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Freezing of hard spheres in confinement
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The influence of confinement on the freezing transition of hard spheres is investigated. Two limiting
cases are considere() large systems, where walls weakly perturb the bulk system(2Znsmall
systems where the influence of geometry becomes important. In the first situation, the shift in
coexisting densities is a linear function of the area to volume ratio in the system. This is a
manifestation of the Kelvin equation, and the phenomenon is thermodynamically equivalent to
capillary condensation. A clairtby othersg of “prefreezing” of hard spheres at a smooth hard wall

is quantitatively attributed to capillary crystallization. It is shown that the coexistence region
narrows as a function of the area to volume ratio. In the second limit two different confined
geometries are studied. In these limits, widening of the coexistence region is observed, pointing to
an upper and lower critical point at intermediate values of the area to volume ratio, or no critical
point at all. In a slit geometry buckling transitions interfere with the freezing transition. In a box
geometry, at large values of the area to volume ratio, fluctuations become important. These
fluctuations determine the fate of the freezing transition at intermediate values of the area to volume
ratio. © 2001 American Institute of Physic§DOI: 10.1063/1.1401825

I. INTRODUCTION In this work the question is addressed as to what con-
finement does to the freezing transition of hard spheres,
The understanding of phase transitions and critical phewhere the confining surfaces and the spheres interact by ex-
nomena in some classes of homogeneous bulk systems wefided volume interactions. Hard spheres under thermal agi-
triumphs of nineteen and twentieth century physi¢éow-  tation have beeriand still are vigorously studied. In bulk
ever, truly homogeneous bulk systems hardly exist in naturahey undergo a first-order phase transition from a fluid to a
Most systems are either confined, like porous stone, catarystal(referred to as the freezing transitioat number den-
lysts, and biological cells, or are otherwise in contact withsities significantly below the density where the system is
surfaces. These surfaces may either be structured or smoo#flose-packed, as was found by computer simulatidri as
and will interact with the molecules in the system. The presywell as by experiments on colloid$.Indeed colloidal sys-
ence of surfaces has been known for a long time to signifitems can be tailored so as to behave as hard sphehes.
cantly alter the thermodynamics and dynamics of phase trarprinciple it is possible to design well-defined pore geom-
sitions, a dramatic example being the role of dust in theetries with (supej colloidal size, say on the order of mi-
formation of liquid in supersaturated vapor. Dust particlescrometers and larger, by using lithographic techniques.
lower the free energy barrier of a liquid water nucleus in itsTherefore, predictions made in this work can experimentally
supersaturated vapor, leading to nucleation rates that af verified by using colloids in between slits, or in other
many orders of magnitude larger than those in a homogegeometries. The surfaces of these geometries should be

neous system, see, for example, Ref. 2. N treated in such a way that only excluded volume interactions
Much work has been done on layering transitions ofgperate between the spheres and the confining walls.
molecular systems at walls, theoreticdllyas well as Two limiting cases are considered in this work. In the

experimentally. Condensation in poregylinders, slit3, see  first case(Sec. 1) walls are treated as small perturbations of
for example Refs. 5, 6, and freezing and melting in péres, 4 pulk system, i.e., the total free energy of the system is the
have been the subject of intense study, see also Refs. 9, }jik free energy plus a correction that is linearifi, with

for reviews. In these systems, molecules and walls interack the area of the wal$) and V the system volume. This

by bth attractive and gxpluded volume interacti.ons. In theapproach leads to a general expression for the shift in coex-
experimental systems it is usually not clear hGve., by jsting densities of first-order phase transitions of systems in
what potential_ molecules interact with the walls. Moreover, contact with walls, at constant volume. This expression es-
popular experimental model systems such as Vycor and silicgatig|ly resembles the Kelvin equation, but here emphasis is
xerogel do not have a simple pore geometry. This makes b, gensity shifts with respect to the bulk, and not on chemi-

difficult to compare experiments to theory, as was indeeq5| otential shifts. It will be shown that this result is gener-

concluded in the recent review paper by Gelb andyy yalid for (effectively) single component systems where

co-workers? the range of interparticle interactions is much smaller than
the linear system size. Subsequently, attention is turned to

dElectronic mail: W.K.Kegel@chem.uu.nl hard spheres in contact with smooth hard wé&8gc. |1 B).
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Depending upon the wall—crystal fa¢El1, 110 or 10Pcon- BF v af4

tact, the coexistence region shifts to lower densities or higher  fa=——="f1(¢= 1)+ %) Agy

densities as a function of the area to volume ratio in the $=¢]

system. Independent of which crystal face contacts the wall, 1/ 5%

the melting and freezing lines converge. Extrapolation, be- + —(—21) A¢§+ O(A¢y)3, (2.1a
yond the limit where the walls act as a weak perturbation of 2194 b=o%

the bulk system, indicates a critical point. In Sec. 11 C, “pre-

freezing” is discussed, i.e., formation of one or more crystal f :ﬂsz — (= k) + (ﬁ) Ad
layers at a smooth hard wall at small undersaturations, inthe 2~V 2 27\ o et 2
light of the results presented in Sec. II B. 2
In the other limiting case, treated in Sec. I, the area to 1(%f, ) 3
volume ratio is large. Two different geometries are consid- + 5((9752) Ap5+0(A¢y)°. (2.1
ered. The first is a slitbetween platesgeometry where the ¢=93

area to volume ratio may become large, but the number of, these equation§,, is the Helmholtz free energy of the

particles still goes to infinity, and the system always is in they 4 qch o Ad,=¢.—d*, B=1KT with k Boltzmann's
thermodynamic limit. Extrapolation of the coexistence re-.,,stant andF abs%luteatemperature=(77/6)a3 with o

gion in the capillary approximation indicates a critical point, yefined as theange of intermolecular interactiongn many

but computer simulations by others reveal that before thig,qes this is not a well-defined quantity, but for hard spheres

point is reached, buckling transitions come into play. The, clearly is the sphere diameter andhe volume of a single

second geometry is a box. The analysis is performed in thepperenot the molecular volumeV is the system volume.
grand ensemble, concentrating on the properties of the peak$,a reason for writing the free energy in tiiieduced form

