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In this paper, we study the evolution of phase-separating binary mixtures which are subjected to
alternate cooling and heating cycles. An initially homogeneous mixture is rapidly quenched to a
temperature 77 < T, where T is the critical temperature. The mixture undergoes phase separation
for a while and is then suddenly heated to a temperature 7, > T,. These cycles are repeated to create a
domain morphology with multiple length scales, i.e., the structure factor is characterized by multiple
peaks. For phase separation in d = 2 systems, we present numerical and analytical results for the
emergence and growth of this multiple-scale morphology. © 2011 American Institute of Physics.

[doi:10.1063/1.3530784]

. INTRODUCTION

Consider a binary (AB) mixture, which is homogeneous
(or disordered) at high temperatures and phase-separated (or
ordered) at low temperatures. If the homogeneous mixture
is rapidly quenched below the critical temperature 7, it be-
comes thermodynamically unstable. Then, the mixture under-
goes phase separation via the formation and growth of do-
mains of A- and B-rich phases. Much research interest has
focused on this far-from-equilibrium evolution."? There now
exists a good understanding of segregation dynamics for bi-
nary mixtures.>”’ In cases where phase separation is driven
by diffusion, these coarsening processes may be modeled us-
ing kinetic Ising models with locally conserved magnetiza-
tion, e.g., the spin-exchange Kawasaki—Ising model.>®° The
possible spin values (s = %1) represent the two species of
particles that are demixing. The coarse-grained order parame-
ter (magnetization) of such models is described by the Cahn—
Hilliard-Cook (CHC) equation'®!! or Model B."? In the di-
lute limit, where droplets of the minority phase grow in a
homogeneous background, Lifshitz and Slyozov (LS) have
shown that the average domain size increases as L(t) ~ t?,
where ¢ is the time after the quench and ¢ = 1/3.!> Huse'*
has shown that the LS growth law also applies to the case
where there are approximately equal fractions of the two
phases.

Apart from the domain growth laws, experimentalists are
also interested in quantitative features of the phase-separating
morphologies. An important experimental quantity is the
time-dependent structure factor S(k, ) (E being the wave vec-
tor) or its Fourier transform, the correlation function C 7, 1).
Our understanding of S(k, t) for a phase-separating system
is relatively limited. The structure factor exhibits dynamical
scaling, S(lz, t) ~ L4 f(kL), where d is the dimensionality. It
has a single peak at the inverse of the characteristic length

) Author to whom correspondence should be addressed. Electronic mail:
purijnu@ gmail.com.

0021-9606/2011/134(4)/044910/8/$30.00

134, 044910-1

scale, k,, ~ L()~'. With the passage of time, k, — 0 as
ki ~ t~%. We also know the behavior of S(k, t) in the limits
k — 0[i.e., S(k, 1) ~ k*] (Refs. 15 and 16) and k — oo [i.e.,
S(k, t) ~ k~@+D]. The latter result is known as Porod’s law
and is a result of scattering from sharp interfaces.!” However,
there is still no theory which describes the complete func-
tional form of S(k, ).

In this paper, we study the phase-separation dynamics of
a binary mixture with a specific interest in the structure factor.
In particular, we study the effect of a time-dependent varia-
tion of temperature on S (I;, t). There have been several studies
of phase separation with a time-dependent temperature.'$-2°
The general question which motivates our study is whether it
is possible to create a domain morphology with a predefined
structure factor by temporal variation of external parameters.
This issue is of great technological importance, especially in
the context of tailoring microstructures and nanostructures.
For instance, the microstructure of food, paint, or biomateri-
als is not solely a function of the constituents. It is often an
arrested morphology, which is determined by external con-
ditions which guide the structural evolution. Thus, the vari-
ation of these external conditions during the structure for-
mation can steer the microstructure in desirable directions,
e.g., more durable biomaterials, low-calorie food with better
“mouthfeel” and “chewability,” and paint with a color that is
less sensitive to the method of application (painting or spray-
ing). The present study is a first step in the direction of struc-
ture control by temporal variation of external parameters.

