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ABSTRACT

A model-based approach to interactive segmentation of thrombus in abdominal aortic aneurysms from CTA
data is presented. After manual segmentation of the first slice, the method automatically detects the contour in
subsequent slices, using the result from the previous slice as a reference. If an obtained contour is not sufficiently
accurate, the user can intervene and provide an additional manual reference contour.

The method is inspired by the active shape model (ASM) segmentation scheme proposed by Cootes and
Taylor,1 in which a statistical shape model, derived from corresponding landmark points in manually labeled
training images, is fitted to the image in an iterative manner. In our method, a shape model of the contours in
two adjacent image slices is progressively fitted to the entire volume. The contour obtained in one slice constrains
the possible shapes in the next slice. The optimal fit is determined on the basis of multi-resolution gray level
models constructed from gray value patches sampled around each landmark. We propose to use the similarity of
adjacent image slices for this gray level model, and compare these to single-slice features that are more generally
used with ASM. The performance of various image features is evaluated in leave-one-out experiments on 23 data
sets.

Features that use the similarity of adjacent image slices outperform measures based on single-slice features
in all cases. The average number of slices in our datasets is 51, while on average 8 manual initializations are
required, which decreases operator segmentation time by a factor of 6.

1. INTRODUCTION

An abdominal aortic aneurysm (AAA) is an enlargement of the infrarenal abdominal aorta, resulting from
weakened arterial walls. Once present, AAAs continue to enlarge and become increasingly susceptible to rupture,
which usually results in death. Because of the risks associated with surgical AAA treatment, patients with a
small AAA are often placed under frequent surveillance until the aneurysm becomes symptomatic or its diameter
exceeds 5.5 cm. Worldwide, approximately 100,000 surgical interventions for AAA repair are performed each
year, of which at present 30 % are endovascular. After endovascular aneurysm repair, in which a synthetic
graft is placed inside the aorta, the process of aneurysm shrinkage, ongoing aneurysmal disease, and damage or
fatigue of graft material may result in leakage, graft migration, and kinking or buckling of the graft, which can
subsequently cause rupture or occlusion. Careful and frequent patient follow-up including regular CT scans will
likely be needed for the life of the patient after endovascular aneurysm treatment.2

It has been demonstrated that change of aneurysm volume is a good indicator for the risk of aneurysm
rupture.3–5 Currently, the gold standard for volume assessment is Computed Tomography Angiography (CTA)
with subsequent manual aneurysm delineation,6 generally referred to as ‘thrombus segmentation’, since after
successful graft placement the aneurysm sac surrounding the graft is completely filled with thrombus. The manual
segmentation is a time-consuming process— it takes an experienced operator around 30 minutes — and suffers
from inter- and intra-operator variations. Wever et al.7 reported an inter-operator reproducibility coefficient of
8.3% for thrombus volume measurements.

To reduce analysis time and to increase reproducibility, automated segmentation would be of great value.
However, thrombus segmentation in CTA images is a difficult task. The boundary can be obscured by surrounding
tissue of similar gray value, many neighboring structures induce strong edges in close proximity to the aneurysm
wall, and the variable aneurysm radius in combination with partial volume effects makes the boundary hard to
distinguish even in the absence of neighboring structures. In addition, the size and appearance of aneurysms and
neighboring structures vary considerably between patients as well as in one patient over time. Figure 1 shows
some examples of CTA slices, illustrating the diversity of aneurysm and background appearance.



Figure 1. Four CTA slices of different patients, with manually delineated aneurysms. The left image is taken before
surgery, the others are post-operative. The interior of the contour contains thrombus, contrast enhanced blood in the
lumen and possibly in endoleaks, calcification, and — post-operatively — metal graft markers and attachment systems.
Neighboring structures are the spinal column, at the bottom of the images, blood vessels and intestines. All CTA images
in this thesis have been contrast stretched for better visibility of the thrombus.

