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Abstract

A new numerical scheme was developed for the solution of the Euler equations

in multi�dimensions� The scheme removes the critical dependency on the choice of a

good� grid by making use of the multidimensional character of the Euler Equations�

In addition� a new procedure for implementing solid wall boundary conditions was

introduced which does not require body��tted grids� This grid independent nature

of the scheme allows one to solve complicated geometry problems on simple regular

grids�

The scheme uses an upwind direction which is independent of the underlying

coordinate system� This direction is determined only by the local state of the �uid�

The scheme is explicit and easy to implement for both serial and parallel computation�

The current implementation of the algorithm for two space dimensions can handle

unsteady �ows around almost arbitrary geometries using a simple cartesian mesh�

Several numerical experiments have been done to show the �exibility and the robust�

ness of the algorithm�
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Chapter �

Introduction

This thesis presents a new numerical method for the solution of compressible �ow

equations in multiple space dimensions� The variety of physical phenomena described

by these equations is so rich that trying to �nd an ultimate� scheme seems hopeless

for the near future� The extensive literature devoted to that subject is an indication

of its importance and the lack of completely satisfactory algorithms� This work

concerns one important aspect of these equations� the multidimensional character of

the convective terms and the implications of this multidimensionality in algorithm

development�

In this chapter� �rst� the Euler equations describing the inviscid �ow of an ideal gas

will be examined� Then� the di�culties associated with multidimensional problems

will be reviewed� This will provide the necessary background and motivation for

the derivation of a new genuinely multidimensional upwind algorithm� For brevity�

the Euler equations in two dimensions will be considered throughout the main text�

generalization to three dimensional problems will be given in an appendix�

In the second chapter� the algorithm will be presented in detail� and its connection

to other upwind schemes will be discussed� In the third chapter� a new implementation

for solid wall boundary conditions will be presented� The last chapter will include

�
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numerical examples for validation and showing the advantages of the scheme� Future

directions for research will also be considered�

��� Equations of Gasdynamics

The Euler equations in two dimensions can be written in the following conservative

form

Ut � Fx �Gy � � 	�


where U is the state vector and F� G are the �ux vectors in the corresponding

coordinate directions�

U �

�
���������

�

�u

�v

e

�
���������
F �

�
���������

�u

�u� � p

�uv

	e � p
u

�
���������
G �

�
���������

�v

�uv

�v� � p

	e� p
v

�
���������

	�


where � is density� u is velocity in x direction� v is velocity in y direction� e is total

energy per unit volume and p is pressure� By assuming that we are dealing with ideal

gas� we close the equations with the following equation of state

p � 	� � �
	e� �	u� � v�
��
 	�


For the derivation of these equations representing mass� momentum� and energy con�

servation� see �Hir�� �

This system can also be written in the following form

Ut �AUx �BUy � � 	�


where A and B are called �ux jacobians 	A � �F��U�B � �G��U
� The system

of equations is said to be hyperbolic if the matrix

P � k�A� k�B 	�
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has real eigenvalues and linearly independent eigenvectors for any set of real numbers

k�� k�� In order to see what this de�nition means� let us assume that �ux jacobians

are constant matrices� and look for a solution of the form

U � R�	k�x � k�y � �t
 	�


where R is a vector in a state space and � is a scalar function� Here� R� a vector in

state space� represents a wave propagating in the k � �k�� k� direction� in physical

space� with the wave speed �� The magnitude of k is arbitrary� and can be taken as

unity for convenience� Substituting this expression for U and taking derivatives gives

the following eigenvalue problem

	k�A� k�B
R � �R 	�


This shows that we have a solution if R is an eigenvector and � is an eigenvalue of

matrix P� Since the equation is assumed to be linear� a linear combination of these

eigenvectors for all possible real k�� k� is also a solution� Thus� if we can �nd a unique

decomposition of the initial conditions in terms of these eigenvectors� we can easily

construct the general solution� This is called the method of decomposition into plane

waves �CH�� �

For the Euler equations in �D� there are four eigenvalues	three distinct
 for each

direction� These are

�� � q � c � �� � q � c � �� � �� � q 	�


where c is the speed of sound and q is the �uid velocity component in the direction

of k� q � uk� � vk� �SW�� �

From this much information� it is not obvious what the domain of in�uence 	or de�

pendence
 would look like� For a detailed presentation of the subject� see �Hir�� �CH�� �

A plausibility argument for �nding the domain of in�uence can be given as follows�
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Let us consider a family of plane waves passing from the origin	Figure �
� There will

be three distinct waves propagating in each direction� one moving with the velocity

component in that direction and two acoustic waves� Acoustic waves will form an

envelope� they are all tangent to a circle� This circular region will be a subset of the

domain of in�uence for the plane waves passing from the given point irrespective of

the wave direction� This suggests that this circle covers the domain of in�uence for

the given point in space�

t=0
y

x

t=1
y

x

u,v

c

Figure �� Plane Waves and the Domain of In�uence

An important property of the domain of in�uence is its coordinate independent

orientation� This is expected because the choice of the coordinate system is arbitrary

and has nothing to do with the physics� The domain of in�uence for a given point is

only determined by the �uid state at this point� It is this property that will be taken

into account for the design of a new genuinely multidimensional upwind scheme�
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��� Multidimensional Problems

Numerical computation of compressible �ows around complicated geometries has been

a challenging problem for the following reasons�

First� a solution may have discontinuities whose position is not known a priori�

These so called weak solutions� are di�cult to handle� simply replacing derivatives

with approximations based on Taylor series does not work� This is because these

non�smooth solutions are not solutions in the classical sense� they satisfy an integral

conservation law whose solutions need not be di�erentiable� For one dimensional

problems� there are very sophisticated schemes for dealing with this di�culty� How�

ever� the situation is much more complicated in multidimensions due to the complex

shapes and interactions of these discontinuities�

Second� it may be necessary to generate elaborate grids 	body �tted or even shock

�tted
 in order to obtain reasonable solutions� Modern CFD codes are di�cult to

use because of the need of user intervention to choose a good� grid� Although very

sophisticated tools are available for generating grids� generating a grid or modifying

the code to �t the speci�c geometry at hand is very time consuming� In addition� the

quality of the solution can critically depend upon the grid� Many researchers believe

that this grid dependency can be removed by taking advantage of the multidimen�

sional nature of the Euler Equations �Roe��a �

One example of the problems related to grid dependency can be found in �PV�� �

This so called singular line boundary problem is due to the interaction of inherently

one dimensional schemes with grid singularities� The treatment of this problem re�

quires either the generation of more sophisticated grids or a special care in those

singular lines�

Once we have a genuinely multidimensional upwind scheme� we can use grids

which are easy to generate without human intervention� Two promising paths in that
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direction are the use of unstructured grids which can be generated by computer and

the use of simple cartesian grids which need not �t boundaries or discontinuities� In

this work� a multidimensional upwind scheme will be implemented by using simple

cartesian grids�

The use of cartesian grids for complicated geometries has been di�cult for two

main reasons� First� boundary conditions are hard to enforce when wall boundaries

do not coincide with grid lines� Second� most modern schemes are straightforward

generalizations of inherently one dimensional schemes� and typically require the grid

to �t discontinuities�

In generalizing to multi�dimensions� it is assumed that the problem can be treated

as a combination of one dimensional problems in each coordinate direction � A crucial

assumption is made without justi�cation� waves propagate along coordinate lines

	Finite Di�erence
 or normal to cell interfaces 	Finite Volume
� This assumption is

not critical� however� if the region of rapid variation� such as shock waves� is aligned

with one of the coordinate lines� This straightforward generalization can lead to

either more restrictive stability bounds in multi�dimensions or degraded accuracy�

Currently� there is considerable interest in developing genuinely multidimensional

upwind schemes� For a critical discussion of these issues� see the review paper by

Roe �Roe��a and a recent monograph by LeVeque �LeV�� �

In his exploratory paper �Roe��b � Roe suggested looking at the local gradients to

choose the upwind direction� The essential feature of his model is the grid independent

character of the directions in which information can propagate� Similar approaches

based on looking at the local gradients for multidimensional upwinding have been

employed by many authors �BL�� �DG�� �Dav�� �

In this thesis� a new multidimensional upwind scheme which uses only local data

rather than its gradients for choosing the upwind direction is presented�� This simple

�Major results of this work have been given in � �Oks�uzo�glu����
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approach requires less computation and avoids anomalies like indeterminate upwind

direction due to zero gradients� Also� it it not obvious which gradient to look after�

and one more arbitrary decision has to be made if we use a gradient based upwinding�



Chapter �

State Vector Splitting

The importance of using the information about the domain of dependence for the

numerical solution of hyperbolic di�erential equations has been known for a long time�

In ����� Courant et al� introduced the so called CFL condition which stated that the

numerical domain of dependence should include the physical domain of dependence

for stability� The earliest upwind scheme making use of the information about domain

of dependence was given in �CIR�� � However� this scheme was not conservative and

was not successful for discontinuous solutions� In this chapter� we will develop a

conservative upwind scheme which will utilize the domain of in�uence rather than

dependence� More detailed information on upwind schemes can be found in review

papers by Roe �Roe��a � Harten et al� �HLL�� and monograph by LeVeque �LeV�� �

A very good introduction to the subject is given in the recent text by Hirsch �Hir�� �

The development of upwind schemes has been in the context of hyperbolic dif�

ferential equations in one space dimension� The generalization into multidimensional

problems was done in a straightforward way without making use of the information

about the multidimensional domain of in�uence� Problems related to that approach

was reported recently by Roe �Roe��a � Currently� there is a growing interest in un�

derstanding the multidimensional wave structure of the Euler equations and using

�
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that information for developing genuinely multidimensional upwind schemes�

In this chapter� we begin with a review of Flux Vector Splitting as proposed by

Steger and Warming �SW�� � A di�erent interpretation of this scheme will be the

starting point for the development of the new scheme� After introducing the scheme

	in fact� a family of schemes
 in its most general form� possible ways of implementing

it will be discussed�

��� Flux Vector Splitting

Consider the following hyperbolic system in one space dimension

Ut � Fx � � 	�


If the �ux vector is a homogeneous function of the state vector� 	F	U
 � F		U
�

then the following identity holds�

F � AU 	��


where A � �F��U� It is easy to check that this is true for the Euler equations

U �

�
������

�

�u

e

�
������ 	��


F �

�
������

�u

�u� � p

	e� p
u

�
������ 	��


�

If we can diagonalize the matrix A � S�S��� we can write the �ux vector as the

sum of two vectors

F � S�S��U � S��S��U� S��S��U � F� � F� 	��
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where ����� contain the positive and the negative eigenvalues of the �ux jacobian�

respectively� This splits the �ux into vectors associated with the positive and negative

wave speeds�

Ut � 	F� � F�
x � � 	��


The idea of the Steger�Warming scheme is to apply the forward di�erence operator

to the negative wave speeds and the backward di�erence operator to the positive wave

speeds� that is� to upwind di�erence both kinds of waves�


U

!t
�
D�F�

!x
�
D�F�

!x
� � 	��


where


U � Un�� �Un�D�F � Fi � Fi���D�F � Fi�� � Fi

��� TheMethod of Decomposition into PlaneWaves

In the following sections� we will construct an upwind scheme from a di�erent point of

view and show that this is equivalent to the Flux Vector Splitting of Steger�Warming�

However� this interpretation will be helpful in generalization to multidimensional

problems�

Let us assume that the jacobian matrix is constant 	or frozen for a given solution


and look for the solutions of the form U � R�	x��t
� If we substitute this solution

into the equation

Ut �A	Uo
Ux � � 	��


we obtain the following eigenvalue problem�

AR � �R 	��
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Let Ri	Uo
 and �i	Uo
 be eigenvectors and eigenvalues of matrix A� Then� a

general solution can be written as

U �
X
i

Ri�i	x� �it
 	��


The magnitudes of the waves will be obtained from the initial conditions�

If we want to apply this method to a nonlinear equation to �nd an approximate

solution� �rst� we assume that the initial data can be represented by a piecewise

constant function on a given grid� Then for each cell� we �nd the eigenvalues and

eigenvectors for the local jacobian� Then� we use the above solution formula to obtain

an approximation for short times� In order to continue this process� at the end of the

short time interval� we have to average the solution so that we again have a piecewise

constant function�

��� State Vector Splitting in One Space Dimen�

sion

In this section� we will use the method of decomposition into plane waves to construct

a numerical scheme� and later� try to give another interpretation by using ideas from

a molecular point of view� This new interpretation will be the basis for the genuinely

multidimensional upwind scheme�

In one space dimension� the eigenvalues of the �ux jacobian 	wave speeds
 for a

given state are

	� � u� c 	��


	� � u 	��


	� � u � c 	��
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and the state vector can be decomposed into eigenvectors of the �ux jacobian

