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a b s t r a c t

Automatic milking systems produce mastitis alert lists that report cows likely to have clinical mastitis
(CM). A farmer has to check these listed cows to confirm a CM case and to start an antimicrobial treat-
ment if necessary. In order to make a more informed decision, it would be beneficial to have information
about the CM causal pathogen at the same time a cow is listed on the mastitis alert list. Therefore, this
study explored whether decision-tree induction was able to predict the Gram-status of CM causal patho-
gens using in-line sensor measurements from automatic milking systems. Data were collected at nine
Dutch dairy farms milking with automatic milking systems and included 140 bacteriological cultured
CM cases with sensor measurements of electrical conductivity, colors red, green, and blue and milk yield
for analyses. In total, 110 CM cases were classified as Gram-positive CM cases and 30 as Gram-negative.
Stratified randomization was used to divide the data in a training set (n = 96) for model development, and
a test set (n = 44) for validation. The decision tree used three variables to predict the Gram-status of the
CM causal pathogen; two variables were based on electrical conductivity measurements, and one on
measurements of the color blue. This decision tree had an accuracy of 90.6% and a kappa value of 0.76
based on data in the training set. When only those CM cases were considered with extreme high proba-
bility estimates for their Gram-status (either positive or negative), 74% of all records in the training set
could be classified with a stratified accuracy of 97.1%. When validated, the decision tree performed
poorly; accuracy dropped to 54.5% and the kappa value to �0.20. The stratified accuracy calculated for
75% of all records in the test set was 66.7%. Predicting the CM causal pathogen showed a similar poor
result; the decision tree had an accuracy of 27.9% and a kappa of 0.12, based on data in the test set. Based
on these results, it is concluded that decision-tree induction in conjunction with sensor information from
the electrical conductivity, color, and milk yield provide insufficient discriminative power to predict the
Gram-status or the CM causal pathogen itself.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mastitis is one of the most frequent and costly diseases in the
dairy industry (Halasa et al., 2007; Viguier et al., 2009), with clin-
ical mastitis (CM) being responsible for about 75% of the total costs
of mastitis for an average Dutch farm milking 65 cows and with a
bulk somatic cell count (SCC) of 200,000 cells/ml (Hogeveen et al.,
2010). The disease has negative effects on farm economics due to
production losses, treatment costs, and costs of culling (McDougall
et al., 2007; Huijps et al., 2008; Viguier et al., 2009). It is important
that cows that suffer from CM are detected during the early onset
of the disease to eliminate the infection and to prevent recurrence,
and that the appropriate type and amount of antimicrobial is

applied by the correct route and for the correct time to increase
cure rate (Hillerton and Kliem, 2002).

When milking with an automatic milking system, also called a
milking robot, CM is detected using two diagnostic tests: the first
is the CM detection model on the automatic milking system itself.
This model uses sensor measurements as input and gives a CM
alert as output. These CM alerts appear on a mastitis alert list to
warn the dairy farmer for cows that need attention (‘‘management
by exception’’, Hogeveen and Ouweltjes, 2003). The second test in-
volves the visual confirmation of CM and is conducted by the dairy
farmer, who checks the alerts from the mastitis alert list he or she
thinks necessary. If a CM case is visually confirmed, it is the
responsibility of the dairy farmer to decide on antimicrobial treat-
ment. Initially, the choice of antimicrobial treatment is based in ab-
sence of any knowledge about the CM causal pathogen, as the
whole process from taking a milk sample, culturing it, and deter-
mining the pathogens involved usually takes 3 days. Choosing an
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inappropriate treatment protocol or an ineffective antimicrobial
may be a reason cure rates of 75%, as suggested at the introduction
of commercial mastitis tubes or mastitis syringes, are not met in
practice (Erskine et al., 2003). In order to make a more informed
decision on which antimicrobial to use, it would be beneficial for
dairy farmers to have information about the CM causal pathogen
at the same time a cow is listed on the mastitis alert list.

In the past, studies were conducted to use several information
sources to provide or to predict the CM causal pathogen or the
Gram-status of the pathogen involved. For example, Godden
et al. (2007) and MacDonald et al. (2010) presented the potential
of on-farm culture systems in order to replace bacteriological cul-
turing that is done in the laboratory. Despite attractive benefits,
major disadvantages of this approach are the need of experienced
personnel and good on-farm laboratory conditions in order to
achieve proper accuracy. Instead of moving the laboratory to the
farm itself, other studies focused on using other information
sources to predict CM causal pathogens or Gram-status; expert
knowledge was used by Jones and Ward (1990) and Kim and Heald
(1999), cow information by Milne et al. (2003) and Steeneveld et al.
(2009), cow data and farm management practices by Heald et al.
(2000), and somatic cell count patterns by De Haas et al. (2004).
These studies showed varying predictive performances of the clas-
sification models developed, or concluded that collection of the
necessary information would take too long for an appropriate pre-
diction at cow-level. Kamphuis et al. (2008a) reported a difference
in sensor measurement patterns of the electrical conductivity and
the colors red, green, and blue between healthy quarters and quar-
ters infected with CM, but they did not check whether different
pathogens show different sensor measurement patterns. Espada
and Vijverberg (2002) expected color sensor measurements to be
useful for abnormal milk detection and potentially also for patho-
gen prediction. However, that study was based on a small data set,
collected during 1 month at two farms, with only 6 cows showing
abnormal milk in one quarter.

Kamphuis et al. (2010b) developed a CM detection model using
decision-tree induction. Sensor measurements of the electrical
conductivity and colors red, green, and blue were used as input for
this detection model. The final model showed a good performance
(a sensitivity of 40% at a specificity of 99%), considering the narrow
time window in which the model should alert for CM and the inclu-
sion of quarter milkings with a less clear mastitis status. Decision-
tree induction could very well be used to extract knowledge from
sensor data, amongst that of color sensors, for Gram-status predic-
tion. The main objective of this study is to explore whether sensor
measurements from automatic milking systems can be used by
decision-tree induction to predict the Gram-status of the CM causal
pathogen. In addition, the potential of predicting the actual CM
causal pathogen itself is evaluated as well.