of the grand distribution function. It turns out that in this |, advantages that will become clear later—it has to do
situation the melting and freezing lines diverge with increasy, i, 4 proper scaling of the interfacial area—volume ratio.
ing A/V. In this limit, at largeA/V, fluctuations play an  Now a linear contribution to Eq€2.19 and (2.1 can be
important role. In fact, depending upon how the coexistence yqed such that the coexisting densities in the biitk,and

lines cross over from their behavior at smallV, 10 their 4 pecomeminimaof the free energy. Therefore the relevant
behavior at largeA/V, fluctuations may kill the freezing oo ence free energies in the bulk affer not-too-great

transition in some interval oA/V. Ad,),
1(d*, , 1 5
=7 542 *A¢1:§ule¢2’ (2.23
Il. SMALL AREA TO VOLUME RATIOS: b=
CAPILLARY LIMIT _1(82f2) A 2_1 2 -
The scheme here is to find a relevant reference free en- 2° 2 9¢)? gt $2=5 U0 &2 2.29
2

ergy that only depends on bulk properties, subsequently add
a surface contribution to it, and then solve for the coexistingn these equations the first subscript again assigns the iden-
densities. This leads to a general relation between the shift dity of the phasel or 2), and the second oréb” ) refers to
coexisting densities and properties of the system defined gtroperties of the bulk systeni.e., without influence of
bulk-coexistence conditionSec. 11 A). In Sec. 1B, the re- walls). The reference free energies Ed8.2 are shown
sults are applied to hard spheres in contact with hard wallsschematically in Fig. 1(curves 1 and R Equations(2.2)

the relevant parameters being extracted from equations afmply that the reference bulk system is approximated by a

state, theories animulation data from the literature. harmonic potential well with a strength given by the reduced
A. Shift of coexisting densities as a function of area to bulk moduli,
volume ratio f, T, 1 4p,

A first-order phase transition in singleffective com- “b:< r7¢2)¢¢*:( d¢ )¢¢*:($ aqb)d)d)*’

ponent systems can be seen as two branches of the free en- 2.3
ergy as a function of density having a common tangent at the

coexisting densities. In this situation it is always possible towith the reduced chemical potential in phase(«
add a linear contributiofin density to the free energies such €{1,2): it,=Bu, and the reduced pressure of phage
that the coexisting densities becomménima of the free en- P.= BP0 The corresponding symbols without tilde refer to
ergies. This property will be pursued. First of all we concen-the unreduced quantities.

trate on the free energy branches close to coexistence et The next step is to add surface contributions to Egs.
and ¢, be the volume fractions of singleffective compo-  (2.2. The reduced surface free energy is written as

nents in phase 1 and(¢he subscript indicates the identity of f =% g (2.4)

the phase, i.e., solid, liquid, or ga<lose to the coexisting a5 Ya S '
(bulk) volume fractions, further denoted @& and ¢3 (the  where¥y,=80%y,, v, denoting the interfacial tension be-
asterisk denotes properties of the bulk systeiime reduced tween phasex and the wall. The subscripts" refers to
free energies of the two branches are written as “surface,” while « again refers to one of the coexisting
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with
~ afy
=50 =UpA i+ Uz, , (2.8a
T.¢=¢,
~ af,
f M= s =UpA o+ Uasd, (2.8b
T.¢=¢,
Pi=—f1+¢ &fl)
P1= —T1T @q| —
b T.¢=¢,
1
2 ~
o N INg 0 = 5 UAdi bt Ady+(Usd] —Th)a,. (2.9
1
FIG. 1. Schematic view of the two branches of theduced free energy, _ &fz
and their common tangents. The branches 1, 2 are the bulk reference free Po=—fo+ | —
energies, Eqs2.2). The linea indicates the common tangent of the refer- d¢p T.o=d,

ence branches at the coexisting bulk volume fractigifsand ¢% . The

branches 1, 2" are equal to the branches 1, 2, but with a surface contri- 1 > N . o~

butions added. This situation resembles Egs), with the special situation =5 UspA d5+ Uspds Aho+ (Ursps —¥5)a,, (2.9b
that hereu,s=u,s=0. The line designated as" is the new common tan-

gent at the pointgp, = ¢7 + Ay, and g, = ¢35 +A¢,, where theAd's are ;
given by Eqgs(2.10), being the solutions of Eq$2.7)—(2.9). for Ag, andA,. Equations(2.8) follow from

v_ af) (o) [dp) v of
Ve (7_NTV_ %Tﬁ_’\lv_v ﬁT’
phase. The quantitg, denotes the reduced area to volume '
ratio. It relates to the total ared, and volume\V, of the — and Eqs(2.9) from
system by B (a(ﬁﬁ;)) (o?(Vf ))
2 p=— —
a :—A/U i N T,N N TN
Y Vv
. . . _ of dd of
This implies thata, o o/L, with L the linear size of the sys- =—f-V 3l \av] = —f+e 4]
tem. Now a, will later be treated as the small parameter, ¢/t N ¢t

implying that the range of interactions be small compared tq:orau<1 (implying o/L<1), and again neglecting terms of
the (linean system size. The interfacial tension will in gen- ,rqera? we get from Eqs(2.7) to (2.9)
: . 9,

eral depend upon density. This dependence is again written

as a power series ifv ¢, arounde? . It turns out that higher (Y5 =%1) Ugg
than first order contributions i ¢, only show up in the 1= Ulb(dJE—dJI)_ u_lb v (2.10a
final result as terms that are quadraticainand these terms
are neglected as, for example, line and curvature contribu- (Y5 —=7%) Uos
tions to the surface free energy will also lead to ord@r e (2.100
D . . . . Usp(; — 1)  Uzp
terms. Therefore, denoting’, as the interfacial tension of
phasea when its density equalg’ , we may write This result has clear geometrical significance, see again Fig.
7 1. As for the first terms in Eqg2.10, (%5 —7%7%) quaptifies
V=Y + “) A= +UyA by, (2.5  the shift of the reference free energy parabola relative to each
d¢ d=o* other in the vertical direction in the free energy-density

. _ . ) o plane, i.e., the shift of the curves 1 and 2 to, 2" in Fig. 1.
With Uqs=(974/96) ¢~ 4% Adding this contribution to the 16 |arger jts magnitudépositive or negative the greater
bulk free energy, Eq2.2), leads to the free energy branchesthe shift in coexisting densities. The shift becomes larger the

of a system in contact with walls, smaller the curvature of the parabola and/or the smaller the
fo= LA b2+ (7 + U Ady)a, 26 width of the coexistence region. The second terms take into