In this context, we study phase separation via computer
simulations of (a) the conserved Kawasaki-Ising model and
(b) the CHC model. In contrast to most earlier studies of this
problem, we change external parameters (e.g., temperature)
during the simulation to influence the shape of the structure
factor. We consider a simple protocol for variation of the tem-
perature, viz., the temperature is cycled between high and low
values. Depending on the frequency and amplitude of the cy-
cling, we obtain structure factors with multiple peaks, instead
of the usual single peak.

© 2011 American Institute of Physics
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This paper is organized as follows. In Sec. II, we present
comprehensive Monte Carlo (MC) results for the Kawasaki—
Ising model subjected to a cyclical variation of the tempera-
ture. We also present analytical arguments to understand the
evolution of the structure factor and correlation function dur-
ing the heating part of the cycle. In Sec. III, we present anal-
ogous results for the CHC model, which is the coarse-grained
counterpart of the Kawasaki—Ising model. Finally, Sec. IV
concludes this paper with a summary and discussion.

Il. PHASE SEPARATION IN THE KAWASAKI-ISING
MODEL WITH A TIME-DEPENDENT TEMPERATURE

A binary (AB) mixture is usually described by the Ising
model, with Hamiltonian

H=-J ZS,'SJ',

(i)

s = 1. ey

Here, s; denotes the spin variable at site i. We consider two-
state spins: s; = +1 denotes an A-atom and s; = —1 denotes
a B-atom. If the exchange interaction J is positive, the sys-
tem segregates into A- and B-rich regions below the misci-
bility gap. In Eq. (1), the subscript (ij) denotes a summation
over nearest-neighbor pairs i and j. The total magnetization
M= ZlNzl s; (=Nay — Ny, where N4 and Ny are total num-
bers of A and B, respectively) is a conserved quantity. We
associate stochastic dynamics with the Ising model by plac-
ing it in contact with a heat bath. The appropriate dynamics
for the phase-separation problem is spin-exchange kinetics or
Kawasaki kinetics.”

It is straightforward to implement an MC simulation of
the Ising model with spin-exchange kinetics. In a single step
of MC dynamics, we choose at random a pair of adjacent
spins on the lattice. The change in energy §H that would
occur if the spins were exchanged is computed. The step
is then accepted or rejected with the Metropolis acceptance
probability?!2?

e PH if SH >0,

P = ) 2)
1, if 6H <O.

Here, B = (kg T)’1 denotes the inverse temperature. In
the simulations reported here, the temperature has a time-
dependent form 7' (¢). This stochastic move is repeated many
times. One Monte Carlo step (MCS) is completed when this
algorithm is performed N times (where N is the total num-
ber of spins), regardless of whether the move is accepted or
rejected.

All our simulations have been performed on a two-
dimensional (2D) Kawasaki-Ising model, defined on a square
lattice of size L? (L = 512) with periodic boundary condi-
tions. The statistical quantities presented here (e.g., correla-
tion function and structure factor) are obtained as averages
over ten independent runs on systems of size 5122. Each run
starts with a randomly mixed state with equal numbers of up
and down spins (p = 0.5 is the density of up or down spins,
which corresponds to a mean magnetization m = (). At time
t = 0, the system is quenched to a temperature 7 = 1.5, mea-
sured in units of J (7, ~ 2.269 for the 2D Ising model on
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a square lattice). After the system has evolved for time ¢,
we heat the system to 7 = oo (first heating) and allow it to
evolve until time #,. Therefore, the duration of the first heat-
ing period is #, — ;. The system is then quenched again to
T = 1.5 (second quench until time #3) and then heated again
(second heating until time #4), etc. The precise temperature
protocol followed in different simulations will be specified
at the appropriate place. We should mention that the instan-
taneous quenches and heating considered here are idealiza-
tions of the experimental situation. In practice, temperature
changes occur on nonzero time-scales, which can have inter-
esting physical consequences.?’

