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The properties of surfaces with charge-regulated patches are studied using nonlinear Poisson–
Boltzmann theory. Using a mode expansion to solve the nonlinear problem efficiently, we reveal the
charging behavior of Debye-length sized patches. We find that the patches charge up to higher charge
densities if their size is relatively small and if they are well separated. The numerical results are used
to construct a basic analytical model which predicts the average surface charge density on surfaces
with patchy chargeable groups. © 2011 American Institute of Physics. [doi:10.1063/1.3533279]

I. INTRODUCTION

Most surfaces that are immersed in an aqueous solu-
tion obtain a net charge due to ion adsorption or dissociative
processes at the surface. The resulting electrostatic force be-
tween such surfaces is essential for understanding the stabil-
ity, osmotic pressure, and flocculation behavior of colloidal
suspensions. In the standard (linear) screening picture, like-
charged surfaces repel each other at distances of the order
of the Debye screening length,1 due to overlapping clouds of
screening ions in the vicinity of the two surfaces. This elec-
trostatic repulsion, combined with the short-range attractive
Van der Waals forces if there is a dielectric contrast between
the colloidal particles and the solvent, is a basic result of the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory which
dates back to the 1940s.1 More recent studies, based on non-
linear Poisson–Boltzmann theory, also find strictly repulsive
electrostatic forces between pairs of like-charged surfaces.2–7

Nevertheless, there are also experimental reports of attraction
between the like-charge colloids at ranges much longer than
those of the Van der Waals forces. Ion–ion correlations, which
are ignored in the mean-field-type Poisson–Boltzmann (PB)
theory, might be an explanation for these observed attrac-
tions in the case of multivalent ions.8–14 However, evidence
for electrostatic attractions has also been reported for suspen-
sions with only monovalent ions,15–18 causing heated debates
in the literature on the breakdown of the classic DLVO the-
ory due to many-body effects, the vicinity of glass walls, hy-
drodynamic forces, etc. Interestingly, it has also been sug-
gested that charge inhomogeneities can be responsible for
these attractions,19–23 where the heterogeneity of the surface
charge may be due to an incidentally present or purposely de-
signed underlying chemical structure, or by clustering of ad-
sorbed surfactants.

Apart from the ill-understood electrostatic attractions in
some systems, another good reason for considering heteroge-
neously charged surfaces in more detail stems from the fas-
cinating recent advances in the chemical synthesis of a large
class of novel patchy nanoparticles, featuring not only cor-
ners, edges, and facets due to their finite size, but also spots or

a)Author to whom correspondence should be addressed. Electronic mail:
n.j.h.boon@uu.nl.

stripes.24 Understanding the large-scale self-assembly proper-
ties of these newly available nanoparticles is an important on-
going scientific quest that requires effective particle–particle
interactions as an input. For this reason, a better understand-
ing is needed of the relations between the chemical hetero-
geneity of patchy particles, the resulting surface charge den-
sity, and the nature and geometry of the ionic screening cloud
that ultimately dictates the effective electrostatic interactions.
In this article, we explore some of these relations within non-
linear PB theory in the relatively simple geometry of charge-
able stripes on a planar surface in contact with a bulk elec-
trolyte.

In PB theory a key role is being played by the bound-
ary conditions (BC’s), in particular those on the surface be-
tween the suspending electrolyte and the suspended colloidal
nanoparticles. The most common BC is to predescribe the sur-
face charge density of the colloidal particle, thereby imposing
a fixed discontinuity of the displacement field at both sides of
the surface while the surface potential itself increases upon
the approach of another like-charged surface. This type of
constant-charge BC was shown to be realistic, e.g., strongly
acidic homogeneous surfaces that ionise completely in a po-
lar solvent such as water.25 An alternative is to predescribe the
electrostatic potential on the surface, such that the particles
can adjust their charge density if another surface approaches.
This constant-potential BC has turned out to be realistic for
surfaces not too far from a point of zero charge.26 It is not
clear, however, which of these BC’s is realistic for surfaces
with a heterogeneous chemical composition. For instance, it is
not trivial how the charge of a highly charged patch on an oth-
erwise weakly charged or neutral surface is distributed, and
how the induced electrostatic potential propagates to affect
the charging of nearby surface groups of other patches. The
problem requires us to treat the interplay between the elec-
trostatic potential and the surface charge density at the more
microscopic level of a chemical equilibrium of attaching and
detaching ions as modeled by charge-regulation.26–34 Such
an approach has been applied to fit force measurements be-
tween two homogeneously charged plates,26, 30, 31 or to com-
pute forces between periodically modulated charged plates
within linearized PB theory.35 Here, however, we combine
charge-regulated BC’s with nonlinear PB theory for a single
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FIG. 1. Pictorial representation of the model. The striped patches are shaded
to distinguish these from the rest of the plate and will be referred to as region
“1”. The area in between the patches will be referred to as region “2”.

spatially heterogeneous surface. Using a newly developed
numerical scheme, we will reveal how surfaces with finite-
sized discrete patches35–37 tend to charge up and get screened,
where the full nonlinear PB theory allows us to deal with
highly charged patches next to oppositely charged or neu-
tral areas with strongly varying ion concentrations perpen-
dicular and parallel to the surface. Although the calculated
charge distributions cannot directly be compared to experi-
ments, the results form a direct stepping stone toward under-
standing the complex interactions between heterogeneously
charged particles. We will investigate to what extent (small)
patches with a different chemical composition can influence
the overall charge of these surfaces.

