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Abstract. In this paper we study the ergodic properties of non-greedy series

expansions to non-integer bases � > 1. It is shown that the so-called `lazy'
expansion is isomorphic to the `greedy' expansion. Furthermore, a class of ex-
pansions to base � > 1, � =2 Z, `in between' the lazy and the greedy expansions
are introduced and studied. It is shown that these expansions are isomorphic
to expansions of the form Tx = �x + � (mod 1). Finally, for � equal to the
`Golden Mean', a random expansion to base � is given.

1. Introduction

As is well-known, it is quite straightforward to develop any x 2 [0; 1) in a series
expansion to any integer base r > 1. Almost every1 x 2 [0; 1) has a unique series
expansion

x =
1X
k=1

ak
rk
; ak 2 f0; 1; : : : ; r � 1g;(1.1)

denoted by x = :b1b2 � � � bn � � � . Only rationals p=q with q = p`11 � � � p`mm (where
the `i's are non-negative integers and the pi's are the prime divisors of r), have
two di�erent expansions of the form (1.1), one of them being �nite while the other
expansion ends in an in�nite string of r � 1's. Underlying these so-called r-ary
expansions of the form (1.1) are maps Tr : [0; 1)! [0; 1), given by

Tt(x) = rx (mod 1);

and the digits ak = ak(x); k � 1, are given by

ak = brT k�1r (x)c; k � 1;

where b�c denotes the largest integer not exceeding �. Clearly Tr is related to the
Bernoulli-shift on r symbols, and the Lebesgue measure � is Tr-invariant.

In case of a non-integer � > 1 the situation is quite di�erent. Again any number
x 2 [0; 1) can be expanded to base �:

x =
1X
k=1

bk
�k
; bk 2 f0; 1; : : : ; b�cg:(1.2)

However, one easily sees that for a given non-integer � > 1 almost every x 2 [0; 1)
has in�nitely many di�erent series expansions of the form (1.2). As in the case of
the r-ary expansion, an expansion of x 2 [0; 1) of the form (1.2) can be obtained
by using the map T� : [0; 1)! [0; 1), given by

T�(x) = �x (mod 1);

see also Figure 1. In this case we speak of the �-expansion of x. In 1957, A. R�enyi
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Figure 1. The greedy map T� (here � =
p
2)

[R] introduced these maps T�, and studied their ergodic properties. R�enyi showed
that

([0; 1); �� ; T�)

forms an ergodic system, where �� is a T�-invariant probability measure equivalent
to � with density h� , with

1� 1

�
� h� � 1

1� 1

�

:

Independently, A.O. Gel'fond (in 1959) [G] and W. Parry [P1] (in 1960) showed
that

h�(x) =
1

F (�)

X
x<Tn(1)

1

�n
1[0;1)(x) ;

where F (�) =
R 1
0 (
P
x<Tn(1)

1
�n

)dx is a normalizing constant. After Parry the er-

godic properties of T� were studied by several authors. E.g., F. Hofbauer [H] showed
that �� is the measure of maximal entropy, and M. Smorodinsky [Sm] \closed the
gap" between the ergodic properties of T� for � 2 Z and � 62 Z, by showing that
for each non-integer � > 1 the system ( [0; 1); ��; T� ) is weakly Bernoulli, see also
[DKS]. A deep result by N. Friedman and D. S. Ornstein [FO] then yields that the
natural extension of ( [0; 1); �� ; T� ) is a Bernoulli automorphism.

The �-expansion of x is also known as the greedy expansion of x. The digits
bn; n � 1, of the greedy expansion of x are recursively given by

bn = k (with 0 � k � b�c) ()
n�1X
k=1

bk
�k

+
b

�n
� x <

n�1X
k=1

bk
�k

+
b+ 1

�n
:

Clearly this yields a series expansion of x of the form (1.2), and setting

tn = tn(x) := �n
1X

k=n+1

bk
�k
; n � 0;

it is an exercise to show that tn = Tn� (x) for n � 0.
For reasons which will become apparent in Sections 2 and 3 we expand the

domain of T� from [0; 1) to �� := [0; b�c=(� � 1)). Now let T� : �� ! �� be
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de�ned by

T�(x) =

8<
:

�x (mod 1); 0 � x < 1;

�x� b�c; 1 � x < b�c=(� � 1):

Notice that for each x 2 �� there exists a unique integer n0 = n0(x) such that for
all n � n0 one has that Tn� (x) 2 [0; 1). In view of this we let h� be as before on

[0,1), and de�ne �� ([1; b�c=(� � 1))) = 0. Due to this, the system�
�� :=

�
0;
b�c
� � 1

�
; ��; T�

�
;

is weak-Bernoulli, since the \original" system on [0,1) is.