A. First quench

In Fig. 1(a), we show the evolution of the system after
a quench to T = 1.5 at t = 0. The snapshot corresponds to
t = 10° MCS. Regions with 5; = 41 (A-rich) and s; = —1
(B-rich) are marked in black and white, respectively. The
structure of the evolving system is characterized by the corre-
lation function

C(Fi, Fist) = (sis)) — (si)(s;) = (sis;) — m™. A3)

Here, the angular brackets denote an averaging over the ini-
tial ensemble and different noise realizations. As the system
is translationally invariant, the correlation function depends
onlyonr =7r; —F;,

C(ri, Fj3t) = C(i, 1i +7351) = C(F, 1). “)

Actually, most experiments study the structure factor, which
is the Fourier transform of the correlation function,

Sk,ty = e*CF. 1), (5)

Since the system is isotropic, we can improve statis-
tics by spherically averaging the correlation function and the
structure factor. The corresponding quantities are denoted as
C (r,t) and S (k, t), respectively. In Figs. 1(b) and 1(c), we
show the correlation function [C (r, t) vs r] and the structure
factor [S (k, t) vs k] for three different times. Notice that we
do not present here the usual scaling plot, where datasets at
different times collapse onto a master function.?*23 The struc-
ture factor in Fig. 1(c) contains information about the pres-
ence of sharp interfaces (defects) in the phase ordering sys-
tem. The tail of the structure factor decays as S (k, t) ~ k=3,
which is Porod’s law in d = 2. The Porod tail only persists up
to values of k corresponding to the typical width of the wall,
k < £~1. Figure 1 will serve as a reference point for later re-
sults, obtained for a variety of cooling—heating cycles.

Finally, let us examine the time-dependence of the char-
acteristic domain size L(t). There are many equivalent def-
initions for measuring the domain size. For example, L(f)
can be defined as the point where the correlation function in
Fig. 1(b) first crosses zero. Alternatively, we can define the
length scale as the inverse of the location of the structure-
factor peak [L(t) ~ k,, 11 or the inverse of the first moment of
the structure factor [L(z) ~ (k)~']. All these definitions are
equivalent in the scaling regime. In this paper, we use the def-
inition L ~ k,, I In Fig. 1(d), we show the time-dependence
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FIG. 1. (a) Evolution snapshot from a simulation of the Kawasaki-Ising
model. The details of the simulation are provided in the text. The system
size is 5122 and periodic boundary conditions are applied in both directions.
The system was quenched from 7= oo to T = 1.5 at time ¢t = 0. The up
spins (A-atoms) are marked in black, whereas the down spins (B-atoms) are
unmarked. (b) Correlation function data [C(r, t) vs r] at three different times
after the first quench. (c) Structure-factor data [S(k, ) vs k] for the same times
as in (b). The line of slope —3 denotes the Porod tail ind = 2, S(k, t) ~ k3
as k — oo. The Porod tail applies for scattering of sharp interfaces, i.e., for k-
values which satisfy £ 7! > k > L~!, where & is the interfacial thickness. In
our simulations, & ~ O(1). (d) Time-dependence of domain size [L() vs ¢]
for the evolution depicted in (a). The line of slope 1/3 denotes the LS growth
law, L(¢) ~ ¢'/3.

of the length scale on a log-log plot. We see that the do-
main growth depicted in Fig. 1(a) is consistent with the LS
growth law, L(t) ~ t'/3. Thus, at the end of the first heating,
L(t) =~ (yt;)"/3, where y is the surface tension at the AB in-
terface.

B. First heating

After the system shown in Fig. 1(a) has evolved for
time t; = 10° MCS, we suddenly heat the system to T = oo
(B = 0). The preferred equilibrium structure is now in the
homogeneous state, and the domain structure will start
melting. At T = oo, all proposed spin exchanges will be
accepted. On the average, each spin pair is exchanged once
during one MCS. This means that every particle will make
two steps, either along the x- or y-axis. Therefore, within
a few MCS, the domain walls get fuzzier and domains
become less distinctive. Inside a domain, the concentration
of particles with opposite spin increases.