Most publications on computerized AAA segmentation have concentrated on segmentation of the contrast-
filled lumen, either in pre-operative8–18 or in post-operative CTA scans.19 The more difficult problem of thrombus
segmentation has less frequently been addressed. Wilson et al.20 reported successful thrombus segmentation using
an active surface with the central lumen axis as a seed, but they did not present an evaluation study. Their
work mainly aimed at providing realistic visualizations suitable for treatment planning. Subramanyan et al.21

segmented the aortic lumen using a three-dimensional level-set approach. They propose to re-initialize the level-
set in the image with the lumen subtracted to obtain the thrombus region, but present results on lumen diameter
measurements only. Subasic et al.22 also used a three-dimensional level-set for lumen segmentation, but found
that the method could not cope with the large regions lacking boundary evidence in thrombus segmentation.
They solved this problem using a combination of thresholding, edge detection, morphological operations, and
shape restrictions in the form of a distance map, favoring convex cross-sections. A level-set was evolved in the
resulting binary image to ensure a smooth object. The average segmentation error per slice was 19.8%, which
makes the method suitable for visualization purposes but not for accurate volume measurements.

We present and evaluate an interactive method for AAA thrombus segmentation. After manual segmentation
of the first slice, the method automatically detects the contour in subsequent slices, using the result from previous
slices as a reference. If an obtained contour is not correct, the user can intervene and provide an additional manual
reference contour. The method relies on the fitting of a shape model to points with high correlation with the
reference contour.

The method is inspired by the Active Shape Model (ASM) segmentation scheme as put forward by Cootes
and Taylor,1, 23 which combines statistical knowledge of object shape and shape variation with local appearance
models near object contours. ASMs have been successfully applied to various segmentation tasks in medical
imaging.24–31 Applications in three-dimensional images have either used a full three-dimensional model24, 32, 33

or a two-dimensional model applied to image slices.25, 29 We have chosen a slice-by-slice approach, which has
the advantage that it is easily integrated with the current manual segmentation scheme. Moreover, the high
anisotropy of the CTA data makes in-slice grey value models more appropriate, and a three-dimensional model
would require resampling to an equal number of slices for all aneurysms, while in our datasets an aneurysm is
between 30 and 65 slices long.

Mitchell et al.29 proposed the use of a two-dimensional hybrid active shape model/active appearance model,
fitted to several cardiac MR image slices independently. Cootes et al.25 reported successful slice-by-slice ASM
segmentation of the ventricles in 3D MR datasets, using the fitted shape in one slice as the initialization in the
next slice. We extend this scheme by modeling two successive image slices together. The shape obtained in
the previous slice is not only used as an initialization but constrains the shape in the next slice, resulting in a
segmentation where the transition between slices is in accordance with the shapes in the training set.

Conventional ASMs use a linear model generated from gray value patches in training images to fit the shape



model to the image. AAAs have such a diverse range of possible surrounding structures, which vary in location,
shape, intensity and texture, that a linear model of gray level structure about the contours may not be able to
find the true contour in a new image. An important indicator for the image structure in one image slice is the
structure in the adjacent slices. We propose a modified ASM scheme in which optimal landmark positions are
defined by maximum gray value correlation with adjacent slices rather than by correlation with the training data.
In this study, several similarity measures are evaluated and compared to features that were shown to perform
well in combination with ASMs.1, 31

The shape model is briefly discussed in Section 2.1. Section 2.2 presents various features for aneurysm
boundary localization, and Section 2.3 explains how the shape model is fitted to the image using these features.
Section 3 describes a series of leave-one-out experiments on 23 datasets. Several robustness tests are presented
in Sections 3.4 and 3.5. The performance of the interactive procedure is measured by the required amount of
user interaction in a simulated interactive segmentation scheme, as presented in Section 3.6. A discussion and
conclusions are given in Sections 4 and 5.

2. METHODS

This section describes the segmentation scheme. Shape variations in the training set are described using a Point
Distribution Model (PDM).34 The shape model is used to generate new shapes, similar to those found in the
training set, which are fitted to the data using a model of local gray value structure.

2.1. Point Distribution Models

In PDMs, a statistical model of object shape and shape variation is derived from a set of s training examples.
Each training example is described by n manually or automatically identified corresponding landmark points.
Variations in the coordinates of these landmark points describe the variation in shape and pose across the training
set.