1= UpAdTH (Y1 UiA du)a, (2.69 account the distortion of the parabola by the density depen-
fo=2UspA 5+ (75 + UpsA dr)a, . (2.6b  dence of the interfacial tension between the phases 1 or 2 and

the wall. If a positive linear contribution is added to one of
the parabolalor different linear contributions to boththe
common tangent points shift to lower densities, the magni-
tude of the shift being determined by the ratio of the linear
contribution and the curvature of the parabola. The second
terms resemble thadsorption densities at the wall'; and
i=pp and Py=P,, (2.7 I'p, since

These branches are schematically indicated in Fig. 1*as 1
and 2". In order to find the shifts in coexisting densities,
A ¢, andA ¢, we need to find the common tangent of Egs.
(2.6a and (2.6b (also indicated in Fig. Lwhich is analo-
gous to solving
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Y, Y,y dp Ugys wall v;=7y,+ y1,c0s6. Note thaty; usually is associated
Io=- ( [ma)T: g )T [ma)T_ U with the tension of the solid-gas interface, with the solid—
liquid interface, andy;, with the liquid—gas interface. For
so that Egs(2.10 may also be written as hard spheres in contact with a wall, the last mentioned ten-
sion is between the fluid and the crystal phase, and in prin-
(2.113 ciple is different for different crystal planes. There is a much
easier way of obtaining Eq2.12 compared to the deriva-
5 =5%) f[io_n presented here, see again Ref. 16, where it_was derived
— (2.11b in just a few steps starting from the grand potential. Can our
Uan( b2 — b71) main result, Eqs(2.11), be derived starting from the more
It should be noted that the location of the dividing surfaceeasily obtainable E¢2.12? The shift in coexisting densities
may always be chosen in such a way as to nfake of the ~ immediately follows from Eq(2.12), via
adsorption densities equal to zefthhe Gibbs dividing sur- i
face. However, in this case such a choice would be awkward A ¢, = —( “) Ap=—Auluyy,
and unphysical, leading to dividing surfaces that may be far I
away from the walls. but this leads to the shift in the bulk reference systemEgq.
Equations(2.10—(2.11) apply to atomic and colloidal (2.17), the density in the bulk where the confined system
systems, and also to metastable equilibria, in the limit thafreeze$ and not to the density within the confinddub)
the range of interactions be small compared to the systemystem itself. Indeed, this procedure does not naturfaby,
size, ora, goes to zero. This limit will further be referred to as a consequence of collecting the linear contributions in the
as the capillary limit. Only systems with pathologically long- area to volume ratjogive rise to the adsorption terms in Egs.
ranged interactions will never reach this limit. (2.11.
In ending this section we note that E¢8.11) are analo-
gous to the Kelvin equation. This equation shows up in the. Shift of coexisting densities of hard spheres in
literature in various disguises, see for example, Ref. 16 for @ontact with hard walls in the capillary limit
nice discussion. In its most general form it relates the shift of

In order to predict how the coexisting densities of hard
the chemical potential at coexistence to the mean radius of
Spheres change with the surface-volume ratio in porous sys-
curvature of the interface between the coexisting phases. |

serting Egs(2.10 into Eqgs.(2.8) for a system in a slit be- ems, we need Eq42.10—~(2.1] together with values for

tween two plates separated by a distancand realizing that the interfacial tensions of the fluid and the solid with the

the reduced chemical potential E¢R.8) is in fact the nega- wall, -the bulk moduliu, _and thg Imear_coefﬂuents_ that
. . S . take into account how the interfacial tensions vary with vol-
tive of the undersaturation, i.e.,n=(u—pu*)/kT

— _ Au/KT (the asterisk again refers to the bulk system ume fraction%as. For the bulk part we take the equations of
leads to the well-known Kelvin equatidh state by Hall These pressures are in very gopq agreement
' with computer simulations, also at high densities, and the
—-2(v5—91)\1 [2y;,cos6)\ 1 coexisting densities are accurate within the uncertainty range
(p5—p%) L~ (p5—pH /L (212 of computer simulations, see Ref. 19. These pressures read

In this equation the's are the number densities in the coex-~ _ ®r(1+ ¢+ ¢7—0.67828p7 — ¢ —0.5¢¢ — 1.7¢7)
isting phases, and in writing the last equality use has beeR 1- 3¢>f+3¢>f 1.04305;’)?
made of Young’s equation for the contact angleat a single (2.13

Uab

(¥: —71)
Ap=| —=F—+T
. (ulb<¢§—¢’;)+ i

+I',|a

A<f’2:(

Ap=

_ $o(L+ dot (-~ 0.6782%; ¢~ 0505 6.0285; exil(y— ¢o)(7.9-3.9y ~ ¢9)).

Psb 1-3¢.+ 3¢~ 1.04305 214
|
with y=(m/3v2 ¢ Y3 From Eqgs.(2.13 and(2.14 we ob- - 9¢2(1+ ¢y o° —9¢2(1+¢;) 3.
tain the bulk quantities T (1= g)° + 5 ppP= 27(1-¢)° t P
p

(2.15

ot I 1 9P,
Hab” (&d)Z) (aqs) :(5 ¢) - - o
b=¢* b=¢* b=e* where we insert the Hall equation of stgie=Ps;, given by
Eqg. (2.13. This expression yield§;=1.88 at ¢;=0.494,
with a=f (fluid) or @=s (solid) listed in Table I. being in fair agreement with the value of (1:99.18) ob-
Surface tensions between the fluid and the wall werdained by computer simulation by Heni andver?! at the
calculated from scaled particle theof$PT) using the gen- same volume fraction. Equatig2.15 was expanded up to
eral expressioR’ linear order around the bulk freezing volume fraction of
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TABLE |. Relevant quantities that determine solid—fluid coexistence densi- 0.20
ties; Eqgs.(2.11). The subscript “av” for the solid systems indicates quanti-

ties that are averaged over the three crystal orientations. In the lower part of

the table the quantitie& ¢ , stands for the shift in coexisting volume frac- 0.154
tions between fluid and solid with crystal orientatiok=(111),

(100), (110) or “average.”