2. Materials and methods

2.1. Data collection

The collection of data used for this study has been described in
detail by Kamphuis et al. (2010b). In short, raw sensor data and
observations of CM were collected at nine commercial Dutch dairy
farms milking automatically (version A2 (n = 10) or A3 (n = 2); Lely
Astronauts N.V., Maassluis, The Netherlands) from November 2006
until March 2009. Farm characteristics are summarized in Table 1.
Both versions of automatic milking systems use the same sensors:
the electrical conductivity was measured with a sensor consisting
of a collection bin with known content between two electrical pins.
In addition, the colors red, green, and blue were measured with a
light emitting diode (LED) sensor combination consisting of three

light sources emitting red, green, and blue light, and a receiver to
measure the reflected light intensity (Espada and Vijverberg,
2002). Raw sensor data of the electrical conductivity, color, and
an estimation of quarter milk yield were collected by connecting
a remote computer to each of the 12 automatic milking systems.
From these raw sensor measurements, 1065 potentially descriptive
variables were developed using a data flow diagram (Kamphuis
et al., 2008a, 2010a). These variables described characteristics
(level, variability, and shape) of sensor measurements patterns
from each quarter milking. Cows that raised suspicion of being
affected by CM, according to the own criteria of the participating
dairy farmer, were visually checked to confirm a CM case. The dairy
farmers’ suspicion could be based on the mastitis alert lists, but
also on other information, like SCC data, the presence of clots on
the milk filter, or through direct observations of redness or swol-
lenness of the udder. This approach resulted in different proce-
dures per farm to check quarters for CM. By introducing a
scoring protocol, however, the assessment of the actual CM status
and the procedure to collect milk samples for bacteriological cul-
turing was standardized: a scoring protocol instructed the dairy
farmers to visually score the 5th and 6th squirts of milk of all quar-
ters they checked using a clean black paddle as commonly used for
the California Mastitis Test (without using the reagent normally
used when applying this test). When visually normal, the milk
was scored as (1). When abnormal, the milk was scored as (2)
watery milk, (3) flakes, (4) clots, (5) serum-like milk, or (6) milk
with blood. If a dairy farmer decided the CM infection was severe
enough to start an antimicrobial treatment, they were asked to first
take two milk samples for bacteriological culturing and to store
these milk samples in their refrigerator. Furthermore, they were
instructed to record the cow’s identification number, quarter, date
and time, and the CM score assigned to the visually checked quar-
ter. Every 4–6 weeks, dairy farmers were visited to collect sensor
data stored by the remote computers, scoring forms, and milk
samples if any. Milk samples were bacteriological cultured by the
Veterinary Microbiological Diagnostic Centre (VMDC, Faculty of
Veterinary Medicine, Utrecht University, Utrecht, The Netherlands)
according to the standards of the National Mastitis Council
(Harmon et al., 1990).

2.2. Data preparation

In order to combine visual observations of CM with sensor data,
each visual quarter milk assessment was linked with sensor data
from the most recent quarter milking, within a 24 h time window
prior to the assessment time, recorded for that same quarter by the
remote computer (for a more detailed description, see Kamphuis
et al., 2010b).

By the end of the data collection period, 2003 quarters were
checked visually for having CM (see Table 1), of which 1593 could
be combined with sensor measurements within a 24 h time win-
dow. Quarters that received a CM score from 2 through 5 were con-
sidered as quarters with CM (n = 348, see Table 1). These included
74 quarters with watery milk, 217 quarters with flakes, 50 quarters
with clots and 7 serum-like quarters. There were 6 quarters con-
taining blood (CM score 6). These were excluded from further anal-
yses, as milk with blood does not necessarily imply a CM case but
can also be caused by damage in the udder or of the teat. From the
348 CM cases, 243 quarters were sampled for bacteriological cul-
turing. For those CM cases with only one milk sample (11.7% of
243 quarters), only this milk sample was evaluated for inclusion
criteria for further analyses. For the remainder 89.3% of the quar-
ters with two milk samples, both of these milk samples were eval-
uated for inclusion criteria. Only CM caused by major CM causal
pathogens (Escherichia coli, Klebsiella spp. Staphylococcus aureus,
Streptococcus dysgalactiae, and Streptococcus uberis) were included
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for further analyses. If a culture within one milk sample or over
milk samples of the same quarter showed a combination of major
CM causal pathogens (e.g., an S. aureus in combination with an
E. coli), the quarter was excluded for further analyses. Culture re-
sults that were combinations of one major CM causal pathogen
with a ‘mixed culture’, ‘no growth’, or ‘Bacillus spp.’ within one milk
sample or over milk samples of the same quarter were included. In
total, 140 quarters with CM were included for further analyses (see
Table 1); all of them were labeled according to the major CM causal
pathogen cultured within a milk sample or over milk samples of
the same quarter. This resulted in 26 quarters infected with
E. coli, 4 with Klebsiella spp., 22 with S. aureus, 72 with S. uberis,
and 16 with S. dysgalactiae. Quarters infected with E. coli or Klebsi-
ella spp. were classified as Gram-negative CM cases (n = 30), and all
others were classified as Gram-positive CM cases (n = 110). Table 2
summarizes the distribution of the major CM causal pathogens iso-
lated from bacteriological culturing of the 140 CM cases, their
Gram-status, and their CM score recorded by the participating
dairy farmers.