We start the first heating with the final configuration (at
t; = 10° MCS) in Fig. 1(a). We evolve the system for 700
MCS at temperature T = co. The snapshots of the resultant
disordering dynamics are shown in Fig. 2. In Fig. 3(a), we
show the evolution of the structure factor during the heating
process in Fig. 2. We see that the structure factor retains
a peak at small values of k after heating for 700 MCS. The
peak amplitude becomes lower as heating proceeds, and its
position shifts to smaller values of k, i.e., the length scale
increases. We will explain this behavior shortly. The large

J. Chem. Phys. 134, 044910 (2011)

t=t,+ 100

FIG. 2. Evolution snapshots from the Kawasaki—Ising model during the first
heating period. The system was heated to T = oo at time ¢; = 10® MCS,
corresponding to the snapshot in Fig. 1(a). From top left, the frames show the
system at t = 1 + 50, #; + 100, #; 4+ 300, and #; + 700 MCS.

values of k correspond to small-scale structure, which is seen
to become disordered as the corresponding S(k,t) is flat.
A homogeneous system of spins with magnetization m = 0
(i.e., the initial state for the first quench) has S(k, 0) = 1 in
our units—the corresponding dataset is denoted by a dashed
line in Fig. 3(a). The corresponding correlation function is
C(7,0) = 87,. The solid lines superposed on the datasets for
t =t + 100, #; + 300, and #; 4+ 700 (during heating) will be
explained shortly. The time-dependence of the length scale
during the first heating is shown in Fig. 3(b).

We would like to know how the heating process influ-
ences the structure factor of the system. In other words, if
S(k, t1) is the structure factor when heating starts, is it pos-
sible to predict S(k, t) for ¢+ > #;? Recall that the particles
are performing random walks in d = 2. After t MCS of heat-
ing, the average displacement of a particle is /2. The corre-
sponding probability distribution for a particle to be displaced

1000 ) ~ =0
N o =t 1
1004 X o t=t,+100 in
o =t +300] = /
= ] s =t #7000 & 0.5 1
2 10 ! = &
7 s
=

0.25 o

FIG. 3. (a) Structure-factor data for three different times during the first heat-
ing period shown in Fig. 2: t = #; + 100, #; 4+ 300, and #; + 700 MCS. The
solid lines superposed on these datasets denote the expression in Eq. (11),
with S(k, t1) obtained numerically. For comparison, we also plot the struc-
ture factor of the initial disordered state (+ = 0) and the structure factor at
the end of the first quench, #; = 10° MCS. (b) Time-dependence of domain
size [L(t)/L(t;) — 1 vs t — 1] during the first heating period at temperature
T = oo. The duration of the first heating period is 700 MCS.
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(x, y) from its initial position is

8 (x,y) = g5 (x) g5 ()

_ L ey L e (g
V2m65? V2m65?

where & = +/2t. The correlation function changes over time
by convolution with the Gaussian distribution. The predicted
correlation function after (t — #;) MCS of heating is

Cx,y,)=C(x,y,t1) * g (X) * g5 ()
1 o0 o0
= /dx// dy'C(x',y' 1)
2no? J_o oo

[ (x—xY +(y— y/)z]
X eXp - £

202

@)
where o> = 2(¢ — ). The above expression only applies for
r = /x% + y? > 0. In polar coordinates,

efr2/(202)

2o’

2 1 ’
0
x / 46 exp (C_gs)
0 (o2

e—r2/(2<72) ) ” )
= —f dr'r' C (r', 1) e /)
0

o2

rr’
x Iy <—),r > 0, (8)

o2

o0
C(r, 1= / dr'r' C(r', 1) e/
0

where Iy(z) is the zeroth-order modified Bessel function.?

For r = 0, we always have C(r = 0, tr) = 1. This is clear
from the definition in Eq. (3) as s? = 1 and m = 0 for a crit-
ical quench. In Fig. 4(a), we show simulation data for the
correlation function at three different times in the first heat-
ing period. The solid lines denote the expression in Eq. (8),
where C(r, t;) is obtained numerically. There is an excellent
agreement between the simulation data and Eq. (8).

Next, we consider the structure factor, which is the
Fourier transform of the correlation function. On the dis-
crete lattice, we have for the correlation function [analogous

034 o t=t,+100 0.8

o t=t,+300
a t=t,+700 0.6 \

0.2

—

£ 01 S04
S Iy
(R — 0.2
a
-0.1 T T T T @ 0 T T SRy
0 20 40 60 80 100 0 200 400 600
r t-t
1

FIG. 4. (a) Correlation function data [C(r, t) vs r] at three different times
during the first heating period shown in Fig. 2. The solid lines denote the
functional form in Eq. (8) with C(r, t;) (correlation function at the end of
the first quench) obtained numerically. (b) Decay of a(¢) with ¢t — #; during
the first heating. The solid line denotes C(0, ¢) from Eq. (8). The asymptotic
behavior is described by a(t) ~ (t — t;) 2.