II. THEORY

We consider a solid medium in the half space z < 0,
characterized by a dielectric constant εP . The surface of this
medium at z = 0 is considered to be chemically heteroge-
neous, e.g., with a stripe pattern such as depicted in Fig. 1.
The half space z > 0 is a bulk solvent with dielectric con-
stant ε and volume V at temperature T . This solvent is as-
sumed to be in thermal and diffusive equilibrium with a reser-
voir at z → ∞ that contains pointlike monovalent cations
and anions, both at a concentration ρs . Since treating the
ions in a mean-field fashion is in most of the cases an ac-
curate approach in the case of monovalent ions in water or
the more polar (higher ε) oils,38, 39 we describe the distribu-
tions of ions for z > 0 by the Boltzmann distributions ρ±(r)
= ρs exp(∓�(r)). Here kBT�(r)/e is the electrostatic poten-
tial at r = (x, y, z), with e the elementary charge and kBT the
Boltzmann constant. We assume that �(x, y, z → ∞) = 0 in
the reservoir, and that the densities of both ion species are
zero for z < 0 due to hard-core repulsions. The Poisson equa-
tion relates the charge density to the Laplacian of the poten-
tial, ∇2�(r) = −4πλB(ρ+(r) − ρ−(r)), where we introduce
the Bjerrum length λB = e2/εkBT. What follows is the PB
equation,

∇2�(r) =
{

κ2 sinh �(r) z ≥ 0,

0 z < 0,
(1)

where the Debye screening length is given by κ−1

= (8πλBρs)−1/2. At the fluid–solid interface, the presence of
a surface charge density eσ (x, y) and a stepwise change in

dielectric medium gives rise to a boundary condition

∇�(x, y, 0+) · ẑ = −4πλBσ (x, y) + εP

ε
∇�(x, y, 0−) · ẑ.

(2)

Other boundary conditions ensure that the potential is contin-
uous at z = 0, vanishes at infinity, and require that the electric
field in the medium vanishes far away from the interface,

�(x, y, 0+) = �(x, y, 0−), (3)

lim
z→∞ �(x, y, z) = 0, (4)

lim
z→−∞ �′(x, y, z) = 0. (5)

Here, and below, a prime denotes a partial derivative w.r.t. the
z-coordinate. We remark that we are bound to the descrip-
tion of systems containing only monovalent ions as PB theory
does not take the strong correlations into account that occur
in the ionic charge distributions of multivalent ions.8–11 Apart
from giving only mean-field results, standard PB theory does
not account for the finite size of the ions in the system either.
The hard-core repulsion of the ions may become important at
high salt concentrations and could, in this case, be added via a
steric correction to the PB equation.40 Corrections due to the
finite size of the ions are also expected for cases where the
typical size of the surface inhomogeneities becomes compa-
rable to the size of the (hydrated) ions. Despite these short-
comings, there is still a large parameter regime in which our
results are applicable, e.g., aqueous systems with monovalent
ions in contact with surfaces containing nm-sized patches.

A. Charge regulation

The majority of models which apply PB theory assume
either a fixed charge density or a fixed potential at surfaces.
In reality the charging is often regulated; neither the charge
density nor the surface potential is fixed, since both depend
on the local density of ions in the surrounding liquid. There is
a subtle interplay as the local surface charge density depends
on the local surface potential and vice versa.

We consider four major charge generation mechanisms,
involving cationic/anionic adsorption/desorption,

S + H+ →← SH+with K A
+ = [S][H+]

[SH+]
, (6a)

SB →← S+ + B−with K D
+ = [S+][B−]

[SB]
, (6b)

S + B− →← SB−with K A
− = [S][B−]

[SB−]
, (6c)

SH →← S− + H+with K D
− = [S−][H+]

[SH]
, (6d)

where S denotes a surface group, H+ represent a cation, and
B− an anion, with concentrations [S], [H+], and [B−] in
the vicinity of the surface. Equations (6a) and (6c) describe
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associative charging in which an ion from the liquid is ad-
sorbed at the surface. Equations (6b) and (6d) describe dis-
sociative charging, where ions are released from the surface
into the liquid. These chemical reactions are characterized by
reaction constants K A/D

± . We assume the charging to occur at
discrete sites at the surface and define a surface site density
m A

±(x, y) and m D
±(x, y) for associatively and dissociatively

chargeable sites, respectively. Since each surface site is either
charged or neutral, we have

[S] + [SH+] = m A
+(x, y), (7a)

[S+] + [SB] = m D
+(x, y), (7b)

[S] + [SB−] = m A
−(x, y), (7c)

[S−] + [SH] = m D
−(x, y). (7d)

Using the Boltzmann relations [H+] = ρs exp[−�(x, y, 0)]
and [B−] = ρs exp[+�(x, y, 0)] for the ion densities at the
surface z = 0, we can express the associative and dissociative
surface charge densities σ A

± = [SH+], [SB−] and σ D
± = [S±],

respectively, as

σ A
± (x, y) = m A

±(x, y)

1 + K A
±

ρs
exp(±�(x, y, 0))

, (8a)

σ D
± (x, y) = m D

±(x, y)

1 + ρs

K A±
exp(±�(x, y, 0))

, (8b)

for both types of charging. Here, �(x, y, 0) is the surface po-
tential, which for heterogeneous surfaces is a function of the
lateral coordinates x and y. Note that all surface chemistry
is encoded in m A/D

± (x, y) and equilibrium constants K A/D
± ,

which we consider as input parameters in this work.
For simplicity, we only consider stripe like surface inho-

mogeneities in this work, such that the charge and the sur-
face potential only depend on x and not on y (see Fig. 1).
Translational invariance in the y-direction follows directly
by assuming m A/D

± (x, y) = m A/D
± (x). Note that the potential

�(x, y, z) = �(x, z) does depend on a lateral coordinate and
a normal one.