2.3. Model development and validation for Gram-status prediction

In order to develop a decision tree model that predicts the
Gram-status of a CM causal pathogen, a training set and a test
set were constructed. Two thirds of all data were selected for train-
ing and the remaining third for testing, where quarters were ran-
domly stratified according to the pathogen that caused the CM.
This stratification resulted in a training set with 21 Gram-negative
and 75 Gram-positive CM cases. The test set included nine Gram-
negative and 35 Gram-positive CM cases.

All CM cases in the training set had 1065 independent variables
based on sensor measurements. To prevent overfitting of the deci-
sion tree, first all independent variables that had an information
gain ratio higher than 0.01 were selected. The information gain
of an independent variable X is based on the change in information

value (or entropy) of a dataset S with respect to the dependent var-
iable Y, after partitioning S using the values of independent vari-
able X. A decision tree that selects independent variables based
on their information gain tends to prefer variables with a large
number of possible classes. Therefore, the decision tree in this cur-
rent study selects independent variables based on their informa-
tion gain ratio, which takes into account the number of classes
and records per class of X (Witten and Frank, 2005). Table 3 lists
the 16 independent variables in the training set that met this infor-
mation gain ratio requirement.

To develop a decision tree based on data in the training set, the
J48 algorithm as implemented in WEKA (Witten and Frank, 2005)
with default settings was used. A decision tree is a graphic repre-
sentation of a divide-and-conquer approach of a classification
problem and consists of nodes at which a variable is tested. Based
on its information gain ratio, an independent variable is selected to
split a data set at the first node. For each possible outcome of the
test involved at that node, a branch is made ending in a daughter
node. Next, the process can be repeated for each branch, using only
those records that actually reach that branch (Kamphuis et al.,
2010b; Witten and Frank, 2005). In an ideal situation, the tree
stops developing at the time all records at a node have the same
classification, e.g., all records involve a Gram-positive CM case. In
reality, this is often not the case, and the records that flow into
an end node are used by the decision tree to calculate a probability
estimate for the Gram-status for each record in that node. It
becomes even more difficult when the decision tree encounters
records with missing values for variables used at test nodes. To
solve this problem, such a record with missing values for variables
used at test nodes is proportionally split into pieces – or weights –
and the parts are sent down each branch and from there right on
down to the leaves of the sub-trees involved. The split into pieces
is accomplished by using a numeric weight between zero and one,
and the weight for a branch is chosen to be proportional to the
number of records going down that branch that do have a value

Table 1
Farm characteristics of participating farmers included in the study. Per farm, characteristics included the number of automatic milking systems (AMS), start of data collection, the
number of individual cows milked during the data collection period, the number of quarters checked for clinical mastitis (CM), the number of quarters with CM, and the number
of CM cases with sensor measurements and bacteriological culturing results that are included in the analyses.

Farm AMS (n) Start of data collection Individual cows milked (n) Quarters visually checked (n) Quarters with CM (n) CM included for analyses (n)

1 1 October 25 2007 64 67 14 11
2 1 August 14 2007 71 94 58 29
3 1 December 8 2006 70 437 81 17
4 1 January 30 2007 97 325 77 32
5 1a September 13 2007 55 18 5 1
6 1a October 4 2007 79 143 7 1
7 2 January 30 2007 101 627 26 11
8 2 March 9 2007 129 72 28 15
9 2 December 7 2006 106 220 52 23
Total 12 772 2003 348 140

a Farms with an A3 Lely Astronaut automatic milking system (Lely Industries N.V., Maassluis, The Netherlands). All other farms used an A2 Lely Astronaut automatic
milking system.

Table 2
Bacteriological culturing results of 140 clinical mastitis cases with at least one milk sample being bacteriological cultured, their Gram status, and their clinical mastitis score as
recorded by the participating farmers.

Main pathogen isolated Gram status Score assigned to quarter by farmer Total (n)

Watery (n) Flakes (n) Clots (n) Serum-like (n)

Escherichia coli Negative 6 13 6 1 26
Klebsiella spp. Negative 2 1 1 – 4
Staphylococcus aureus Positive 2 19 1 – 22
Streptococcus dysgalactiae Positive – 14 2 – 16
Streptococcus uberis Positive 5 40 22 5 72
Total 15 87 32 6 140
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for the variable used at the test node. A split record may be further
split at a lower node. Eventually, the various parts – or weights – of
the record will reach end nodes and the final CM probability esti-
mate for these split records is computed by multiplying the prob-
abilities for CM at the end nodes by the weight of that record that
reaches that specific end node (Witten and Frank, 2005).

The number of Gram-negative CM cases in the training set was
much lower than the number of Gram-positive CM cases (21 vs. 75,
respectively). Therefore, a cost matrix was applied to balance the
data (Kamphuis et al., 2010a) in order to prevent the decision tree
to simply classify all CM cases as caused by the majority group
(Gram-positive CM causal pathogens). A cost matrix is a square
matrix with its size dependent on the number of levels of the
dependent variable. This means that a 2 � 2-sized cost matrix
was used for model development with zeros at the diagonal. Val-
ues off the diagonal represent the ‘costs’ that are made by the deci-
sion tree for misclassifying a CM case. As there are 3.57 more
Gram-positive CM cases in the training set than there are Gram-
negative, the costs for misclassifying a Gram-negative case was
set at 3.57 and the costs for misclassifying a Gram-positive case
was set at 1. By doing this, the dataset was artificially balanced.