J. Chem. Phys. 134, 044910 (2011)

to Eq. (7)]

202

o2
C(F, 1) = ZC(;’, t1) exp [—u}

+ [1 —a@®)]é 0, )
where we have explicitly included the case 7 = 0. Here,

/

-2
a(t)=Y C n)exp (—%) (10)

The decay of a(t) with 7 is shown in Fig. 4(b). The corre-
sponding expression for S(k, t) is

N - 2
T ik-7 > r—r
Sk.ty=>Y """ CG' 1)exp [—(27}

+1—a()~SE t)e P+ 1—a().
(11

In Fig. 3(a), we have shown S(k, r) vs k for three times
in the first heating period. The solid lines in Fig. 3(a) denote
the expression in Eq. (11), with S(k, ¢;) obtained numerically.
They are seen to be in excellent agreement with the numer-
ical data. Notice that the Porod tail immediately disappears
as we start heating. This is because the interfaces become
fuzzy as particles at the interfaces start performing random
walks. The flat portion of the structure factor has the value
S(k,t) ~ 1 — a(t), which corresponds to the difference be-
tween C( =0, 1) = 1 and lim,_.o C(r, ) = a(¢) in Fig. 4(b).
Ast — 00, a(t) — 0 and S(k, t) >~ 1, which corresponds to
the initial homogeneous state in Fig. 3(a).

Recall that the inverse of the structure-factor peak mea-
sures the length scale, which is shown in Fig. 3(b). To under-
stand how the length scale changes with time during the heat-
ing period, we estimate thg peak location [denoted as k,,(¢)]
from the expression for S(k, ¢) in Eq. (11),

d 2.2
~ —S(k,t —hno”/2
T (k, 1) e

d
—S(k, 1)
dk k k=ky,

=k,
+ Sk, 1) 57 2 (— ko) = 0. (12)
We can expand S(k, #;) about its peak position kg = k,,(¢;) as

(k — ko)
2

2
Sk, 1) = S(ko, 11) + §"(ko, 1) + Ol (k — ko)1,

(13)

where S”(ko, 1) < 0. Replacing Eq. (13) in Eq. (12), we
obtain
koS"(ko, t1)
§"(ko, t1) — 02S(ko, t1)
1+ 2(t — 11)S(ko, 11)/S"(ko, 1)

k(1) =

(14)
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Equation (14) shows how the length scale increases with time
during the heating period,

(15)

L(t) ~ L(1)) [1 F201 —1) S(ko, 1) ]

S"(ko, 11) |

Our data in Fig. 3(b) are consistent with this growth law. No-
tice that as the peak becomes softer with time, we will have
to include higher terms of the Taylor expansion in Eq. (13) at
later times.

The peak strength also diminishes as the structure melts
during heating. The melting time 7, can be estimated as the
period in which a random walker traverses the domain scale
L(l 1 ), i.e.,

tw >~ L(1))>. (16)

Therefore, if we desire to retain any structure at the end of the
heating period, we must have #, — f; < t,,. The above argu-
ments can easily be generalized to the cases of second quench,
second heating, etc. The duration of the first quench sets the
possible time-windows for subsequent operations.

C. Second quench

In a single-quench experiment, the small-distance struc-
ture corresponds to the large-k part of the structure factor.
This is the region where domain formation begins, with a
peak emerging at large k and moving to smaller values of k as
time progresses. As we have seen earlier, the large-k region
after heating [see Fig. 3(a)] resembles the homogeneous ini-
tial condition of a single-quench experiment. The heating pro-
cess breaks up the domain structure, starting from the smallest
length scales, and progressing to larger length scales. We ex-
pect that we can grow a second peak by continuing the evolu-
tion of the heated system in Sec. II B at a lower temperature.
Therefore, we undertake a second quench at time #,. Again,
the system is cooled to the temperature 7 = 1.5.