In the last decade an interest in expansions to non-integer bases � > 1 other
than the greedy expansion has developed. In particular in papers by P. Erd�os,
M. and I. Joo, V. Komornik, P. Loreti, F. Schnitzer and others, the so-called lazy

expansion to base � 2 (1; 2) has been studied, see e.g. [EJK], [KL1], [KL2], and (the
references in) [JS]. In particular in these (and other) papers the lazy-expansion of
1, and its relation to the greedy-expansion of 1 has been thoroughly investigated.

In general, for a non-integer � > 1, the digits (~bk)k�1 of the lazy-expansion of
x 2 �� are recursively given by

~bn = 0 ()
n�1X
k=1

~bk
�k

+
b�c
�n+1

+
b�c
�n+2

+ � � � � x(1.3)

and ~bn = b (with 1 � b � b�c) if and only if both

n�1X
k=1

~bk
�k

+
b� 1

�n
+
b�c
�n+1

+
b�c
�n+2

+ � � � < x(1.4)

and
n�1X
k=1

~bk
�k

+
b

�n
+
b�c
�n+1

+
b�c
�n+2

+ � � � � x(1.5)

are satis�ed. By induction we always have that for n 2 N
nX
k=1

~bk
�k
� x �

nX
k=1

~bk
�k

+
b�c
�n+1

1X
k=0

1

�k
:

Since

lim
n!1

b�c
�n+1

1X
k=0

1

�k
= lim

n!1

b�c
�n

1

� � 1
= 0;

it follows that the series expansion
P1
k=1

~bk=�
k of x converges to x.

In Section 2 we show that there is an ergodic map S� underlying the lazy-
expansion, which is isomorphic to (our extended version of) T�. From this, and
the fact that the isomorphism can be given explicitly, several conclusions will be
drawn.

In Section 3 we will introduce a new class of transformations S�;�, each of them
yielding a series-expansion (1.2) of any x 2 �� \in-between" the lazy-expansion
and the greedy-expansion of x. We will see that each S�;� is essentially isomorphic
to

T�;��(x) = �x+ �� (mod 1);

where �� = b�c1 � (� + 1)(� � 1). The maps T�;� were previously studied by
Parry in 1964 [P2] and by R. Palmer in 1979 [Pa], see also [FL]. In Section 4 an
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Figure 2. The lazy map S� (here � = �)

example of a \random expansion" to base � (where � equals the golden ratio G, i.e.,

� = G = (1+
p
5)=2) will be discussed. Loosely speaking, this \random expansion"

will be a random mix of the greedy and lazy expansions.

2. Lazy expansions

Let � > 1; � =2 Z, �xed. Setting for x 2 �� = [0; b�c=(� � 1)) and n 2 N:

~tn�1 = ~tn�1(x) = �n�1
1X
k=n

~bk
�k
;

where ~bk is for k � 1 de�ned as in Section 1. Since

x =

n�1X
k=1

~bk
�k

+

1X
k=n

~bk
�k

=

n�1X
k=1

~bk
�k

+
1

�n�1
~tn�1;

it follows from (1.3), (1.4) and (1.5) that

~bn = 0 () ~tn�1 � b�c
�(� � 1)

;

and, if d 2 f1; 2; : : : ; b�cg
~bn = d () (d� 1)� + b�c � (d� 1)

�(� � 1)
< ~tn�1 � d� + b�c � d

�(� � 1)
:

In view of this we de�ne the lazy map S� : �� ! �� by

S�(x) = �x� d; for x 2 �(d);(2.1)

where

�(0) =

�
0;

b�c
�(� � 1)

�

and

�(d) =

�
(d� 1)� + b�c � (d� 1)

�(� � 1)
;
d� � d+ b�c
�(� � 1)

