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ABSTRACT

Expressions are derived that describe the behaviour of a condenser the capacity of which
varies linearly with time under potentiostatic and galvanostatic a.c. conditions. The “impe-
dances” are found to be different. Application to the dropping mercury electrode is indicated.
Also the behaviour of a constant capacitor subject to a frequency swept a.c. potential or
current is calculated. The admittance of the capacitor is found to have increased in the latter
two cases.

INTRODUCTION

Recently we communicated on the instrumental artefacts that as a conse-
quence of slow response of a detector can mar impedance measurements per-
formed on time-dependent objects [1]. However, also the concept of impedance
itself sometimes becomes more complex in such a case. We wish to show this
complication on a pure capacitor the capacitance of which varies linearly with
times:

C=at 1)
By definition the charge on the condenser is related to the voltage across it by
Q=CV (2)

In case of a sinusoidally varying voltage

V=V, sin wt (3)
(1), (2), and (3) lead to
Q =atV,, sin wt (4)

whence, for the current i = dQ/dt one obtains
i=aVy,sin wt + w atV,, cos wt (5)

Evidently in addition to the term to be expected, atwV,, cos wt, an in-phase
component aV,, sin wt is obtained. In other words, in case of this time-depen-
dent capacitor the observed admittance Y is complex instead of being imaginary:

Y=a+jwat =a+ jwC(t) (6a)
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and its reciprocal, the impedance Z is:

v 1 . wt
a1+ o) Ja(l + )
instead of Z = —j/wC(t).

If similar reasonings are applied to a time dependent resistor no complication
is met, because only in cases where the derivation involves differentiation with
respect to ¢ an extra term arises.

Thus far the experiment was supposed to be conducted potentiostatically

(cf. ean. 3) and one may wonder how a time-dependent condenser behaves under
galvanostatic conditions, i.e.

(6b)

i =iy sin wt (7
Combination of egns. (1), (2), and (7) leads to

.. i
Q=fzms1nwtdt=—amcoswt=atv

Whence

=— —*‘—t‘? cos wt (8)
Comparing eqns. (7) and (8) it is evident that under galvanostatic conditions the
condenser presents the characteristics expected from its impedance

1
Z =—— 9
jwC (9)

irrespective whether C is a function of time or not.

From the foregoing it must be concluded that the concept of impedance
should be applied with care to time-dependent objects: the impedance measured
will be dependent on the way the experiment is conducted.

Because in a bridge the object conducts electric current neither under poten-
tiostatic nor under galvanostatic conditions its behaviour cannot easily be pre-
dicted.

In case of a time-dependent self inductance it can be shown in an analogous
way that the object behaves normal under potentiostatic conditions and presents
a real component under galvanostatic conditions.

APPLICATION TO A DROPPING MERCURY ELECTRODE

It easily can be shown that also for this object the galvanostatic experiment
gives no special effect. Therefore we confine to the potentiostatic experiment
and for the sake of simplicity in this Section we restrict to a theoretical electrode
without faradaic process and without series resistance. The double layer capacity
of this electrode will be proportional to the electrode surface area, so on the
assumption of constant mercury flow

C=at*? (10)

Then with (3) following the same reasoning as before we find an expression for
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the cell current
i=aV,(t™"? sin wt + wt*3 cos wt) 11)

Again, in addition to the ‘“normal” response V,,wC(t) cos wt, the current con-
tains an in-phase component, 2/3aV,,t™!/3 sin wt. Evidently, in this case of the
dropping mercury electrode, this term extinguishes slowly. It is interesting to cal-
culate on which condition the “‘error” is negligible.

An acceptable error in the phase angle is 0.2 degree, which corresponds with
tgy < 0.0035.

From eqn. (11) it follows tgy = 2/3wt, whence wt > 200. For a drop life of
three seconds the lowest allowed frequency is henceforth found to be about 10
Hz. However, if one intends to apply the so-called rapid a.c. polarography tech-
nique as proposed by Zatka [2], Bond et al. [3,4] and Canterford [5], the small
time values involved (t = 0.16 s), require a frequency limit f > 200 Hz.