The common case that only a small fraction of the sites
charges (σ 	 m) necessarily corresponds to the case that the
unity in the denominators of Eqs. (8a) and (8b) is negligible
compared to the other term. In other words, for all cases that
the surface is only charged to a fraction of its maximum it
is safe to omit the unity from Eqs. (8a) and (8b). For most
associative reactions this approximation is fine, as was al-
ready argued by Grahame in 1947.41 For dissociating surfaces
one should be more cautious, especially at low ionic strengths
ρs .42 In the remainding part of this study, we employ this as-
sumption throughout, as it reduces the number of independent
parameters vastly. This is immediately seen by introducing
the dimensionless total surface charge density

y(x) = 4πλBκ−1
(
σ A

+ (x) + σ D
+ (x) − σ A

− (x) − σ D
− (x)

)
, (9)

which reduces Eqs. (6a) and (6b) within the small-charge-
fraction limit to

y(x)=Y +(x) exp(−�(x, 0)) − Y −(x) exp(+�(x, 0)), (10)

where

Y ±(x) = κ

(
m A

±(x)

2K A±
+ m D

±(x)K D
±

2ρ2
s

)
. (11)

Note that Eq. (11) defines a dimensionless quantity which is
not necessarily of the order of unity. Depending on the mate-
rial properties and ion concentrations, both Y +(x) and Y −(x)
can easily vary over many decades. From now on, we refer to
Y +(x) and Y −(x) as the positive and negative chargeability,
respectively. Eqs. (2), (9), and (10) give rise to the boundary
condition for our model,

�′(x, 0+) = εP

ε
�′(x, 0−) + Y −(x) exp(+�(x, 0))

−Y +(x) exp(−�(x, 0)). (12)

The latter equation together with Eqs. (1) and (3) forms a
closed set of equations to solve the electrostatic potential
above and within the solid medium.

B. The homogeneous limit

To the best of our knowledge, there are no analytic so-
lutions to the nonlinear PB equation for inhomogeneously
charged surfaces. However, it can be solved analytically in
the case of a single homogeneously charged plate (see for ex-
ample Ref. 43). Considering a homogeneous surface charge
density σ (x, y) = σH , the potential can be written as

�H (z) =
⎧⎨
⎩ 2 ln

1 + γ exp[−κz]

1 − γ exp[−κz]
z ≥ 0,

�H (0) z < 0,

(13)

where γ = (
√

4 + y2
H − 2)/yH , and yH = 4πλBκ−1σH is the

dimensionless surface charge density as defined in Eq. (9),
now for a homogeneously charged plate. Note that the solid
medium is free of electric fields in this case, and because of
this, Eq. (13) is independent of the dielectric constant of the
plate, εP . By using Eq. (10) for the mechanism to account
for associative and dissociative charging, we find an expres-
sion for the surface potential of homogeneously chargeable
plates. In general, for a (positive) homogeneous chargeability
Y +(x) = YH [and Y −(x) ≡ 0] we obtain from Eqs. (10) and
(13) that the surface potential is given by
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�H (0) = 2 ln

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3

cos

(
1

3
arctan

(√
4

27Y 2
H

− 1

))
if 0 ≤ YH <

2

3
√

3
,

2

3

1/3

(
9YH + √

3
√

27Y 2
H − 4

)1/3 +

(
9YH + √

3
√

27Y 2
H − 4

)1/3

181/3
if YH ≥ 2

3
√

3
.

(14)

The regime YH < 1 is associated with the regime where lin-
ear Poisson–Boltzmann theory holds, as we can easily check
that surface potentials do not exceed unity here. By taking the
inverse of Eq. (13), we obtain a relation which is well known
from Gouy–Chapman theory,

yH = 2 sinh
�H (0)

2
, (15)

and this can be used in combination with Eq. (14) to find the
explicit relation yH (YH ) between charge and chargeability of
a homogeneous plate. The limiting cases are

yH ≈
{

YH if YH 	 1,

Y 1/3
H if YH � 1.

(16)

Physically this means that the charging of a weakly charge-
able surface is relatively efficient, while a highly chargeable
surface only gains charge with the cube root of the density of
chargeable sites. Both regimes of Eq. (16) can easily be distin-
guished in a double-logarithmic plot; the solid line in Fig. 7
consists of two straight lines with slopes 1 and 1/3, respec-
tively, with a crossover between both regimes at YH ≈ 1.