�
; d 2 f1; 2; : : : ; b�cg;

i.e., to get the time 0 partition one starts from b�c=(� � 1) by taking b�c intervals
of length 1=� from right to left. The last interval with endpoints 0 and (b�c +
1� �)=�(� � 1), corresponding to the lazy digit 0, is longer than the rest, see also
Figure 2. As in the greedy case it is an easy exercise to show that
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~tn(x) = Sn� (x); for n � 0:

Notice that from the dynamics of S� it follows that for every x 2 (0; b�c=�(� � 1))
there exists a unique n0 = n0(x) 2 N such that

Sn� (x) =2
�
0;
b�c+ 1� �

� � 1

�
; for all n � n0;

i.e., the interval A� = [(b�c+ 1� �)=(� � 1); b�c=(� � 1)) is an `attractor' of the
map S� (of length 1). Now let  : �� ! �� be given by

 (x) =
b�c
� � 1

� x;

then  ([0; 1)) = A� , and for x 2 [0; 1) one has

T�(x) = �x� d; for x 2  �1 (�(b�c � d)) :
We have the following result.

Theorem 1. The map  : �� ! �� is measurable and  T� = S� . Furthermore,

the system ��
0;
b�c
� � 1

�
; �� ; S�

�
is weak Bernoulli,

where �� is a probability measure on ��, given by

��(A) = ��( 
�1(A)); for any Lebesgue set A � ��:

Proof. Clearly  is measurable since it takes cylinders to cylinders and if x 2
C(d) = [(d � 1)=�; d=�), where d 2 f1; 2; : : : ; b�cg, then T�(x) = �x � (d � 1),
and we �nd that

 (T�(x)) =
b�c
� � 1

� �x+ d� 1:(2.2)

We also have that

 (x) 2
�
 (
d

�
);  (

d� 1

�
)

�
=

�
(b�c � d)� + d

�(� � 1)
;
(b�c � (d� 1))� + d� 1

�(� � 1)

�
;

for d 2 f1; 2; : : : ; b�cg. Thus

S� ( (x)) =
b�c
� � 1

� �x+ d� 1 =  (T�(x)):

A similar reasoning works for the case that x is in the interval [b�c=�; b�c=(��1)].
Since  : �� ! �� is a bijection, it follows by construction of �� that  is a

measure theoretical isomorphism. Hence (�� ; �� ; S�) inherits the mixing properties
of (�� ; �� ; T�) and is therefore weak Bernoulli.

Remarks 1 1. It was already noticed in [EJK] in the case 1 < � < 2 that
if x 2 [0; 1) has a greedy expansion x = :b1b2 : : : bn : : : , then  (x) has as lazy

expansion :(1 � b1)(1 � b2) : : : (1 � bn) : : : , i.e., ~bn = 1 � bn, for n 2 N. Clearly
a similar relation holds in general. I.e., if � > 1 is non-integer, and if x 2 ��
has as greedy expansion x = :b1b2 : : : bn : : : , then then  (x) has as lazy expansion

:(b�c � b1)(b�c � b2) : : : (b�c � bn) : : : , i.e., ~bn = b�c � bn, for n 2 N.
2. By de�nition of the `lazy measure' �� one has that the density d� of �� equals

d�(x) = h�
�
 �1(x)

�
; for x 2 A� ;

and d� = 0 for x =2 A� .
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3. Let � > 1, � =2 Z and let x 2 �� . For n 2 N, let bi 2 f0; 1; : : : ; b�cg,
1 � i � n. Then we de�ne the asymptotic density D(b1; b2; : : : ; bn;x) of the block
b1; b2; : : : ; bn by

D(b1; : : : ; bn;x) := lim
N!1

1

N
#f0 � i � N � 1; bi+1(x) = b1; : : : ; bi+n(x) = bng:

Similarly the asymptotic density ~D(~b1;~b2; : : : ;~bn;x) is de�ned for the lazy ex-
pansion. For instance, R�enyi [R1] showed that in case � = G for almost all

x one has that D(1;x) = G2

G2+1 = :7236 : : : . In this case one also has that

D(11;x) = ~D(00;x) = 0.

Corollary 1. Let � > 1, � =2 Z and let n 2 N. Furthermore, let bi 2 f0; 1; : : : ; b�cg
for 1 � i � n. Then for almost all x 2 �� one has that

D(b1; b2; : : : ; bn;x) = ~D(b�c � b1; b�c � b2; : : : ; b�c � bn;x)
For x 2 ��, we de�ne the greedy resp. lazy convergents Cn = Cn(x) resp.