Recall that we started our simulation with a homoge-
neous system having m = 0. This system was evolved at
T = 1.5 for t; = 10° MCS. Subsequently, it was heated for
700 MCS (#, = t; +700) at T = oco. Now, the temperature
has been quenched again to 7 = 1.5. The evolution snapshots
for this second quench are shown in Fig. 5. The snapshots at
t =t + 200 MCS and ¢ =, 4+ 2000 MCS clearly show the
existence of structure on two length scales. As we will see
shortly, this two-scale morphology is characterized by a struc-
ture factor with two peaks.

The structure factor of a homogeneous system with equal
number of up and down spins (m = 0) is S(k 0)~1. Itis
clear from Fig. 3(a) that it requires some amount of heating
before the large-k part of S (12 , t) reaches the value 1. We per-
form the second quench before S (I;, t) — 1 due to heating.
The evolution of the corresponding two-peak structure factor
is shown in Fig. 6(a). Notice that one of the peaks at k; (corre-
sponding to the large-scale structure) is almost static, whereas
the other peak at k, (corresponding to the small-scale struc-
ture) moves with time. The time-dependence of the relevant
length scales, defined as L| = kfl and L, = k5 1, is shown in
Fig. 6(b).
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FIG. 5. Evolution snapshots during the second quench period. The quench
occurs at t; = t; + 700 MCS—the initial state is shown in the last snapshot

of Fig. 2. The snapshots shown here correspond to ¢ = t, + 200, #, + 2000,
1, + 8000, and #, + 20 000 MCS.
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_ The flat region of the structure factor during first heating,
S(k, t) < 1, characterizes a homogeneous system with mean
magnetization different from 0. Recall from Eq. (11) that the
flat portion of the structure factor is

Sk, 1)~ 1—a(), a17)

where a(t) — 0 as the heating continues. Therefore, the effec-
tive magnetization of the corresponding homogeneous system
is

megr (t) = v/a (1), (18)

and the effective density is

1
peit = % va(t) (19)

We can now obtain a better understanding of the growth of
the second peak during the second quench. The heating pe-
riod during first heating was 700 MCS. At the end of this
time period, we estimate the flat portion of the structure
factor as S(lz, t) >~ 0.98 from Fig. 3(a). This corresponds to

100 A o t=t,+200 L,
o t:t2+2000 16 > > D D DDOOHmmm
. A tt,+20000
= 104 8]
- N
x A
T "4 el 5
OO/
24, ©°° 13
a b
0-1 T T T( ) T T ( )
0.1 1 10 103 104
k t- t

FIG. 6. (a) Structure factors at r = 1, + 200, t = £, + 2000, and 7, + 20 000
MCS during the second quench period (see Fig. 5). The solid lines denote
the structure factors obtained from a single-quench simulation at + = 2000,
20000 MCS. The initial condition for this simulation was slightly off-critical
with megr >~ 0.14. (b) Time-dependence of domain sizes during the second
quench period.
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FIG. 7. Evolution snapshots during the second heating period, which starts
at 13 = t, + 20000 MCS—the initial state is shown in the final snapshot of
Fig. 5.

megr 2 0.14. For purposes of comparison, we undertake a
conventional first-quench simulation of phase separation at
T = 1.5. The initial condition consists of a homogeneous off-
critical mixture with m.g ~ 0.14. In Fig. 6(a), we compare the
two-peak structure factor from our second-quench simulation
with the usual one-peak structure factor from the off-critical
(mege >~ 0.14) simulation. Other than the first peak, the struc-
ture factors are in excellent agreement.

The above results clarify the general scenario. The first
quench leads to conventional phase-separation dynamics.
When the system is heated, the domains homogenize (melt
at small length scales), but an imprint of the larger domain
scale survives. The second quench leads to the re-emergence
of domains from the homogeneous or disordered state. This
growth process is analogous to usual segregation, except the
initial state has an off-critical composition. We know that
the LS growth law applies for the diffusive phase separation,
regardless of the mixture composition.’’~!'# Therefore, the
growth of the second length scale is characterized by the
LS growth law with the “zero time” located at the time of
the second quench #,, i.e., Lp(¢) ~ (t — tz)'/3. This growing
length scale coexists with the larger length scale L, which is
approximately static. If the second quench lasts sufficiently
long, L, becomes comparable to L;; subsequently, the
system segregates in the usual manner.