R� �
�

��

�
������

�

u� c

h� uc

�
������ 	��


R� �
�	� � �


�

�
������

�

u

u���

�
������ 	��


R� �
�

��

�
������

�

u � c

h � uc

�
������ 	��


where

h � 	e� p
�� 	��


is the speci�c enthalpy� and

c �
q
�p�� 	��


is the speed of sound�

The eigenvectors has been scaled such that the following condition is satis�ed

R� �R� �R� � U 	��


representing the splitting of the state vector� It is interesting to note that the eigen�

values and the eigenvectors also satisfy

	�R� � 	�R� � 	�R� � F 	��


where

U �

�
������

�

�u

e

�
������
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F �

�
������

�u

�u� � p

	e� p
u

�
������

i-1 i i+1

u-c u u+c

n

n+1

Figure �� Wave Decomposition in One Dimension

The �rst stage of the numerical implementation is to approximate the initial data

by a piecewise constant vector valued grid function� Then� this approximation is

decomposed into three wave components and shifted according to corresponding wave

speeds before combining them at the next time level 	Figure �
� Of course� in order

to continue this process� we have to average this approximate solution to obtain

piecewise constant data on the same grid� If we use a simple averaging 	Figure �
�

the update formula can be expressed as

Un��
i � 	

X
�

	�� ck
Rk

n
i � 	

X
�

	ck
Rk

n
i��

�	
X
�

	� � ck
Rk

n
i � 	

X
�

	�ck
Rk

n
i�� 	��
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where ck � 	k!t�!x and 	k is the kth eigenvalue of the �ux jacobian� The symbolsP
��
P
� indicate summation over positive and negative eigenvalues� This type of

averaging guarantees that the scheme is conservative� and positivity preserving� since

we are not creating or destroying any one of the conserved variables� we are splitting

them at one time level� moving them according to corresponding wave speeds� and

recombining them at the next time level� This particular averaging for the given

decomposition in �D leads to a scheme which is equivalent to the original form of

the Steger�Warming Flux Vector splitting �SW�� � This will be proved in the next

section�

i-1 i i+1

n

n+1

c 1-c 

(1-c )R c R 

 k    k

    k  k  k k 

Figure �� Averaging Stage of the algorithm
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��� Equivalence of State and Flux Vector Split�

ting in One dimension

In the previous section� we have decomposed the state vector into the eigenvectors of

the �ux jacobian�

U �
X

Rk 	��


By using the homogeneity of the �ux vector� we can also represent the �ux vector

in terms of these eigenvectors�

F � AU �
X

ARk �
X

	kRk 	��


In the derivation of the Flux Vector Splitting of Steger�Warming� positive and

negative �uxes are de�ned according to signs of the eigenvectors of the jacobian

matrix�

A � S�S�� � S��S�� � S��S�� � A� �A� 	��


where �� has the positive eigenvalues of A and zeros replacing the negative ones�

�� is de�ned similarly with negative eigenvalues� Both A� and A� have the same

set of eigenvectors as A� This means that

F� � A�U �
X
�

	kRk 	��


F� � A�U �
X
�
	kRk 	��


Now� we can prove that equations �� and �� are equivalent� Equation �� can be

rearranged in the following form

Un��
i � 	

X
�

Rk

n
i � 	

X
�
Rk


n
i � 	

X
�

ckRk

n
i � 	

X
�

ckRk

n
i��

�	
X
�
ckRk


n
i � 	

X
�
ckRk


n
i�� 	��




CHAPTER �� STATE VECTOR SPLITTING ��

The �rst two terms add up to the state vector at the time level n at the grid point i�

Un
i � If we substitute ck � 	k!t�!x and use the de�nitions of positive and negative

�uxes� we obtain

Un��
i � Un

i �
!t

!x
	F�n

i � F�n

i��
�
!t

!x
	F�ni�� �F�n

i 
 	��


Collecting all the terms on the left hand side and dividing by !t gives equation ���

The di�erence between state and �ux vector splittings in one dimension is just

the order of arithmetic evaluation� State vector splitting operates on the state vector

and never explicitly computes the �ux vector� For the given type of splitting and

averaging the two schemes give the identical results if we use an exact arithmetic�

This also means that the new scheme is �rst order accurate in space and time�

��� Particle Interpretation

We can give another interpretation to the scheme by using analogies from the molec�

ular point of view� In this section� we will attempt to form a basis for upwinding

by using ideas from the kinetic theory� This approach was originally introduced by

Sanders and Prendergast �SP�� under the name of the beam scheme�� The rela�

tion of the �ux vector splitting to this beam scheme was pointed out by Harten et

al �HLL�� � Harten used the name Boltzmann�type� schemes for this class of algo�

rithms� because the derivation of the scheme is based on a collisionless Boltzmann

equation� The fundamental assumption of the beam scheme is that the velocity dis�

tribution function is discrete� rather than continuous�� That means particles can

have only certain speeds as a function of space and time� This is di�erent from the

discrete velocity models� of Carleman or Broadwell where particles can have only

�xed velocities assigned a priori� Godunov and Sultangazin �GS�� has a detailed

�a combination of delta functions
�Maxwellian or Gaussian
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review of these and related models� See also Platkowski and Illner �PI�� for a recent

review of the subject which has attracted the interest of mathematicians�

Sanders and Prendergast used a scalar velocity distribution function to arrive at

the beam scheme� In contrast� Harten used a vector valued distribution function to

derive the �ux vector vector splitting from a Boltzmann equation� Our interpretation

will be closer to the �rst approach� which has a physical motivation�

Let us assume that there are only three types of particles at a given point in

space and time� Each particle group is identi�ed by its velocity� In our case� one

group moves with the �uid velocity u and the other two groups move with u� c and

u � c� These are the eigenvalues of the �ux jacobian� The eigenvectors represent

the fraction of mass� momentum and energy carried by the each group of particles�

The group number � has mass m � �	� � �
�� per unit volume� Momentum is just

mass times velocity� which gives the second term in vector R�� We assume that

this group of particles has no internal degrees of freedom and the energy is purely

kinetic� which gives the last term� The groups � and � have m � ���� amount of

mass� Their momentum is computed similarly� These two groups also have internal

degrees of freedom in addition to the translational degree of freedom in the x direction�

Translational degrees of freedom in y and z directions will be considered as internal

modes for one dimensional splitting� Therefore� these two groups have kinetic energy

plus internal energy� From statistical mechanics� we know that the energy in an

equilibrium state is equally divided among each degree of freedom� This is called the

principle of equipartition of energy �VK�� � According to this principle� each mode

has an average energy of �
�kT per molecule where k is the Boltzmann constant and T

is the temperature of the gas� If gas has � degrees of freedom� the average molecular

energy per unit volume is
�

�
�RT �

�

�
p 	��
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where

� �
�

� � �
	��


or

� �
� � �

�
	��


Since we are accounting for the degree of freedom in x direction� we have � � �

internal degrees of freedom� We divide the internal energy equally between group

� and �� Thus the energy carried by the group � as a combination of kinetic and

internal energies
�

��

	u � c
�

�
�

�

�

� � �

�
�RT

using c� � �RT
�

��
	
u�

�
� uc �

�

�
c�


We know that

e �
p

� � �
�
�u�

�
	��


h �
e � p

�
�

u�

�
�

c�

� � �
	��


We can write the energy of this group

�

��
	h � uc


Similarly� we can �nd the energy carried by the group ��

To sum up�

R� �
�

��

�
������

�

u � c

h � uc

�
������

represents the mass� momentum and energy carried by the group of particles moving

with the speed u� c� The last entry includes the kinetic energy of the group plus half

of the internal energy per unit volume� Similar things can be said for R� and R��
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except that R� does not have any internal energy� The second half of the internal

energy is carried by R��

��� Positivity

One important property which a robust numerical scheme should posses is posi�

tivity�� that is the thermodynamic quantities should be kept within their physical

limits� For example� density or pressure should never be negative� This is important

because trying to replace these negative quantities with positive values will violate

the conservation property of the scheme and cause instabilities� In this section� we

will show that our scheme for the given type of averaging preserves the positivity of

density and pressure�

It is trivial to check that density will always be positive if we start with a positive

density distribution and satisfy a CFL condition� Update formula �� has always

positive coe�cients if

jckj � �

If each particle group has a positive fraction of density which is the case for our

splitting� than the resulting state vector at the next time level will have a positive

density� The same argument holds for total energy� too� The only thing we need to

assure is that each group has a positive fraction of the total energy�

h� uc  �

where

h �
c�

� � �
�
u�

�

After some manipulation
� � �

� � �
c� � 	u� c
�  � 	��
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From that expression� we can conclude that energy of each group is positive if