A shape is described by its shape vector x containing all landmark coordinates, in 2D:

x = (x1, y1, x2, y2, . . . , xn, yn)T . (1)

The shapes must be in a common coordinate frame. To maximize the specificity of the model, the shapes
can be aligned by rotation, translation, and scaling, thus reducing non-linearities in the shape distribution.
However, any relation between the object’s shape and its pose or scale is then lost. The most popular approach
for alignment of shapes is Procrustes Analysis,35 which performs a least-squares minimization of the distances
to the mean shape.

Principal Component Analysis (PCA) is applied to the shape vectors. To this end, the mean shape x, the
covariance matrix S, and the eigensystem of S are computed:

x =
1
s

s∑
i=1

xi (2)

S =
1

s − 1

s∑
i=1

(xi − x)(xi − x)T . (3)

The eigenvectors φi of S provide the modes of shape variation present in the data. Any shape x in the dataset
can be represented as

x = x + Pb, (4)

where P is the concatenation of eigenvectors of S, i.e. P = (φ1|φ2| . . . |φ2n). The eigenvectors corresponding to
the largest eigenvalues λi account for the largest shape variation; a small number of modes usually explains most
of the variation. Each shape x in the set can thus be approximated by

x ≈ x + Φb, (5)



where Φ consists of the eigenvectors corresponding to the t largest eigenvalues, Φ = (φ1|φ2| . . . |φt). The t-
dimensional model parameter vector b weighs the contribution of each of the eigenvectors,

b = ΦT (x − x). (6)

The number of modes in the model, t, can be chosen in several ways. For instance, a threshold can be set
on the reconstruction error that is allowed if the model is fitted to new shape instances. The minimum number
of modes required can then be determined in cross-validation experiments. Another option is to estimate the
variance of the noise on the landmark positions, σ2

n, and retain all eigenvectors of which the corresponding
eigenvalue exceeds the noise level, λi > σ2

n.23 Note, that this leads to an overestimation of the number of modes,
owing to chance fluctuations in the limited sample. Paulsen et al.33 therefore propose to use Horn’s parallel
analysis36 to determine the number of modes. In this analysis, the data is compared to samples of random
vectors with the same variance and the same sample size. The eigenvalues of the data are plotted in decreasing
order, and the same is done for the eigenvalues of the random data, averaged over all samples. The number of
significant modes is given by the intersection point of the two curves. The dimensionality of the data can also
be estimated using Bayesian model selection.37

The simplest and most widely used approach is to choose t such that the model explains at least a proportion
fv of the total variance observed in the training set. The total variance is given by

∑
λi. We then select the t

largest eigenvalues so that
t∑

i=1

λi ≥ fv

2n∑
i=1

λi. (7)

This is the approach we shall take in this chapter.

2.2. Gray value model

A rectangular gray value patch of kn×kt pixels is sampled symmetrically around each landmark, with the length
kn normal to the contour and the width kt tangential to the contour. The patches are sampled at multiple
resolutions, to enable coarse-to-fine fitting of the model. The finest resolution uses the original image and a
sample spacing of one voxel, the next resolution is the image convolved with a Gaussian kernel of width one
voxel and sampled with a spacing of two voxels, and subsequent resolutions are obtained by doubling both the
kernel width and the sample spacing.

For a successful segmentation procedure, the ability of an image feature to distinguish between correct and
false boundary positions is crucial. We evaluate the performance of the following features.

Edges

An object edge likely corresponds to image positions with a strong intensity gradient. We applied the gradient
magnitude in the direction normal to the contour, GM .

Linear model of training data

The boundary appearance can be learned from a training set. In the original ASM formulation, Cootes and
Taylor1, 23 use the Mahalanobis distance from the sampled gray value patch gs to the mean of training patches
g as a boundary measure:

MAH (gs) = (gs − g)T S−1
g (gs − g). (8)

Minimizing MAH (gs) is equivalent to maximizing the probability that gs originates from the same distribution
as the training patches. The effect of global intensity changes can be reduced by sampling the first derivative
and normalizing the patch. We have applied MAH to intensity (I) and first order derivative (I ′) patches, and
the normalized versions thereof. The patches are normalized such that the sum of the absolute intensity values
equals 1.



