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We present a generalized connectedness percolation theory reduced to a compact form for a large
class of anisotropic particle mixtures with variable degrees of connectivity. Even though allowing
for an infinite number of components, we derive a compact yet exact expression for the mean cluster
size of connected particles. We apply our theory to rodlike particles taken as a model for carbon nan-
otubes and find that the percolation threshold is sensitive to polydispersity in length, diameter, and
the level of connectivity, which may explain large variations in the experimental values for the electri-
cal percolation threshold in carbon-nanotube composites. The calculated connectedness percolation
threshold depends only on a few moments of the full distribution function. If the distribution function
factorizes, then the percolation threshold is raised by the presence of thicker rods, whereas it is low-
ered by any length polydispersity relative to the one with the same average length and diameter. We
show that for a given average length, a length distribution that is strongly skewed to shorter lengths
produces the lowest threshold relative to the equivalent monodisperse one. However, if the lengths
and diameters of the particles are linearly correlated, polydispersity raises the percolation threshold
and more so for a more skewed distribution toward smaller lengths. The effect of connectivity poly-
dispersity is studied by considering nonadditive mixtures of conductive and insulating particles, and
we present tentative predictions for the percolation threshold of graphene sheets modeled as perfectly
rigid, disklike particles. © 2011 American Institute of Physics. [doi:10.1063/1.3559004]

I. INTRODUCTION

Since their discovery in the early 1990s carbon nan-
otubes (CNTs) have attracted a lot of attention on account
of their excellent mechanical, electrical, and thermal proper-
ties. More recently, the arguably even more remarkable char-
acteristics of another carbon allotrope, graphene sheets, were
discovered.1 Both these allotropes manifest their properties
on a macroscopic level in composites involving, e.g., poly-
meric materials through the networks that they form in these
media. It is not surprising, then, that the network formation of
these nanofillers has also attracted much attention.2, 3 Indeed,
a crucial requirement for obtaining the desired properties of
the final composite material is controlling network forma-
tion. Provided their level of connectivity meets the criteria set
by the physical property of interest, and provided they form
a system-spanning network, the nanofillers can considerably
improve the physical properties of the host material.4 For ex-
ample, in order to enable charge-carrier hopping or tunneling
from a particle to a neighboring one in the network, they ought
to be sufficiently close to each other. This required proximity
sets a connectedness criterion, which in turn determines the
so-called percolation threshold (PT), i.e., the minimal loading
of nanofillers needed to form a domain-spanning network.4

At this critical point, the electrical conductivity increases by
many orders of magnitude.2, 3

A considerable research effort has been devoted in deter-
mining the PT of anisometric nanofillers in composites and

a)Electronic mail: r.h.j.otten@tue.nl.

values as small as or smaller than 10−3, measured in terms
of the volume fraction that they occupy, have been found for
both CNTs (Ref. 5) and graphene.3 Such small values are not
entirely surprising because both for rodlike and platelike par-
ticles the PT has been predicted to scale inversely with their
aspect ratio that typically is on the order of 1000.6–11 In-
deed, graphene, being a single layer of graphite, has a typical
thickness of a few angstroms and a diameter on the order of
1 μm. For the rodlike CNTs the diameters range from about
1 nm for single-walled carbon nanotubes (SWCNTs) to tens
of nanometers for multiwalled carbon nanotubes (MWCNTs),
whereas their lengths are generally on the micrometer scale.

In practice, preparations of nanofillers, including those of
the mentioned carbon allotropes, exhibit a number of char-
acteristics that potentially affect network formation in the
preparatory stages of the composite material and hence the
PT. These include a size polydispersity and the presence of
nonconducting species.3, 5, 12, 13 In this work we focus atten-
tion on these two issues from a theoretical point of view,
where we note that both CNTs and graphene sheets in the
final composite normally show a large distribution in their
linear dimensions. One reason for this size polydispersity is
that because of strong van der Waals forces they tend to form
bundles or stacks that, even after processing, are difficult to
separate.5 Because percolation phenomena are intimately re-
lated to phase transitions, which are known to be strongly in-
fluenced by polydispersity effects,14 we expect a significant
impact of polydispersity on the PT. As we show in this pa-
per this turns out to be the case. Whether or not there is a
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correlation between the diameters and lengths of the
nanofillers we find to be a crucial question in this context, and
our main claim is that the aforementioned inverse aspect ratio
scaling is only true if the linear dimensions are independent
of each other. A coupling between them leads to completely
different behavior.

The other issue we focus on is nonadditivity. Nonaddi-
tivity of interactions has been shown to have a strong effect
on the phase behavior of hard-rod dispersions15 and hence
could also be important here. As an example, we consider
nonadditivity of charge transport between different kinds of
particle, which implies that the connectivity range of two un-
like particles differs from the average of those between pairs
of like particles. In particular, we focus on the presence of
nonconductive species and again expect a significant im-
pact on the PT because, in practice, only one-third of the
SWCNTs are metallic and two thirds are semiconducting.16

This expectation turns out to be correct because we find a PT
that depends very sensitively on the connectivity ranges.

The combined effects of size and connectivity variations
in our view explain, at least in part, the variation of several
orders of magnitude observed in PTs of CNTs that have ap-
proximately the same mean aspect ratio.17 Theoretically, nei-
ther the effect of polydispersity in size nor that of conductiv-
ity of the nanofillers is well understood for either allotrope
and often ignored in computer simulations and model pre-
dictions. For graphene, and flat particles in general, there is
only a limited number of theoretical works devoted to their
percolation behavior for reasons that will become apparent
below. For rodlike particles, there are indeed numerous pre-
dictions but most approaches, including the reference inter-
action site model,11 excluded or contact-value theorems,6–10

and preaverage angular correlations or neglect long-range
correlations.11, 18 In this paper we show that these correlations
can, in fact, be very important by taking a more fundamen-
tal approach. We demonstrate that a generalized connected-
ness percolation theory can be reduced to a tractable form
for a large class of mixtures of anisometric particles, extend-
ing our earlier paper.19 We make use of the multicomponent
pair-connectedness Ornstein–Zernike (OZ) equation, which
has an analogue in the liquid-state theory,20 where we allow
for polydispersity in all three linear dimensions and connec-
tivity ranges of the particles. From this we obtain an explicit
expression for the average cluster size, with the underlying
assumption that the network is formed in the fluid stages of
the nanocomposite production process.5, 21

For definiteness, we apply our theory to harshly repulsive
(nonoverlapping) rodlike carbon nanotubes, invoke a second-
virial approximation, and use a generalized version of the so-
called cherry-pit, or core-shell model that considers two par-
ticles to be connected if they are sufficiently close to each
other.22, 23 This is reasonable because nanotubes in conducting
networks do not actually touch each other in the final prod-
uct and charge transport across nanotubes occurs via electron
hopping between them. An advantage of the cherry-pit model
is that it can straightforwardly be applied to study nonaddi-
tive mixtures of conductive and nonconductive particles. With
these model ingredients we find an analytical expression for
the PT from the nanofiller fraction at which the cluster size

diverges. Similar to what was found previously for the geo-
metrically much simpler case of spherical particles,24 the PT
that we obtain is a function only of higher-order moments
of the full size distribution notwithstanding the presence of
angular correlations between the filler particles caused by
translation–rotation coupling.

Our findings may be summarized as follows.

1. The PT of CNTs only depends on a few moments of
the full distribution function of sizes and connectivity
ranges, meaning that the details (higher moments) of
these distributions are irrelevant. The combined influ-
ence of length and width polydispersity on the perco-
lation threshold is a highly nontrivial function of the
prevalence of the various species in the mixture;

2. If we assume that all CNTs are conductive and that the
length and width distributions are independent of each
other, then a length distribution that is strongly skewed
toward shorter lengths produces the lowest PT for a fixed
mean length. This generalizes prior calculations and puts
these on a much firmer theoretical footing.12, 25 Thicker
CNTs, on the other hand, have the opposite effect: they
raise the PT and more so than expected from the inverse
aspect ratio dependence valid for monodisperse tubes;

3. If the length and width distributions are coupled, which
may be the case because of a sonication step, or, e.g.,
the screw milling part of the production process that is
often employed, then neither the length nor the aspect
ratio is the determining factor for a low PT. If this cor-
relation between the length and diameter distributions is
linear, the situation is completely the opposite to that of
uncorrelated lengths and breadths: polydispersity raises
the PT and very strongly so for a relatively small number
of long rods;

4. In mixtures of conductive and insulating CNTs, which
are inherently nonadditive, the PT scales with the inverse
fraction of conductive filler, implying that the concentra-
tion of conductive filler particles determines the PT and
the insulating ones act, in a way, as dead mass. This is
specific to rodlike particles and is caused by the predom-
inance of linear chains of interactions in the long-range
correlations between them.

In the remainder of this paper we derive in Sec. II an
equation for the average cluster size of mutually connected
nanofillers with arbitrary distributions of their linear dimen-
sions. In Sec. III we choose an appropriate closure and discuss
the connectivity model that we use to derive the percolation
threshold for rodlike CNTs, which, even in the monodisperse
limit, is a nontrivial result due to the influence of translation–
rotation coupling on the long-range correlations between the
particles.12 In Sec. IV we show the effect on the PT of a
tetradisperse size distribution. The effect of a size polydis-
persity on the PT of several more realistic size distribution
functions is demonstrated in Sec. V. We next apply our model
to compute the effect of the presence of nonconductive parti-
cles on the PT in Sec. VI. Finally, we draw our conclusions
in Sec. VII, discuss the applicability of the second-virial ap-
proximation to fillers with a different shape, and we make
tentative but surprising predictions for the PT of graphene
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sheets that we model as idealized mutually repelling (“hard”)
disks.