III. MODE EXPANSION

We develop a numerical scheme to solve the PB equation
in the case of a striped patchiness on the surface, described
by σ (x, y) = σ (x), such that the charge distribution on the
surface only changes in the x̂ direction. We assume inhomo-
geneities to be periodic with period L , such that σ (x + L)
= σ (x), and we can thus write

σ (x) =
M∑

k=−M

σkηk(x), (17)

where ηk(x) ≡ 1√
κL

exp(i2πkx/L) with k ∈ Z are con-
veniently normalized (Fourier-) modes and σk are the
corresponding amplitudes in the expansion, given by
σk = κ

∫ L
0 σ (x)ηk(−x)dx . Note that this charge density

is not known beforehand, as it depends on the surface
potential through Eq. (10). The number M signifies a
high-wavenumber cut-off, that we will empirically choose
to be large enough to describe the essential large-wavelength
physics. We will develop a method to calculate the electro-
static potential �(x, z) at and above the plate, z ≥ 0. Since
this is a function which will be subject to the L-periodic

symmetry as a function of x , such that �(x, z) = �(x + L , z)
for all x, z, it can be written as

�(x, z) =
∑
k∈Z

φk(z)ηk(x), (18)

where φk(z) is the mode amplitude of the Fourier compo-
nent ηk(x). One easily checks that functions of the form
φk(z)ηk(x) = ck exp(|k|Lz/2π )ηk(x), with ck a constant,
solve the PB equation for z < 0, and satisfy boundary condi-
tion (5). This solution can be put into Eq. (2), to yield bound-
ary conditions in terms of the mode amplitudes given by

εφk
′(0+) = −4πελBσk + 2π |k|

L
εPφk(0), (19)

lim
z→∞ φk(z) = 0. (20)

The task is now to find PB-like differential equations for
every mode φk(z)ηk(x) in the regime z > 0 by inserting the
mode expansion (18) into the PB equation (1). The left hand
side can be treated easily, yielding

∇2�(r) =
∑
k∈Z

(
φk

′′(z) −
(

2πk

L

)2

φk(z)

)
ηk(x), (21)

where a prime denotes a derivative with respect to z. The
sinh �(r) on the right side of the PB equation is a nonlinear
function, which gives rise to the couplings between mode
amplitudes φk(z) for all k ∈ Z.44 This complicates the
calculation of the solution of these modes; in general it will
not be possible to find solutions for every mode separately.

Only in the case that we describe a weakly charged
system, such that the potential is small, and thus sinh �(r)
≈ �(r), the PB equation becomes linear, ∇2�(r) ≈ κ2�(r).
In this case the modes decouple, and using Eq. (21) the solu-
tion for each mode is found to be

φk(z) = ak exp(−κk z) + bk exp(κk z) (z ≥ 0), (22)

where ak and bk are integration constants and κk

=
√

κ2 + (2πk/L)2 is the mode-dependent screening param-
eter. Note that in the present case of a single plate the coeffi-
cient bk vanish because of Eq. (20), and we find by applying
Eq. (19) the amplitudes
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FIG. 2. The mode-dependent screening parameter κk (a) and mode ampli-
tudes ak (b) for several k as a function of the periodicity parameter in the
system, in (b) for charged (y = 1) and uncharged (y = 0) stripes of equal
width. The solid lines in (b) correspond to the case εP = 0, while the dashed
lines show data for εP = ε.

ak = 4πελBσk L

εκk L + 2π |k|εP
. (23)

Figure 2(a) shows the relation between the screening param-
eters κk and the (dimensionless) periodicity of the system
κL . Besides the independence of κ0 on κL , it shows that κk

� κ0 for small κL . This means that wavelike inhomogeneities
in the electrostatic surface potential always vanish within a
few wavelengths normal to the surface. Therefore, inhomo-
geneities with short wavelengths are screened over shorter
distances than a Debye length. From Fig. 2(a) and from the
definition of κk it can be concluded that all inhomogeneities
in the potential must have essentially disappeared at distances
of the order of L from the surface as κk � 1/L for all |k| �= 0.

Figure 2(b) shows some of the corresponding mode co-
efficients ak , for k = 1, 3, and 7, all for εP = 0 (nonpenetrat-
ing fields) and εp = ε (index-matched solvent and plate). In
the figure, we divided ak by a0 to show the inhomogeneous
amplitudes relative to the homogeneous background. All co-
efficients can be calculated by using the σk following from a
surface with charged (y = 1) and uncharged (y = 0) stripes
of equal width. This is a fixed charge density and therefore
we do not account for association/dissociation reactions at the
surface here. The coefficients ak , and therefore the inhomo-
geneities in the potential, are relatively small but may become
large for systems with a larger periodicity (κL � 1). This is
analogous to the fact that at small periodicities (with respect
to κ−1) the potential is not able to laterally adapt to the os-
cillations in the surface charge and becomes more homoge-
neous, while at very high κL it is able to take the form of a
step function. The choice of the ratio of the dielectric con-
stants between the plate and the liquid is of importance. We
see from Fig. 2(b) that if we choose an index-matched plate
and solvent, corresponding to the situation that the fields are
able to penetrate into the solid medium, the coefficients ak

become significantly lower (in absolute value) than if this ra-
tio is chosen close to zero, where we do not find any fields

in the medium. In the εP = 0 case, inhomogeneities in the
charge distribution will have a larger effect on the inhomo-
geneity of the associated electrostatic potential, as the polar-
izability of the solid medium is not able to compensate any
inhomogeneities in the electrostatic potential from within the
plate. Since every ion close to a body with a lower dielec-
tric constant will be repelled by its own image charge, typi-
cally a small depleted zone of ions appears close to the sur-
face. This image-charge effect is, however, only significant if
(κλB 	 1),45 and can thus be ignored in most aqueous elec-
trolytes. Moreover, although we do not include this correction
in our model, the effect of image charges of the ionic double
layer is naturally included by the chosen boundary condition
at the surface z = 0.