To prevent the selection of correlated variables in the develop-
ment of a Gram-status predicting decision tree based on 96 CM
cases in the training set, first 16 univariate decision trees (includ-
ing the cost matrix) were developed; all 16 variables listed in
Table 3 were used one by one to split the training data according
to their Gram-status. To select the best univariate decision tree,
Cohen’s kappa value was used. Cohen’s kappa value is a test of
agreement between two tests, in absence of a gold standard, after
chance agreement is removed from consideration. Cohen’s kappa
value is calculated as the actual agreement between two tests be-
yond chance divided by the potential agreement beyond chance;
the actual agreement beyond chance is calculated as the observed
agreement minus the expected agreement (chance) and the ex-
pected agreement beyond chance is calculated as one minus the
expected agreement (Cohen, 1960; Dohoo et al., 2009). The deci-
sion tree resulting in the highest kappa value was selected, and a
forward selection procedure started including the variable chosen
in the first selection round and all 15 remaining independent vari-
ables added one by one. This procedure of forward selection was
continued until the kappa value no longer improved. The decision
tree that was developed at that point was used to predict the
Gram-status of the CM cases in the test set, where the output
was a probability estimate for a quarter to have a CM infection
caused by a Gram-positive or a Gram-negative pathogen. Kappa
value and accuracy of this test set were evaluated as well.

2.4. Model development and validation for pathogen prediction

Decision-tree induction was also applied to sensor data to de-
velop a model that predicts the CM causal pathogen itself. How-
ever, as the number of CM cases caused by Klebsiella spp. was
limited (n = 4), these CM cases were excluded from the training
set (n = 3) and test set (n = 1). The remaining 93 records in the
training set were used to select independent variables with an
information gain ratio higher than 0.01. This selection resulted in
one variable that fulfilled this requirement (see Table 3). Therefore,
a further forward selection procedure was not performed. A final
decision tree was trained using the single independent variable
that had a gain ratio higher than 0.01 and a cost matrix that bal-
anced the classes of different CM causal pathogens to the majority
class (S. uberis) in a similar way as was done for the Gram-status
predicting model. This means that a 4 � 4-sized cost matrix was
used, with zeros on the diagonal, and with values of 2.72 as cost
factor of misclassifying an E. coli infection, 3.27 for misclassifying
an S. aureus infection, and 4.45 as cost factor for misclassifying

an S. dysgalactiae as being S. uberis. Costs for misclassifying S. uberis
for any of the other pathogens were set at 1.0. Also this decision
tree was evaluated with data from the test set, containing 43 CM
cases, with the kappa value and the accuracy as evaluation
measures.

The data mining software WEKA (Witten and Frank, 2005) was
used to select variables based on their information gain ratio, to
perform the forward selection of independent variables, to develop
the final decision tree, and to compute kappa values and accura-
cies. The PROC SURVEYSELECT procedure in SAS (version 9.1, SAS
Institute Inc., Cary, NC) was used for stratified randomization of
the data to create a training and a test set.

3. Results

The most frequently isolated pathogen was S. uberis (Table 2).
Most quarters were scored as having flakes or clots in their milk
(85%). Compared to Gram-positive CM cases, Gram-negative CM
cases were more often scored as having watery milk (6.4% vs.
26.7% for Gram-positive and Gram-negative pathogens,
respectively).

There were 16 independent variables selected for Gram-status
prediction based on their information gain ratio being >0.01 (Ta-
ble 3). The information gain ratios ranged from 0.0260 to 0.2923.
Most of these selected variables are based on the sensor measuring
the electrical conductivity, although the sensors measuring the col-
ors red and blue also seem informative (based on their information
gain ratio value). Selected variables are based on absolute values,
but also on comparisons with previous milkings or on other quar-
ters within the same cow milking.
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Fig. 1. Final decision tree using three different independent variables to classify 96
quarters in the training set for to their Gram-status. The ovals represent test nodes
at which a variable is tested (variable names are explained in Table 3). The
rectangles represent end-nodes at which a prediction is made (being infected with a
Gram-positive (Gram+) or Gram-negative (Gram�) clinical mastitis causal patho-
gen) for those records reaching this rectangle. The first figure between brackets
presented in these rectangles summarizes the total number of records reaching this
rectangle; the second figure represents the records that are misclassified by the
decision tree. The variables selected had a gain ratio >0.01.
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The final decision tree (with the highest kappa value) for Gram-
status prediction is graphically presented by Fig. 1. The accuracy of
this decision tree based on data from the training set was 90.6%,
and the kappa value was 0.76. The tree used seven tests (ovals in
Fig. 1) to classify the 96 records in the training set based on three
independent variables; two were based on electrical conductivity
measurements, and one was based on the color sensor blue. The
rectangles in Fig. 1 represent end nodes where records are classi-
fied as being caused by a Gram-positive or Gram-negative CM cau-
sal pathogen.

The figures between brackets in the end nodes can be used to
calculate the probability estimates for a CM case to be caused by
a Gram-positive or a Gram-negative CM causal pathogen. For
example, if a CM case ends up in the second end node from the
top, it will be classified by the decision tree as being caused by a
Gram-positive CM causal pathogen. This end node contains 10.81
CM cases, of which 0.31 are misclassified (and thus were labeled
by the gold standard or the bacteriological culturing results as
Gram-negative CM cases). The decision tree will assign a probabil-
ity estimate of 97.1% (calculated as 100 � ((10.81–0.31)/10.81) that
this CM case is infected with a Gram-positive CM causal pathogen,
and a probability estimate of 2.9% (calculated as 100 � (0.31/
10.81)) to be infected with a Gram-negative CM causal pathogen.
The figures in the rectangles show decimals due to the way the
J48 algorithm deals with records with missing values for the vari-
ables on which a test at a node applies.

The higher the probability estimate, the more accurate the pre-
diction for a Gram-positive CM case gets (Fig. 2). But also, the lower
the probability estimate, the more accurate the prediction for a
Gram-negative CM case gets. There were 65 quarters out of the
96 (67.7%) that received a probability estimate of >0.60 for being
a Gram-positive CM case. All of these CM cases were indeed
Gram-positive cases. An extreme low probability estimate for a
Gram-positive CM case (60.10), which is thus similar to an ex-
treme high probability estimates for a Gram-negative CM case
(>0.90), also shows an accurate prediction: 12 out of the 96 CM
cases (12.5%) received such a high probability estimate for a
Gram-negative CM case, and 83.3% of these 12 CM cases were in-
deed Gram-negative CM cases.