Linear model of training data combined with slice similarity

The linear model of training patches that is used in ASM can be combined with information from adjacent slices.
The Mahalanobis distance from the sample patch gs to the reference patch gr expresses the difference between
the two patches, taking the covariance across the training set into account:

MAHR(gs) = (gs − gr)T S−1
g (gs − gr). (9)

The reference patch is sampled at the corresponding landmark in the adjacent slice. In the experiments, MAHR
is applied to (normalized) intensity and first order derivative patches.

Slice similarity

Several features based only on similarity between adjacent slices are considered:
- Sum of squares of intensity differences between sample and reference

SD =
kn×kt∑
x=0

(Is(x) − Ir(x))2 (10)

where Is is the image intensity in the sample patch and Ir the intensity in the reference patch.
- Sum of absolute intensity differences between sample and reference

AD =
kn×kt∑
x=0

|Is(x) − Ir(x)| (11)

- Normalised cross correlation between sample and reference

NCC =

kn×kt∑
x=0

Is(x) · Ir(x)√
kn×kt∑
x=0

Is(x)2 ·
kn×kt∑
x=0

Ir(x)2
(12)

- Correlation coefficient between sample and reference

CC =

kn×kt∑
x=0

(Is(x) − Is) · (Ir(x) − Ir)√
kn×kt∑
x=0

(Is(x) − Is)
2 ·

kn×kt∑
x=0

(Ir(x) − Ir)
2

(13)

All slice similarity features are tested on raw intensity patches.

GM , NCC , and CC are maximized, all other measures are minimized.

2.3. Fitting procedure

Starting with one manually drawn contour, the segmentation proceeds through the dataset, fitting the two-slice
model to all pairs of adjacent slices. Each time the result from the previous slice is used as a reference for
determining the contour in the new slice. From coarse to fine resolution, the model is fitted to a pair of slices
in an iterative procedure. The process initializes with the shape from the reference slice, in both slices. For all
landmarks in the new slice, ns possible new positions are evaluated along the line perpendicular to the contour,
on both sides. The distance between the positions to evaluate depends on the level of resolution and is equal to
the sample spacing of the corresponding gray level model: at the finest resolution the distance is 1 voxel, at each
subsequent resolution it is doubled. The optimal new position is determined by one of the features that were
introduced in the previous section. The shape model parameters b that minimize the squared distance between



the landmarks and the optimal positions are computed using Equation 6. Hard limits are applied to constrain
b to plausible values:

|bi| ≤ fc

√
λi. (14)

The landmarks of the new slice are moved to their new positions according to the model parameters, while the
landmarks in the reference slice are kept fixed. This process is repeated a fixed number of N times, whereupon
it is repeated at the next level of resolution.

3. EXPERIMENTS

A series of leave-one-out experiments is performed on 23 CTA images.

3.1. Data

All experiments are carried out on 23 routinely acquired CTA images from 23 different patients, including 2
pre-operative and 9 post-operative scans. The remaining 12 scans are taken at follow-up ranging from 1 to
12 months. The scan resolution is 0.488× 0.488× 2.0 mm. Each image consists of circa 125 slices of 512× 512
voxels, of which 34 to 63 slices contain aneurysmal tissue. The total number of slices to be segmented is 1175.

3.2. Landmarking and alignment

A PDM is built of all pairs of adjacent slices. The original CT slices, which are perpendicular to the body axis
and therefore always give approximately perpendicular cross-sectional views of the aorta, are used. Contours
are drawn manually by an expert. In the absence of well-defined anatomical landmark points, landmarks are
equidistantly placed along the object contours. The starting point of a contour is the posterior point with the
same y-coordinate as the center of mass. All pairs of contours are aligned such that the centers of the reference
contours coincide. Note, that no size normalization is performed, since a correlation between shape and size is
expected.