~Cn = ~Cn(x), n � 1, of x by

Cn :=

nX
k=1

bk
�k
; resp. ~Cn :=

nX
k=1

~bk
�k
; n � 1:

From the de�nitions of the greedy and lazy maps one might be tempted to think
that one always has that

x� Cn � x� ~Cn; for n � 1:

However, this is incorrect, as the following example shows. Let � = 1:618, x =
0:619, then using maple one �nds that the greedy expansion of x equals

:1000000000000010001 : : : ;

and the lazy expansion of x is

:01010101010101111010110 : : : ;

and that Cn = C1 = :6180469716 : : : for n = 2; : : : ; 14, Cn = :6187803401 : : : for
n = 15; : : : ; 18 and C19 = :6188873461 : : : . Furthermore, ~Cn = :6188093591 : : :
for n = 17; 18, and C19 = :6189163651 : : : . Thus we see that ~Cn > Cn for n =
17; 18; 19. Notice that

C�3 :=
1

�2
+

1

�3
= :6180649139 : : : ;

so there exist expansions of x to base � which are neither lazy nor greedy for which
the convergents (sometimes) perform better than the greedy convergents.

In order to compare the quality of approximation of the two algorithms we de�ne
approximation coeÆcients �n = �n(x) resp. ~�n = ~�n(x) by

�n = �n(x) := �n(x � Cn); ~�n = ~�n(x) := �n(x� ~Cn); for n � 1:

Clearly Tn� (x) = �n and Sn� (x) =
~�n for n � 0. But then it follows from the ergodic

theorem that the limits

lim
n!1

1

n

nX
k=1

�k(x) and lim
n!1

1

n

nX
k=1

~�k(x) exist

and equal Mgreedy :=
R b�c
��1

0 xd�� resp. Mlazy :=
R b�c
��1

0 xd�� , for almost all x.

We have the following result, which states that on average for almost all x the
greedy convergents approximate x `better' than the lazy convergents of x.
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Proposition 1. Let � > 1, � =2 Z, then

Mgreedy + Mlazy =
b�c
� � 1

and Mgreedy < Mlazy:

Proof. The �rst statement follows directly from the relation between h� and d� ,
viz.,

Mlazy =

Z
��

x d��(x) =

Z b�c
��1

0

xh�

� b�c
� � 1

� x
�
dx

=

Z b�c
��1

0

� b�c
� � 1

� y
�
h�(y) dy =

b�c
� � 1

�Mgreedy:

For the second statement, notice that by de�nition of Mgreedy one has that

Mgreedy =
1

F (�)

1X
n=0

Z Tn� (1)

0

x

�n
dx =

1

F (�)

1X
n=0

(Tn� (1))
2

2�n
:

Furthermore, by de�nition of d� one has

Mlazy =

Z
A�

xd�(x) dx =
1

F (�)

1X
n=0

Z b�c
��1

 (Tn� (1))

x

�n
dx

=
1

F (�)

1X
n=0

�
b�c
��1

�2
�
�
 (Tn� (1))

�2
2�n

:

The �rst result follows from the observation that for every n � 0 one has that

�
Tn� (1)

�2
<

� b�c
� � 1

�2
� � (Tn� (1))�2 ;

a statement equivalent to Tn� (1) < b�c=(��1), which is obviously correct for every
n � 0.

As an example, we consider here � = G = (1 +
p
5)=2. in this case R�enyi [R1]

already showed that

hG(x) =
G3

G2 + 1
1[0;g)(x) +

G2

G2 + 1
1[g;1)(x);

where g = 1=G. But then one �nds that

Mgreedy =
1p
5
= :4472 : : : and Mgreedy = G� 1p

5
= 1:17082 : : : :

3. (�; �) expansions

In this section we will discuss a new class of series expansions to any non-integer
base � > 1. Notice that both the greedy map T� and the lazy map S� have
`attractors' of length 1. For each

� 2
�
0;
b�c
� � 1

� 1

�

we will de�ne a map N�;� on �� , which has as attractor the interval [�; � + 1).
Just as the greedy map T� and the lazy map S� the map N�;� generates a series
expansion (1.2) to base �. Let the partition points d1; : : : ; db�c be given by:

di :=
�+ i

�
; i = 1; : : : b�c;
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Figure 3. N�;� for � =
p
5 and � = g2.