The accuracy of the final decision tree for Gram-status predic-
tion dropped to 54.5% when applied to the test set. The kappa value
decreased to �0.20. Fig. 3 explains visually the decrease in both
accuracy and kappa value. First of all, even at extremely high prob-
abilities (e.g., >0.90) for a Gram-positive CM case, still 7 out of the
27 CM cases (25.9%) were Gram-negative. And at extremely low
probabilities (e.g., 60.10) for Gram-positive CM cases, still 4 out
of the 5 CM cases (80%) were Gram-positive.

There was only one independent variable that fulfilled the
requirement of having an information gain ratio higher than 0.01
for predicting the actual CM causal pathogen (Table 3). The final
decision tree used that independent variable at five test nodes,
each time using different threshold values in order to classify the

records according to the CM causal pathogen. Based on the 93 re-
cords in the training set, the accuracy of this model was 34.4% and
the kappa value was 0.19. When applied on the test set, accuracy
dropped to 27.9% and the kappa value dropped to 0.12.

4. Discussion

Only 16 out of 1065 potentially predictive variables had an
information gain ratio higher than 0.01 for predicting the Gram-
status of a CM case (Table 3). This indicates that all other variables
had an information gain ratio value so low, that these had no dis-
criminative power at all to predict the Gram-status of a CM causal
pathogen. The prediction of the CM causal pathogen itself seemed
even more difficult with the use of sensor information, as only one
variable out of the 1065 potentially predictive variables had an
information gain higher than 0.01 (Table 3). The 17 potentially pre-
dictive variables that were selected, however, were mainly based
on electrical conductivity measurements. Already in the early
beginnings of developing CM detection models using sensor data,
the electrical conductivity has been used as detection tool (e.g.,
Maatje et al., 1992) although the electrical conductivity has not
been suggested to be useful for pathogen detection before. The fi-
nal decision tree for predicting the Gram-status of CM causal
pathogens used two out of three variables that were based on elec-
trical conductivity measurements (Fig. 1). The third one was based
on the color sensor blue. A first study on the potential of color
sensors for pathogen prediction was conducted by Espada and
Vijverberg (2002), which served as basis for the study described
in this paper. Although that study included just a very small num-
ber of cases (6 cows with abnormal milk in one quarter), they con-
cluded that abnormalities in milk (e.g., clots) caused a significant
change of milk color in comparison with milk from other quarters
in the same milking or with previous milkings. Results from the
current study do confirm the potential of using color as detection
or prediction tool. The three independent variables used by the
final decision tree (Fig. 1) characterized the variability or shape
of sensor measurements, and they were based on comparisons
with previous quarter milkings or with other quarters in the same
cow milking. This finding is in line with results from Kamphuis
et al. (2008a). They concluded that sensor data from the electrical
conductivity and the color sensors blue and green contained the
most information for abnormal milk or CM classification, and that
variables based on the variability or shape (e.g., the range or
increase) of sensor measurement patterns could be as predictive
as variables based on the level of sensor measurement patterns
(e.g., the mean value).

Fig. 2 and 3 show the probability estimates to be infected with a
Gram-positive CM causal pathogen that the final decision tree as-
signed to the CM cases in the training set and the test set, respec-
tively. This indicates that the decision tree is more confident for
some CM cases to be Gram-positive CM cases than for others.
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Fig. 2. The number of clinical mastitis (CM) cases in the training set infected with a Gram-positive or a Gram-negative CM causal pathogen (y-axis) per probability estimate
for a CM case to be infected with a Gram-positive pathogen (x-axis). In total, 96 CM cases were included in the training set.
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Results from both figures also indicate that Steeneveld et al. (2009)
and Van der Gaag et al. (2009) made sensible suggestions that pre-
senting a probability distribution for the causal CM pathogen
would be more informative for dairy farmers as it reveals the
uncertainty involved with a binary or multiclass classification.
Both studies discuss the presentation of a stratified accuracy, a
measure which is based upon different strata of the dataset under
study. When this idea is applied to the current study, it would be
possible to present to dairy farmers only those quarters with ex-
treme high probability estimates for being a Gram-positive CM
case (e.g., >0.80) or a Gram-negative CM case (e.g., >0.90, which
is similar as a probability of 60.10 for being a Gram-positive CM
case). By doing this, still 74% from the 96 quarters in the training
set will have a probability estimate presented to the dairy farmer,
with a stratified accuracy of 97.2%. For the test set, 75% will receive
a probability estimate with a stratified accuracy of 66.7% (results
not shown).

The three independent variables the final decision tree selected
(Fig. 1) were not the three variables with the highest information
gain ratios (Table 3). This somewhat surprising result may be ex-
plained by the fact that a cost matrix was applied to balance the
distribution between Gram-positive and Gram-negative CM cases
in the training set. In a situation where a decision tree is developed
without a cost matrix, the figures – or weights – in the end nodes of
a decision tree will add up to the number of records that are la-
beled Gram-positive or Gram-negative in the training set. How-
ever, when adding up the figures mentioned in the end nodes
from Fig. 1, they add up to 48.0 for Gram-positive and for Gram-
negative records. This shows that applying a cost matrix had effect
in balancing the data, and this new balanced data may have an ef-
fect on how these records can be divided according to their Gram-
status with the independent variables listed in Table 3.