D. Further heating and quenching

Now that the scenario is clear, we can generalize it to
the case of multiple quenching and heating. For example,

100

o t:t3+5
A t:t3+25

10

S(k,b)

FIG. 8. Structure factors at two different times during the second heating
period. The solid lines denote the expression in Eq. (11) with S(k, #;) replaced
by S(k, 3) and 02 = 2(t — 13).

FIG. 9. Evolution snapshots during the third quench period. The quench oc-
curs at t4 = 13 + 25 MCS—the initial state is shown in the final snapshot of
Fig. 7.

we have performed a second heating simulation at 7 = oo
by starting with the system at t3 =, +20000 MCS (last
snapshot in Fig. 5). We heat the system up to #3 + 25 MCS,
and the resultant evolution snapshots are shown in Fig. 7. In
Fig. 8, we show the evolution of the structure factor during the
second heating period. As expected, the structure starts melt-
ing at the smallest length scales, and this propagates to larger
and larger length scales. The solid lines denote the expression
in Eq. (11) with the appropriate functional form of S (I;, t3).

The third quench is performed at 4 = 13 + 25 MCS. The
resultant evolution morphology in Fig. 9 has three length
scales. The plot of S(k, ) vs k in Fig. 10(a) shows that two
of these are static and the third one increases with time. The
time-dependence of these length scales is shown in Fig. 10(b).
In general, n quenches give rise to a morphology with n length
scales. However, we must be careful that the heating period is
not so long that it washes out the structure existing at the end
of the previous quench.

lll. CAHN-HILLIARD-COOK MODEL WITH A
TIME-DEPENDENT TEMPERATURE

In Sec. II, we have described a method to generate a mul-
tiscale structure for the Kawasaki-Ising model. Let us now
approach this problem via the CHC model, which is the ap-
propriate coarse-grained model for phase-separation dynam-
ics. In this model, the system is described by an order parame-
ter (7, t) = pa(¥, 1) — pp(¥, t), where p4 and pp denote the
local densities of species A and B. We use the dimensionless
version of the CHC equation, which is obtained by a suitable

rescaling of space, time, and order parameters,28
9 o - 3 -
- 3 2 -
glﬂ(h 1=V AV[£Y + ¢~ — VYl +0(r, 1)}, (20)
100 o t=t,+80 1 L,
| s, ot=t, 1200 164 7 T TremE
] o at=t, 1400 ]
104° 87 L
< s ] 2
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FIG. 10. (a) Structure factors at three times during the third quench period.
(b) Time-dependence of domain length scales during the third quench period.
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where
(67, 1)) =0,
G0, )6, 1)) = 2€8;;8( — r8(’ —1"). 1)

In Eq. (20), the + sign corresponds to T > T, and the — sign
corresponds to T < T,.. For T > T, which corresponds to the
heating period, the nonlinear term is not relevant.

We implemented a Euler-discretized version of Eq. (20)
with an isotropic Laplacian on a square lattice of size L x L
(L = 512). Periodic boundary conditions were imposed in
both directions. The discretization mesh sizes in space and
time were Ax = 1.0 and Ar = 0.02, respectively. The ini-
tial condition consisted of small fluctuations about vy = 0,
i.e., a critical quench. Finally, the thermal noise of strength
€ is mimicked by uniformly distributed random numbers be-
tween [—A, A]. (We obtain similar results if a Gaussian-
distributed noise is used.) The appropriate noise amplitude in
our Langevin simulation is

3—2. (22)
(Ax)“ At
The results reported here correspond to € = 0.00042, i.e.,
A =0.25 for Ax = 1.0 and Ar = 0.02. All statistical quan-
tities are obtained as averages over ten independent runs on
systems of size 512