IV. RESULTS

A. Charging of stripes

In the general nonlinear case the mode amplitudes will
not be exponential functions of the distance such as in
Eq. (22). Since no analytical form is known, we develop a
method to solve for these functions numerically, its details
are described in the Appendix. Using the theory in combina-
tion with the numerical method, we can in principle calculate
the charging of any periodic configuration of chargeable par-
allel stripes on a planar surface. Here, we focus on a plate
coated with stripes with periodicity L = D1 + D2, where D1

and D2 are the widths of the striped regions with dimension-
less chargeabilities Y ±

1 and Y ±
2 , respectively, such that

Y ±(x) =
{

Y ±
1 if x ∈ region 1,

Y ±
2 if x ∈ region 2.

(24)

Regions “1” and “2” are also shown in Fig. 1. We focus
mostly on Y +

1 ≡ Y , Y −
1 = Y ±

2 = 0, and εP/ε 	 1, which cor-
responds to uncharged areas (regions “2”) separating stripes
with positive chargeability Y on a low-epsilon plate in contact
with a high-epsilon liquid such as water. For this particular
calculation it suffices to choose M = 64 modes, a z-grid of
N = 2000 points extending to z = 5κ−1.

For a periodicity of 10 Debye lengths, κL = 10,
a charged stripe of width D1 = 3.1κ−1 (such that D2

= 6.9κ−1), and several chargeabilities Y ∈ {0.1, 1, 10, 100},
Fig. 3(a) shows the x-dependence of the chargeability,
which is a step function. This is the starting point of
our calculation, and we calculate the electrostatic potential
�(x, z) via the iterative scheme that is described above.
Figure 3(b) shows the resulting surface potential �(x, z = 0)
for the four values of Y of Fig. 3(a). For each Y , the thin
horizontal dotted lines show the surface potential in the case
that the stripe would have infinite width (D1 � κ−1) by using
the analytical solution to the planar-PB equations (14) and
(15), i.e., the surface potential of a homogeneously charged
plate. In the present system, the homogeneous surface poten-
tial limits the actual surface potential from above. Since the
stripes are relatively broad (D1 > κ−1), the calculated sur-
face potential approaches this limit, which we will call the
homogeneous limit from now on, at the center of the stripe.
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FIG. 3. Positional (lateral) dependence of (a) the chargeability, (b) the
surface potential, and (c) the dimensionless surface charge density of a
striped patchy surface with periodicity L = 10κ−1 and patch stripe width D1
= 3.1κ−1, for several stripe chargeabilities. The shaded area shows the posi-
tion of the stripe on the plate, and the horizontal dotted lines in (b) and (c)
show values we would obtain for infinitely wide stripes.

Typical length scales over which the potential varies later-
ally are clearly of the order κ−1, as expected. Figure 3(c)
shows the dimensionless surface charge y(x), which is related
to the surface potential via Eq. (10). We see that the charge
density at the center of the stripe is well described by that of
a homogeneously charged plate. By contrast, a relatively high
charge builds up close to the edges of the stripe. For Y � 1,
in the nonlinear screening regime, the charge density at these
edges largely exceeds the values we find at the center. The
reason is the nearby neutral surface, which results in a sur-
face potential which is lower at the edge of the stripe than at
its center. The charging of the surface groups, which is nor-
mally limited by the induced rise of the electrostatic potential
according to Eq. (10), can therefore be stronger close to the
edges. As a result, the average charge density of a stripe can be
much higher than what one would expect for homogeneously
charged plates with the same chemical properties. The rea-
son that we only observe this effect (deeply) in the nonlinear
regime is because the surface potentials must be significant
(�(x) ≥ 1), such that the Boltzmann factors which govern
the surface charge distribution, see Eq. (10), deviate strongly
from unity.

We checked that the results we obtain do not depend on
the finite grid size and the number of included modes char-
acterized by N and M , respectively; even the curves obtained
with M = 16 and N = 1000 are indistinguishable from all
those in Fig. 3. It should be noticed that in the case we choose
M too small, instead of giving inaccurate results, the iterative
scheme does often not converge anymore, such that no solu-
tion is found at all.

The two panels in Fig. 4 each show the charge density
y(x) for Y = 10 as was calculated in Fig. 3(c) for κ D1 = 3.1

2 4 6 8
κx

-3

0

3

6

y(
x)

2 4 6 8κx
-3

0

3

6

y(
x)

FIG. 4. Positional (lateral) dependence of the dimensionless surface charge
density of a striped patchy surface with periodicity L = 10κ−1 and stripe
width D1 = 3.1κ−1. We indicated the position of the stripe by the shaded
areas. Both (a) and (b) show a dashed line which shows data corresponding
to Y = 10 as in Fig. 3(c), while the solid lines show the effect of setting
the chargeability of the surrounding plate to (a) Y −

2 = 1 in combination with
Y +

2 = 0 and (b) Y +
2 = 50 (in combination with Y −

2 = 0).

and κL = 10 by a dashed line, while the full curve denotes
y(x) in the case of a modified parameter set. It illustrates
cases where the surrounding surface is chargeable as well.
Figure 4(a) shows a situation where the surrounding stripe
is able to charge up slightly negatively (with chargeability
Y −

2 = 1). The presence of strong peaks of (opposite) excess
charge at the edges of the stripes demonstrates that this pres-
ence of a chargeable surface with opposite sign of charge en-
hances the charging of the adjoining area. If the surrounding
stripe is chosen to be more positively chargeable (Y +

2 = 50)
than the original one, as in Fig. 4(b), the stripe and the sur-
rounding surface change roles. At the interface between the
two regions the potential now is higher than at the center of
the stripe, having a value somewhere in between the homo-
geneous limits of both stripes. This causes the charge density
to peak just outside the original stripe while inside it shows
sharp minima at the edges.