� � � � � 	��


The kinetic theory predicts that

� � � �
�

�
	��


so each group has a positive fraction of the energy�

Showing the positivity of pressure or internal energy is not di�cult� either� Let

�m denote the mass of the particle packet� m reaching the grid point i at time level

n � �� These packets may originate from grid points i � �� i� i � � at time level n�

and may be associated with di�erent wave speeds 	index k
� Let 	m designate the

speed of the packet m� If we sum all the masses reaching the grid point� we obtain

the density� of the �uid at that point at the next time level

� �
X

�m 	��


Momentum of the each packet is equal to its density times its velocity� Summation

gives the �uid momentum

M �
X

�m	m 	��


The total energy of the �uid will consist of the sum of kinetic and internal energies

of each packet�

e �
X

	
�

�
�m	

�
m � �m
 	��


where �m represents the internal energy carried by packet m� Kinetic energy of the

�uid can be computed using

KE �
M�

��
	��


�Packet is the fraction of a group after the averaging stage� For example� 	
 � ck�Rk represents
a packet�

�Here we are actually talking about the mass which is an additive quantity� In fact� everything
is multiplied by the cell volume which is a constant number for a uniform mesh�
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We are trying to show that internal energy of the �uid is positive

e�KE � � 	��


or X
	
�

�
�m	

�
m � �m
 � 	

P
�m	m
�

�
P
�m

Assuming that we have a positive internal energy distribution initially� and using the

fact that density is always positive� if we can show the following inequality holds� we

can also show that internal energy 	or pressure
 is positive�

X
�m
X

�m	
�
m � �

X
�m
X

�m � 	
X

�m	m
� 	��


We know that all �m and �m	
�
m are positive quantities� so they can be written as a

square of a number

X
�m
X

�m	
�
m �

X
	
p
�m
�

X
	
q
�m	�

m
�

and we can use Cauchy�Schwarz inequality to show

X
	
p
�m
�

X
	
q
�m	�

m
� � 	
Xp

�m
q
�m	�

m
� � 	
X j�m	mj
� � 	

X
�m	m
�

Thus� we proved that X
�m
X

�m	
�
m � 	

X
�m	m
�

Knowing that particles have positive internal energy to begin with 	�m � �
� this

implies that the inequality �� holds� i�e� pressure stays positive�

��	 Two Dimensional Flux Vector Splitting

Steger and Warming gave also the two dimensional extension of �ux vector splitting

in their paper �SW�� � This straightforward extension uses one dimensional splitting
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in each coordinate direction� Here� we will give a particle interpretation for this kind

of splitting and examine under what conditions it preserves the positivity of density�

The update formula for �D �ux vector splitting can be given in the following

compact form

U

!t
�
D�

x F
�

!x
�
D�

x F
�

!x
�
D�

y G
�

!y
�
D�

y G
�

!y
� � 	��


where we used the forward and backward di�erence operators in x and y directions�

Let Rk and Qk be the eigenvectors of the �ux jacobians in x and y directions respec�

tively� They are normalized such that

U �
X

Rk �
X

Qk 	��


Let 	k and �k be the corresponding eigenvalues used in the following de�nitions

ck �
	k!t

!x
	��


dk �
�k!t

!y
	��


Using the decomposition of the �ux vectors in terms of these eigenvectors and eigen�

values� we can write the update formula �� as follows

Un��
i�j � Un

i�j �
!t

!x

�
	
X
�

	kRk

n
i�j � 	

X
�

	kRk

n
i���j � 	

X
�
	kRk


n
i�j � 	

X
�
	kRk


n
i���j

�

�!t

!y

�
	
X
�

�kQk

n
i�j � 	

X
�

�kQk

n
i�j�� � 	

X
�
�kQk


n
i�j � 	

X
�
�kQk


n
i�j��

�

adding and subtracting �Un
i�j and substituting the de�nitions of ck and dk� we obtain

Un��
i�j � �Un

i�j � 	
X
�

	� � ck
Rk

n
i�j � 	

X
�

ckRk

n
i���j �

	
X
�

	� � ck
Rk

n
i�j � 	

X
�
�ckRk


n
i���j �

	
X
�

	�� dk
Qk

n
i�j � 	

X
�

dkQk

n
i�j�� �

	
X
�

	� � dk
Qk

n
i�j � 	

X
�
�dkQk


n
i�j�� 	��
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By looking at this equation�� we can see the following interpretation� At each

grid point� we have a given amount of mass� momentum and energy for time step

n� stored as the state vector Un
i�j� First� we assume that particles move only in the

x direction with the corresponding eigenvalues� and use the averaging as in the one

dimensional case� Then� we do the same thing for the y direction� Since we have

doubled the amount of mass� momentum and energy by sending the state vector in x

and y directions� we subtract this additional state vector from each grid point giving

the �rst term on the right hand side�

In order to preserve the positivity of density� more mass than is already there

should come back after the averaging state� because we are subtracting the amount

which was there� This can be guaranteed if we satisfy the following restriction on the

time step�

!t �
�

juj�c
�x

� jvj�c
�y

or

�  max	ck
 � max	dk
 	��


This is the recommended time step for �D problems on empirical basis and is more

restrictive than its one dimensional counterpart�

��
 Multidimensional Upwinding

So far� implementation of the new scheme in one space dimension has been described�

It was also shown that for the given splitting of the state vector and the given aver�

aging� we obtain a scheme equivalent to �ux splitting of Steger�Warming� However�

it is clear that neither the splitting nor the averaging is unique for the algorithm� In

this section� we will present it in its general form and generalize it to multiple space

dimension�

�compare with the update formula �� in one dimensional case
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We have two di�erent interpretations of the scheme in one space dimension� One

is based on the molecular point of view� the other is based on the idea of wave

propagation� As we have already mentioned many attempts were made to design

a multidimensional upwind algorithm by using the idea of wave propagation� This

approach has one intrinsic di�culty� in �d we have only a �nite number of waves to

represent a solution� in multiple dimensions� on the other hand� we have in�nitely

many directions and consequently in�nitely many waves� Most multidimensional

upwind schemes to date tried to decide which directions are important by looking at

the local gradients� This resulted in schemes which apply some sort of splitting in the

direction of steepest gradient�� This decision is arbitrary� and brings an additional

cost	� We will try to use the particle point of view to construct a multidimensional

upwind scheme which does not require the evaluation of gradients and is easy to

implement�

We will assume that we have a �nite number of particle types identi�ed by their

velocity� We will let those particles move in a deterministic way between grid points

according to their velocities� Of course� in order to simulate a �uid described by

the Euler equations� our choice of particle velocities and fractions of particles having

a certain velocity cannot be totally arbitrary� We will argue that if we impose the

following conditions based on physical considerations� we will arrive at consistent