see also Figure 3, then N�;� : �� ! �� is de�ned by

N�;�(x) :=

8>>>><
>>>>:

�x; x 2 [0; d1);

�x� i; x 2 [di; di+1); 1 � i < b�c;

�x� b�c; x 2 [db�c;
b�c
��1):

In order to understand the dynamical properties of N�;� we consider consider
the map  � : [�; �+ 1)! [0; 1], given by  �(x) := �+ 1� x. Setting

T �(x) =  �(N�;�( 
��1(x))):

We have the following lemma.

Lemma 1. Let � > 1, � =2 Z, and let � 2 [0; b�c
��1 � 1). Then

T �(x) = �x+ �� (mod 1);

where �� = b�c � (�+ 1)(� � 1).

Proof. The proof is essentially the same as the �rst part of Theorem 1, and is
therefore omitted.

Remarks 2 Maps T (x) = �x + � (mod 1) were �rst introduced and studied by
Parry [P2]. Parry showed that T is ergodic with respect to the Lebesgue measure
�, and that there exists a unique T -invariant probability measure � (=��;�) � �,
with density

h� (x) = K

0
@ X
x<Tn(1)

1

�n
�

X
x<Tn(0)

1

�n

1
A 1[0;1)(x) ;

where K = K�;� is a normalizing constant. In [Pa], R. Palmer extended results
by R. Bowen [B], Parry [P2] and Smorodinsky [Sm] by giving the exact regions in
the (�; �)-plane in which T is weakly Bernoulli (WB). Palmer also determined the
eigenvalues of all those transformations T which are not WB. Since Palmer's thesis
[Pa] was never published, we will recall here some of her results, see also [FL].

Theorem 2. (Palmer, 1979) Let � > 1, 0 � � < 1. Then ....

From Lemma 1 and Palmer's theorem we at once have the following corollary.
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Corollary 2. Let � > 1, 0 � � < 1. Then .....

4. Random expansions to base � = (1 +
p
5)=2

Let � = G = (1 +
p
5)=2 be the golden mean. In this section we consider the

greedy map TG on [0; 1), and the lazy map SG on [g;G), where g = �� 1 = 1=G =

(
p
5 � 1)=2. Let L = [0; g), M = [g; 1) and R = [1; G). For any x 2 [0; G) we will

use the following \random" algorithm to generate expansions of x to base G which
are neither greedy nor lazy nor an (�; �) expansion as described in the previous
section. Note that the maps TG and SG overlap on the interval M . We will use
M as a \switch region", where one is allowed to replace a digit 1 generated by the
greedy algorithm to a 0 by switching the map to the corresponding lazy algorithm,
and conversely. In the previous section this was done in a deterministic way, we
now will do it in a random way. The digits are obtained as follows.

Start with a point x 2 [0; G),

* if x 2 L, then set d1 = d1(x) = 0 and let K(x) = TG(x) = Gx;
* if x 2 R, then set d1 = d1(x) = 1 and let K(x) = SG(x) = Gx� 1;
* if x 2 M , then 
ip a coin with P (heads) = p, where 0 � p � 1. If the coin

ip is heads, then set d1 = d1(x) = 1 and let K(x) = TG(x) = Gx� 1. If the
coin toss is tails, then set d1 = d1(x) = 0 and let K(x) = SG(x) = Gx.

Summarizing,

d1 = d1(x) =

8<
:

0 if x 2 L or x 2M and tails;

1 if x 2 R or x 2M and heads:
(4.1)

For n 2 N, let dn = dn(x) = d1(K
n�1x).