0.10 g
Quantity Fluid Solid Combined o ‘Crystal
Ugh 108.836 78.3407
o 0.49221 0.5438 59 0.05 - -
¥ 1.444 89
Vs~ ¥ —0.414 89
V00~ Vi +0.103 30 0.00
Vear0~ VF +1.084 35 0.56
Voa™ Vi +0.2576 0
I'¢ —0.083 33
Ty ~0.100 63 FIG. 2. Coexistence lines of hard spheres in pores in the volume fraction—
100 ~0.155 25 (reduceq area to volume ratica, , plane. In each pair of lines, the ones on
T110 —0.258 66 the left indicate freezing, and the ones on the right indicate melting. The
r —0.171515 situations for fluid—solid coexistence where the solid is oriented with its

v (111), (100, and(110 face along the walls are indicated in the figure. The
(A 119/a, —0.1571 —0.2032 lines indicated as “average” correspond to a situation where all three crystal
(A ¢ 100/a, —0.0650 —0.1297 orientations along the walls are equally distributed in the system.
(At 1a0)/a, +0.1096 +0.0093
(Adra0la, —0.0375 -0.1079
(Vs =)
Pouk= Ppores™ 11 :¢?+ — &, (217
P ’ Urn(ps — )/ °

0.49221. From this expansion the quantiti®$ and u;

=(7119¢) 4 4 are obtained. These quantities &raplic- . g+ oquality of Eq(2.17), valid for all fluid densities,

itly) listed in Table I. _ _ states that the density in the pores being different from the
For the interfacial tensions of the crystal faces W|t_h thedensity in the bulk is caused only by adsorbed material in the
hard wall, we used a cell theory put forward by Heni andpores(being negative for hard spheres in contact with hard
Lowen?! Their theory includes that neighboring particles un-walls). From the second equality of E(@.17), applicable at
dergo collective excursions from their lattice positions. Theircgexistence within the pores, it can be seen that if the inter-
theory, termed *“cell theory with fixed neighbof€TFN)" by facial tension between the solid and the wall is smaller than
the authors, is indeed in very good agreement with direcihe one between the fluid and the wall, only then will mate-
computer simulations by the same authors, in particular neaa| in the pores freeze while the bulk is still in a homoge-

the melting transition. The relevant expressions read neous fluid state, as is also obvious from E12. This is
g—9g(2—y) only the case for thé€l11) orientation of the crystal along the
Vsk= (2.16  wall, see Table I. It is interesting to compare the behavior of

2 y

2990y (y~ 1) confined molecular systems in this respect. Hydrogen, neon,
where the subscrigtagain refers to “solid,” and stands for  oxygen, and argon confined in Wcor and silica xerdgahd
the orientation of the crystal to the wakl=(111), (100), or  alcohols in between mica surfaéemd many other molecu-
(110. The quantities in Eq(2.16 are given byg=1W2; lar systems in porous medifreeze and melt at significantly
0111=V3/2; g100=1.0; g110=v2. Equation(2.16 was ex- lower temperatures than they do in the bulk. A lower freezing
panded up to linear order around the bulk melting volumetemperature at constant pressure, in most molecular systems,
fraction of 0.543859. From this expansion tftere§ quan- s analogous to a larger freezing density in systems at con-
tities y5 and ussk=((93/s,k/(9¢>)¢=¢§ are obtained. These stant volume and temperature. Indeed, it follows from Eq.
quantities argimplicitly, that is, they follow fromI" andu,,,)  (2.12 that for a system confined in a slit of width the shift
listed in Table I. The negative adsorption densities in then freezing temperature relative to the one in the bAlK, is
table are caused by a depletion layer at the surface with given by (for not too great temperature shjfts
thickness ofo/2. In Fig. 2 the coexisting density shifts in the
confined system are shown graphically. AT —2(yE—9F)

In confined systems in contact with bullike two plates RN ST (2.18
hanging in a bulk system, or porous material immersed in Mps —pi)L
bulk fluid), freezing may occur while the bulk system still is
in the fluid state. This situation is thermodynamically com-with \ the melting enthalpy in the bulk. This implies that in
pletely analogous to capillary condensatiénn that case it these molecular systems, the interfacial tension of the fluid
follows from putting Egqs(2.8) equal to zero, together with with the walls is smaller than the one of all possible crystal
the definition of adsorption density above E¢®.11), that faces with the walls. However, in a few cases increased
the volume fraction in the bullkpy, is related to the one in  freezing temperatures in confined systems have been ob-
the porous systempqes, DY served, for the first time by Klein and Kumache¥aand
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later also by others, see Ref. 9, and references therein. This 1.4 ———T— ——
only seems to happen {Eomponents in thewalls strongly

1_2: Buckling _
attract the confined fluid molecules. ] Transitions
Now let us get back to our hard spheres. Looking at the 1.0 o & .

densities within the confined system, it follows from the val-

ues listed in Table | and from Fig. 2 that depending upon the | Crystal |
orientation of the crystal with the walls, the coexisting den- E 0.6 ]
sities may either decreagéll and 100 orientationor in-

crease(110 orientatioh with the area to volume ratio. From 0.4 A
the three possible orientations, ttil1) orientation leads to 0.2 i
the smallest increase in free energy compared to the bulk free ]

energy. Therefore the thermodynamically stable crystal ori- 0.0 o5 oss  ouo oS ok 055

entation along the walls is along th&11) direction. The ¢

coexisting densities m,that case significantly decrea;e WltlI:EIG. 3. Coexisting densities of hard spheres in a slit geometry, withe
the area to volume ratio: down to at least half the width ofwidth of the slit. Lines correspond to the situation where (1) crystal
the bulk coexistence region. When the systems becomfece is along the wallésee Table)l The left line indicates freezing, and the
small, then the gain in free energy by the fortunétél) right one melting. Dotted lines indicate extrapolation beyond the capillary

. . . . limit, and are only drawn to indicate that if extrapolation was allowed, a
orientation will compete with the free energy cost of defects Y P

critical point appearsi.e., where the lines crogsThe points are data from

in the crystal—in most geometries, single crystals with thecomputer simulations by Schmidt andwen (Ref. 26 and are connected to

same orientation along all walls are impossible unless therguide the eye. Triangles are melting densities, and circles are freezing den-

are defects in the crystal OnIy in some spe(fmthough sities. At very small plate separations, beyond the dashed horizontal line,
. . . . triple points involving buckling transitions are observed, and fluid—crystal

extensively studiedcases, like a slit geometry, the crystal— coexistence is moved to much smaller volume fractions.

wall contact will be along th€111) crystal plane.