The distribution of charge at the chargeable stripe de-
pends on the width and the spatial periodicity of the stripes.
This is depicted in Fig. 5, where the charge density y(x) for
Y = 10 is plotted as in Fig. 3(c), now for various D1 and
L . Figures 5(a) and 5(b) show the effect of changing the
width of the stripes but deal differently with the size of re-
gion in between the stripes. In Fig. 5(a) the stripe periodic-
ity is kept fixed at L = 10κ−1, such that the stripe-fraction
of the surface increases with increasing stripe width D1. In
Fig. 5(b) the stripe periodicity is set to L = 2D1, for several
D1, such that the surface coverage fraction of the stripes re-
mains fixed at 50%. The numerical results in Fig. 5(a) clearly
show that smaller stripes at a fixed stripe periodicity L gain
a higher charge density. From Eq. (10) it follows that the
maximum charge density will occur for infinitesimally thin
stripes, since the surface potential at the stripe will vanish in
that case. In this limit, the corresponding charge density is
y(x) = Y , for all x at the stripe. The results for a constant sur-
face coverage in Fig. 5(b) fraction also show that thin stripes
gain the highest average charge density, although the maximal
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FIG. 5. Surface charge density profiles y(x) of a striped patchy surface with
Y = 10 for various stripe widths D1 and spatial periodicities L , here as a
function of the distance to the center of the charged stripe. In view of the
symmetry we only plot half a period. The data in (a) is calculated using the
fixed value of κL = 10, while in (b) we use L = 2D1. The vertical dashed
lines indicate the edges of the stripes, beyond which y(x) = 0.

charge density at the edges decreases a little. The increase
is less pronounced than in Fig. 5(a) since now the width of
the charge-neutral region in between the stripes scales with
the width of the stripes. Therefore, thin stripes in Fig. 5(b)
are relatively close to their neighboring stripes, and will hin-
der each other in gaining charge. One can show that that the
maximum charge density will again be found for infinitesi-
mally thin stripes, for which the system reduces to an essen-
tially homogeneously chargeable plate with chargeability YH

= Y D1/L .
Figure 6 shows the electrostatic potential around the plate

for κL = 5, κ D1 = 2, Y ±
2 = Y −

1 ≡ 0, Y +
1 = 100, and εP

= ε. This choice of the dielectric constants is such that elec-
tric fields do not vanish inside the solid medium. In Fig. 6(a)
the logarithmic plot shows nearly exponential decay of the
mode amplitudes φk(z) for k = 0, . . . , 3. Deviations from
a straight line are due to nonlinear couplings between the
modes, and slopes far away from the surface are the mode-
dependent screening parameters κk . It can be seen that, for
this choice of εP , the nonzero modes also give rise to an elec-
tric field inside the solid medium, and for high k the screening
on both sides of the interface is equally efficient, as there are
almost no ions involved. Figure 6(b) shows a contour plot of
the potential �(x, z) around the charged interface. It shows
a local increase of the potential close to the stripe, which is
caused by a local high charge density. The inhomogeneity in
the potential persists for a few screening lengths into the liq-
uid, as the stripe width is larger than the screening length, and
thus ionic screening is the dominant type of screening there.
In the solid medium ionic screening is not possible, and the
inhomogeneity persists over a range of the order of the width
of the stripe as was found below Eq. (18).

We now return to the case of chargeable stripes on an
otherwise neutral plate and define the average charge density
on a stripe

0 1 2

0.01

0.1

1

|φ
k(z

)|

k=0

k=1

k=2k=3

(a) (b)

κzκz

κ
x

0 1

1

2

3

4

5

D1

FIG. 6. Results of the numerical calculation for the electrostatic poten-
tial of a striped patchy surface with periodicity L = 5κ−1, stripe width D1
= 2κ−1 and chargeability Y = 100, showing the absolute value of the first
four mode amplitudes of the electrostatic potential in (a), and a contour
plot of the electrostatic potential at both sides of the interface using the
calculated mode amplitudes (b). A contour line borders the darkest area at
�(x, z) > 2.75 and the lightest area at �(x, z) < 0.5, with steps of 0.25 in
between. The vertical dashed line in both figures denotes the location of the
interface between the solid medium (left) and the solvent (right). For these
calculations, we choose an index-matching plate and liquid, ε = εP , such
that the electric field is able to penetrate into the solid medium.