After completing the forward selection procedure, a decision
tree was developed based on three independent variables (Fig. 1)
with the highest kappa value (0.76). This kappa value can be inter-
preted as a substantial agreement (Dohoo et al., 2009) between the
classifications of the decision tree and the labeling of quarters
according to their bacteriological culturing results as Gram-posi-
tive or negative CM cases. The accuracy of this final decision tree
was 90.6%. For comparison, a simple model that would classify
CM cases based on prevalence would have an accuracy of 66.7%,
and a model that would classify all CM cases as Gram-positive
cases would have an accuracy of 78.1%. These results suggest that
the three sensor based variables used by the decision tree were
able to discriminate between Gram-positive and Gram-negative
CM cases. However, when the decision tree was applied to data
not used for training to validate its performance, both the accuracy
and the kappa value dropped dramatically to 54.4% and �0.20,
respectively. These results indicate that the three selected vari-
ables based on data in the training set were unable to predict the

Gram-status of the CM cases in the test set. So, although a forward
selection procedure was used to prevent selection of correlated
independent variables and a cost matrix was applied to balance
the data in the training set, based on the results from the test set
it has to be concluded that the developed decision tree was overfit
to the training data. This conclusion was confirmed when two
additional iterations to create training and test sets showed a sim-
ilar trend of good performances with data from the training set and
poor performances when validated with data from the test set (re-
sults not shown). The accuracy of 54.5% found when applying the
decision tree to the test set is just slightly higher than the accuracy
of 48% that White et al. (1986) observed for inexperienced clini-
cians when predicting the Gram-status of a CM case, and much
lower than the accuracy of 79% reported by Milne et al. (2003)
and 73% reported by Steeneveld et al. (2009). Accuracies and kappa
values for predicting the CM causal pathogen itself were very poor
in the current study: the decision tree showed an accuracy of 34.4%
and a kappa of 0.19 based on data in the training set. The accuracy
is lower than one would get with simply classifying all CM cases as
S. uberis cases, which would result in an accuracy of 52.6%. Again
performance dropped (an accuracy of 27.9% and a kappa of 0.12)
when the developed decision tree was applied to data not used
for training. This indicates that the decision tree was unable to
use sensor information to predict the CM causal pathogen itself.
The study of Steeneveld et al. (2009) also used cow information
to predict the CM causal pathogen itself, and showed a model with
an overall accuracy of 52%, and a stratified accuracy of 89% for 4%
of all CM cases. Again, their results outperform the detection per-
formance from the model developed in the current study.

Still, it may be a too harsh conclusion to exclude sensor mea-
surements for future research in the field of these types of predict-
ing models, and there are three reasons not to do so. First of all, the
current study used only 140 CM cases. This is a low number in
comparison with the 573 CM cases used by Milne et al. (2003)
and the 3833 CM cases used by Steeneveld et al. (2009), but it is
a high number of CM cases in the field of CM detection using sen-
sor data. Studies in the field of automated CM detection often use a
lot less CM cases for analyses (e.g., 19 CM cases used by Mollen-
horst et al., 2010, and 36 CM cases used by Song et al., 2010). It
is likely that the inclusion of more CM cases with sensor informa-
tion and bacteriological results will improve the robustness of
decision trees predicting the Gram-status or the CM causal patho-
gens itself.

Another reason causing the poor detection result is the classifi-
cation problem itself and the distribution of pathogen species in
the current study. Differentiating between quarter milkings with
CM and without CM (healthy quarters) is probably easier for an
algorithm than differentiating between already diseased quarter
milkings, as the sensor measurement patterns are more likely to
be different between truly healthy quarter milkings and truly
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Fig. 3. The number of clinical mastitis (CM) cases in the test set infected with a Gram-positive or a Gram-negative CM causal pathogen (y-axis) per probability estimate for a
CM case to be infected with a Gram-positive pathogen (x-axis). In total, 44 CM cases were included in the test set.
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diseased ones. The distribution of pathogen species in the current
study is strongly subject to which cows dairy farmers decided to
check visually, and on how good they actually were in classifying
the milk. For example, it has been suggested that watery milk
without flakes is an indicator for an upcoming severe E. coli infec-
tion (Hogeveen et al., 1995). Results from Kamphuis et al. (2008b)
showed that this category showed deviating mean sensor mea-
surement values, especially for the sensors measuring the electri-
cal conductivity and the color blue. However, it is also known
that watery milk is a difficult to classify category (Rasmussen,
2005), and this may be the reason that just 6 out of 26 CM cases
caused by E. coli are detected in the supposedly early stage of infec-
tion, and that more than half of the CM cases classified by the farm-
ers as being watery to be caused by another pathogen species
rather than E. coli. This misclassification of the CM status may
cause the pathogen species linked to the wrong CM sensor mea-
surement patterns, in this way introducing noise in the dataset
and making it more difficult for the decision-tree algorithm to se-
lect independent variables more specific to the deviating sensor
patterns specific for E. coli infection. Also, it is known that S. aureus
infections are often subclinical, and develop slowly to clinical flare-
ups (Harmon, 1994). When a dairy farmer knows a cow suffering
from an S. aureus infection, he or she might decide to do nothing
about these cases, causing the number of S. aureus CM cases in this
study to be lower than they are in reality. In addition, due to the
fact that the progress of infection is slow and mostly subclinical,
with SCC levels tending to fluctuate at high levels long before but
also long after a clinical flare-up (De Haas et al., 2002), the sensor
measurement patterns may not be as distinct as for example the
sensor measurement pattern of an early stage E. coli infection,
where the SCC peaks within a short time window around the CM
occurrence (De Haas et al., 2002). The expected lack of distinct sen-
sor measurement patterns for an S. aureus infection therefore
makes it more difficult for a decision-tree algorithm to select inde-
pendent variables specific for this type of CM infection.