C. Capillary crystallization and “prefreezing” IIl. LARGE AREA TO VOLUME RATIO

It is quite interesting in the light of the previous section In this section two geometries are discussed: a slit ge-

to pay a little attention to the phenomenon that was terme@)metry(i.e., two parallel platds and a box geometry that is

“prefreezing,” as observed using molecular dynamics SimU-snaneq in such a way as to fit a close-packed crystal. In the
lation by Courtemanche and co

-workers, see Refs. 23, 24y sityation the area to volume ratio becomes large, but the

Prefreezing is defined by these authors as the formation of,gtem may in principle remain in the thermodynamic limit.
one or more crystal layers of hard spheres at smooth harg the second situation, not only geometry plays a role, but

walls at pressures below saturation pressure. We claim thefe to the exceedingly small number of particles in boxes
this “prefreezing” is a manifestation of capillary crystalliza- it large area to volume ratios, fluctuations also become
tion. Indeed the lowest density where “prefreezing” was Ob'important.

served in Ref. 24 was at 98.6% below the saturation density, =
corresponding to a shift of the freezing volume fractionA- Slit geometry

A¢¢=—0.0069. The authors employed a slit geometry with  Schmidt and Loverf® studied hard spheres between
plate distancel/o=41.51, corresponding t@,~0.0482.  plates using both computer simulation and cell theory. They
Now taking the value in Table | for the fluid branch, we |ooked at very small plate separations: in between one and
predict at which volume fraction capillary crystallization oc- two sphere diameters, corresponding to area to volume ratios
curs under these circumstances, i.e., @111 of order one. From a plate distance of 2.0 down to approxi-
=—-0.157h,~—0.0076. These two values of the shift of mately 1.86 sphere diameters, at increasing sphere density a
the freezing volume fraction are within 10% apart. We thereransition from fluid to a crystal of two hexagonally packed
fore believe that “prefreezing” as observed in Refs. 23, 24 isjayers is found. This transition is the analog of the bulk
a manifestation of capillary crystallization, and not thefreezing transition in this geometry. At even smaller plate
equivalent of “layering” or “prewetting” transitions as ob- separations, a triple point appears involving a buckled crystal
served in systems where attractive interactions with the wallphase. At still smaller plate separations, even a rhombic
are present.On the other hand, it has recently been observeghhase appears and the situation becomes quite complicated.
by computer simulation that if ésingle wall is not smooth  For details the reader is referred to Ref. 26.

but patterned, “surface freezing” occurs at large We took the(two) points from Ref. 26 that correspond to
undersaturatioR? In a slit (or any other geometry this phe- the transition from fluid to the two hexagonally packed lay-
nomenon may compete with capillary freezing. Which of theers at the largest plate separation that they studied. These
two dominates depends on the interfacial tensions of the fluighoints were determined using Monte Carlo simulation. They
and the crystal faces with the patterned substrates. It is exare plotted in Fig. 3, together with the melting and freezing
pected that appropriately patterned surfapeg., surfaces lines in the capillary limit, Eqs(2.11) the values in Table |
structured in such a way as to fit tH@1l crystal facé for the situation that thél11) crystal face contacts the wall.
significantly reduce the crystal-wall interfacial tensions,lt can be seen from Fig. 3 that if the melting and freezing
leading to larger shifts of the freezing density compared tdines in the capillary limit are extrapolated to very small
the situation at smooth hard walls. plate separations, a critical point appears at/12~1.13.

Downloaded 01 Oct 2001 to 131.211.152.108. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6544 J. Chem. Phys., Vol. 115, No. 14, 8 October 2001 Willem K. Kegel

Continuous transitions and critical points associated withwhere the reduced activity= (o*/ A%)ef*, with o again the
them are not expected in symmetry breaking phaseliameter of a hard spherg, its thermal de Broglie wave-
transitioné’ such as the freezing transition. However, atlength, 3=1/kT and u is the chemical potentialy, is the
small plate separations, and perpendicular to the plates, r@duced canonical partition function of a system containing
symmetry element is a poorly defined quantity, and true symn spheres, an& = EET"SZNQN is the grand partition function,
metry breaking along that direction does not occur. Clearlywith N, ., the maximum number of spheres that can be
however, Egs(2.1]) have long ceased to be valid at such crammed intoV. Two peaks of the grand distribution func-
small plate separations. Indeed, at plate separations larggsn at some value ofz indicate a first-order phase
than the “extrapolated critical point,” the trend from the transition3! In the Appendix it is proved that the reduced

small plate separationgoints in Fig. 3 indicate that the canonical partition function of a system of hard spheres is
coexistence region shifts to higher volume fractions, and iexactly given by the recursive relation,

slightly seems to widen up, contrary to the trend in the cap-

illary limit. The crossover from a decreasifig density and p(N=D)

narrowing coexistence region to an increasing and widening quo—qul, (3.2

one, lies in the broad range of roughly &20/L<1.0. It is N

quite conceivable, however, that more buckling transitions

interfere in between plate separations of 2 and three sphetedependent of the size of the system or its boundary condi-

diameters, and also in between three and four and evelions. In this equation, the reduced available voluog

larger. Therefore the analog of the freezing transition in a slit= V5 /o°, whereV{§" is the available volume. This quantity

may intermittently appear and disappear with varyisimall) is defined as the configurationally averaged volume in a sys-

plate separations. In that case the points in Fig. 3 result aftéem of N hard spheres that is available for the center of a

more than a single crossover. (N+1)th hard sphere. EquatidB.2) [actually Eq.(A12) in
Strictly speaking these results do not rule out the existhe appendix from which Ed3.2) follows] was first derived

tence of a fluid—crystal critical point. If there is a critical by Speed§” who used a lattice, and subsequently let the

point, it should appear before the buckling transitions entefattice parameter go to zero. In the appendix we present a

the stage, i.e., at 0s220/L <1, see Fig. 3. This is possible if derivation without using a lattice. In the thermodynamic

the freezing and melting lines at2L>0.2 converge faster limit, Eq. (3.2 reduces to the well-known relation between

than in a linear manner. But this scenario implies that ther¢hemical potential and insertion probability that has been

also is at least one lower critical point in ther@ -density ~ obtained from scaled particle thedfyand which is also

plane, as the freezing transition appears again at least wh&mown as Widom’s insertion theorethThis is also shown in

20/L=0(1). This scenario seems highly implausible, but atthe Appendix.

this point it cannot be ruled out.