II. CLUSTER-SIZE CALCULATION

Our aim is to find the percolation threshold, i.e., the
minimum packing fraction of particles necessary to make the
average cluster size diverge, and we attempt to obtain it from
connectedness percolation theory.20 If nk denotes the number
of clusters consisting of k particles, the weight-average
overall cluster size, S ≡ ∑

k k2nk/
∑

k knk , is defined as the
average number of particles in a cluster containing a randomly
chosen particle.26 Given the distribution of the cluster sizes
nk , we find that the total number of contacts between two par-
ticles within the same cluster, defined as the number of pairs
of particle that have a direct or an indirect connection within
the same cluster, is given by Nc = ∑

k( k
2 )nk = 1

2

∑
k k(k

− 1)nk , with N = ∑
k knk being the total number

of particles. Hence, we deduce that S = ∑
k(knk

+ k(k − 1)nk)/N = 1 + 2Nc/N , which is an exact re-
sult. The first term, unity, stems from choosing a particle
and the second, 2Nc/N , from counting the particles it is in
contact with in the same cluster.

The number of contacts, Nc, and the weight-average clus-
ter size, S, can also be described in terms of the so-called pair
connectedness function P . For simplicity we consider spheri-
cal particles of equal size; the generalization to polydisperse,
anisometric particles is discussed below. P is defined such
that ρ2 P(r, r′)drdr′ is the probability of simultaneously find-
ing a particle in a volume element dr at position r and a sec-
ond particle in dr′ at r′, given that they are part of the same
cluster.20 Here, ρ is the number density of the particles that
we presume to be uniformly distributed. This definition of
P implies that Nc = 1

2ρ2
∫ ∫

drdr′ P(r, r′) must be the total
number of pairs of particle that are in contact (either directly
or indirectly) in a cluster, where the factor 1/2 corrects for
double counting. If we use the property of the translational
invariance of P we can write Nc = 1

2ρN
∫

drP(r, r′), which
hence gives for the cluster size,

S = 1 + ρ

∫
drP(r, r′) = 1 + ρ lim

q→0
P̂(q), (1)

where the hat ( ˆ. . .) ≡ ∫
dr(. . .) exp(iq · r) denotes a spatial

Fourier transform with q being the wave vector.
The probability P(r, r′) can be obtained by solving

the pair connectedness analogue of the Ornstein–Zernike
equation,20

P(r, r′) = C+(r, r′) + ρ

∫
dr′′C+(r, r′′)P(r′′, r′). (2)

Here, C+ denotes the direct pair connectedness function that,
in essence, measures short-range correlations, discussed more
extensively below. An intuitive interpretation of Eq. (2) may
be given as follows. The functions P(r, r′) and C+(r, r′) de-
scribe different kinds of cluster27 in which two particles at
r and r′ are connected, and Eq. (2) states that all clusters in
the fluid described by the probability P(r, r′) can be subdi-
vided into the sum of clusters with probability C+(r, r′) that
do not have any bottleneck particles that upon removal splits

the cluster into two disconnected ones, and those clusters that
do contain such particles.20 Clusters from this latter type can
then be divided into those that connect the first particle at r to
the closest bottleneck particle at r′′ and another that connects
r′′ to the second particle at r′, giving C+(r, r′′)P(r′′, r′). Av-
eraging over all possible positions of r′′ then gives the second
term in the right-hand-side of Eq. (2).

The description can straightforwardly be generalized to
polydisperse, anisometric particles for which P and C+ also
depend on their linear dimensions and orientations. To de-
scribe these particles with arbitrary linear dimensions, let xiα†
denote the mole fraction of particles of length Li , width Dα ,
and height H†. In the following, we use indices with Roman
symbols to denote length polydispersity, greek ones for vari-
ations in width, and the symbols †, ‡, and § to indicate differ-
ent heights. The weight-average cluster size S is now the sum
over the indices of the weight-average “partial cluster sizes”
Si jαβ†‡ that contain averages over the orientations

Si jαβ†‡ = xiα†δi jδαβδ†‡

+ lim
q→0

xiα†x jβ‡ρ〈P̂i jαβ†‡(q, u, u′)dudu′〉u,u′ . (3)

Here, δi j is the Kronecker delta and u ≡ (u1, u2) with u1 and
u2 being the unit vectors in the direction of the main axes
of a particle. For the sake of notational convenience we in-
troduced the notation 〈. . .〉un ≡ (4π )−1

∫
dun(. . .), n = 1, 2,

to denote the orientational average, with a similar prescrip-
tion for the primed variables. The short-hand notation 〈. . .〉u,u′

implies the compound average 〈〈. . .〉u〉u′ . The first term of
Eq. (3) is only nonzero for the particle chosen to start counting
the contacts, i.e., i = j , α = β, and † = ‡, or for two differ-
ent particles of equal dimensions, because for those Si jαβ†‡ is
the same. The second term gives the number of intracluster
contacts between a particle of dimensions Li , Dα , and H† and
one of dimensions L j , Dβ , and H‡, weighted by their mole
fractions to give the correct sum.

The probability P̂i jαβ†‡ obeys the multicomponent analog
of the pair connectedness Ornstein–Zernike equation, Eq. (2),
and its Fourier transform reads

P̂i jαβ†‡(q, u, u′) = Ĉ+
i jαβ†‡(q, u, u′)

+ ρ
∑
k,γ,§

xkγ §〈Ĉ+
ikαγ †§(q, u, u′′)

× P̂k jγβ§‡(q, u′′, u′)〉u′′ . (4)

Because the cluster size obeys S ≡ ∑
p Sp with p ≡ {i, j,

α, β, †, ‡}, we see from Eqs. (3) and (4) that we need not
solve the individual components of P̂ but have to obtain in-
formation only on a weighted average of P̂ over its six in-
dices and four orientations. Therefore, detailed knowledge
of the individual components of P̂i jαβ†‡ is not required to
calculate the cluster size and the trick to solving Eq. (4)
is to take averages over j , β, ‡, and u′. For this pur-
pose we now introduce the generalized notation 〈. . .〉 jβ‡,u
≡ (4π )−1

∫
du′ ∑

j,β,‡ x jβ‡(. . .) for an average over the size
distribution and the orientations of a single particle. We next
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define the functions �iα† and 	iα† and the operator Oiα† as

�iα†(q, u) ≡ 〈P̂i jαβ†‡(q, u, u′)〉 jβ‡,u′ , (5)

	iα†(q, u) ≡ 〈Ĉ+
i jαβ†‡(q, u, u′)〉 jβ‡,u′ , (6)

Oiα† fkγ § ≡ ρ〈Ĉ+
ikαγ †§(q, u, u′′) fkγ §(q, u′′)〉kγ §,u′′ , (7)

where fkγ § is an arbitrary integrable function. This allows us
to rewrite the averaged version of the OZ-equation (4) into a
more compact form as

�iα†(q, u) = (Ikγ § − Okγ §)−1	kγ §(q, u), (8)

with Iiα† being an operator that changes the indices of a func-
tion, so Iiα† fkγ § = ∑

k,γ,§ δikδαγ δ†§ fkγ § = fiα†.
According to Eq. (3), this gives for the overall average

cluster size

S = 1 + lim
q→0

ρ〈�iα†(q, u)〉iα†,u. (9)

We insert Eq. (8) into Eq. (9) for the cluster size S,
note that 	kγ §(q, u) = ρ−1 Okγ §1, and invoke the identity
1 + (Ikγ § − Okγ §)−1 Okγ §1 = (Ikγ § − Okγ §)−1 Ikγ §1 = (I −1

kγ §

(Ikγ § − Okγ §))−11. This gives S = 〈(I − Oiα†)−11〉iα†,u, with
I being the identity operator. To solve for S, we write

S = 〈Tkγ §(u)〉kγ §,u, (10)

where T must be solved from the following simplified integral
equation:

Tkγ §(u) − ρ〈Ĉ+
kmγ δ§†(0, u, u′)Tmδ†(u′)〉mδ†,u′ = 1. (11)

Equations (10) and (11), which represent the central result of
our theory, involve averages over the indices and orientation
of a single particle as opposed to those of two particles in
the original OZ-equation (4), and it follows that finding cer-
tain averages of T over its indices and argument suffices to
compute the cluster size. This simplifies the calculation sig-
nificantly. In Sec. III we apply our theory, valid for parti-
cles of arbitrary linear dimensions, to the rodlike carbon nan-
otubes. For this we invoke an appropriate closure because the
direct pair connectedness function Ĉ+ is an as yet unknown
quantity.