�nite di�erence schemes with additional conditions on averaging�

Let Rk represent the fraction of mass� momentum and energy carried by the group

k in a given computational cell� and �	k� �k be the velocity of the group� The �rst

condition states that if we sum up mass� momentum and energy of each group� we

should obtain the �uid mass� momentum and energy for the given cell�

U �
X
k

Rk 	��


�Usually pressure
�evaluation of gradients
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The second condition means if we multiply the mass� momentum and energy with

the particle velocity we should get the �ux associated with the given state�

�F�G �
X
k

�	k� �k Rk 	��


We will also require that the momentum of the particle should be consistent with its

velocity and mass� These conditions altogether will be called consistency conditions�

Here� Rk and �	k� �k are not necessarily the eigenvectors and the eigenvalues of the

�ux jacobians� These conditions are a heuristic generalization of the observations

made in one dimensional case from a particle point of view�

In one space dimension� we have six equations� so we need at least two vectors


to satisfy these conditions� In �D� we have twelve equations� so three vectors� will

be su�cient� In other words� at least two types of particles in �d� and three types of

particles in �d will be necessary for consistency�

y

x

t

(u,v)

c t=1

Figure �� Domain of In�uence in �D

In the one dimensional splitting we have given� there are three particles� The

�with three components each
	with four components each
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velocities of these particles coincide with the eigenvalues of the �ux jacobian so that

the numerical domain of in�uence covers the physical domain of in�uence� There is

one known two particle splitting leading to a consistent di�erence scheme� However�

the velocities are such that the numerical domain of in�uence does not cover the

physical one� and we would expect stability problems� In an appendix� we will provide

this two particle splitting in addition to the three particle version of Sanders and

Prendergast �SP�� � In the next section we will give a �ve particle splitting for two

space dimensions� The particle velocities will be chosen to represent the physical

domain of in�uence to avoid the stability problems�

��� Two Space Dimensions

The straightforward generalization of Steger�Warming method to multi�dimensions

leads to a scheme in which there are three waves in each coordinate direction 	Fig�

ure �a
� Information can propagate only in those directions between time steps� and

this brings a more restrictive stability bound with the increasing number of dimen�

sions� as seen in section ����

In the two dimensional case� it is possible to obtain a consistent di�erence equation

by using only �ve vectors��� The new scheme decomposes the initial data into �ve

particle�� groups in �D� satisfying the consistency conditions� such that information

can propagate in the directions dictated by the local data� as opposed to arbitrarily

chosen coordinate directions 	Figure �b
� One particle group moves with the center

of the domain of in�uence and has the �uid velocity� As in the one dimensional case�

its energy is only kinetic� The remaining four particles move at the corners of a

square which encloses the domain of in�uence� The orientation of this square can be

�
not necessarily the eigenvectors of the �ux jacobians
��It should be possible to nd a three particle decomposition� but it would not satisfy the condition

on the domain of in�uence
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n

n+1

t

(i,j)
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(i+1,j)
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(i+1,j+1)

a:

n

n+1

t

(i,j)

x

(i+1,j)

y

(i+1,j+1)

b:

Figure �� a
 Particle Groups in Two Dimensional Steger�Warming Flux Vector Split�
ting� b
 State Vector Splitting in �D

arbitrary with respect to underlying coordinate system� We have chosen it such that

we can take the maximum time step without violating the CFL condition� One may

argue that this almost arbitrary decision makes the scheme grid dependent� However�

this is the best we can do with a �nite collection of particle groups� In other words�

it is not possible to �nd a decomposition that is totally grid independent with a �nite

amount of computational e�ort� Velocities of these particle groups� and the fraction

of mass� momentum� and energy they carry are given as follows�

k �	k� �k 

� �u � c� v � c 

� �u� c� v � c 	��


� �u� c� v � c 

� �u� c� v � c 

� �u� v 
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R� � �

��

�
���������

�

u � c

v � c

h � 	u � v
c

�
���������

R� � �

��

�
���������

�

u� c

v � c

h� 	u� v
c

�
���������

R� � �

��

�
���������

�

u � c

v � c

h � 	u� v
c

�
���������

R� � �

��

�
���������

�

u� c

v � c

h� 	u � v
c

�
���������

R� � �����
�

�
���������

�

u

v

	u� � v�
��

�
���������

	��
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Figure �� Averaging in �D
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This new model takes into account the multidimensional nature of the domain of

in�uence� The waves"particles now follow the physical paths rather than an arbitrary

coordinate system� If we let the particle groups propagate to the nearest neighbors�

we obtain the following CFL restriction on cartesian grids

!t � min	
!x

juj� c
�

!y

jvj� c

 	��


This is less restrictive than the stability condition for �D Steger�Warming� because

this new scheme represents the physical domain of in�uence better�

The simplest averaging in �D is the straightforward generalization of the �D case�

If a particle ends up in a cell identi�ed by indexes i� i � �� j� j � � and its non�

dimensional coordinates with respect to the grid point i� j are 	cx� cy
 then 	��cx
	��
cy
R amount of mass� momentum and energy goes to the grid point i� j� The weight

coe�cients we use add up to �� This is a condition on averaging for the conservation

of physical quantities�
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Boundary Conditions

One of the major di�culties in numerical solution of partial di�erential equations for

complex geometries is the implementation of numerical boundary conditions� This

necessitates the use of boundary conforming grids� because it is easier to implement

boundary conditions when the grid coincides with the boundary� In this chapter�

we will introduce a new way of implementing the solid wall boundary conditions for

the Euler equations in a grid independent way� This will allow us to solve complex

geometry problems on cartesian grids�

In developing a new type of numerical boundary condition for solid walls� we will

use the particle� concept we have discussed in the previous chapter� Analogies from

the kinetic theory will guide us in developing an intuitive� easy to implement and

robust boundary procedure which is a natural extension of the internal scheme� We

will also discuss the in�ow and out�ow boundary conditions from a particle point of

view�

��
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��� Boundary Conditions on Solid Walls� a Short

Review

The meaningful boundary conditions on solid walls for the Euler equations is the �ow

tangency� No mass transfer means that the normal velocity at the wall should be zero��

This is the only condition we can impose� because there is only one characteristic

entering the �ow domain� This boundary condition can be stated as

q � n � �

where q � �u� v is the velocity vector� n is the normal to the wall� It can be shown

that this is equivalent to a condition on pressure


p


n
�

�v�t
R

where the derivative is taken normal to the wall� �� vt� and R represent the density� the

tangential velocity at the wall� and the radius of curvature of the wall� respectively�

This equation can be discretized to determine the wall pressure for which it is easier

to use body conforming grids� If the grid is not orthogonal� computing the normal

derivative requires a special treatment� For more detail see �Hir�� �

Another approach to solid wall boundary conditions uses �ctitious cells outside

the �ow �eld to enforce the tangency condition� In this case� the �ctitious cell has the

same values as the nearest grid point inside the computational domain for everything

except the normal velocity� Normal velocity changes sign to make it zero in between

two grid points�

These procedures are di�cult to apply if the boundary does not �t the grid lines�

One recent paper addressing the solid wall boundary condition on cartesian grids is by

Berger and LeVeque �BL�� � They show how to overcome the stability limit brought

�or equal to the normal velocity of the wall if it is moving
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by the small cells resulting from the intersection of an arbitrary boundary with the

cartesian grid� Their approach involves solving a one dimensional Riemann problem

normal to the wall�

��� Solid Wall Boundary Conditions

In this section� we will present a new numerical boundary condition procedure for

solid walls using the particle point of view� The interior scheme we introduced used

this particle description to implement multidimensional upwinding� Here� we will

describe how these particles behave when they encounter a solid boundary�

We know that for the Euler equations we have to preserve the tangential mo�

mentum on a solid wall since there is no friction� We also have to make sure that

the normal velocity is zero�� We know one re�ection rule that would satisfy both

conditions� specular re�ection� If a particle is re�ected specularly� its tangential mo�

mentum is conserved and normal momentum changes sign� This sign change ensures

that the normal velocity will be zero on the average�

The advantage of this idea is its grid independence� solid boundaries need not

coincide with the grid lines� It is also conservative in the sense that no new mass or

energy is produced� Non�conserved quantities like pressure do not enter the compu�

tation� A particle conserves its energy as expected� because there is no mechanism

of transfer between a solid wall and the �uid for the Euler equations if the wall is

stationary� However� there is a mechanism for momentum transfer in the normal

direction� and� this change in the normal momentum will manifest itself as pressure

on a solid boundary� So the force acting on a body can be computed by adding up

of these momentum changes rather than integrating the pressure over the surface�

This re�ection rule also obeys the same CFL restriction for the interior scheme�

�no mass �ux
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Normal

Reflected
Particle

Solid
Boundary

Figure �� Specular Re�ection from a Solid Boundary

if a particle is going to stay inside a certain region at the absence of a boundary

because of the CFL restriction� it will also stay inside the same region even if there is

boundary� So� we do not have the usual stability problem related to the small cells�

near the boundary�

This idea of specular re�ection sounds simple and intuitive but the actual imple�

mentation on a computer can be tricky� The obvious �rst approach of testing for each

particle whether they encounter a solid wall or not during a time step can be very

costly� In the next section� we will propose one method to overcome this di�culty�

��� Approximate Specular Reection

One observation on specular re�ection from a �at boundary will make the imple�

mentation very e�cient� specular re�ection is equivalent to delayed re�ection for a

�at wall� By delayed re�ection� we mean a particle moves freely during a time step

�these small cells comes about because of the intersection of the boundary with the cartesian grid
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Specular
Reflection

Delayed
Reflection

Figure �� Delayed Re�ection from a Flat Boundary

and is re�ected in the normal direction to the wall if it ends up inside the boundary

	Figure �
� The re�ection distance is twice as much as the distance to the wall� If

the boundary is not �at this approach is only an approximation to specular re�ection

	Figure �
� Now� we will try to show that the error introduced by this approxima�

tion is acceptable� Instead of giving a rigorous error analysis for an arbitrarily shaped

wall� we will use an engineers approach 	proof by example
 and do it for a very special

case��

Let us consider a cylinder of radius R 	Figure ��
� If a particle originates at point

A and specularly re�ected� it goes to point B at the end of a time step� If we let the

particle move freely between time steps� it will end up at point D� In order to enforce

the boundary condition� we will re�ect it to the point C� The distance between point

C and B� e� will be our error measure� We will �nd an expression for e in terms of

radius R and the distance traveled by the particle after the specular re�ection from

the wall� h�

We will use the following vector notation� EB represents the vector whose initial

�praying that it is also true for more general cases
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Error
Specular
Reflection

Delayed
Reflection

Figure �� Delayed Re�ection from a Curved Boundary

point is E and terminal point is B� The length of vector EB is

jEBj � h

Similarly

jOEj � R

jODj � S

jBCj � e

If we use a coordinate system whose origin is located at the re�ection point E on

the wall and x axis is in the tangential� y axis is in the normal direction� we can write

down the following expressions

EB � �h sin �� h cos � 

ED � �h sin ���h cos � 

OE � ��� R 

OD � OE � ED � �h sin ��R� h cos � 
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Figure ��� Error Analysis for Delayed Re�ection

jODj � S �
p
R� � �hR cos � � h�

The length of OC is

jOCj � �R � S

and it is in the direction of OD� thus

OC �
�R � S

S
�h sin ��R � h cos � 

Let k � R

S
then

EC � OC �OE � 	�k � �
�h sin ��R � h cos � � ��� R 

� �	�k � �
h sin �� �	k � �
R � 	�k � �
h cos � 
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BC � EC � EB � ��	k � �
h sin �� �	k � �
R � �kh cos � 

where

k� �
R�

R� � �hR cos � � h�
�

�

�� � h
R

cos � � 	 h
R


�

for h
R
� �

k� � � � �
h

R
cos � � O		

h

R

�


k � � �
h

R
cos � � O		

h

R

�


Thus� we obtain

BC �
h�

R
�sin �� � O	

h

R

��� cos� � � O	

h

R

 

and the error is

e � jBCj � O	
h�

R

 	��


Because of the CFL restriction� we have chosen the time step such that a particle

cannot move beyond the nearest grid points� That means h � O	!x
� If R� h then

e � O		!x
�


This also indicates where the inaccuracy can become important� R � h� i�e� sharp

corners� Although we have done this analysis for a cylinder� a similar result could be

obtained for any wall whose radius of curvature is always much larger than the grid

size�

��� Actual Implementation

In the previous section� we focused on how particles move around and did not pay

attention to where there are stored� We need to use a discrete set of points to store

the information about the particles in a computer� We already know how to store the

particles at interior points by doing an averaging� We will combine this stage with

the idea of delayed re�ection of the previous section in the following manner�
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Stage I Stage II and III

Next Time Level, Stage I Next Time Level, Stage II

Figure ��� History of a particle group during two time steps when it is close to a solid
boundary