2. Shift of coexisting densities in a box geometry

B. Box geometr
9 Y The hard spheres are contained in boxes with smooth

1. First-order phase transitions of finite systems in hard walls. Their volumes defing{” . The geometry of the
the grand ensemble boxes was chosen in such a way that at certain box volumes,

In Ref. 28 thermodynamic properties of systems of harcﬁ'therN”“”‘X:8 Or Nimay=27 spheres can be close packed in a

N : cp or fcc stacking. This is the situation wher”
spheres that are confined in small boxes with hard walls are
P = 1/2 (Npmax=8) or v\ =4v2 (Na=27). The volumes of

calculated. The experimental equivalent of these systems arF b d relative to the cl ked vol
finite sized pores. However, in experimental systems at leadf'® POXeS are expressed relative to the close packed volume,

one of the sides of the boxes is in direct contact with at_hat(o')s’ It IS defm_ed thate=v¢"/1W2 if Nya=8, and a
(macroscopig bulk system. In other words, the small sys- — Y0 [4v2 if Nmax_27' _ .
tems interact with a bath of constant chemical potential. N Ref. 28, it was shown that i&>1.6, the available

Here, this interaction is modeled by a smooth hard wall, Thi&/0lume monotonically decreases with the number of spheres.

. . . : (N) ini
approximation will become worse if the systems get smaller /OWeVer, as soon ag<1.5, vy goes through a minimum
This should be kept in mind if the results presented here ar@ @ function oiN, the minimum becoming deeper with de-
compared to experiments on real pores. creasinge. It could be shown that the available volume go-
The boxes are shaped in such a way that at a certaiffd through a minimum as a function of the number of

volume they can accommodate a fcc or hep crystal of 8 or ogpheres corresponds to the small-system analog of the freez-

spheres. Other box geometries were studied in Refs. 29 aﬂﬂg transition of hard spheres. This freezing transition is par-

30. ticularly obvious from two peaks of the grand distribution

The volumes of the boxes can be varied isomorphicallyfunction, Eq.(3.1), leading to steep changes in the relevant
The focus in Ref. 28 is on the grand distribution function, thérmedynamic functions that become steeper when the sys-
i.e., the probability distribution of finding a boftpore”) tem size is |.ncreased from 8 to 27 spheres. The grand dlgtn-
with N spheres, bution functions at the small-system analogs of the freezing

\ transition are shown in Fig. 4. Contrary to the situation in the

P _Z 0N (3.2) thermodynamic limit, there are no discontinuities or singu-

N ' ' larities in the small system thermodynamic functions. The

I

Downloaded 01 Oct 2001 to 131.211.152.108. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 14, 8 October 2001 Freezing of hard spheres in confinement 6545

T T T v T T T T T T T T T '
0.4 A ]
: A 154 O A 4
0.31 4
i o
1.0 e} A 4
. 0.24 E i
Fluid Crystal
0.1- . 0.5 1
004 onoowocamesdooooooo® - 0.0 \ \ N
T T v T
T T T T g T T T g T 013 0.4 0.5 0.6
0.0 0.2 0.4 0.6 0.8 1.0 0

N/N

max
FIG. 5. Coexisting densities of hard spheres in a box geometry. Lines cor-

FIG. 4. Grand distribution, Eq3.1) at coexistence as a function NN, ~ respond to the situation where t(l1), (110), and(100) crystal faces are
in systems confined in boxes that may contain at mostigngles plus  equally distributed along the wallsee Table )l The left line indicates
dotted ling or 27 spheregcircles plus solid ling These two peaks are freezing, and the right one melting. Dotted lines indicate extrapolation be-
observed if INf)=12.45 N,=8) and IN¢)=14.5 N,,=27). In both  yond the capillary limit, just as in Fig. 3. The points correspond to the peaks
casesa=1.3. Points are connected to guide the eye. Data from Ref. 28. 0f Py in Fig. 4; circles indicate freezing and triangles indicate melting.

reason is that for singularities to exist in the grand ensemblegritical points in small systemsThis point lies at a signifi-
an infinite number of terms in the grand potential arecantly smaller value of the area to volume ratio than in the
required® slit geometry, i.e., ab,=0.74 instead of 1.13, but still at a
In the geometry discussed above, theduced area to value beyond the capillary limit. On the other hand, the
volume ratio relates ter asa, =1.624~ *for N,,,,=8, and  fluid-solid coexistence region has become very broad in the
a,=1.112¢v" ' for N;,,=27; for details on this and other small boxes, spanning a volume fraction in between 0.28 and
box geometries, see Ref. 30. In fact, for the purpose of cal0.56 for the smallest systeffargesta, with N,,,=8). The
culatinga, , the boxes described in Ref. 30 were extended serossover from converging phase boundaries to diverging
as to accommodate the whole spheres at close packing awdes lies in the very broad interval of roughly €2,<1.
not only their centers with part of the spheres sticking outJust as in the situation for the slit geometry, in this interval
The volume fraction in the small systems is defined as either an upper and a lower critical point exist or no critical
point at all. Contrary to the slit geometry, fluctuations be-
b= N a—ll (3.3 come important due to the smallness of the systems. This
Nmax  3v2' issue is addressed in the next section.

where the numerical factor corresponds to close packing of a
fcc or hep crystal. We tookv=1.3 for bothN,,,,=8 and 3. Role of fluctuations