III. APPLICATION TO CARBON NANOTUBES

We now apply our model to carbon nanotubes, which we
assume to have prefect cylindrical symmetry, so only two di-
mensions and a single orientation are required to describe
their properties. CNTs have a typical aspect ratio of 102 to
104, and for such slender particles an accurate closure of
Eq. (11) for the average cluster size is provided by the second-
virial approximation.28 See also Appendix A. This means that
we consider only linear pair correlations between the parti-
cles, i.e., no loop correlations, which, as is shown below, has
a significant consequence for nonadditive mixtures. The ac-
curacy of the second-virial approximation and the possible
applicability to other types of particle are considered in the
discussion in Sec. VII. We first elaborate on this approxi-
mation and the connectivity model that we use and compute
the percolation threshold using this approximation. To show
the strong effect of polydispersity, we apply the result to a

FIG. 1. (a) Schematic representation of two nanotubes with orientations u
and u′, lengths Li and L j , and diameters Dα and Dβ , separated by a distance
r between their centerlines and skewed at an angle θ . Charge transport be-
tween the rods requires r to be smaller than D + λ = �: the dashed cylinders
of diameter � enclosing the rods must overlap. (b) Solid line: the connected-
ness potential u+ for the idealized “cherry-pit” model between two particles
in the same cluster versus their distance r for ideal (ε = 0) and hard parti-
cles (ε → ∞). The dashed line shows an alternative connectedness potential
βu+ = (r − D)/λ for r > D that may provide a more realistic description of
an exponentially decaying electron-tunneling probability with a decay length
λ. Within the second-virial approximation described in the main text, both
connectedness potentials produce identical results.

tetradisperse distribution in Sec. IV. The results are finally ap-
plied to several realistic size distributions in Sec. V, including
nonadditive mixtures, in Sec. VI.

The second-virial approximation implies that Ĉ+

= f̂ +,9, 20 with f + = exp(−βu+) being the connectedness
Mayer function of particles that belong to the same cluster and
interact via connectedness potential u+. Here, β−1 = kB T ,
with kB being Boltzmann’s constant and T being the abso-
lute temperature. For any configuration where two rods are
not connected, this two-body connectedness potential u+ by
definition is infinitely large. The potential that we use inter-
polates between ideal, penetrable particles, and hard ones that
interact via a strongly repulsive excluded-volume interaction,
but our final purpose is to model particles of the latter type,
see Fig. 1. For intersecting particles, for which the distance
r between them satisfies r ≤ Dαβ , we have u+ = ε, where
ε → ∞ for impenetrable rods and ε = 0 for ideal (penetra-
ble) ones and where Dαβ ≡ 1

2 (Dα + Dβ) denotes their aver-
age diameter. In the overlap or connectedness zone, u+ = 0
for Dαβ ≤ r ≤ �αβ and u+ → ∞ for r ≥ �αβ away from it.
The length �αβ is an adjustable parameter in our model and
indicates the maximal range for effective charge transport.12

This means that beyond this range charge transport is ne-
glected and below we discuss the effect of a hopping prob-
ability with a longer range. The concept of the connectedness
criterion is corroborated by the experimental observation that
in practice the nanotubes in conducting networks do not actu-
ally touch each other;5 our model is therefore a generalization
of the so-called cherry-pit model that has earlier been used for
spherical particles.23, 29

The next step is to compute f̂ +, for which it is convenient
to make use of Straley’s oblique coordinate system.30 This
means instead of Cartesian coordinates r we shift to one that
has two axes along the orientations u and u′ of two test rods
and the third one along the shortest line connecting them,

r = ξu + ηu′ + ζ
u × u′

|u × u′| . (12)
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The associated volume element is dr = | sin θ |dξdηdζ , with
θ (u, u′) being the angle between the particles. For slender
rods of lengths Li and L j , we find to leading order31

f̂ +
i jαβ (0, u, u′) =

∫ Li /2

−Li /2
dξ

∫ L j /2

−L j /2
dη

(∫ �αβ

−�αβ

dζ −
∫ Deff

αβ

−Deff
αβ

dζ

)

× |sin θ | = 2Li L j
(
�αβ − Deff

αβ

)|sin θ |, (13)

where Deff
αβ ≡ Dαβ(1 − exp(−βε)) is an effective diameter,

so Deff
αβ = 0 for ideal and Deff

αβ = Dαβ for hard rods. See also
Fig. 1. This figure also shows an alternative potential βu+

= (r − D)/λ for r > D that more realistically mimics an
exponentially decaying electron-tunneling probability with
a decay length λ.32 If we use this potential instead of the
cherry-pit potential and set λ = �αβ − Dαβ as the character-
istic tunneling distance, then this leaves our result, Eq. (13),
for f̂ + invariant, so our cherry-pit model implicitly takes this
effect into account.

We are now in a position to solve Eqs. (10) and (11) with
the closure C+ = f +, where f̂ + is given by Eq. (13). Let
us first tentatively presume additivity of charge-carrier hop-
ping distances, so �αβ = (�α + �β)/2. Nonadditivity effects
caused, e.g., by a fraction of the particles not contributing
to charge transport through the network, are extensively dis-
cussed in Sec. VI. For the case of additive hopping distances
the cluster size S for our polydisperse CNTs can then be ob-
tained by substituting f̂ + into Eq. (11), giving

Tkγ (u) − ρLk
(
�γ − Deff

γ

) 〈Lm | sin θ |Tmδ(u′)〉mδ,u′

− ρLk
〈
Lm

(
�δ − Deff

δ

) | sin θ |Tmδ(u′)
〉
mδ,u′ = 1, (14)

where we have inserted within the second-virial approxi-
mation Ĉ+ = f̂ + and Eq. (13) for f̂ +, which tacitly pre-
sumes the additivity of the overlap distance �αβ . If we
average the above integral equation over u and use that
〈| sin θ |〉u = 〈〈| sin θ |〉u〉u′ = π/4 for an isotropic distribution
of the orientations,31 then subsequent averaging the resulting
equation over the variables k and γ produces an expression
for S = 〈Tkγ (u)〉kγ,u and two of its higher moments,

〈Tkγ (u)〉kγ,u − ρ
π

4

〈
Lk

(
�γ − Deff

γ

)〉
kγ

〈Lm Tmδ(u′)〉mδ,u′

− ρ
π

4
〈Lk〉k

〈
Lm

(
�δ − Deff

δ

)
Tmδ(u′)

〉
mδ,u′ = 1.

(15)

To solve for S, we repeat this exercise after multiplying the
integral equation by Lk and (�γ − Deff

γ )Lk , respectively.
The solution of the set of three equations that we thus

obtain gives an expression for S that diverges at the PT if the
rod volume fraction φp = π

4 ρ〈Lk D2
γ 〉kγ obeys

φp = 〈Lk D2
γ 〉kγ

〈L2
kλ

eff
γ 〉kγ +

√
〈L2

k〉k〈L2
k(λeff

γ )2〉kγ

, (16)

with λeff
γ ≡ �γ − Deff

γ . Equation (16) is our main result for
dispersions of rodlike particles. We find that the PT depends
only on several higher-order moments of the full distribution
function. A similar result was found for spherical particles, al-
though these obviously do not exhibit angular correlations.24

That these are important for rods is straightforward to illus-
trate by means of a so-called contact-volume argument.7 This
implies that we presume that percolation requires that there is
about one rod per average contact or overlap volume, which
is equal to 〈L2

kλ
eff
γ 〉kγ π/2. We then retrieve Eq. (16) except for

the second term in the denominator that now becomes equal
to the first term, so 〈L2

kλ
eff
γ 〉kγ . The neglect of translation–

rotation coupling between the rods in the “simple” contact-
volume argument causes the discrepancy between the two
results.

Equation (16) holds for arbitrary length and diameter dis-
tributions that are even allowed to be coupled, in which case
〈Lk D2

γ 〉kγ 
= 〈Lk〉k〈D2
γ 〉γ . We shall see later that a positive

correlation between the distributions leads to interesting re-
sults, but we first presume the distributions to be independent.
In that case φp is inversely proportional to the weight aver-
age 〈L〉w ≡ 〈L2

k〉k/〈Lk〉k of the distribution of rod lengths. A
direct consequence is that a monodisperse system with only
very long rods produces the lowest PT, that is, the lowest ab-
solute value. However, the fact that the PT scales inversely
with 〈L〉w , not the number average 〈Lk〉k , causes cooperative
behavior between the rods that has a significant impact on the
PT. Indeed, the dependence on the weight average implies that
increasing the length polydispersity lowers the PT for a con-
stant average length because longer rods contribute more to
the growing network than shorter ones do, and the effect is
stronger for a larger length difference.

In Secs. IV– VI, the results from this section are applied
to systems that can be considered as implementations of our
model. The first application in Sec. IV is an idealized system
of tetradisperse rods that shows a sensitive dependence of the
PT on a size polydispersity. Next, in Sec. V we consider more
realistic distributions to demonstrate that a large decrease in
the PT requires a length distribution that is strongly skewed
toward shorter lengths. The final application of our model is
in Sec. VI, where we find a sensitive dependence of the PT on
the presence of nonconductive particles in the distribution.

IV. TETRADISPERSE DISTRIBUTION

We first apply our main result for rodlike particles,
Eq. (16), to a tetradisperse system system of long, short, thick,
and thin rods, where the thick rods model either MWCNTs or
bundles of CNTs. This distribution has a very strong effect on
the PT, as is illustrated in Fig. 2. We see that the PT increases
linearly with the mole fraction of thick rods, whereas it de-
creases with the fraction of long rods. The larger the length
difference, the smaller the fraction of long rods required to
realize a significant reduction in the PT. For a length ratio of
more than 8 the PT is decreased by a factor of more than 4 by
adding only 10% of long rods, and it is reduced further only
slightly by adding long ones. We note that here the distribu-
tions are presumed to be independent of each other, which
turns out to be an important assumption to be discussed in
Sec. V.