Figure 2 shows the first eight modes of shape variation of the two-slice model trained with all 23 datasets.
The largest variation in the shapes in the training set, the first mode, is a size difference. The second and third
mode show that a strong elongation in x direction is correlated with a slightly larger upper contour, while an
elongation in the y direction corresponds to a smaller upper contour. These are the types of shapes that are
found in the bottom and the top of the aneurysm. The next two modes describe a less pronounced deviation
from the mean shape, where in the fourth mode both slices deviate in the same way and in the fifth mode there
is a small difference between both slices. Only from the fifth mode, a larger difference between the two adjacent
slices is observed, with first a shape difference, then translations in the x and y directions, followed by a difference
in size.

3.3. Parameter settings

Table 1 lists the parameter values that are used in all experiments, unless mentioned otherwise.

3.4. Shape model evaluation

The amount of variance explained by the model is plotted as a function of the number of modes in Figure 3a.
Over 99% of the total amount of variation present in the training set is described by the first 11 modes.

The validity of the shape model and the applied constraints are tested by fitting the model directly to the
contours that were manually drawn, which gives an upper bound for the accuracy that can be obtained when
the model is fitted to new image data. Figure 3b shows the root mean squared error in millimeters as a function
of the number of modes retained. The averaged leave-one-out reconstruction error, where a model built of 22
training shapes is fitted to the remaining shape, almost coincides with the reconstruction error for a model built
of all 23 shapes, indicating that sufficient training data are available to represent all shapes.
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Figure 2. The effect of varying each of the first eight shape parameters individually in a two-slice model built from all
23 datasets. The continuous contour denotes the lower slice, the dotted contour the upper slice.



Table 1. Parameters of the segmentation scheme.

Shape model (Section 2.1)
n 50 Number of landmark points per slice
fv 0.99 Part of shape variance to be explained by the model, controlling the number of modes t

(Equation 7)
fc 2.5 Bound on eigenvalues λi (Equation 14)
Gray value model (Section 2.2)
kn 7 Patch length
kt 1 Patch width
Fitting algorithm (Section 2.3)
ns 2 Number of new landmark positions to evaluate on either side of the current position
L 3 Number of resolution levels
N 5 Number of iterations per resolution level
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Figure 3. (a) The amount of variance explained by the model as a function of the number of modes contained in the
model. (b) Root mean squared error as a function of the number of modes, for a model built of all datasets (gray line)
and the leave-one-out case (black line).



3.5. Feature evaluation
First, the features’ capability to find the true contour is evaluated independent of the rest of the segmentation
process. Starting from the landmarks on the manually drawn contour, the optimal landmark positions according
to the feature are determined, for varying ns. The distances from these points to the landmark positions provided
by the manual tracings are measured. The resulting root mean squared distances as a function of the size of the
search region are shown in Figure 4. Features using patches of length kn = 7 and width kt = 1 and kt = 5, with
a sample spacing of 1 or 4 voxels, are considered. Initial experiments revealed that smaller errors are obtained
with the Mahalanobis distance based measures when the patches are normalized. For the sake of clarity of the
graph, we here only show the results on normalized intensity and derivative patches, but the final results on
non-normalized patches are given in Section 3.6 for comparison.

At a small scale and in a small search region, all features perform similar, but at larger scale or in a larger
region the errors obtained using slice similarity measures are much smaller than those obtained using the gradient
magnitude or the linear statistical model. Both Mahalanobis distance based features perform much better on
derivative than on intensity patches. The Mahalanobis distance to the average intensity patch is even worse than
random landmark selection. Among the slice similarity features, AD and SD yield better results than NCC and
CC . The robustness of the slice similarity features increases with increasing scale, while the robustness of the
Mahalanobis distance and gradient measures decreases. The same holds for enlarging the patch width.