The third reason for not neglecting sensor measurements for fu-
ture research is the ongoing development of new and improved
sensors. Steeneveld et al. (2009) showed that whether a cow was
sick or not, the color of milk, and the SCC from the 3- to 4-weekly
Dutch national milk recording system were cow information
sources that contributed significantly in the prediction for Gram-
status or in the prediction of the CM causal pathogen itself. All
these three aspects can be measured by sensors not used in the
current study or by improved sensors compared to the ones used
in the current study. For example, infrared thermography and sen-
sors estimating SCC on-line are sensors that have been used for
mastitis detection in previous research (e.g., Berry et al., 2003;
Kamphuis et al., 2008b; Polat et al., 2010) and recent work from
Song et al. (2010) indicated that the use of a new generation of col-
or sensors (measuring LED transmittance) is expected to improve
the detection of CM. So although the decision tree developed in
the current study performed poorly on data from the test set, it
could very well be that other sensors than used in the current
study are able to contribute to predict the Gram-status or CM cau-
sal pathogens. And if such a Gram-status or CM causal pathogen
predicting model becomes applicable in practice, this could affect
the dairy farmer’s choice on antimicrobial treatment. For example,
a dairy farmer in practice being confronted with a quarter with an
extreme high probability estimate for being a Gram-negative CM
case (e.g., >0.90), might better start a supportive treatment to re-
lieve the cow of systemic signs with fluids and other supportive
care than to start an antimicrobial treatment (Pyörälä and Pyörälä,
1998; Erskine et al., 2003). If a reduction of antimicrobials used in
the dairy industry is induced, the real or perceived concerns about
antimicrobial use as a human health hazard by the regulatory sec-
tor and the milk consuming public may be reduced. Future work

should include other sensors and more CM cases to develop a more
robust decision tree for Gram-status prediction.

5. Conclusion

A decision tree for predicting the Gram-status of CM causal
pathogens showed a kappa of 0.76 and an accuracy of 90.6% for
the training set. The kappa value and accuracy decreased to
�0.20 and 54.5%, respectively, when the decision tree was vali-
dated with data from the test set. These figures indicate that the
developed decision tree was not a robust one. A similar result
was found for a model predicting the CM causal pathogen itself:
the kappa value and accuracy were 0.12 and 27.9% based on data
from the test set. Based on these results, it is concluded that deci-
sion-tree induction in conjunction with sensor information from
the electrical conductivity, color, and milk yield provides insuffi-
cient discriminative power to predict the Gram-status or the CM
causal pathogen itself.

Acknowledgements

We acknowledge the participating dairy farmers for their con-
tribution to the acquisition of the data used in this research. Also
acknowledged is Lely Industries N.V. (Maassluis, The Netherlands)
for providing addresses of dairy farmers working with automatic
milking systems and their support with the installation of the data
acquisition systems at the participating farms. This research is sup-
ported by the Dutch Technology Foundation STW, applied science
division of NWO and the Technology Program of the Ministry of
Economic Affairs.

References

Berry, R.J., Kennedy, A.D., Scott, S.L., Kyle, B.L., Schaefer, A.L., 2003. Daily variation in
the udder surface temperature of dairy cows measured by infrared
thermography: potential for mastitis detection. Can. J. Anim. Sci. 83, 687–693.

Cohen, J., 1960. A coefficient of agreement for nomical scales. Educ. Physiol. Meas. 1,
37–46.

De Haas, Y., Barkema, H.W., Veerkamp, R.F., 2002. The effect of pathogen-specific
clinical mastitis on the lactation curve for somatic cell count. J. Dairy Sci. 85,
1314–1323.

De Haas, Y., Veerkamp, R.F., Barkema, H.W., Gröhn, Y.T., Schukken, Y.-H., 2004.
Associations between pathogen-specific cases of clinical mastitis and somatic
cell count patterns. J. Dairy Sci. 87, 95–105.

Dohoo, I., Martin, W., Stryhn, H., 2009. Veterinary Epidemiology Research. In:
McPike, S.M. (Ed.), vol. 2. VER Inc., Charlottetown.

Erskine, R., Wagner, S., DeGraves, F., 2003. Mastitis therapy and pharmacology. Vet.
Clin. North Am. Food Anim. Pract. 19, 109–138.

Espada, E., Vijverberg, H., 2002. Milk colour analysis as a tool for the detection of
abnormal milk. In: First North American Conference on Robotic Milking.
Wageningen Pers, Wageningen, pp. 28–38.

Godden, S., Lago, A., Bey, R., Leslie, K., Ruegg, P., Dingwell, R., 2007. Use of on-farm
culture systems in mastitis control programs. In: National Mastitis Council
Regional Meeting Proceedings. Visalia, California, pp. 1–9.

Halasa, T., Huijps, K., Østerås, O., Hogeveen, H., 2007. Economic effects of bovine
mastitis and mastitis management: A review. Vet. Q. 29, 8–31.

Harmon, R.J., 1994. Physiology of mastitis and factors affecting somatic cell counts.
J. Dairy Sci. 77, 2103–2112.

Harmon, R.J., Eberhart, R.J., Jasper, D.E., Langlois, B.E., Wilson, R.A., 1990.
Microbiological Procedures for the Diagnosis of Bovine Udder Infection.
National Mastitis Council Inc., Arlington, VA.

Heald, C.W., Kim, T., Sischo, W.M., Cooper, J.B., Wolfgang, D.R., 2000. A
computerized mastitis decision aid using farm-based records: an artificial
neural network approach. J. Dairy Sci. 83, 711–720.

Hillerton, J.E., Kliem, K.E., 2002. Effective treatment of Streptococcus uberis clinical
mastitis to minimize the use of antibiotics. J. Dairy Sci. 85, 1009–1014.

Hogeveen, H., Huijps, K., Halasa, T., Lam, T.J.G.M., 2010. Mastitis costs money:
what’s new? In: Hillerton, J.E. (Ed.), Mastitis Research into Practice: Proceedings
of the 5th IDF Mastitis Conference, VetLearn, New Zealand, pp. 62–71.

Hogeveen, H., Noordhuizen-Stassen, E.N., Thysen, I., Van Werven, T., Lam, T.J.G.M.,
1995. Automated pathogen diagnosis at low somatic cell count farms. In: Saran,
A., Soback, S. (Eds.), proceedings of the Third International Mastitis Seminar, vol.
I. Tel Aviv, Israel, pp. s2.47–s2.51.

