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DECREASED DEFENCE AGAINST FREE RADICALS IN RAT HEARI DURING NORMAL 
REPERFUSION AFTER HYPOXIC, ISCHEMIC AND CALCIUM-FREE PERFUSION 
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Summary 

Excessive formation of free radicals possibly plays an important 
role in the origin of irreversible damage of the heart after 
hypoxic, ischemic or Ca2+-free treatment. The effect of these 
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Recent literature data indicate that hypoxic, ischemic or Ca2+-free 
~reatment of the heart leads to an increased formation of free radicals in the 
nyocard tissue, mainly reactive 02-species (11-21)• The protection from 02- 
~oxicity in heart cells is provided by superoxide dismutase (SOD), which 
:atalyzes the dismutation of 02"to H202 in cytoplasma and mitochondria. Because 
)f the low catalase activity in heart cells, the further degradation of H202 to 
420 is catalyzed mainly by Qlutathione-peroxidase (GSH-Px), using GSH as a 

radicals, lhe effect was most pronounced upon Ca~T-repletion after 
a period of Ca2+-free perfusion. No malondialdehyde could however 
be detected either in the tissue of the treated hearts or in the 
perfusate. Our data give reason to expect beneficial effects of an 
adequate pharmacological treatment, which replenishes the cellular 
defence systems. 

Myocardial cells are damaged in a severe, irreversible way as a result of 
~rolonged ischemia, hypoxia or of a Ca2+-free perfusion, followed by normal 
"eperfusion of the myocardium. Alhtough the nature of these damaging processes 
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In the present study we inves t i ga ted  the e f f e c t  of  hypoxic ,  ischemic and 
+ - f ree  per fus ion fo l lowed by normal reper fus ion  on the a c t i v i t y  of  SOD and 

g l u t a t h i o n e  system. As pe rox ida t i on  o f  ] i p i d s  occurs when the p r o t e c t i v e  
tors in t issues can not handle an increase in f ree rad ica l  genera t ion ,  we 
ther  i nves t i ga ted  whether (one o f  the) above mentioned t reatments a c t u a l l y  
d to i n s u f f i c i e n t  p ro tec t i on  against  o x i d a t i v e  s t ress in the hear t .  The f o r -  

Perfusion method: Male Wistar rats (200-250 g) were anesthesized with 
diethylether. After heparinization of the rat, the aorta was cannulated, the 
heart quickly removed and perfused according to the method of Langendorff (23). 
The standard salt solution contained (m~1): NaCl 128.2; KCI 4.7; CaCl2 1.4; MgCl 2 
1.1; NaH2PO 4 0.4; NaHCO 3 20.2; glucose 11.1 and was continuously gassed with 
95% 02-5% C02 (pH 7.4; 37oc). During hypoxic perfusion the standard salt 

leae 
mation of malondialdehyde (MDA) was used as a parameter for lipid peroxidation. 
As cumene hydroperoxide is known to disturb the balance between the protection 
against free radicals on the one hand and the generation of reactive substances 
on the other in heart tissue (22), perfusions with cumene hydroperoxide were 
performed as a reference treatment. 

itrogen at -20uC after purification by vacuum distillation. 

Statistics: The data presented are expressed as a mean ~ SEM and were 
tatistically evaluated by the Student's t-test. 

tne ena or one perTuslon one nearc clssue was raplaiy frozen using woilen- 
~rger clamps precooled in liquid nitrogen (24). 

Biochemical assays: The hearts were homogenized with a Polytron PT 10 in 
q ice-cold 50 mM phosphate buffer, pH 7.4 containing 0.1 mM EDTA. The GSH-Px 
ctivity was assayed in the homogenate according to the method of Lawrence and 
urk (25). The activity of the Se-dependent GSH-Px was monitored at 340 nm by 
le disappearance of NADPH, using hydrogen peroxide as a substrate. The amount 
f GSH and GSSG in homogenate and coronary effluent were determined as described 
! Griffith (26). According to this method the amount of GSSG was measured 
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Results 

Hypoxic, ischemic or Ca2+-free perfusion with subsequent recirculating 
erfusion with standard salt solution for 60 minutes, resulted in reduction of 
activity in rat heart (Fig. I). The effect was most pronounced upon Ca 2+- 
letion of the heart, the so-called "Ca2+-paradox experiment". A recirculating 
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perfusion with a 0.3 mM cumene hydroperoxide solution also diminished the O~'- 
dismutating capacity of the heart. The GSH-Px axtivity of rat hearts was not 
affected by ischemic treatment followed by normal reperfusion (Fig. 2). After 
hypoxic perfusion and subsequent reoxygenation, the GSH-Px activity slightly 
increased, albeit not significantly (p < 0.1). Both exposing the hearts to a 
Ca2+-paradox and perfusion with cumene hydroperoxide led to a significant 

The total amount of glutathione in heart tissue after the different treat- 
ents, as reported in Fig. 3, was significantly reduced in all cases, as com- 
ared to control hearts. The effect was most pronounced when hearts were 
uddenly reconfronted with Ca2+-ions after a Ca2+-free period. In all cases the 
ajor part of the total glutathione content in the heart tissue consisted of 
SH. The GSSG concentration remained very low. 

uu trlgure i] ano bbn-rx tvlgure L) in [ne near[. 
hypoxic, I Ca2+-free and []cumene hydroperoxide treatments. Each result is 

~e mean ± SEM of six separate experiments. Significance of differences from 
ontrol value: n.s. = not significantly, W= p < 0.01 and W**= p < 0.001. 