The segmentation process is less sensitive to random outliers than to several neighboring landmarks that are
consistently placed at a wrong position, which can be the case when a neighboring structure produces misleading
boundary evidence. The result of fitting the shape model to the optimal points of the previous test is given
in Figure 5. The minimum error has increased, since it cannot be smaller than the reconstruction error from
Figure 3.b, and all maximum errors have decreased. Again, both Mahalanobis distance based features perform
better on derivative than on intensity patches. The Mahalanobis distance to the reference patch gives errors
similar to those obtained using the other slice similarity measures. GM is one of the best features if the search
regions is within 3 voxels of the true contour, but errors quickly increase with larger search areas. At the lowest
resolution, NCC and CC perform better than AD and SD , but at higher resolutions AD gives the smallest
errors. Enlarging the patch width does not increase the robustness for the slice similarity measures as was the
case before fitting the shape model, and robustness decreases for all Mahalanobis distance based measures. In
the subsequent experiments we use kt = 1.

3.6. Simulated interactive segmentation
To evaluate all features evenly in an interactive segmentation setting, we simulated observer interaction using
manually segmented datasets. Starting with the bottom contour of the manual segmentation as a reference,
successive slices are segmented. After each segmented contour, the similarity to the manually drawn shape is
computed. If the similarity is sufficient, the segmentation proceeds, otherwise, a new contour from the available
manual segmentation is added, so as to simulate operator intervention. The performance is measured by the
number of manual initializations needed to segment an entire volume.

The similarity of the two contours is described in terms of the distance from each landmark to the contour
drawn manually. Since the main clinical objective of AAA segmentation is volume measurement, the mean
signed distance, which is proportional to the error in the measured area in a slice, should be small (1 mm in our
experiments). To ensure similarly shaped and positioned contours the mean and maximum absolute distance are
constrained as well, to 2 mm and 4 mm respectively. Four randomly chosen examples of segmentations fulfilling
these requirements are shown in Figure 6.

Figure 7 shows, for each feature and each dataset, the number of slices that was correctly segmented using
one initialization. Table 2 lists the number of correctly segmented slices using one initialization, averaged over
all datasets. In all cases, the smallest number of interactions was needed when one of the slice similarity
measures was used. The average number of automatically obtained contours was largest when using AD , but
the difference with SD and CC was not significant (p = 0.75 and p = 0.06 in a paired t-test). AS , SD and CC
performed significantly better than all other tested features (p < 0.00001). If MAHR was used, thus combining
the information from the reference slice with the statistical model, more user interactions were needed, and using
only the model (MAH ) again increased the number of interactions (p = 0.003). Overall, Mahalanobis distance
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Figure 4. Root mean squared error of optimal landmark position detection as a function of the number of points evaluated
on either side of the contour, for (a) a patch of 7×1 voxels, sampled at scale 0; (b) a patch of 7×5 voxels, sampled at
scale 0; (c) a patch of 7×1 voxels, sampled at scale 2; (d) a patch of 7×5 voxels, sampled at scale 2. The units are step
sizes in the position evaluation procedure, i.e. 1 voxel (0.488mm) for the profiles sampled at scale 0 and 4 voxels at scale
2. The dashed black line starting at the origin corresponds to the expectation for random landmark selection.
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Figure 5. Root mean squared error of landmark positions as a function of the number of points evaluated on either side
of the contour, after fitting the shape model to the optimal positions, for (a) a patch of 7×1 voxels, sampled at scale 0;
(b) a patch of 7×5 voxels, sampled at scale 0; (c) a patch of 7×1 voxels, sampled at scale 2; (d) a patch of 7×5 voxels,
sampled at scale 2. The units are step sizes in the position evaluation procedure, i.e. 1 voxel (0.488mm) for the profiles
sampled at scale 0 and 4 voxels at scale 2.



Figure 6. Examples of accepted segmentations. The continuous line depicts the contour that was obtained automatically,
the dotted line is the manual segmentation.

Table 2. Average number of correct contours obtained using one initialization.

normalized

GM 1.82

MAH (I) 1.32 1.16

MAH (I ′) 1.11 2.25

MAHR(I) 2.86 2.96

MAHR(I ′) 2.61 3.23

AD 4.76

SD 4.72

CC 4.24

NCC 3.59

AD, Supervised 6.39

based measures perform best on normalized first order derivative patches. A segmentation process based on
MAH (I ′) on normalized patches needs less re-initializations than one based on GM (p = 0.011).