Nmax=27. This value ofa corresponds to the situation that At a first order phase transition in the thermodynamic

the systems containing the maximum number of spheres fffit, two densities coexist anBy has two delta peaks, both

not close packed, _and on t_he other hand more WNag«  contered at the average number of particles in the coexisting
spher_es cannot be inserted into the system_s. In other Wo_rdﬁhases(at fixed system volumefurther referred to a¢N,)
for this value ofea, the N, need not be considered as addi- and (N,). In this limit, the variance of the number of par-

tional cqnstralnts |m_posed on the systems. ticles can immediately be calculated, with the result
In Fig. 5, the points where the small systems freeze and

melt are plotted in the area to volume ratio—density plane, o o 2 4

together with the melting and freezing lines in the capillary Uﬁ: E NZPN—< 2 NPN) =" ((N,)—(Ny))?,
limit, Egs. (2.11) where the values in Table | for the situation N=0 N=0 4

that all three crystal facgd.11), (100, and(110) contact the
walls in equal amounts. This is a natural choice for a sing|
crystal in the geometry described above. In the thermody-

namic limit, only the(111) faces will contact the walls. It is on _ [N =N _ [do— ol _ |A|/( 1+ o)
assumed here that on decreasing the system size, defects that (N}~ ((N2)+(N1)) o+ ¢4 ’

arise by “forcing” the crystal to orient along it€l11) faces 3.4
along the walls of the boxes quickly become more expensivsince obviously, the average number of particles in the whole
than the cost in interfacial free energy by orienting the cryssystem is given byN)=((N;)+(N,))/2. Equation(3.4) is

tal along two of its nonequilibrium directions. Same as in aexact in the thermodynamic limit where it is a constant as the
slit geometry(Fig. 3J), it is clear from Fig. 5 that the extrapo- two phases contain constant volume fractighs

lated melting and freezing lines from the capillary limit in- Now if the systems become smaller, fluctuations will
dicate a critical pointsee Sec. Il A for a short discussion on come into play and the two individual delta peaks will get

S0 that the relative magnitude of the fluctuations become

Downloaded 01 Oct 2001 to 131.211.152.108. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6546 J. Chem. Phys., Vol. 115, No. 14, 8 October 2001 Willem K. Kegel

finite widths, as in Fig. 4. This width of the individual peaks . r r T T T T T

is quantified byoNa, being the variance in the number of 0.30+ o A
particles in phase;, N,,. In generaf! 0.25] |
on (NG =A($)/N,, (3.5 2~ 0.201 i

a V .
where A(¢) = (dp/d¢) Y only depends upon the volume gzh 015 . .

fraction of hard spheres in the system. It should be noted that
in this equation(N,) andN,, refer to the number of particles

in one of the coexisting phases in the system, whereas in Eq.
(3.4), (N) is the average in the whole system. Equati8rb) TS ————— ]
implies that if the system size is reduced in such a way that P : —— : .
the volume fraction remains constant, the two individual ' ' '
peaks broaden as IN,. At some point these peaks will v
overlap, and the two states Car_] _no If)ng?r be dlStIﬂgUIShed. IHG. 6. Fluctuations in the coexistence region of the freezing transition,
other words, the phase transition is killed by fluctuationS.yhere the hard spheres are confined in baxee text The solid line are

This is where gn/(N))~(on_ /(Ng)). the fluctuations within the capillary limit, i.e., E¢3.4) together with Egs.

. . . . 2.11) and Table | for the average crystal orientatiee text Circles
? £
Does this happen in the systems studied here? It is Oti:orrespond to the small systems. The dotted line are the fluctuations of the

vious from Fig. 4 that even in a very small system that cON-ngividual fluid peaks, Eq(3.6) together with Eq(2.11) and Table I. Open
tains at most 8 spheres, the width of the coexistence regiotiamonds are extracted from the widths of the fluid peaks in Fig. 4. Solid

far exceeds the broadness of the individual peaks, i_egiamo_nds are calculated using E§.6), but us_ing _the volume fractions of
(U'N /<N>)>(0-Na/<Na>)' But the width of the coexistence the fluid peaks that correspond to the ones in Fig. 5.
region steeply increases on decreasing the system size from
Nmax=27 to Npa=8. It might thus be possible that fluctua- point at which they cross indicate where the phase transition
tions Kill the freezing transition somewhere in the broadis “killed” by fluctuations. First of all it is obvious from Fig.
range of system sizes in betwelp,,,=27, and sizes within 6 that fluctuations only become significant beyond the capil-
the capillary limit. We therefore address the question as tdary limit, i.e., whena,>0.2. If extrapolation beyond this
how the width of the coexistence region competes with theimit was allowed, the lines would cross @~ 0.6; it should
widths of the individual peaks, in other words, how be noted that the solid line has already been drawn beyond
(on/(N)) relates to ¢y /(N,)) as a function of system the capillary limit. This value is significantly smaller than the
size. (also extrapolatedvalue ofa,~0.74, where the two phase
In the capillary limit, we just use Ed3.4) together with  boundaries cross in Fig. 5. We also plotted the values of
the information on the average crystal orientation as listed irry/(N) and aNf/(Nf) obtained from the systems in the
Table I. This is equivalent to transforming the lines in Fig. 5small boxes. The first quantities were calculated ush,?{g
into a single line. In calculating the individual peakwidths, ZEEZ%NZPN_(EEZ%NPN)Z_ It is worth mentioning that these
only the fluid branch is considered, i.eqy /(Ny)) is cal-  yajyes are in very good agreement with E8.4) (within
culated, as the bulk moduli of fluid and solid are of the same10%), see again Fig. 6. They clearly are much larger than the
order of magnitude. First of all we eliminaké; in Eq.(3.5.  ones that are extrapolated from the capillary limit, which
For this purpose use is made of H§.3). Subsequently we already is obvious from Fig. 5. The widths of the individual
relateNp,q to the area to volume ratio of the particular ge- peaks ofPy in Fig. 4 were calculated by cutting them off at
ometry studied here. This relation, for fixed=1.3 read®  N=6 (N,,=8) andN=24 (N,,,=27). As can be seen in
Nma=27.448, %, so that Ny~48.17, °¢. The quantity Fig. 6, they are in good agreement with the ones calculated
A(¢)=(dBlag) Y?in Eq. (3.5 is extracted from the fluid by Eq. (3.6). We also calculatedry /(Ny) substituting the
branch of the Hall equation of state, H§.13, expanded Up  gpserved freezing volume fractions=0.43 and ¢=0.28
to first order aroundp; with the result thatA(¢)~0.137  jnio Eq. (3.6) for the systems wittN,,=27 andN, =8,