Hogeveen, H., Ouweltjes, W., 2003. Sensors and management support in high-
technology milking. J. Anim. Sci. 81, 1–10.

C. Kamphuis et al. / Computers and Electronics in Agriculture 77 (2011) 86–94 93



Author's personal copy

Huijps, K., Lam, T.J.G.M., Hogeveen, H., 2008. Costs of mastitis: facts and perception.
J. Dairy. Res. 75, 113–120.

Jones, G.F., Ward, G.E., 1990. Evaluation of a scheme for predicting the Gram-
staining reaction of organisms causal bovine mastitis. J. Am. Vet. Med. Assoc.
196, 597–599.

Kamphuis, C., Mollenhorst, H., Feelders, A.J., Pietersma, D., Hogeveen, H., 2010a.
Decision-tree induction to detect clinical mastitis with automatic milking.
Comput. Electron. Agric. 70, 60–68.

Kamphuis, C., Mollenhorst, H., Heesterbeek, J.A.P., Hogeveen, H., 2010b. Detection of
clinical mastitis with sensor data from automatic milking systems is improved
by using decision-tree induction. J. Dairy Sci. 93, 3616–3627.

Kamphuis, C., Pietersma, D., Van der Tol, R., Wiedemann, M., Hogeveen, H., 2008a.
Using sensor data patterns from an automatic milking system to develop
predictive variables for classifying clinical mastitis and abnormal milk. Comput.
Electron. Agric. 62, 169–181.

Kamphuis, C., Sherlock, R., Jago, J., Mein, G., Hogeveen, H., 2008b. Automatic
detection of clinical mastitis is improved by in-line monitoring of somatic cell
count. J. Dairy Sci. 91, 4560–4570.

Kim, T., Heald, C.W., 1999. Inducing inference rules for the classification of bovine
mastitis. Comput. Electron. Agric. 23, 27–42.

Maatje, K., Huijsmans, P.J.M., Rossing, W., Hogewerf, P.H., 1992. The efficacy of in-
line measurement of quarter milk electrical-conductivity, milk-yield and milk
temperature for the detection of clinical and subclinical mastitis. Livest. Prod.
Sci. 30, 239–249.

MacDonald, K., Poole, D., Muckle, A., 2010. Preliminary assessment of the accuracy
of on-farm diagnosis of clinical mastitis using 3M Petrifilms compared to
standard microbiology. In: Hillerton, J.E. (Ed.), Mastitis Research into Practice:
Proceedings of the 5th IDF Mastitis Conference, VetLearn, Wellington, pp. 481–
482.

McDougall, S., Agnew, K.E., Cursons, R., Hou, X.X., Compton, C.R.W., 2007. Parenteral
treatment of clinical mastitis with tylosin base or penethamate hydriodide in
dairy cattle. J. Dairy Sci. 90, 779–789.

Milne, M.H., Biggs, A.M., Fitzpatrick, J.L., Innocent, G.T., Barrett, D.C., 2003. Use of
clinical information to predict the characteristics of bacteria isolated from
clinical cases of bovine mastitis. Vet. Rec. 152, 615–617.

Mollenhorst, H., Van der Tol, P.P.J., Hogeveen, H., 2010. Somatic cell count
assessment at quarter or cow milking level. J. Dairy Sci. 93, 3358–3364.

Polat, B., Colak, A., Cengiz., M., Yanmaz, L.E., Oral, H., Bastan, A., Kaya, S., Hayirli, A.,
2010. Sensitivity and specificity of infrared thermography in detection of
subclinical mastitis in dairy cows. J. Dairy Sci. 93, 3525–3532.

Pyörälä, S.H.K., Pyörälä, E.O., 1998. Efficacy of parenteral administration of three
antimicrobial agents in treatment of clinical mastitis in lactating cows: 487
cases (1989–1995). J. Am. Vet. Med. Assoc. 212, 407–412.

Rasmussen, M.D., 2005. Visual scoring of clots in foremilk. J. Dairy Res. 72, 406–414.
Song, X., Zhuang, S., Van der Tol, P. P. J., 2010. New model to detect clinical mastitis

in Astronaut A3 Next™ milking robot. In: Hillerton, J.E. (Ed.), Mastitis Research
into Practice: Proceedings of the 5th IDF Mastitis Conference, VetLearn, New
Zealand, pp. 474–480.

Steeneveld, W., Van der Gaag, L.C., Barkema, H.W., Hogeveen, H.W., 2009. Providing
probability distributions for the causal pathogen of clinical mastitis using naive
Bayesian networks. J. Dairy Sci. 92, 2598–2609.

Van der Gaag, L.C., Renooij, S., Steeneveld, W., Hogeveen, H., 2009. When in doubt.
Be indecisive. In: Sossai, C., Chemello, G. (Eds.), Proceedings of the 10th
European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty. Springer Verlag, Berlin/Heidelberg, pp. 518–529.

Viguier, C., Arora, S., Gilmartin, N., Welbeck, K., O’Kennedy, R., 2009. Mastitis
detection: current trends and future perspectives. Trends Biotechnol. 27 (8),
486–493.

White, M.E., Glickman, L.T., Barnes-Pallesen, F.G., Stem III, E.S., Dinsmore, P., Powers,
M.S., Powers, P., Smith, M.C., Jasko, D., 1986. Accuracy of clinicians in predicting
the bacterial cause of clinical bovine mastitis. Can. Vet. J. 27, 218–220.

Witten, I.H., Frank, E., 2005. Data Mining; Practical Machine Learning Tools and
Techniques, vol. 2. Morgan Kaufmann Publishers, San Fransi.

94 C. Kamphuis et al. / Computers and Electronics in Agriculture 77 (2011) 86–94