The reciprocal weight-average length dependence of the
PT that we find agrees with results for interpenetrable sticks7

and hard rods with monodisperse diameters and connectivity
ranges,12 for which we find φp = D2/2〈L〉wλ, with λ = �
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FIG. 2. For a tetradisperse mixture of thick, thin, long, and short rods the
percolation threshold φp is shown as a function of the number fractions xL of
long rods and xD of thin rods. The tunneling length λ is taken as a constant
and drops out of the description. The graphs are for different length ratios
(n ≡ L long/Lshort) and width ratios (Dthick/Dthin), which are taken equal to n.
From top to bottom: n = 2, 4, 8, and 16. Inset: the nonlinear behavior of φp

is demonstrated by a cross section for constant φp(xL , xD)/φp(0, 0) = 0.25
(0.15) for the solid (dashed) lines. Pairs of line from top right to bottom left:
n = 2, 4, 8, and 16.

− D. The value of λ plausibly depends on the dielec-
tric constant of the host medium12 and can also ef-
fectively be manipulated by a penetrable conductive
coating of the CNTs, such as the conductive polymer
blend poly(3,4-ethylenedioxythiophene):poly(styrene sul-
fonate) (PEDOT:PSS),21, 33 discussed in more detail in
Sec. VI. In the monodisperse limit we find φp = D2/2λL
for hard particles, in agreement with recent analyti-
cal work.32 For ideal particles in the same limit we
find φp = D2/2�L = D/2L with Deff

γ = 0, where we
put � = D.12 This is also consistent with computer
simulations34 and with results that were based on geometric
arguments.9, 25, 35

In order to highlight the strong cooperative behavior
between the rods for small fractions of long ones and to
make the highly nonlinear effect of polydispersity more quan-
titative, we calculate Eq. (16) and compare this with that
for the monodisperse case for which 〈La

i Db
α〉iα = La Db for

the integers powers a, b = 0, 1, 2 . . .. We consider polydis-
perse distributions that obey 〈Li 〉a

i 〈Dα〉b
α = La Db, so they

have the same number averages as the reference monodis-
perse case. It appears reasonable to presume the hopping
distance λ to be an invariant of the dimensions of the
CNTs, so we divide Eq. (16) by 〈Dα〉2

α/2λ〈Li 〉i and obtain
for the ratio of percolation thresholds φp(x, y)/φp(x0, y0)
= 〈Li 〉2

i 〈D2
α〉α/〈L2

i 〉i 〈Dα〉2
α . Here, x and y are as yet unspeci-

fied parameters that depend on the type of length and diameter
distributions adopted and that measure the degree of polydis-
persity; x0 and y0 are the values for which the distribution is
monodisperse, i.e., very strongly peaked, with the same num-
ber average.

We observe that the polydispersity indices 〈L2
i 〉i/〈Li 〉2

i
and 〈D2

α〉α/〈Dα〉2
α of the distributions suffice to determine

the effect of polydispersity on the PT. If we insert the
identities 〈D2

α〉α = Var(Dα) + 〈Dα〉2
α and 〈Li 〉2

i = Var(Li )

FIG. 3. For a bidisperse mixture of long and short rods the ratio of the actual
percolation threshold φp(xL ) and that of the corresponding monodisperse so-
lution φp(x0) with the same mean length 〈Lk〉k is shown as a function of
the number fraction xL of long rods. The tunneling length λ is taken as a
constant and in that case drops out of this ratio. The graphs are for differ-
ent length ratios n ≡ L long/Lshort and we find x0 = nx/(1 + (n − 1)x). From
top to bottom, n = 2, 4, 8, and 16. Inset: the largest reduction of the ratio of
PTs is φp(n)/φp(n0) = 4n/(n + 1)2, with n0 = (3n − 1)/(n + 1), obtained
for x = 1/(n + 1), i.e., the minima in the main graph.

+ 〈Li 〉2
i , where Var denotes the variance of a distribution, we

obtain

φp(x, y)

φp(x0, y0)
= m + 1

s + 1
, (17)

with m ≡ Var(Dα)/〈Dα〉2
α and s ≡ Var(Li )/〈Li 〉2

i being the
relative magnitudes of the variances of the diameter and
length distributions.36 Equation (17) shows that a small value
of m and large value of s are required for a significant re-
duction of the PT relative to the equivalent monodisperse dis-
tribution. Given that m is positive for any distribution that is
not monodisperse, width polydispersity apparently raises the
PT. However, in practice m remains close to unity because for
both SWCNTs and MWCNTs, we estimate it to be at most
0.2.37, 38 As to the influence of a length polydispersity, the fact
that a large value of s leads to a low PT is an important issue
that we return to in the discussion.

If we consider a bidisperse mixture consisting of long and
short rods, we find that x0 = nx/(1 + (n − 1)x), and we ob-
serve that a large value of s is obtained for a large skewness
of the distribution, that is, a skewness toward smaller lengths,
as is illustrated in Fig. 3. Indeed, by adding a small fraction
of long rods to a dispersion of short ones that are n times
shorter, a significant nonlinear reduction can be obtained. This
additional reduction decreases again with increasing fraction
of long rods, where we note that the absolute minimal PT
is course obtained if all rods are long. The maximal reduc-
tion of the PT relative to the equivalent monodisperse system
is reached for a number fraction xL of long ones that satis-
fies xL = 1/(n + 1), so the larger the length difference, the
smaller the fraction of long rods required to realize a signif-
icant reduction of the PT. At this optimum number fraction
the relative PT equals φp(n)/φp(n0) = 4n/(n + 1)2, where,
n0 = (3n − 1)/(n + 1), see also Fig. 3. So, a mixture con-
taining only 11% of rods that are eight times longer has a
PT that is more than 60% lower than the monodisperse sys-
tem with the same average length. This finding may then
provide an explanation for the large scatter in observed PTs of
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CNTs with the same (number) average dimensions.17 A more
generalized analysis that we present in Sec. V and discuss in
Sec. VII teaches us that a length distribution that is strongly
skewed toward shorter lengths, as shown in Fig. 3, is in fact
a requirement for a large reduction of the PT. In Sec. V we
will also consider the impact of polydispersity on the PT of
other length and width distributions inspired by experimental
observations.

V. REALISTIC SIZE DISTRIBUTIONS

Let us now turn to perhaps somewhat more realistic size
distributions of CNTs than the tetravalent one discussed in
Sec. IV, and for these we compute the effect that they have
on the percolation threshold. Because of a lack of experi-
mental data, we first consider independent length and width
distributions; coupled distributions are discussed further on
in this section. We showed in Sec. IV that a width polydis-
persity in practice raises the PT only marginally, so we take
constant CNT diameters and we focus on length polydisper-
sity. Based on the very few available experimental measure-
ments of the length distribution of CNTs, we choose a Gamma
distribution and the related Weibull distribution.39–42 A lim-
iting case of both of these distributions is the exponential
distribution with a probability density function (PDF) fe(L)
= η exp(−ηL),43, 44 for which φp(η)/φp(η0) = 1/2, with
η0 = η/2, irrespective of the value of the distribution param-
eter η that takes the form of the inverse mean length.45 So, an
exponential distribution reduces the PT by a factor of 2 (rel-
ative to the equivalent monodisperse case). Parenthetically,
we note that the exponential distribution is characterized by a
single independent moment only.

The Gamma distribution is described by two indepen-
dent moments and obeys a PDF of the form f	(L) = Lk−1

exp(−L/θ )θ−k/	(k), with 	(k) the Gamma function.45

Its first few moments are 〈Li 〉i = k θ , 〈L2
i 〉i = k(k + 1) θ2,

〈L3
i 〉i = k(k + 1)(k + 2) θ3. The scale parameter θ leaves the

shape invariant and only rescales the distribution; k is the
shape parameter and for smaller values the spread in the dis-
tribution increases because the earlier defined scaled vari-
ance obeys s = 1/k. The monodisperse limit corresponds to
k → ∞, whereas for smaller values of k the distribu-
tion becomes more skewed toward smaller lengths. The
skewness γ is usually defined as γ ≡ 〈(Li − 〈Li 〉i )3〉i/

〈(Li − 〈Li 〉i )2〉3/2
i ,45 implying that there are many more short

CNTs than long ones for a large positive skewness and vice
versa for a large negative one. For the Gamma distribution the
skewness and shape parameter are related via γ = 2/

√
k ≥ 0,

which goes to zero for a large value of k. We find that
φp(k)/φp(∞) = k/(k + 1), which becomes very small for a
small k, or, equivalently, a large positive skewness. The re-
sults are shown in Fig. 4. Given that we consider the distribu-
tions at equal first moment 〈Li 〉i and that we have only two
independent moments, φp(k)/φp(∞) can also be expressed
in terms of the relative magnitude s of the variance because
s = 1/k and γ = 2

√
s. This agrees with the earlier result

φp(s)/φp(0) = 1/(s + 1) and shows that a large value of s is
accompanied by a large skewness for this distribution.

The Weibull distribution is defined by the PDF fW (L)
= a b Lb−1 exp(−aLb), with a > 0 the scale parameter and
b > 0 the shape parameter. The distribution has as its first
moments 〈Li 〉i = 	(1/b)/b a1/b, 〈L2

i 〉i = 	(1 + 2/b)/a2/b,
and 〈L3

i 〉i = 	(1 + 3/b)/a3/b. The parameter a has no
effect on the skewness γ nor on the scaled variance or
spread s = −1 + 2b 	(2/b)/	(1/b)2. The skewness is
a complicated expression of Gamma functions and can
become negative, unlike that of the Gamma distribution.
The monodisperse limit corresponds to a vanishing spread s,
which occurs in the limit of b → ∞, in which case γ con-
verges to the finite value −12

√
6 ζ (3)/π3 ≈ −1.14,46 with

ζ being the Riemann zeta function.47 The ratio of the PTs
again only depends on the shape parameter via φp(b)/φp(∞)
= 	(1 + 1/b)2/	(1 + 2/b). We have plotted this function
in Fig. 5, and we again observe that for the polydisperse
and equivalent monodisperse cases this ratio decreases for
increasing skewness, which also implies an increase of the
variance, just as is the case for the Gamma distribution.