ȳ = 1

D1

∫ L

x=0
y(x)dx . (25)

Figure 7 shows ȳ as a function of chargeability Y for multi-
ple choices of the stripe geometry parameters D1 and D2. All
curves show, as expected, that the charge increases with the
chargeability. It illustrates, however, that the charging of the
stripes strongly depends on their width and the distance in be-
tween two successive stripes. Charge densities are increased
either by narrower stripes or by larger stripe–stripe distances,
the strongest charging occurs for narrow stripes with rela-
tively much space in between. This is intuitively clear, since
for stripes that are rather separated the charging of the edges

0.1 1 10 100Y
0.1

1

10

y

1 10 100
1

2.5

5y/
y H

L=0.1, D
1=0.0031

L=1, D1=0.031

L=1, D1=0.1 L=10, D1=0.1

L=0.1, D1=0.031 L=10, D1=3.1

HOMOGENEOUS

FIG. 7. Average charge density on a chargeable stripe surrounded by charge-
neutral surface for various stripe widths D1 and periodicity L , denoted in
units of κ−1, plotted as a function of the stripe chargeability Y . The medium
has a dielectric constant εP 	 ε. The dashed line corresponds to the infinite
stripe-width limit for which we use the analytical result for homogeneously
chargeable plates. Using the same data, the inset shows the charge density
relative to this homogeneous limit.
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is not hindered by the charge of neighboring stripes. More-
over, narrow stripes have relatively more edge surface. For
broad stripes this gain at the edges is small compared to the
charge at the center, and we see from the line for κ D1 = 3.1
and κL = 10 that the charge density indeed approaches the
homogeneous limit (D1 = L), given in Eqs. (14) and (15),
and limiting behavior (16). By contrast, the narrower stripe of
width D1 = 0.1κ−1 and the same periodicity L = 10κ−1 has,
for Y � 1, a charge density that is a factor ∼ 2 higher than
the homogeneous limit, while the relative increase of ȳ com-
pared to yH can be a factor 5 for extremely narrow patches
with D1 = 0.0031κ−1 and L = 0.1κ−1, as can be seen in the
inset of Fig. 7. Furthermore, we note that ȳ = Y in the low-
charge limit Y 	 1. This is not surprising either, as in this
limit any charge, regardless its position on the surface, is es-
sentially “alone” in a vanishingly small potential; the vicinity
of a neutral area “2” or an essentially neutral stripe “1” is in-
distinguishable in that case.

B. Analytical approximation

As a way to better understand and quantify the charg-
ing mechanism of the patches, we now propose a method
to estimate the stripe charge densities by an analytic proce-
dure and check if the right physics emerges. The key element
in the method is the fact that the charging of different sur-
face groups is correlated. This correlation is mediated by the
electrostatic potential and logically the (longest) correlation
length is of the order of the screening length, as long as we
use the assumption that εP 	 ε. This correlation implies that
a small area of charge-neutral plate around every stripe is in-
volved in the charging as well. For the geometry of current
interest this means we can think of an extra strip of width s
on each side of the charged patch of width D1, as illustrated
in Fig. 8. Now we presume that the stripe including the ex-
tra area charges up like a homogeneously charged plate, such
that we can apply the analytic expressions (14) and (15) from
planar PB theory with an effective (decreased) chargeability
Ỹ = Y D1/(D1 + 2s) for the enlarged stripe.

The strip width s depends on the local screening length,
and therefore we set s = min(ακ̄−1, D2/2), with α a fit pa-
rameter and κ̄−1 the effective screening length defined below.
The minimum condition is used to prevent overlaps, as the
size of the additional strip area cannot exceed the size of the

Ỹ Ỹ

s s s s

D2D1εP

ε

x

yz

FIG. 8. Pictorial representation of the method used to estimate the charging
of narrow stripes. The darker areas adjoining the shaded stripes resemble
strips of charge neutral surface assumed to be involved in the charging as
well.
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FIG. 9. Average charge density on a chargeable stripe surrounded by charge-
neutral surface, for various stripe widths D1 and separations D2, plotted as a
function of the stripe chargeability Y +

1 . The medium bares a dielectric con-
stant εP 	 ε. The solid lines show results from the approximative method as
described in the text, while the dotted lines show results from the numerical
calculations.

uncharged region in between the charged stripes. The effec-
tive screening parameter κ̄ is determined by the average elec-
trostatic potential around the edge. The relation stems from
PB-linearization procedures and is given, for example, in
Refs. 46–48. Since the local surface potential at the strip must
be somewhere in between zero and the value for a homo-
geneously charged plate with chargeability Y , we estimate
the effective screening length to be their average, such that
κ̄−1 = κ−1/

√
cosh (0 + �H (0))/2. The procedure is now to

use this effective screening length in the calculation of the es-
timated strip width s to obtain the effective chargeability Ỹ .
In the homogeneous limit this gives a charge density ỹ for the
stripes plus the side strips via Eqs. (13) and (15). The average
charge density ȳ on the original stripe follows by assigning
the charge density to a smaller surface, ȳ = ỹ(D1 + 2s)/D1.

For the fit parameter α = 3/8, Fig. 9 shows the result-
ing ȳ as a function of Y for several κL and κ D1, together
with the numerically determined “exact” results based on Eq.
(25). The agreement between the two is good, within a max-
imal error of 25%, and we find the right trend with Y which
suggests that this approximation holds for even higher stripe
chargeabilities as well. It is expected that the fits will remain
good or even become better for larger stripe distances or stripe
widths than investigated here, since for broader stripes the rel-
ative amount of edge surface decreases. Moreover, the choice
of parameters κL = 10 in combination with κ D1 ≤ 3.6 de-
scribes a system in which the stripes are separated by multi-
ple screening lengths, which is close to the κ D2 → ∞ limit
where the patches do not mutually interact anymore.