�� Let the particles move freely and be distributed as if there is no solid boundary

	 interior scheme � convection � averaging 


�� Send the particles in the normal direction to the boundary� if they end up at a

grid point inside the wall 	 delayed re�ection 


�� Apply the same averaging to redistribute the re�ected particles to the grid

points 	 averaging 


In order to implement the second stage e�ciently� re�ection directions and distances

are determined a priori and used as needed� Even after the delayed re�ection and

redistribution some particles will end up inside the solid wall� At the next time step�
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they will penetrate further into the wall at the convection stage� So we need to

consider not only the closest grid points to boundary but also the grid points behind

them when determining the re�ection directions and distances� At stage �� we also

have to reverse the momentum of the particle in the re�ection direction�

��� Handling Arbitrary Geometries

By removing the grid dependency� it is possible to solve arbitrary geometries on

cartesian grids� That means it is feasible to write a computer code that accepts the

geometry information as data� as opposed to writing a new code or modifying the

existing one for each speci�c geometry� In this section� we will propose a way of

representing the given geometry in a computer independent of the grid resolution�

The code will use this geometry representation to enforce the solid wall boundary

conditions�

For a given solid body� we have to determine the re�ection directions and dis�

tances at the beginning of the computation for e�ciency� We can do this by writing

a subroutine for each geometry� Instead� we can write subroutines for simple geomet�

rical objects� and call these routines multiple times to construct more complicated

objects� One such object is a convex polygon� Any geometry in two dimensions can

be approximated to any desired accuracy by a set of convex polygons� By calling the

subroutine for a convex polygon as many times as required to de�ne a more complex

geometry� we can handle arbitrarily shaped boundaries in �D�

A polygon can be represented by a set of coordinate pairs� After reading the

coordinates of the vertices� the subroutine checks every grid point to decide if it is

inside or outside the polygon� After that� it determines whether it is a boundary

point or not� and �nds the re�ection direction and distance for each boundary point�

�cylinder etc�
�grid points �close� to the boundary
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There will be two types of boundary points� interior and exterior� Interior boundary

points are used to store the information about the particles which goes through the

solid boundary� By knowing the re�ection direction and distance� we can send those

particles back to the �ow domain after reversing their momentum in the re�ection

direction� Exterior boundary points are used as regular storage points in addition to

keeping the momentum reversal direction� This is necessary because the part of the

computational cell which is represented by a boundary point may be inside the wall

even though the point itself is outside the boundary�

In order to be able to use multiple overlapping polygons� the subroutine should

not erase the information about the previous polygons� The trickiest part of the

subroutine is the determination of the re�ection direction for the boundary points

close to polygon corners� Although it is not quite accurate� we will use some kind of

average re�ection direction for simplicity�

Figure ��� Multiple Convex Polygons Approximating a Non�convex Object

��� Inow and Outow Boundaries

In order to be able to solve some realistic problems� we also have to consider in�ow

and out�ow boundaries� The theory of characteristics tells us what we can specify
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at those boundaries and is also helpful in actual implementation� For a discussion of

the numerical implementation of these type of boundary conditions see �Hir�� �

For supersonic �ow� no special treatment is necessary at the entrance and exit�

because the upwind scheme itself takes care of it� For a supersonic entrance� we

have to specify everything since all the characteristics enter the �ow domain� This is

consistent with the fact that all the particles move into the computational domain so

that no in�uence from the domain can reach back to the boundary� For a supersonic

exit� all the particles move out of the computational domain� therefore� we do not

have to specify anything� consistent with the characteristics�

Subsonic boundary conditions from a particle point of view have not been consid�

ered in this thesis and left as a future research topic�

Exit

Farfield (zero gradient)

Symmetry Boundary

Entrance
Shock

Figure ��� Far �eld and Symmetric Boundary Conditions

Another type of boundary condition that is going to be used in the computations is

the zero gradient condition for some far �eld boundaries 	 see Figure ��
� Although it

is not very accurate where the oblique shock crosses the boundary� it gives satisfactory

results� We also used boundary conditions exploiting symmetry in a �ow� We could

exploit periodicity in a similar way�
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Numerical Examples and

Conclusion

A new numerical scheme has been introduced that is grid independent� information

propagates in a grid independent way 	true multidimensional upwinding
 and the

grid does not need to be aligned with solid boundaries� This made it possible to

write a computer code that can handle arbitrary geometries on cartesian grids� This

chapter will include a number of numerical examples to validate the code and the

numerical scheme� All numerical solutions we present can be obtained with conven�

tional techniques�� however� it would be very time consuming for a person to adapt

a conventional code to this variety of problems� Our less than ��� line Fortran code

can handle all of these problems without a single modi�cation� just by entering brief

information on the geometry as input data�

First� we will present some steady�state solutions� These solutions were obtained

by running the unsteady code for a su�ciently large number of time steps� As ex�

pected� this explicit code will not be very e�cient for all steady�state problems� Of

course we could improve the e�ciency by using multiple grids� however� we have tried

�straightforward generalization of one dimensional upwind schemes for example

��
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to keep the code as simple as possible in order not to lose the sight of our original

purpose and left these further improvements for the future�

Later� we will give some time�accurate computation results� Despite the low order

accuracy and the lack of grid adaptation� we can still get reasonable answers for some

realistic problems by using a moderate number of grid points� Computations were

done on a desktop workstation� and a typical runtime is on the order of a few hours

for a ��� � ��� grid� Again increasing accuracy and taking advantage of the special

structure of the solution by adapting the grid is left as possible improvements for the

future� On another section� we will talk about what needs to be done to make this

code a practical design tool� The �nal section will be a summary of what we have

done and will include some concluding remarks�

��� Steady State Problems

����� Cylinder

The �rst example we have is the supersonic �ow around a cylinder� the classical blunt

body problem� There are many experimental and computational results for this

geometry to verify our computations� The particular mach number we have chosen

is ���� For this case� experimental data and the computational results using a body

�tted grid can be found in �Zho�� � Our computations are in excellent agreement with

the previous results although we have used a uniform cartesian mesh� The comparison

is based on the shock position which is a good indicator of accuracy�

The computational domain has been chosen such that the entrance and the exit

both have supersonic �ow conditions� The far �eld boundary is far enough away so

that the shock wave does not cross it�

�Sun Sparcsation 
�
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Figure ��� Mach Contours for Supersonic Flow around a Cylinder 	������ cartesian
grid� M� � ��
�

����� Wedge

The second example is another simple geometry problem for which there is an ex�

perimental data� It is the supersonic �ow around a wedge of ��o half angle� For the

freestream mach number chosen 	���
� the shock wave is detached� The experimen�

tal results can be found in �Dyk�� for comparison� The computed shock shape and

position is in excellent agreement with the experimental picture�

The entrance� exit and far �eld boundary conditions are the same as the previous

example�

����� Cylinder and Wedge

This example has been chosen to show that more complicated geometry problems
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Figure ��� Mach Contours for the Wedge of ��o half angle 	�� � ��� cartesian grid�
M� � ���
�

can be solved by the same code without additional di�culty� Although we do not

have any experimental data for this arbitrary geometry� the results look reasonable�

����� Double Ellipse

The last steady state example is the supersonic �ow around a double ellipse con�gu�

ration� This realistic looking geometry has been relatively di�cult problem to handle

because of the nontrivial grid needed for conventional schemes� For our algorithm� it

is no more di�cult than the �ow around a cylinder�
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Figure ��� Mach Contours for the Wedge of ��o half angle and a Cylinder 	�� � ���
cartesian grid� M� � ��
�

��� Unsteady Problems

����� Di�raction from a Cylinder

Again� we start with an elementary geometry problem to test our time�accurate code�

In this case� a moving shock wave is di�racted from a cylinder� Experimental results

can be found in �BG�� �

The computed shock shape is in good agreement with the experimental picture�

but� the contact discontinuity which is visible in experimental picture is smeared out

in the computation due to di�usive nature of our �rst order accurate algorithm�
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Figure ��� Density Plot for a Double Ellipse Con�guration 	M� � ��
 and �� � ��
cartesian grid used in the computation�

����� Shock Wave Moving in a Converging�Diverging Tun�

nel

The last example is an unsteady �ow inside a tunnel 	Figure ��
� Initially� the �uid

inside the tunnel is at rest� A shock wave moves from left to right as in the previous

example� For this case the shock wave mach number� Mo � �� We have density

contours for two di�erent times� In the �rst plot� we see mach re�ections from both

the circular arc and the wedge� Once again� the contact discontinuities are not visible�

In the second plot� two re�ected shock waves interact with each other while the main

shock is moving down stream�

�Shock wave much number is dened as the ratio of the shock speed to the speed of sound of the
stationary medium�
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Figure ��� Mach Contours for a Shock Di�racted from a Cylinder 	������� cartesian
grid� Mo � ����
�

��� Future Research

The code we have developed using the new upwind and boundary procedures can

handle the compressible �ow around almost any geometry in two dimensions� Nev�

ertheless� it is still far from being a practical design tool� There are several major

improvements that need to be done in order to turn this code into a computational

wind tunnel�

Accuracy	 First order accuracy has been known to be inadequate for realistic prob�

lems� The necessity of using a large number of grid points makes a code in�

e�cient� The interaction of numerical viscosity with the real viscosity terms�

if they are included� makes it di�cult to resolve boundary and shear layers�

That is why� in the last �� years� the improvement of accuracy without causing

unwanted oscillations near shock waves has been a popular area of research�
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Figure ��� Density Contours for a Shock Moving Inside a Tunnel 	������� cartesian
grid� Mo � ��
�

There is an extensive literature on how to construct nonoscillatory higher order

accurate schemes �Har�� �Har�� �Swe�� �CO�� �Jam�� �Lee�� � Under the

guidance of these references� we can modify our new scheme to attain high ac�

curacy� This can possibly be done either by modifying the averaging stage� or

by using piecewise linear instead of piecewise constant approximations�

Grid Adaptation	 Another way of improving the e�ciency is to take advantage

of the special form of the solution� Assuming that we generally do not know

enough about the solution a priori to do this manually� we have to let the

computer adapt the grid so that the grid points are concentrated where the

�it is also called projection stage
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solution changes rapidly� This also has been a fruitful area of research in recent

years� See the following reference and the references therein with regard to the

re�nement strategies for cartesian grids �Ber�� �

Steady
state	 If we are interested only in the steady state problems� it is not wise

to use an unsteady code without any modi�cation� Because the details of the

�ow�eld before reaching the steady state is generally unimportant� and com�

puting them is a waste of resources� The simplest way to overcome this is to use

a coarse grid at the initial stages and to re�ne the grid as the solution approach

the steady state� There is also a vast literature on application of the multi�grid

method to steady�state problems� See for example �Hir�� �

Navier
Stokes	 Ultimately� we need to include the viscosity terms for obvious rea�

sons� The prerequisites for that are achieving higher order of accuracy and

implementing a grid adaptation strategy since the boundary and internal layers

requires higher accuracy than smooth inviscid regions of the �ow� One way of

including di�usive terms is to use the Navier�Stokes �ux and follow the path

to �nd a consistent decomposition� Another way could be� after writing down

the �nite di�erence form of the upwind scheme� to add the Navier�Stokes terms

with central di�erencing� We also have to change the boundary conditions for

the viscous �ow�� This can still be done within the particle description with a

new re�ection rule�

Real Gas	 For high �ow speeds� the assumption of ideal gas is not valid� Introduc�

tion of real gas e�ects into the particle picture also is needed to be explored�

Nearly Incompressible Flow	 For low mach numbers� the upwind scheme we in�

troduced becomes very ine�cient because of the disparity between wave speeds�

�no slip etc�
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Acoustic waves propagate much faster than convective waves and restrict the

time step for stability reasons even though their resolution is not essential� An

iterative or semi implicit version of the particle convection idea is needed� This

can be also helpful in viscous regions where the accumulation of grid points put

a severe restriction on time steps�

Moving Boundaries	 Modifying the re�ection rule to take into account of the mo�

tion of a solid wall should not be di�cult� This would enable us to solve

arbitrarily complex and moving boundary problems on �xed cartesian grids�

��� Concluding Remarks

In this thesis� a new class numerical schemes having the following properties for the

solution of gasdynamics equations were introduced�

	 The convective part of the procedure is truly multidimensional� Particles move in

the directions dictated by the domain of in�uence rather than arbitrarily chosen

coordinate directions� In addition� these directions are only a function of the

local data as opposed to its gradients unlike some other multidimensional up�

wind schemes� This makes it less expensive because we do not need to compute

gradients to choose upwind direction�

	 Thermodynamic quantities stay in their physical limits� The scheme preserves

the positivity of density and internal energy 	 or pressure
 under a CFL restric�

tion�

	 The scheme is conservative

	 Solid wall boundary conditions are a straightforward extension of the internal

scheme� The same interpretation of particles is used for both internal and
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boundary updates� This type of numerical boundary condition treatment en�

sures that no mass or energy can be transferred between the �uid and the wall�

	 For the given type of averaging� the scheme is �rst order accurate in space and

time

The disadvantages of the scheme are given in the previous section� Here� we will

summarize the advantages of the scheme�

	 It is grid independent� Complex geometries can be handled on cartesian grids�

In fact� the convective part is independent of the coordinate system being used�

therefore we can use any type grids just by changing the averaging�

	 It is intuitive and easy to implement� All of the results shown in this thesis were

computed by a Fortran program less then �� Kbytes long�

	 It is suitable for parallel computation� The method is explicit and treats internal

and boundary cells uniformly� It also requires a relatively small amount of

communication between grid points�
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Three Space Dimensions

A�� Consistency conditions in �D

U �
X
k

Rk

�F�G�H �
X
k

�	k� �k� �k Rk

A�� An example of �D splitting

k �	k� �k� �k � �u� c� v � c� w � c 

� �u� c� v � c� w � c � �u� c� v � c� w � c 

� �u� c� v � c� w � c � �u � c� v � c� w � c 

� �u � c� v � c� w � c � �u� c� v � c� w � c 

� �u� c� v � c� w � c � �u� v� w 

��
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Alternative Particle Models

B�� A Consistent Two Particle Decomposition
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B�� The Beam Scheme of Sanders and Prender�
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This splitting is valid for monatomic gas�
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