In conclusion, we find from Figs. 4 and 5 that for both
the Gamma and the Weibull distributions the nonlinearity in
the reduction and hence also the absolute reduction of the PT
can be significant and that a length polydispersity can sub-
stantially lower the PT at equal average length. For this to be
the case, the distributions need to have a large positive skew-
ness γ (larger than, say, 2), or, equivalently, a large scaled
variance s. Clearly, this coupling between the skewness and
the spread is not present for a distribution with more than two
independent moments, but in the discussion below we show
that a large value of s does actually imply a large skewness
and that a large variance without any skewness is not suffi-
cient to obtain a low PT. In any event, for those few CNT sys-
tems for which the moments of the length distributions have
actually been determined, the skewness and spread seem to be
quite small, i.e., γ = 0.40 and s = 0.20, giving φp(x)/φp(x0)
= 0.84,40 or φp(x)/φp(x0) = 0.64,48 or φp(x)/φp(x0) = 0.50
for an exponential distribution;43, 44 so for these the effect
of polydispersity is modest. Given the very large scatter in
measured PTs of carbon-nanotube composites,17 we conclude
that the skewness in the distributions must usually, in fact,
be much larger than this. In support of this conjecture, we
note that it is quite plausible that during the sonication of the
CNTs, a necessary exfoliation step in the production process
of the nanocomposite pushes the distribution of CNTs to be-
come very skewed toward the direction of the shorter rods.5, 21

Indeed, exfoliation goes hand-in-hand with tube scission, and
long tubes break more easily than short ones.49 In fact, wide
tubes break less easily than narrow ones, casting doubt on the
assumption of independent length and width distributions that
we presumed so far. This turns out to be a crucial insight. This
implies that the length and diameter distributions must be pos-
itively correlated.

We saw above that in order to obtain a low PT, all rods
should be thin and the length distribution must have a large
positive skewness, so it must decay rapidly with the rod
length. However, if the length and width distributions have
a positive correlation, then the consequences of such a length
distribution are completely different. To estimate the level of
correlation, one could argue that the probability of breaking
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FIG. 4. (a) The influence of length polydispersity on the ratio of the PTs of the Gamma distribution and that of the corresponding monodisperse distribution
with equal mean length, φp(k)/φp(∞) = k/(k + 1). The tunneling length λ is taken as a constant and in that case drops out of the equation. The ratio of the
PTs depends only on the shape parameter k, which is infinitely large for a monodisperse distribution, and the effect can be strong for small k values. (b) For the
values k = 1/2, 2, and 8 from (a) the distributions are shown that all have the same mean 〈Lk〉k = k θ = 1 and the PT values relative to that in the monodisperse
limit are φp(k)/φp(∞) = 1/3 (solid), 2/3 (dashed), and 8/9 (dashed-dotted). Inset: the impact of the length polydispersity can also be expressed in terms of
the skewness γ = 2/

√
k of the distribution, showing that for a large skewness the reduction of the PT is significant. The three points marked on the graph

correspond to the three distributions.

a rod in two is proportional to the required scission energy
under sonication, which in turn scales with the area of the
cross section of, e.g., MWCNTs at least if they are sufficiently
wide. We recall that MWCNTs tend to have a broad spread in
widths. But if Li = αD2

γ , with α being a positive constant,
then there would be no dependence of the PT on the size dis-
tributions at all because according to Eq. (16) the PT then
becomes equal to φp = (2αλ)−1, that is, if we presume the
tunneling range λ to be constant. (This is by no means certain
of course.)

SWCNTs also exhibit a diameter variation39, 50 and
for these the scission energy, which is proportional to
the number of bonds that have to be broken, presumably
scales linearly with the diameter. If Dγ = αLi , we find
that φp(x) = α2〈L3

i 〉i/2λ〈L2
i 〉i and φp(x0) = α2〈Li 〉i/2λ, so

φp(x)/φp(x0) = 〈L3
i 〉i/〈Li 〉i 〈L2

i 〉i . If we evaluate this for a
Gamma, a Weibull, and an exponential distribution, we find
that the competition between a desired large length and small
diameter causes the PT to be raised by polydispersity, not de-
creased, so the PT is in that case always higher than that of
the corresponding monodisperse distribution, see Fig. 6. The
effect becomes stronger for smaller values of b and k, i.e., a

larger positive skewness and lower spread in the distribution.
This result is exactly the opposite of what we obtained for un-
correlated distributions. In conclusion, we find that the level
of correlation between the lengths and widths of rodike par-
ticle formulations is indeed crucial for the dependence of the
percolation threshold upon the polydispersity. Depending on
this, polydispersity effects may either raise or lower the PT
relative to that of the monodisperse case.

We next address another form of polydispersity often ig-
nored in theoretical studies, being that in the level in which
the CNTs conduct electricity.

VI. MIXTURES OF CONDUCTIVE AND INSULATING
PARTICLES

In Secs. III–V we have tacitly assumed that all CNTs con-
tribute to the percolating network and that connectivity is an
additive property, i.e., �αβ = (�α + �β)/2. If the nanocom-
posite contains not only conductive but also semi-conductive
or insulating particles, which is certainly true for SWCNTs,
then this additivity assumption breaks down because a charge
carrier can only move between a pair of conductive parti-
cles and its transport is effectively blocked if one or both of

FIG. 5. (a) For a Weibull distribution the effect of length polydispersity on the ratio of the PTs of the Weibull distribution and that of the corresponding
monodisperse distribution with equal mean length, φp(b)/φp(∞) = 	(1 + 1/b)2/	(1 + 2/b) with 	 the Gamma function (Ref. 45). The tunneling length λ

is taken as a constant and in that case drops out of the equation. The ratio depends only on the shape parameter b. The scaled variance s goes to zero in the
monodisperse limit that b → ∞, in which case the skewness γ → −1.14. A large reduction of the PT is observed for small b. (b) Three Weibull distributions
with 〈Li 〉i = 1 are shown for the values b = 1/2, 1, and 2, for which φp(k)/φp(∞) = 0.17 (solid), 0.5 (dashed), and 0.79 (dashed-dotted). Inset: the impact of
polydispersity can also be expressed in terms of the skewness γ of the distribution, showing that for a large skewness the reduction of the PT is significant. The
three points marked on the graph correspond to the three distributions.
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FIG. 6. The percolation threshold φp for a polydisperse distribution relative
to its value φp(x0) for the corresponding monodisperse case with the same
mean length and diameter is shown for length and diameter distributions that
are linearly correlated, i.e., Li = αDi , with α being a constant. For a constant
tunneling length λ, polydispersity raises the PT for the Weibull, Gamma,
and exponential distributions, and most predominantly for small values of the
shape parameter b and k of the Weibull and Gamma distributions, meaning
a large skewness and large spread. For the exponential distribution the PT is
raised by a factor of 3, regardless of the shape parameter η that equals the
reciprocal of the mean value of the distribution.

them are poor conductors. Fortunately, our theory can quite
straightforwardly be adjusted to model a mixture of metallic
and electrically insulating rods, at least if they are of equal di-
ameter. This is obviously an idealization because the single-
walled CNTs that do not possess metallic properties are not
perfect insulators and, as already alluded to, exhibit semicon-
ducting behavior,2 but for our purposes this model suffices.

In our model description we take our familiar criterion for
connectivity of a pair of conductive rods, i.e., �11 = D + λ,
with the subscript 1 referring to the conductive species, and
we require that particles of any other pair need to touch for
charge transport to take place, which statistically occurs with
zero probability. This means that �12 = �22 = D, where the
subscript 2 indicates an insulating rod. This enforces nonaddi-
tive charge-transport properties by blocking charge transport
if at least one of the particles in a pair is not metallic. We con-
sider a binary mixture of conductive and insulating rods of
mole fractions x and 1 − x , respectively. We then start from
Eq. (14) that we average over u, and obtain

〈Tkγ (u)〉u − π

2
ρLk〈(�γδ − D)Lm Tmδ(u′)〉mδ,u′ = 1. (18)

If the index γ = 2 refers to the insulating particles,
we have 〈(�2δ − D)Tmδ(u′)〉δ = 0 and for γ = 1, denot-
ing the conducting particles, we have 〈(�1δ − D)Tmδ(u′)〉δ
= λ x Tm1(u′). We substitute this in Eq. (18) and obtain
〈Tk1(u)〉u − π

2 ρ λ x Lk〈Lm Tm1(u′)〉m,u′ = 1. We take averages
over k after subsequently multiplying it by unity and by
Lk . Solving the resulting set of equations for 〈Tk1(u)〉k,u and
〈Lk Tk1(u)〉k,u gives for the former

〈Tk1(u)〉k,u = 1 − π
2 ρ λ x Var(Lk)

1 − π
2 ρλ x 〈L2

k〉k
, (19)

which diverges if the denominator is zero, leading to the crit-
ical number density ρp = (π