APPLICATION TO MORE COMPLEX EQUIVALENT CIRCUITS

Calculation of the current response of an RC series combination where both
R and C are functions of time requires solving the differential equation

di, [d InR(OCE) , 1 }i_ v, [d In C(t)
dt d¢ R()C(t) R(t) dt
in which for a practical dropping mercury electrode C(t) = at*’® and R(t) =

Rpom + bt™Y3. As yet no analytical solution of this differential equation could
be found.

sin wt + cos wt] =0 (12)

SWEPT FREQUENCY IMPEDANCE MEASUREMENTS

Now that voltage controlled oscillators and phase locked detectors are avail-
able it is tempting to construct a network analysing system that automatically
measures the cell impedance or admittance at a continuously varying frequency.
Again the general feeling will be that the rate of change of the frequency should
be low compared to the frequency applied. We believe it is interesting to know
more quantitatively the errors involved and also to known the nature of the
error, viz. whether something happens to the in-phase component or the quadra-
ture. Again we treat the problem independently of the effects of non-zero time
constants discussed in ref. 1.

For the sake of simplicity we restrict this discussion to a capacitor with a
time-independent capacity.

If the frequency is swept linearly with time

w=a+bt

a potentiostatic perturbation applied (cf. eqn. 3) becomes

V = V,, sin(at + bt?) 13)
whence with i = CdV/dt

i=(a + 2bt)CV,, cos(at + bt?) (14)
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Comparison of eqns. (13) and (14) leads to the conclusion that the “impedance”
of the capacitor is

1

2O =35 e (15)
while neglect of the fact that the frequency is being swept leads to
1
= (16)

TjwC  j@+b)C

Comparing eqns. (15) and (16) we can conclude that the admittance Y = 1/Z ob-
served in a swept frequency experiment is larger than the admittance that would
have been observed at a certain constant frequency, the difference being equal
to jbtC = j(w — wy=0)C. Of course b also can be chosen negative, in which case
the admittance will be found smaller. An analogous calculation can be made
with a linearly frequency swept a.c. current

i =iy sin(at + bt?) 17)

with the intent to see what happens to the admittance of a constant capacitor in
that case. Evaluation of the voltage across the capacitor requires solution of the
integral

. t
V(t) =’-C‘£ | sin(at + bt*)dt (18)
0

An alternative formulation of this integral is [6]

V(t) "6'211;{‘: s(zb)d[\/;_ (@+ 2bt):| —sm(Z;)eL/l_ (a+ 2bt)]} (19)

in which &(x) and @(x) stand for the sine and cosine Fresnel integral, respec-
tively. Numerical values of these integrals have been tabulated [7]. For x =
(2mb)"V2(2bt + a) > 5 they can be approximated by analytical expressions,
yielding for V(t):

_im /T a’ a® 0. 318171m )
VD =3¢ Vap {‘m (4b) sm(4bﬂ Cla + 2be) ©08(at + 01 (20)
As 0.3187 equals 0.99997 the a.c. term in eqn. (20) leads to nearly the same
conclusion as in the potentiostatic case, i.e. that towards a linearly frequency
swept current a capacitor exhibits a changed admittance, the difference as com-
pared to a constant frequency experiment being equal to jbtC = j(w — w;=9)C.

The condition for (20) to be valid appears to be fulfilled in realistic practical
cases. For example it is met already at t = 0 for a swept frequency starting at 26
Hz swept with a rate of 26 Hz s™!.

CONCLUSIONS

From the foregoing discussion it can be concluded that under normat practical
conditions the determination of the double layer at a dropping mercury electrode
will not be complicated by its time dependency. The in-phase component of the
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capacitance of the double layer can be calculated from eqn. (10) with

3m 2/3
a=4mCq (47713 6)

always to be much smaller than the ohmic resistance of the cell.

In the study of electrode kinetics, however, the ohmic resistance is subtracted
before the analysis and moreover the analysis is most sensitive to errors in the
phase angle. Therefore under unfavourable conditions like small drop time and
very reversible electrode reaction the effect described could influence the result.
Unfortunately a quantitiative study based on an equivalent circuit comprising a
faradaic process looks impossible due to mathematical complexity.

Measurements with frequency swept a.c. voltage or current lead to an error in
the double layer capacitance that can be calculated easily. The allowed sweep
rate can be calculated and its value will also serve as a guide in more complex
equivalent circuits.
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