In Fig. 11, we show evolution snapshots for the CHC sys-
tem subjected to alternating cycles of cooling and heating, i.e.,
switching between the — and + signs in Eq. (20). The sys-
temis evolved (a)at T < T, uptot; =20000; (b)at T > T,
up to t, =1 +500; (c) at T < T, up to t3 = t, + 800; and
(d) at T > T, up to t4 = t3 + 40. The emergence of a two-
scale structure is evident in the snapshot at t3 = #, + 800,
corresponding to the end of the second quench. As in the
Kawasaki-Ising model, the cooling—heating cycles produce
multiple length scales (see snapshots in Fig. 12 for the evo-
lution after the third quench). The corresponding correlation
functions and structure factors no longer show dynamical
scaling. In Fig. 13, we show the structure factors at differ-
ent stages of the evolution in Fig. 11. We show two datasets
in the cooling periods [t = 20000 and ¢ = #, 4 800 in Fig.
13(a)] and two datasets in the heating periods [t = #; + 100
and t =13+ 10 in Fig. 13(b)]. As expected, S(k,t) vs k
in the cooling periods shows a Porod tail. The dataset for
t = tp + 800 corresponds to the second quench and shows a
two-peak structure [cf., Fig. 6(a)].

The datasets for S(k, ¢) vs k in the heating periods show
a characteristic flat behavior at large values of k. Their func-
tional form can be obtained from the CHC equation for
T>T.,

I > 2 Z =
S VED =V VY +6G, D). (23)

Equation (23) is obtained by neglecting the cubic and the
fourth-derivative terms in Eq. (20). These terms are not rel-
evant in the dynamics for T > T,.. Consider the case when
the system is heated at t = #;. We can solve Eq. (23) in
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FIG. 11. Evolution snapshots for the CHC system subjected to alternate cy-
cles of cooling and heating. The switching times are as follows: #; = 20000
(end of first quench), 1, = #; + 500 (end of first heating), t3 = f + 800 (end
of second quench), and #4 = 13 + 40 (end of second heating). The simula-
tion details are provided in the text. Regions with ¢ > 0 (A-rich) and < 0
(B-rich) are marked in black and white, respectively. To the right of each
snapshot, we show the variation of the order parameter along a cross-section
at y = L/2, where L is the lateral system size.
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FIG. 12. Evolution snapshots for the CHC system after the third quench at
t4 = 21340.
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FIG. 13. Structure-factor data for the CHC evolution shown in Fig. 11. (a) Datasets during the quench periods (at # = 20000 and # = 7, + 800). (b) Datasets
during the heating periods (at # = #; 4+ 100 and ¢ = 3 + 10). The solid lines denote the expression in Eq. (26) with the appropriate replacement for S(k, t1).

momentum space as follows:

- - 2 I=h ’
Yk, 1) = Yk, 1)e X0 — / dt e ¥ ==

0

x [k - 6k, )]. (24)
This yields the structure factor as
Sk, 1) = (Y(k, Y (—k, 1)
— S(E, tl)e—Zkz(z—tl) + e—2k2(t—ll)
1—h 1—1 2t N
X / dr’ / dr" e N[k - 0(k, )]
0 0
x [k - 6(=k, t")]). (25)
Thus, S(l?, t) is obtained in terms of 5(12, 1)) as
Sk, 1) = S(k, t)e K01 4 e[l — e 2KC=10] (26)

The solid lines in Fig. 13(b) denote the functional form in
Eq. (26) and are in reasonable agreement with the numerical
data.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discus-
sion of the results presented here. We consider the effect of
a time-dependent variation of temperature on the morphol-
ogy of a phase-separating binary (AB) mixture. We find that
alternate cycles of cooling and heating give rise to a multiple-
length-scale morphology. During a quench period, the resul-
tant pattern contains imprints of (static) length scales from
previous quenches as well as a growing length scale from the
most recent quench. On the other hand, during a heating pe-
riod, there is a melting of the domain structure as the A, B
particles perform random walks. We can use this picture to
analytically obtain the structure factor S (12, t) during a heat-
ing period [#;, t;41] as a function of S(l_é, t;).

To confirm the above scenario, we have presented results
from (a) MC simulations of the Kawasaki—Ising model and
(b) Langevin simulations of the CHC model. The numerical
results are in excellent agreement with our analytical results.
The fabrication of multiscale morphologies offers intriguing
possibilities for technological applications, e.g., in food pro-
cessing, paints, biomaterials. It also suggests the possibility
that we can formulate temperature-variation protocols for the

manufacture of materials with predesignated morphologies.
Our work in this paper is a modest first step in this direction.

In future, we intend to combine the work presented here
with an earlier work on the phase separation of mixtures of
immiscible polymers.?’ This will allow us to study the inter-
play of temperature variations and polydispersity.
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