Proposition 2. Given x 2 [0; G), the digits dn given by the above procedure satisfy

x =

1X
k=1

dk
�k
:

Proof. Notice that K(x) = Gx� d1(x) = Gx� d1. Hence,

x =
d1(x)

G
+
K(x)

G
;

and iterating this n-times yields

x =
d1(x)

G
+

1

G

�
d1(K(x))

G
+
K2(x)

G

�

=
d1(x)

G
+
d2(x)

G2
+
K2(x)

G2

= � � �
=

d1(x)

G
+
d2(x)

G2
+ : : :+

dn(x)

Gn
+
Kn(x)

Gn
;

from which it follows that�����x�
nX
k=1

dk(x)

Gk

����� =
1

Gn
jKn(x)j � G

Gn
= gn�1 ! 0 as n!1:

It is well-known that the dynamical system underlying the �-transformation or
greedy algorithm on [0; 1) with � = G, can be symbolically described by the ergodic
Markov chain on 2 symbols 0 and 1 and transition matrix given by�

g g2

1 0

�
;
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see e.g. [R1], or [R2]. The stationary distribution corresponds to the Parry measure.
Analogously, the lazy transformation SG on [g;G) can be described by the ergodic
Markov chain on 2 symbols 0 and 1, and transition matrix�

0 1
g2 g

�
:

We will now describe how our random digits dn given by (4.1) are generated by
an ergodic Markov chain on 3 symbols `, m and r, and transition matrix

P =

0
@ g g2 0

p 0 1� p
0 g2 g

1
A :

This Markov chain has stationary distribution � = (�`; �m; �r), given by

�` =
pG2

G2 + 1
; �m =

1

G2 + 1
and �r =

(1� p)G2

G2 + 1
:

Notice that if p = 1 one gets the Parry measure and if p = 0 one gets the lazy
measure. Any sequence of `'s, m's and r's that is generated by this Markov chain
corresponds to a random expansion to base � = G as described in the beginning of
this section. To see this, let

X1; X2; X3; : : :

be a sequence generated by this Markov chain. De�ne a sequence (dn)n2N of 0's
and 1's as follows:

dn =

8<
:

0 if Xn = ` or (Xn = m and Xn+1 = r);

1 if Xn = r or (Xn = m and Xn+1 = `):
(4.2)

Setting x =
P1
k=1 dk=G

k, we now show that (d1; d2; : : : ) can also be generated
by the initial procedure (4.1) (here we know apriori the 
ip times and the results
of the coin 
ips!). In other words, given the 
ip times and outcomes of the coin
tosses, we want to show for n 2 N that

Kn�1(x) 2
8<
:

L () Xn = `;
M () Xn = m;
R () Xn = r:

For this it is enough to show that if n0 2 N is the �rst index n for which Xn = m,
thenKn0�1(x) 2M and either x;K(x); : : : ;Kn0�2(x) 2 L or x;K(x); : : : ;Kn0�2(x) 2
R. If this is shown, we begin again with the point Kn0(x) and Xn0+1; Xn0+2; : : : .

We condider two cases:

� if n0 = 1, then either (X1 = m and X2 = r) (hence d1 = 0, d2 = 1) or
(X1 = m and X2 = `) (hence d1 = 1, d2 = 0). In the �rst case (using that
G2 = G+ 1)

1

G
=

1

G2
+

1

G3
+

1X
k=4

0

Gk
� x =

1

G2
+

1X
k=3

dk
Gk
�

1X
k=2

1

Gk
= 1:

In the second case (i.e., the case (X1 = m, X2 = `)),

1

G
� x =

1

G
+

1X
k=3

dk
Gk
� 1

G
+

1X
k=4

1

Gk
=

1

G
+

1

G3(G� 1)
= 1:

� if n0 > 1, then either
(a) X1 = ` = X2 = : : : = Xn0�1 and (Xn0 = m and Xn0+1 = r), which

implies that d1 = : : : = dn0�1 = 0; dn0 = 0; dn0+1 = 1,
(b) X1 = ` = X2 = : : : = Xn0�1 and (Xn0 = m and Xn0+1 = `), which

implies that d1 = : : : = dn0�1 = 0; dn0 = 1; dn0+1 = 0,
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(c) X1 = r = X2 = : : : = Xn0�1 and (Xn0 = m and Xn0+1 = r), which
implies that d1 = : : : = dn0�1 = 1; dn0 = 0; dn0+1 = 1,

(d) X1 = r = X2 = : : : = Xn0�1 and (Xn0 = m and Xn0+1 = `), which
implies that d1 = : : : = dn0�1 = 1; dn0 = 1; dn0+1 = 0.