3.7. Expert supervised interactive segmentation

In the simulated experiments the manual tracings are used as the undisputed gold standard. However, inter-
observer errors in aneurysm volume measurements are as high as 8.3%.7 In case of clear image evidence the
automatic segmentation should indeed be similar to the manual contour, but when no boundary is visible the
criteria of Section 3.6 may be relaxed. To get an idea of the true number of interactions that will be needed
for segmentation, segmentation with feature AD was repeated, but this time a human observer decided whether
re-initialization was needed. This resulted in a smaller number of interactions, especially in the top and bottom
part of the aneurysm where the boundary is hard to distinguish owing to partial volume effects. The number of
interactions used is given in Figure 7 and Table 2. The resulting segmentations had an average volume overlap
of 95.8% (minimum 93.0%) with the manual segmentation and an average relative volume difference of 1.5%
(maximum 3.9%)

4. DISCUSSION

The presented method uses a shape model from two adjacent slices for segmenting a three dimensional structure,
while a full three-dimensional approach — allowing gray value modeling perpendicular to the object’s surface —
could be more appropriate in some applications. In the case of CTA images, which are in general highly
anisotropic (in the images used in this study the voxels are over 4 times larger in the z-direction), we do not
expect a significant improvement in boundary localization if the profiles would be sampled in three dimensions.
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An advantage of the two-slice approach is that it can easily be integrated in the current clinical practice of manual
slice-by-slice segmentation. With the current ASM optimization procedure, the use of slice similarity features,
which turned out to be more accurate in aneurysm boundary localization, is computationally very expensive for
a model consisting of a large number of slices. Moreover, the use of a three dimensional model would require
resampling to an equal number of landmarks for all datasets, which is not desirable for objects that can vary
largely in length.

It was shown that the original ASM scheme that uses local intensity models does not perform well in AAA
segmentation. One of the shortcomings of the gray value model that is used in ASMs is that only the appearance
of the correct boundary is learned from the training set, wherefore it cannot distinguish the true contour from
other contours with similar gray values. Another problem is the underlying assumption of a normal intensity
distribution. In the presence of distinct background structures of varying shape and brightness this assumption
does not hold. The use of a non-linear gray value model may be more suitable. In this work we effectively solved
this problem by using gray value patches from the reference slice.

A consequence of using slice similarity measures is that errors propagate through the dataset and therefore
performance deteriorates with distance from the reference contour. We previously showed that a refinement
step, in which the model is allowed to adjust to nearby edges, can increase contour tracking robustness38 in the
middle part of the aneurysm. However, the model can then also fit to wrong edges. Figure 5 shows that the
errors quickly become large when fitting on edge strength. In segmentation of the entire aneurysm, including
the more difficult top and bottom part, we have not observed a significant improvement when such a refinement
was applied.

The proposed method could obtain accurate segmentations while only in one of six slices manual intervention is
needed. Currently, the user must redraw the entire contour, but more sophisticated methods of user interaction
can easily be incorporated. Since errors often occur at a small part of the contour while the larger part is
correct, dragging one landmark point to the correct boundary and iteratively fitting the model to this point may
be sufficient to obtain a correct contour.39

We have evaluated the application of this method to AAA segmentation, but the idea of propagating a two-



slice shape model based on slice similarity measures can be used in other areas as well. Especially time-sequences
and anisotropic medical images form a promising application. The dependency on image slicing and orientation
restricts the applicability to segmentation tasks where the shape change between slices is not too large and the
object is always imaged in approximately the same direction. However, many medical images are acquired with
fixed scan protocols which satisfy these conditions. The proposed method could also be used for segmentation in
reformatted slices orthogonal to a predefined object axis, which is a common approach in vessel segmentation.

5. CONCLUSIONS

A new approach to the semi-automatic segmentation of thrombus in abdominal aortic aneurysms, based on
shape model fitting in sequential slices, is reported. In a simulated interactive segmentation process, the benefit
of using slice correlation in shape model fitting was demonstrated. Using the proposed method and the optimal
slice correlation feature, the time required for expert segmentation may be reduced by a factor of 6.
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