2 λ x 〈L2
k〉k)−1. From this we find

for the PT

φp = π

4
〈Lk〉k D2ρp = D2〈Lk〉k

2 λ x〈L2
k〉k

. (20)

We see that we retrieve our previous result, Eq. (16),
for polydisperse lengths but monodisperse widths, except for

an additional factor 1/x . Hence, we find that the percolation
threshold is governed by the fraction x φ of conductive par-
ticles. This means that if one third of the SWCNTs is con-
ductive, as is believed to be the case,51 then the PT is three
times larger than would have been if all of them had been
conductive, implying that increasing the fraction of conduc-
tive CNTs is a useful endeavor if a low PT is required for
the nanocomposite application envisaged.5, 51, 52 The fact that
the PT is governed completely by the concentration of con-
ductive particles may seem counter intuitive, the reason being
that the presence of nonconductive fillers should cause a dis-
proportionate increase of the PT because they can take out
entire conductive paths in a network that spans the whole sys-
tem. We surmise that this effect is counteracted by noncon-
ductive particles that sit in dead branches and would have no
contribution to the network anyway. In fact, this prediction
can be understood at a deeper level if we consider percola-
tion on a Bethe lattice. A Bethe lattice is a cycle-free tree
with z branches per lattice site, allowing us to readily deduce
that provided a fraction x of these particles contributes to the
charge transport, it must have a PT of φp = 1/x(z − 1) if ex-
pressed in terms of the fraction of occupied sites.4 From this
result we conclude that the 1/x scaling in the PT must be the
result of the absence of loop correlations in the Bethe lattice,
which it has in common with the second-virial approximation
in continuous space.19

Another way to achieve the goal of lowering the PT is to
make use of an electrically conducting coating of the CNTs,
replacing the surfactants that often are used to disperse the
CNTs in water in the early stages of the production process of
the nanocomposite.21 This coating then in a way manipulates
the (effective) hopping distance λ, provided it is in a way soft
and physically penetrable to other CNTs.53 For such a coating,
a polymeric latex known as PEDOT:PSS has been used that
also effectively stabilizes the CNTs in a solution.21, 33 We note
that the envisaged conduction mechanism of nearest-neighbor
hopping in our model may lose its meaning for the rods with
the soft conductive coating. Still, if we presume that the effec-
tive hopping distance is much larger for a coated CNT than for
one without a coating, then the probability of charge transport
between two CNTs without a coating is negligible compared
to that of a pair with at least one coated particle. This implies
that �11 = D + λ,�12 = D + λ/2, and �22 = D, where the
subscript 1 (2) indicates the (non-)conductive particle. In this
model conduction takes place via the intersection of two coat-
ings or via the intersection of a coating and a rod.

If this is so, we have for the average 〈(�2δ − D)Tmδ

(u′)〉δ = λ
2 x Tm1(u′) in Eq. (18) for the index γ = 2 and

〈(�1δ − D)Tmδ(u′)〉δ = λ x Tm1(u′) + λ
2 (1 − x)Tm2(u′) for

the index γ = 1, where x now stands for the mole fraction
of coated CNTs. If we insert this in Eq. (18) we obtain the
following set of equations:

〈Tk1(u)〉u − π

2
ρLk(λx〈Lm Tm1(u′)〉m,u′

+ λ

2
(1 − x)〈Lm Tm2(u′)〉m,u′ ) = 1, (21)

〈Tk2(u)〉u − π

4
ρ λ x Lk〈Lm Tm1(u′)〉m,u′ = 1, (22)
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for the two types of particle in the dispersion. If we take
the average of Eqs. (21) and (22) over k after multiply-
ing them by unity and by Lk , we have four equations
for the four unknowns 〈Tk1(u)〉k,u, 〈Tk2(u)〉k,u, 〈Lk Tk1(u)〉k,u,
and 〈Lk Tk2(u)〉k,u. We solve these and find that the solu-
tions have as a common denominator 16 − πλ ρ x〈L2

k〉k(8
+ πλ ρ (1 − x)〈L2

k〉k), which vanishes at the critical number
density ρp = ((

√
x + x)〈L2

k〉kπλ/4)−1. This then gives

φp = D2〈Lk〉k

(
√

x + x)λ〈L2
k〉k

, (23)

for the PT. So, we find a nontrivial dependence of the PT on
the fraction of coated rods x . Again, the larger the fraction of
coated rods, the lower the PT, as is to be expected.

One may ask what would be the PT of PEDOT:PSS
coated nanotubes that are poor conductors instead of metal-
lic ones—an experiment recently conducted by Hermant
et al.21, 33 In that case the particles may only serve as a scaf-
fold that still allows the conductive material to percolate at
very low loadings, so charge transport is then only possible,
provided two coatings intersect. This case is equivalent to the
one we discussed earlier, i.e., mixtures of the conducting and
nonconducting nanotubes. Comparing Eqs. (20) and (23) we
conclude that there is an additional factor 2x/(

√
x + x) deter-

mining the PT that can be gained by taking conductive instead
of insulating rods, which is quite significant if x is not very
close to unity.

Inspired by the experiments of Hermant, we can now con-
duct a thought experiment to demonstrate this effect. We de-
termine the PT of high-quality (metallic) SWCNTs, and use a
small amount of conductive, penetrable coating material that
we presume to fully cover a small fraction of the SWCNTs.
If we perform the same experiment on poor-quality (insulat-
ing) SWCNTs, then according to the above observation, the
PT should be more than a factor of 2 lower if the fraction of
coated CNTs is less than only 10%. Hence, there should be
a considerable difference between using conductive and insu-
lating filler particles, suggesting that for incomplete surface
coverage the fillers not only serve as a scaffold.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a systematic approach
to study the effect of size and connectivity polydispersity
on connectedness percolation for a large class of particle
dispersions. Using the multicomponent pair-connectedness
Ornstein–Zernike equation that depends on the properties of
pairs of particle, we derived an expression for the average
cluster size of connected particles, requiring as input only
some average of a function that depends on the properties of
a single (test) particle. By choosing an appropriate closure
for this expression, we obtained an analytical expression for
the percolation threshold of the conductive rodlike particles.
It turns out to be a nontrivial function of the composition of
lengths, widths, and connectivity ranges, yet depends on a few
moments of the full distribution. This implies that for the PT
one only needs to know these moments and the details of the
distribution are irrelevant.

We find that the inverse aspect ratio scaling of the PT,
although often assumed, only holds if the length and width
distributions are uncorrelated, which may be quite a strong
assumption, considering the sonication step often used in
the nanocomposite production process. If the length and
width distributions are indeed uncorrelated, we deduce that
the presence of wider rods raises the PT and slightly more
so than based on the inverse aspect ratio dependence of it
for monodisperse ones, while a length polydispersity signifi-
cantly lowers the PT at equal number average for small frac-
tions of longer rods. For a bidisperse system this latter ef-
fect is very strong, indeed, provided the length difference
is large and the main component of the mixture consists of
short rods. For the plausibly more realistic length distribu-
tions such as the Gamma and Weibull distributions, we also
find a large decrease in the PT, again only if the distribution is
strongly skewed toward shorter lengths. This may seem some-
what surprising because φp(x)/φp(x0) = 1/(s + 1), with
s ≡ Var(Lk)/〈Lk〉2

k , depends only on the ratio of the variance
and the mean of the lengths of the rods.

However, it so happens that a large positive skewness γ is
a necessary condition for a significant decrease of the PT and
that a large variance is not sufficient to obtain a large value
of the parameter s. The reason is that a standard deviation of
a stochastic variable cannot be large compared to the mean
value unless the distribution is strongly skewed. This we can-
not prove conclusively from our results for the Gamma and
Weibull distributions because these distributions have only
two independent moments. For these distributions only one
moment can be varied independently, and for a fixed aver-
age length a large positive skewness goes hand-in-hand with
a large value of s. On the other hand, for symmetric distri-
butions, so without any skewness, we can show that the one
with the largest value of s, which is a bidisperse mixture, has
a maximum value of s = 1. We refer to Appendix B for de-
tails. This means that the largest decrease of the PT as a result
of a symmetric length distribution is a factor of 2. From the
bidisperse mixture in Fig. 3 we have seen that a considerably
larger reduction of the PT can be obtained by taking a distri-
bution that is strongly skewed toward shorter lengths and that
has a large length ratio. Also, from our results for the skewed
Gamma and Weibull distributions it follows that polydisper-
sity can cause the PT to decrease much more than this factor
of 2. It is for these reasons that a large positive skewness in the
length distribution is a requirement for a significant decrease
in the percolation threshold.

Still, for the realistic distributions with a large skewness
we studied, the effect of length polydispersity appears not
to be strong enough to explain the scatter of multiple orders
of magnitude in observed PTs of carbon nanotubes with the
same average dimensions.17 We speculate that the few size
distributions available in the literature37–44 are not represen-
tative of the ones that have been used in the production of the
percolating networks in CNT composites. Although a specu-
lation, we feel it is plausible because sonication and, in some
preparation procedures, screw extrusion54 causes a larger
skewness toward short lengths. These processing steps may
have an additional and rather profound effect on the PT be-
cause the breakup of larger nanotubes into smaller ones may
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induce a positive correlation between the length and diameter
distributions. This leads to a completely different situation
from the one where their covariance is zero. Most importantly,
we find that neither the aspect ratio nor the length of the CNTs
is the determining factor for the PT, but there is a sensitive
dependence on the coupling of the distribution functions and
the relevant higher-order moments. A linear correlation seems
plausible for SWCNTs because the probability of breaking is
proportional to the scission energy, which in turn scales with
the number of bonds to be broken and has a linear relation
with the perimeter. In that case the effect of polydispersity is
exactly the reverse of what we observe for independent distri-
butions: polydispersity raises the PT and the effect is stronger
for a larger positive skewness in the distribution. The sensi-
tivity to the coupling is exemplified even more if we assume
the length to be proportional to the square of the diameter,
which seems more appropriate for MWCNTs because for
those the number of bonds scales linearly with the area of the
cross section. This correlation would remove the dependence
of the PT on the distributions altogether. Therefore, control
of the break-up process and monitoring the relation between
the size distributions could be essential if as low as possible a
PT is required for the envisaged nanocomposite application.

