads to the conclusion that  the " impedance"  
of the capacitor  is 

1 
Z(t) j(a + 2bt)C (15) 

while neglect of the fact that  the frequency is being swept leads to 

1 1 
Z - j c o C  j(a + bt)C (16) 

Comparing eqns. (15) and (16) we can conclude tha t  the admit tance  Y - 1/Z ob- 
served in a swept frequency exper iment  is larger than the admit tance  that  would 
have been observed at a certain constant  f requency,  the difference being equal 
to jbtC = j(¢o -- o~t=o)C. Of course b also can be chosen negative, in which case 
the admit tance will be found smaller. An analogous calculation can be made 
with a linearly f requency swept a.c. current  

i = i m sin(at + bt 2) (17) 

with the intent  to see what  happens to the admi t tance  of a constant  capacitor  in 
that  case. Evaluation of the voltage across the capacitor  requires solution of the 
integral 

im t 
V(t) = -~ / sin(at + bt2)dt (18) 

0 

An alternative formulat ion of this integral is [6] 

g ( t ) -  im 7r 1 1 
C 2 b  cos ~-bC~ ( a + 2 b t  - - s in  ~ C  ( a + 2 b t  (19) 

in which c~(x) and e(x)  stand for the sine and cosine Fresnel integral, respec- 
tively. Numerical values of these integrals have been tabulated [7].  For  x = 
(2~b)-1/2(2bt + a) :> 5 they can be approximated  by analytical expressions, 
yielding for V(t)" 

im ~/~_~ IC a(~_b) a(~b) 1 0.3181rim t2 V(t) = ~ os -- sin -- C(a + 2bt) cos(at + b ) (20) 

As 0.318~ equals 0 .99997 the a.c. term in eqn. (20) leads to nearly the same 
conclusion as in the potent iostat ic  case, i.e. tha t  towards a linearly frequency 
swept current  a capaci tor  exhibits a changed admit tance,  the difference as com- 
pared to a constant  f requency exper iment  being equal to jbtC = j(co -- cOt=o)C. 

The condit ion for  (20) to be valid appears to be fulfilled in realistic practical 
cases. For example it is met  already at t = 0 for a swept f requency starting at 26 
Hz swept with a rate of 26 Hz s -~. 

CONCLUSIONS 

From the foregoing discussion it can be concluded that  under  normal  practical 
condit ions the determinat ion of the double layer at a dropping mercury electrode 
Willnot  be complicated by its t ime dependency.  The in-phase componen t  of the 
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capacitance of the double layer can be calculated from eqn. (10) with 

a = 47rCd (4 3rn 7r13.6 )2~3 

always to be much smaller than the ohmic resistance of the cell. 
In the study of electrode kinetics, however, the ohmic resistance is subtracted 

before the analysis and moreover the analysis is most  sensitive to errors in the 
phase angle. Therefore under unfavourable conditions like small drop time and 
very reversible electrode reaction the effect described could influence the result. 
Unfor tunately  a quantitiative study based on an equivalent circuit comprising a 
faradaic process looks impossible due to mathematical  complexity.  

Measurements with frequency swept a.c. voltage or current lead to an error in 
the double layer capacitance that  can be calculated easily. The allowed sweep 
rate can be calculated and its value will also serve as a guide in more complex 
equivalent circuits. 
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