Table I shows the cumulative release of GSH and GSSG into the coronary 
ffluent during the recirculating perfusion of rat heart with standard salt 
olution. The level of GSH and GSSG in the perfusate of control hearts remained 
ow. In contrast, hearts exposed to hypoxia and ischemia released both GSH and .................. o, 
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TABLE I 

~atment 20 min - reperfusion time - 60 min 
lowed by 

GSH GSSG GSH GSSG 
(expressed as nmol/g wet tissue/total perfusate) 

Ca2+-free 621 ± 46 308 ± 40 196 ± 39 484 ± 47 

CuOOH 40 ± 8 121 ± 6 194 ± 40 312 ± 24 

The cumulative release of GSH and GSSG into the perfusate measured upon normal 
reperfusion after an ischemic, hypoxic or Ca2+-free period as compared to 

• 1 - - -  J . . . . .  i . . J  . . . . . . . .  ~ J _  / P . . ~ l l %  . . . . . . . . . .  ~ -  P - - _ L  . . _ 1  . . . . . . . . . . . . . .  L - -  

normal 
reperfusion 

control I ± 0.8 2 ± 0.8 9 ± 0.3 9 ± 3 
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~rfusion with cumene hydroperoxide. 

Expression of all above mentioned data per mg protein leads to similar 
~sults. 
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FIGURE 3 

The total glutathione content (GSH + 
GSSG, expressed as GSH-equivalents) in 
heart tissue after a recirculating 
p[~]erfusion during 60 minutes. 

control, ~:-~lischemic, ~Ihypoxic, 
I Ca2+-free and []cumene hydroper- 
oxide treatment. Each value represents 
the mean ± SEM of six separate experi- 
ments. Significance of differences 
from control value: *= p < 0.02, ** 
= p < 0.002 and***= p < 0.001. 
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Discussion 

0.3 mM cumene hydroperoxide solution 
(e) and during normal reperfusion 
following ischemic, hypoxic, Ca2+-free 
or control perfusion (~). Each value 
represents the mean ± SEM of six 

As far as GSH-Px is concerned, our results indicate that the heart had the 
ame (after ischemia) or even an inclination towards a higher capacity (after 
ypoxia) to handle H202 or lipid hydroperoxides. Elevation of the GSH-Px 
ctivity is commonly associated with small increments in oxidative stress (33- 
5), an aspecific response to injury, however, cannot be excluded. During the 
a2+-paradox phenomenon the GSH-Px activity is strongly reduced; no activity of 
SH-Px could be detected in the perfusate. 

~proauce tne cnanges seen in sarcopJasmic re~iculum Trom iscnemlc myocaralum 
13, 14), all suggest that radicals play an important role in the development 
f cardiac necrosis. 

Our findings point at a reduced SOD activity in the tissue both after 
ypoxic, ischemic and Ca2+-free perfusion followed by reperfusion, the effect 
~ing most severe during the Ca2+-paradox experiment. As no SOD activity could 

detected in the perfusate, partly inact 
:curred. H202 is known to inactivate SOD when this reactive species can not be 
liminated in time (32). As a consequence of a reduced SOD activity very reac- 
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The total amount of glutathione in the heart tissue was prominently 
ered after hypoxic, ischemic and Ca2+-free treatment, which may have led to 
hortage of co-factor supply in the glutathione system. 

Release of GSH and GSSG into the perfusate was seen upon all treat- 
ts. The release of GSH into the perfusate indicates an increased permeability 

increase in GSH-release and not in GSSG-release (12). On the other hand GSSG- 
release from the cells would not be surprising since it might also reflect an 
increased intracellular concentration of GSSG due to an enhanced flux through 
GSH-Px, as measured upon reoxygenation. Exposure to oxidative stress generally 
leads to increased formation of GSSG (38), the rate of GSSG-release being 
indicative of its intracellular concentration (39). 

of cell membranes. During the Ca2+-paradox experiment a massive efflux of GSH 
occurred shortly after the start of the normal reperfusion which reaffirms the 
strong increase of sarcolemmal permeability after Ca2+-repletion, previously 
observed by Zimmerman and Hdlsmann (36) and Koomen et al. (37). The subsequent 
decrease of the GSH-content in the perfusate with time is an indication for its 

The authors wish to thank Mr. Pieter van Dorp van Vliet and Ms. Antoinette 
~n Putten for their assistance in preparing this manuscript. 

~tard the induction of damage due to hypoxic perfusion. A lowering of the 
~rmation rate of free radicals due the presence of glucose might explain the 
3sence of detectable MDA in our reoxygenation studies. Possibly MDA is only a 
~nsitive indicator for lipid peroxidative processes in the isolated, perfused 
~t heart, when the formation rate of radicals is high, as seen during cumene 
idroperoxide perfusion. 

In conclusion, our results indicate that the ability to cope with 02- 
3xicity is affected when rat hearts are exposed to hypoxic, ischemic or Ca 2+- 
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