To that end, the use of a conductive penetrable (“soft”)
coating of the rodlike particles to effectively manipulate the
hopping distance could be useful. In our model description
of this we presume the effective hopping distance to be sub-
stantially increased by the coating, so that charge transport
predominantly occurs via the intersection of either the coat-
ing and a particle or of two coatings. We find that a signifi-
cant reduction of the PT can be gained by taking conductive
instead of insulating particles if the fraction of coated rods is
not very large. The conductive polymer latex PEDOT:PSS has
been used as the coating material for the CNTs21 and it was
argued that the contribution of the CNTs could be neglected
because the filler particles merely serve as a template for a
percolating PEDOT:PSS network. However, we conclude that
if the fraction of the particles without a coating is not negli-
gible then neither is the conductivity of the CNTs. If the ex-
periments are performed with insulating particles the mixture
is nonadditive because charge transport is only possible be-
tween two coated particles and charge transport is blocked by
any particle in a pair that has no coating. As a consequence,
the PT is governed solely by the concentration of coated par-
ticles. By making the analogy with percolation on a Bethe
lattice we demonstrated that this is because of the absence of
loop correlations, which is a consequence of the use of the
second-virial approximation that for slender rods should be
accurate.19

In fact, it is instructive to evaluate the accuracy of this
second-virial approximation. For this purpose we consider
the following (virial) expansion for the direct pair connect-
edness function Ĉ+ at zero wave vector, Ĉ+(0) = Ĉ+

2 (0)
+ ρ Ĉ+

3 (0) + ρ2Ĉ+
4 (0) + . . ., where Ĉ+

n (0) denotes the n-
body contribution, ρ denotes the number density, and angu-
lar averages are implied.9, 20, 55 We refer to Appendix A for
details. For rodlike particles we find that Ĉ+

2 = O(λL2) and
Ĉ+

3 = O(λ3L3), so Ĉ+
3 /(Ĉ+

2 )2 = O(λ/L). This implies that
the impact of the three-body virial is indeed negligibly small

because the hopping distance λ is much smaller than the rod
length L . A similar argument can be shown to hold for the
higher-order terms, which justifies the truncation of the virial
expansion after the first term, at least for rodlike particles. In
practice, the approximation can be considered to be quanti-
tative if 〈L〉/λ > 100, with 〈L〉 the mean length, and semi-
quantitative for 〈L〉/λ > 20.28 Even the former, more strict
condition, quite generally holds for individual CNTs, i.e., col-
lections of exfoliated CNTs not dominated by bundles.

The central equations (10) and (11) of our theory apply
to other types of particle, including spherical and platelike
nanofillers. The latter may serve as a model for graphene. Un-
fortunately, for these the second-virial approximation should
be expected to break down. Indeed, for both platelike and
spherical particles of diameter D, we find that Ĉ+

2 = O(λD2)
and Ĉ+

3 = O(λD5), both to leading order in λ/D. See also
Appendix A. Hence, Ĉ+

3 /(Ĉ+
2 )2 = O(D/λ), which is much

larger than 1 for small hopping distances on the scale of the
particle size. This means that the virials to all orders in the
density should contribute to the PT for both types of particle.
On the other hand, and rather surprisingly, it has been shown
by means of Monte Carlo simulations that the second-virial
approximation is reasonably accurate for spherical particles
too, provided that the hopping distance is small relative to the
particle size.29 It is not clear why this is so but presumably this
is caused by mutual cancellation of higher-order virials. It is
reasonable to presume that this is also the case for platelike
particles. Indeed, recent calculations show that the topologies
of phase diagrams of binary mixtures of hard platelets of dif-
ferent sizes are the same for a second-virial theory and fun-
damental measure theory.56 The latter is known to be highly
accurate.

Because of this our model may within the second-virial
approximation still give qualitative results for platelike parti-
cles, where we repeat that in this approximation of the pair-
connectedness function P corrections to all orders in the den-
sity are included through linear graphs. We calculate f̂ + for
hard polydisperse platelike particles31 of thickness L and by
following a similar procedure as for the rods, we find for
the PT,

φp =
4
〈
Lk D2

γ

〉
kγ

(
B − √

B2 − C
)

λC
, (24)

with

B = 4(π + 5)〈Lk Dγ 〉kγ + (5π + 6)〈D2
γ 〉γ

+ (7π + 16)λ〈Dγ 〉γ , (25)

C = (π + 6)
(

− 16π〈Dγ 〉γ
〈
D3

γ

〉
γ

− (π + 6)
〈
D4

γ

〉
γ

+ (17π + 6)
〈
D2

γ

〉2
γ

)
. (26)

Equation (24) holds provided L , λ  D and provided L and
λ are of the same order of magnitude. In the monodisperse
limit, it reduces to φp = 2L/λ(5π + 6), which, interestingly,
is independent of the disk diameter D. This may seem sur-
prising but if we again invoke our simple contact-volume
argument as we did for the rodlike particles, we obtain a re-
sult consistent with it.32 If we substitute typical values for
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FIG. 7. The percolation threshold of a binary mixture of large (Dlarge) and
small disks (Dsmall) of equal thickness is shown as a function of the mole
fraction xL of large plates relative to its value φp(x0) = 2L/λ(5π + 6) of
that of the corresponding monodisperse distribution with equal mean length.
The tunneling distance λ is presumed to be a constant and drops out of the
equation. From top to bottom: Dlarge/Dsmall = 2, 4, 8, and 16. The ratio of
PTs is lowered substantially by adding a small fraction of large plates to a
dispersion of small ones.

single-layer graphene, i.e., L ≈ 0.3 nm and λ ≈ 1 nm,12 we
find φp ≈ 0.03. This is (considerably) larger than experimen-
tal values of 10−4 − 10−2 found in the literature,3, 57, 58 but the
discrepancy may partly be explained by polydispersity effects
and/or the influence of attractive interactions between them.12

In spite of the PT being independent of the diameter in the
monodisperse limit, the effect of diameter polydispersity is
actually very strong, as is shown in Fig. 7. Similar to what
we found to be the case of bidisperse rods in Fig. 3, adding
a small quantity of wider sheets to any given collection low-
ers the PT and quite considerably so if they are sufficiently
large relative to those already present in this collection. The
effect wears off with increasing quantities, and our conjec-
ture is that this is because while the small disks can form
bridges between the large ones and have a relatively large
freedom in their orientations, the large plates have are very
restricted in their angular margin due to the excluded-volume
interactions.

It appears that any kind of size bidispersity can have a
large influence on the PT of a composite. To see if shape
polydispersity has a similar impact, we also computed the
percolation threshold for a mixture of rodlike and platelike
particles to model a mixture of carbon nanotubes and
graphene sheets. See also Fig. 8. For this we used the con-
nectedness Mayer function f̂ + for the interactions between

two rods and two plates as derived before, and computed that
of the rod–plate interaction. If we solve Eq. (11), we find
that for thin rods (say, SWCNTs) the lowest PT is obtained
in a dispersion of only rods but for thicker rods (MWCNTs),
adding a few plates becomes increasingly favorable albeit
that the effect is modest. However, it must be noted that
we presumed the rods and plates to exhibit cooperative
connectivity behavior, i.e., the hopping distance between a
rod and a plate equals that between two rods and between
two plates, and this may be a tenuous approximation.59

Clearly, the central message that we obtain from our cal-
culations is that connectivity percolation is a highly sensitive
function of all thinkable system parameters. These include
size, shape, connectivity, and any variation in and correlations
between them. This suggests that in order to draw qualitative
conclusions from experiments, complete control over, or at
least a full description of these system parameters, is neces-
sary. In this light it seems reasonable to suggest that the pro-
cessing conditions leading up to the final nanocomposite must
be as important as the properties of the nanofillers used in it.
Hence, in the near future we aim to investigate the impact
on the network formation of other aspects that play a role in
the nanocomposite processing, including particle alignment
and the equilibration of the network in the early stages of the
cluster formation.
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APPENDIX A: SECOND-VIRIAL APPROXIMATION

In order to assess the accuracy of the second-virial ap-
proximation for several particle shapes, we aim to compute
the relative magnitude of the first and second terms in the
density expansion of the Fourier transform of the direct pair
connectedness function at zero wave vector Ĉ+(0), Ĉ+(0)
= Ĉ+