V. CONCLUSION

Although the importance of charge inhomogeneities on
the interactions between surfaces was already mentioned in
many other studies, the relation between chemical inhomo-
geneity on the surface and the resulting inhomogeneity in sur-
face charge was, to our knowledge, never studied in detail.
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We developed a numerical method, based on expansion into
Fourier modes, to find the electrostatic potential and charge
distributions close to an interface with an inhomogeneous
distribution of chargeable chemical surface groups. We fo-
cussed on the case where the chemical groups are clustered
in stripelike regions, with different chargeabilities, either of
the same or different sign. For the case of striped chargeable
patches on an otherwise neutral surface, we showed a signif-
icant increase of charging of surface groups as the width of
the stripes decreases below the Debye length. For very small
patches this increase of the surface charge density can eas-
ily be an order of magnitude, although patches that have lit-
tle spacing show significantly less increase of charging be-
cause neighboring patches hinder each other’s charging. From
the numerical results, we arrive at the observation that the
edges of the patches are able to charge up optimally and will
contribute significantly to the total charge of small patches.
Our calculated numerical results for the average charge den-
sity on a patch are in fine agreement with a very basic ana-
lytical model (and one fit parameter) which employs an ef-
fective patch size in combination with results for homoge-
neous plates. Our results are stepping stone toward the study
of interactions between heterogeneously charged surfaces,
where charged patches themselves may induce charge inho-
mogeneities onto nearby surfaces, thereby generating nontriv-
ial forces and torques. If the surfaces are in the vicinity of
each other the induced charges cause a larger attraction be-
tween the patch and the nearby surface than constant charge
models would predict. Preliminary results of work along these
lines49 show that in this way induced charges can contribute
to a “global” attraction at distances typically of the order of a
few screening lengths.
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APPENDIX: NONLINEAR PB

In this appendix, we will focus on the numerical method
which can be applied to efficiently solve the nonlinear PB
equation (1) using the mode expansion (18) which was de-
scribed in the text. We use sinh � = (exp[�] − exp[−�]) /2
to write the mode expansion of the electrostatic potential as

sinh �(r) = 1

2

M∏
j=−M

E+
j (x, z) − 1

2

M∏
j=−M

E−
j (x, z), (A1)

where M is the high-wavenumber cut-off and E±
j (x, z)

= exp
[±φ j (z)η j (x)

]
contains the nonlinear dependence

of the PB equation on φ j (z). Using the Taylor expan-
sion of the exponential function, and applying that η j (x)n

= (κL)(1−n)/2ηn· j (x), we write E±
j (x, z) as a mode sum,

where high-frequency modes ηn· j for which |n · j | > M have
been neglected. Note that because of this truncation, we only
need to expand E±

j (x, z) up to order M/j (and for j = 0
we choose to stop at order M). As an illustrative example,

E±
1 (x, z) can be expanded to a mode sum as

E±
1 (x, z) = 1 ± φ1(z)η1(x)

+φ1(z)2η2(x)

2
√

κL
± φ1(z)3η3(x)

6κL
+ · · · . (A2)

Using the mode-expansion representation of E+
j (x, z), it is

now a straight forward task to calculate both the products of
all E+

j (x, z) and all E−
j (x, z), as appearing in Eq. (A1), and

rewrite these products as new mode sums with mode ampli-
tudes Vk(z),

sinh �(r) = 1

2

M∑
k=−M

(
V +

k (z) − V −
k (z)

)
ηk(x)

+O(ηM+1(x)). (A3)

Note that V ±
k (z) = V ±

k (φ0(z), φ1(z), . . . , φM (z)), such that
combining Eqs. (A3) and (21) yields

φ′′
k(z) −

(
2πk

L

)2

φk(z)

= κ2

2
V +

k ({φ j (z)}) − κ2

2
V −

k ({φ j (z)}), (A4)

for each k, |k| ≤ M . We solve Eq. (A4) for all k iteratively
as follows. For a given mode-amplitude φk(z), we project out
the dependence on all other modes φ j (z), j �= k, by expanding
V ±

k (z) = ∑M
i=0 U±

k,i (z)φi
k(z) and write Eq. (A4) as

φk
′′(z) −

(
2πk

L

)2

φk(z) = κ2

2

M∑
i=0

U+
k,i (z)(φk(z))i

−κ2

2

M∑
i=0

U−
k,i (z)(φk(z))i , z > 0. (A5)

As an example, we calculate the explicit expressions for the
monopole (k = 0),

U±
0,i =

(±η0)i

i!
·
(√

κL − φ−1φ1√
κL

+ φ2
−1φ

2
1

4(κL)3/2
+ · · ·

)
, (A6)

where we omitted higher modes |k| > 1 and left out the z de-
pendence for brief notation. If we insert this expressions into
Eq. (A5) again, we find

φ0
′′η0 =κ2

(
1− φ−1φ1

κL
+ φ2

−1φ
2
1

4(κL)2
+ · · ·

)
sinh [φ0η0] , (A7)

which reduces to the planar-PB equation in the case that φ±1

vanish. Equation (A5) together with the BC’s (19) and (20)
can be used to find the numerical solution to every mode,
given the approximations to the solutions for other modes. In
order to obtain the solution of the full problem, we therefore
apply an iterative scheme in which we go through multiple cy-
cles of solving each PB mode equation consecutively, until we
find the converged solution. This is done by solving for every
φk(z) the mode equations (A5) on a one-dimensional grid. As
a starting point, we use a vanishing solution for all modes. It
is possible to reduce the computational effort significantly by
considering systems for which �(x, z) = �(−x, z), such that
all φk(z) take values in the real space R and φk(z) = φ−k(z).
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The number of iterations required for convergence depends
on the degree of nonlinearity in the system and is typically in
the order of 10 per mode.
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