In case (a), we get x;K(x) = Gx; : : : ;Kn0�2(x) = Gn0�2x 2 L and

1

G
=

1

G2
+

1

G3
� Kn0�1(x) = Gn0�1x =

1

G2
+

1X
k=3

dk+n0�1
Gk

� 1;

which yields that Kn0�1(x) 2M .
In case (b), we get x;K(x) = Gx; : : : ;Kn0�2(x) = Gn0�2x 2 L and

1

G
� Kn0�1(x) = Gn0�1x =

1

G
+

0

G2
+

1X
k=3

dk+n0�1
Gk

� 1;

which yields that Kn0�1(x) 2M .
In case (c), x;K(x) = Gx � 1; : : : ;Kn0�2(x) = G(Kn0�3(x)) � 1 2 R.

Since

x =
1

G
+ : : :+

1

Gn0�1
+

0

Gn0
+

1

Gn0+1
+
dn0+2
Gn0+2

+ : : :

it follows that

K(x) =
1

G
+ : : :+

1

Gn0�2
+

0

Gn0�1
+

1

Gn0
+
dn0+2
Gn0+1

+ : : :

...

Kn0�2(x) =
1

G
+

0

G2
+

1

G3
+
dn0+2
G4

+ : : : 2 R:
Therefore,

1

G
� Kn0�1(x) =

0

G
+

1

G2
+

1X
k=3

dk+n0�1
Gk

� 1;

and we see that Kn0�1(x) 2M . Finally, case (d) follows in a similar way.

Notice that if we are given the sequence of digits (dn)n2N one is able to recover
the original sequence of `'s, m's and r's in a unique way. Let n 2 N be the �rst
index for which

d1 = � � � = dn and dn 6= dn+1:

Mark the block dndn+1 and start again with dn+2: �nd the �rst m � 0 such that

dn+2 = � � � = dn+m and dn+m 6= dn+m+1;

mark the block dn+mdn+m+1 and repeat this procedure beginning with dn+m+2.
Once this blocking at `switch times' is done, one is able to retrieve the original
sequence.

For indices n that are not blocked, use the following correspondence:

dn = 0  ! Xn = `;

dn = 1  ! Xn = r:

For blocked indices dndn+1 use the following correspondence:

01  ! mr;

10  ! m`:

Here is an example:

� 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 � � � :
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� r m ` m r m ` m ` m r r r m r r m ` m r � � �
Let (X; �X ) be the shift space consisting of all possible realizations of the above

Markov chain on the symbols f`;m; rg, and let � be the shift-invariant measure
corresponding to the stationary distribution � and the transition matrix P.

Similarly, let (Y; �Y ) be the shift space of all possible sequences of digits (d1; d2; � � � )
obtained by using the above `random map' K(x). Due to the above discussion we
that there exists a 2-block factor map � : X ! Y given by

(�(x))i =

8<
:

0 if Xi = ` or XiXi+1 = mr;

1 if Xi = r or XiXi+1 = m`;

see also (4.1) and (4.2). Then clearly  Æ �X = �Y Æ  , and the measure � de�ned
on Y by �(A) = �

�
 �1(A)

�
is �Y invariant. In other words, � is K invariant and

ergodic.
Given this correspondence between sequences generated by the Markov chain and

the random expansions to base � = G, we are now able to describe the asymptotic
as well as generic behaviour of these sequences.

As an example we give a number of stationary probabilities.

P (dn = 0) = P (Xn = `) + P (Xn = m;Xn+1 = r)

= �` + P (Xn+1 = r jXn = m)�m

=
pG2

G2 + 1
+ (1� p) 1

G2 + 1

=
pG+ 1

G2 + 1
;

Note that if p = 1=2 one �nds that P (dn = 0) = 1=2, as one might expect before-
hand due to symmetry.

P (dn = 0; dn+1 = 1) = P (Xn = `;Xn+1 = m) + P (Xn = m;Xn+1 = r)

= P (Xn+1 = m jXn = `)P (Xn = `)

+ P (Xn+1 = r jXn = m)P (Xn = m)

= g2
pG2

G2 + 1
+ (1� p) 1

G2 + 1

=
1

G2 + 1
:

We can also calculate the expected return time to the region M , i.e., the expected
time between two 
ips of symbols = 1=�m = G2 + 1, which is the same for all
choices of p.

AcknowledgementsWe would like to thank Je� Lagarias for pointing out Palmer's
thesis [Pa], and sending us a photo copy of its relevant section.
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