2 (0) + ρ Ĉ+
3 (0) + . . . . Here, Ĉ+

2 and Ĉ+
3 are the

FIG. 8. For a bidisperse mixture of plates with diameter W and thickness T and rods with length L and diameter D, the percolation threshold φp relative to
its value of that of the corresponding monodisperse case consisting of only rods is shown as a function of the mole fraction xR of rods. The arrows indicate
increasing values of W/L: 0.1, 0.3, 1 and 3. (a) For typical values for graphene and CNTs, L/T = 1500 and L/λ = L/D = 500, where λ is the hopping
distance, a mixture with only rods gives the lowest PT. For sufficiently large rod aspect ratios L/D, the shape of the curves is almost insensitive to changes in
L/T and L/λ, which only change the vertical scale. (b) For rods with a smaller L/D, a mixture with plates can have a lower PT than the one for only rods, as
shown for L/T = 60, L/λ = L/D = 15.
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two-body and three-body direct connectedness functions, and
we omit the arguments u and u′ for notational convenience.
In order to compare the third virial term with the second, we
note that for the critical number density of particles at the PT
ρp, we have ρp〈Ĉ+(0)〉u,u′ ≈ 1.9, 20 If we truncate the virial
expansion after Ĉ+

3 , we have ρpĈ+
2 (0) + ρ2

pĈ+
3 (0) = 1. This

gives

ρp〈Ĉ+
2 (0)〉u,u′

(
1 + ρp

〈Ĉ+
3 (0)〉u,u′

〈Ĉ+
2 (0)〉u,u′

)
= 1, (A1)

so the second-virial approximation is valid if 〈Ĉ+
3 (0)〉u,u′/

〈Ĉ+
2 (0)〉2

u,u′  1. To evaluate Ĉ+
3 (0), we follow the approach

introduced by Coniglio et al.20 According to their definition,
C+

n (r, r′, u, u′) contains all graphs (diagrams) consisting of
n points in a diagrammatic expansion with at least one con-
tinuous path of f + bonds between the two particles at r and
r′, so they are part of the same cluster and interact via a po-
tential u+. Particles that are not directly connected within
the same cluster are said to be “connected” by an f ∗ bond
and interact via the potential u∗. This bond is defined as f ∗

≡ exp(−βu∗) − 1, such that f ≡ f + + f ∗ is the Mayer func-
tion with exp(−βu+) + exp(−βu∗) = exp(−βu) = f + 1.60

We consider hard particles in the cherry-pit model, so f + = 1
for D < r < � and f + = 0 otherwise, with r being the dis-
tance between the particles, so it is nonzero only if two parti-
cles are connected, i.e., if their connectedness zones overlap.
For f ∗ we have f ∗ = −1 for r < � and f ∗ = 0 for r > �,
meaning that f ∗ is nonzero if the particles either intersect
or if they are connected. Furthermore, f = f + + f ∗, which
equals −1 for r < D, i.e., particle intersection, and zero
otherwise.

For the second virial coefficient Ĉ+
2 , the diagrams consist

only of the points 1 and 2, so only the one with an f + bond
between these points meets the criterion and Ĉ+

2 (0, u, u′)
= ∫

f +(r12)dr12, with r12 = r2 − r1, which is the contact
volume for particles that can be obtained from the excluded
volume for cylindrical particles of length L and diameter D.31

In the case of rodlike particles in an additive system, this gives
Eq. (13), so Ĉ+

2 (0, u, u′) = 2L2λ| sin γ | for a constant rod
length L and hopping distance λ and where γ is the angle
between the orientations u and u′. For platelike particles the
excluded volume gives to leading order for large aspect ratios
Ĉ+

2 (0, u, u′) = 3
2π D2λ| sin γ |, with D being the disk diame-

ter.
For the third virial coefficient we can form five diagrams,

shown in Fig. 9, that meet Coniglio’s criterion,55 which then
gives

Ĉ+
3 (0, u, u′) =

∫ ∫ (
f +
12 f +

13 f +
23 + f +

12 f +
13 f ∗

23 + f +
12 f ∗

13 f +
23

+ f ∗
12 f +

13 f +
23 + f +

12 f ∗
13 f ∗

23

)
dr12dr13. (A2)

To compute this integral we note that f ∗ = −1, if the two
particles either intersect or if they are connected, which can
be subdivided into the intersection ( f = −1) and the con-
nection ( f = +1). We can thus replace f + by c and f ∗ by
s − c, where c and s indicate a configuration where two par-
ticles are connected and intersect, respectively. We then find
Ĉ+

3 (0, u, u′) = −c3 + c2s + cs2, so we have to compute the

FIG. 9. Five diagrams consisting of three points can be formed such that
points 1 and 2 are connected via a continuous path of f + bonds (dashed
lines), where the wavy lines represent f ∗ bonds. This path between 1 and 2
can be either direct, as in the top three and the bottom left diagram, or via a
third particle, shown by the bottom right diagram. These diagrams give rise
to the five terms in the expression (A2) for Ĉ+

3 (0, u, u′).

“volume” of a configuration where the three particles are mu-
tually connected, one where two contacts are connections in
the overlap zone and the third is an intersection, and one with
two intersections and one connection.

For rodlike particles we obtain the following estimate for
the order of magnitude of the different terms. The configura-
tion in which the three particles are mutually connected gives
λL2 for the first contact between two rods, ignoring a constant
of the order unity. The third rod needs to be connected to both
other rods, which gives an additional volume proportional to
λL2 it can occupy, but it has only a very small angle of the or-
der λ/L that it can move, which then gives λ3L3 in total. The
second and third terms cs(s + c) can be combined by starting
again with two connected rods, giving λL2 for the c. The third
particle then has to intersect one of the first two (a factor D
from the s), it has to intersect or make contact with the other (a
factor D + λ from the s + d), and then has a freedom L in the
third direction. So we find for this contribution λD(D + λ)L3.
For SWCNTs, D is probably larger than λ and for MWCNTs
it is much larger, so the third virial term is of the order λD2L3.
Its relative magnitude is then λD2L3/(λL2)2 = D2/λL  1
because L  D, and the second-virial approximation is ac-
curate for rodlike particles.

For platelike particles the situation turns out to be quite
different. From a similar argument as that for the rods we find
that the c3 term gives a contribution to Ĉ+

3 of the order λ3 D3,
where D now denotes the disk diameter. The way this esti-
mate is obtained is explained in Fig. 10. We again take the
terms c2s and cs2 together, so the two connected plates give
λD2 for the c. The third particle then intersects the first, giv-
ing a D, is either connected to the second or intersects it, giv-
ing a D + λ, and has the freedom to move a distance D in
the third direction. Hence, for these terms we find a contribu-
tion λ(D + λ)D4 ≈ λD5, which is much larger than the first
term from the three mutually connected disks. Compared to
the second virial term, its magnitude is λD5/(λD2)2 = D/λ

that is much larger than unity and would make the truncation
of the virial expansion of Ĉ+ after the first term unjustified.
The scaling for spherical particles gives similar results for Ĉ+

2
and Ĉ+

3 , where D then denotes the sphere diameter. So for
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FIG. 10. Possible configurations of three disks that are mutually connected
and that contribute to the three-body direct connectedness function Ĉ+

3 (0).
The disks have diameter D and the tunneling distance between them is
λ  D. If we fix disk 1 and if the difference between the orientations of disk
1 and 2 are almost perpendicular to each other, the overlap criterion is met in
a triangle (a) or a branched configuration (b). If this difference is very small,
on the other hand, we distinguish between almost complete (c) and limited
overlap (d) between particles 1 and 2. In the latter case the angle α that disks
2 and 3 make is of the order λ/D. λ and D denote the ranges of motion in
three directions for the disk 2 so that it is connected to disk 1 and for the disk
3 so that it connects to 1 and 2. In all cases we find Ĉ+

3 (0) = O(λ3 D3).

spheres the second-virial approximation would not be suit-
able either, but it turns out not to be very inaccurate if λ 
D,29 possibly because of mutual cancellation of higher-order
virials.

APPENDIX B: SYMMETRIC LENGTH DISTRIBUTIONS

We consider symmetric distributions, i.e., with zero
skewness, to compute the maximum effect the spread in the
length distribution can have on the PT, i.e., the largest value
of s in φp(x)/φp(x0) = 1/(s + 1) that was derived in Sec. III.
For a truly symmetric distribution we can write

〈Lk〉k = 1

2
(L long + Lshort), (B1)

with L long (Lshort) being the length of the longest (shortest)
rod in the distribution.61 It follows that in that case the largest
value of s = Var(Lk)/〈Lk〉2

k = 4Var(Lk)/(L long + Lshort)2 for
given L long and Lshort is obtained for a distribution with all Lk

taking either the value L long or Lshort, because any rod with
a length larger than Lshort or smaller than L long would lower
Var(Lk). Obviously, the number of rods with length L long and
Lshort must be equal to make the distribution symmetric. This
then implies that a bidisperse distribution with a probability
density

f (L) = 1

2
δ(L − L long) + 1

2
δ(L − Lshort), (B2)

with δ being the familiar Dirac delta function, produces the
largest value of s feasible for symmetric distributions. If we
write L long = nLshort with n being a real number larger than
unity, as we did for the bidisperse mixtureM in Fig. 3, we find

Var(Lk) = L2
short(n

2 − 1)/4, and 〈Lk〉k = 1
2 Lshort(n + 1), and

s = (n − 1)2

(n + 1)2
. (B3)

Expression (B3) for s is a monotonically increasing function
of n and has a maximum value of 1 in the limit of n → ∞, i.e.,
an infinite length ratio. With φp(x)/φp(x0) = 1/(s + 1) this
means that the reduction of the PT that can be obtained with
a symmetric length distribution is at most a factor 2 relative
to that of the monodisperse case, denoted by x0, and achieved
for the limit Lshort → L long.
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