6, /<N>
(=] o
o =
(2] o
1 L

/

—0.67(¢— ¢7). Combining all this leads to respectively. These results are also shown in Figastfilled
JINS = A( ) VN~ (0.137— 0.6T b — b* symbols. Clearly in the first case quantitative agreement is
TNy (N =A(¢) VN~ A= @1)) observed, but in the second case E3j6) predicts too large
48.17p\ 12 a value for the fluctuations.
2 , (3.6 We conclude from this analysis that fluctuations in these

small systems play no significant role in the capillary limit.
where it is again emphasized that the numerical factor in th&hey become important whea, is larger than roughly 0.2.
last term in this expression depends upon geometry. SubstWhena, is of order 1, phase boundaries diverge while in the
tuting Eq. (2.1) for ¢=¢7 +A¢, and making use of the capillary limit they converge. On the other hand, number
guantities in Table I finally leads to the relation between thefluctuations within the coexisting phases are in very good
width of the individual fluid peak in the grand distribution, agreement with predictions using the macroscopic Hall equa-
and the area to volume ratio of the system. Equati@4  tion of state together with the capillary limit Eq.17). If

and (3.6) are plotted in Fig. 6, again for the situation where the phase boundaries had not widened at large valuags,of

all crystal faces are equally distributed along the walls. Thehe freezing transition would have been killed by fluctuations
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whena,~0.6, see Fig. 6. This number corresponds to a sys- When pores become small, their detailed geometry is

tem that can contain approximately 127 spheres. Now deexpected to be important. A pore geometry that may be par-

pending upon howoy/(N) crosses over from decreasing ticularly interesting is one that is just slightly deformed with

linearly with a, (capillary limit) to steeply increasing when respect to the ones that were studied under the “box geom-

a, becomes of order 1, there are two scenarios. The first istry,” Sec. Il B. In a particular case, freezing was observed

thatoy /(N) crossesry /(Ny), so that the freezing transition to occur in two step It would be intriguing to see this

is killed by fluctuations. This might in principle happen in scenario verified in real systems.

the interval of roughly 0.&a,<0.9, corresponding to sys-

tems that may contain in betV\_/ee_n approximately 40 and 13Q\CKNOWLEDGMENTS

spheres. The second scenario is that this crossover sets in

before roughlya,~0.6. In that case thesmall system analog Correspondence with Hartmut en, and discussions
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ones as studied here. gratefully acknowledged. Jan Groenewold and Roel Dullens
are thanked for comments on the manuscript.

IV. CONCLUDING REMARKS
) ] APPENDIX: RECURSIVE RELATION BETWEEN
In this work we have addressed the question as to WhabaARTITION FUNCTION AND AVAILABLE VOLUME FOR
confinement does to the freezing transition of hard spheresiARD SPHERES

We have provided an answer to this question in the capillary - )
limit, as well as in the limit that systems are very small. In_ 1 he probability that a sequence Nfrandomly(and uni-

the first case, we showed that hard spheres in confining gd@'Mly) generated coordinates of hard sphere centers in a
ometries will freeze at densities significantly below the bulkVelumeV (defined here as the volume available for a single
freezing density. This implies that if a porous system is inSPNere center have a configuration such that none of the
contact with bulk, the part of the system in the pores will '@rd spheres overlap, and where one sphere centeis; in
freeze, while the bulk remains fluid. In the second limit the@t 1, @ second is idr; atr,..., and arNth is indry at
answer necessarily cannot be general as geometry becomebng 1S the insertion probability of such a configuration. It
determining factor. The question remains what happens iff29S
between these limits, as in this range critical points may . (Hi<j5(7ij))df1"'drN
)=

occur, and fluctuations may kill the phase transition. This is ~ Pins(f1,---, Ty Jdrydr : (A1)
not a simple question to answer using classical statistical v ! N
thermodynamics. The existence of the expansion of the frewith

energy in powers of the area to volume rdiie., Eqs.(2.6)] Iri—ril

already is questionable if terms of quadratic order need to be Tj;= : (A2)

taken into account. It will definitely not exist for even higher o
order. The physical reason for this is that the bulk referencavhere & denotes the diameter of a sphere. Furthermore,
free energy, i.e., the zeroth-order term in the area to volume NP
. . . : . o(Ti) =0(T;;<1),
ratio, a,, will become itself a function of system size and
geometry. Therefore, one should either look for another ref-  &(T;;) =1(T;;=1). (A3)
erence state, or Te'y on_d|rect computer 5|mu|at|_on or dens'%he insertion(or acceptangeprobability averaged over all
functional techniques in order to study the intermediate . P
) . sets of coordinates withil is

range ofa, . The latter technique was applied to study wet-
ting behavior of molecular fluids in pores, see Ref. 5 for a B (N} Jv o JALi<jo(Tiy))dry--dry — Zy
review. (Ping(N))= Ty Jdry--dry —yN

In small systems, but probably also in the capillary limit,
it may become exceedingly expensive for the system to hav
two coexisting phases within the same pore. For this reasoll
it is expected that at coexistence, in a collection of pores part
of them will contain (single phask fluid, while the other P

(A4)

ith Zy the configuration integral dfl hard spheres in vol-
meV. This is easily proved as follows.

A general expression for the configuration integraNof
articles in a volumé/ is

fraction containgsingle phasgcrystal. Within a single pore, AUyt
the system may oscillate between the fluid and crystalline ZN:L"'I e vUINdrgeedry, (A5)
state.

In order to compare to experiments, the question of therwhereU(ry,....ry) denotes the potential energy of the sys-
modynamic equilibrium should be addressed. In systems dm, which, for hard spheres, is rigorously pairwise additive,
bulk hard sphere colloids, quenched nonequilibrium states€-
may only very slowly relax, see, for example Refs. 36, 37. It

is expected that these relaxations will become even slowerin = U(ry,....ry) =2, u(¥;), (AB)
confined systems. Therefore metastable states may confound =)
the scenarios as sketched in this work. with the pair potential,
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U(T;) =2 (F; <1), With gy=(A%¢>)Qy, Eq. (A15) is seen to resemble Eq.
(A7)  (3.2).Itshould be noted that no assumptions have been made

u(ri)) =0(r;j=1), regarding the size or shape of the system of hard spheres. All

so that, the above equations therefore apply to hard sphere systems
of arbitrary size, and with arbitrary boundary conditi¢ims-
e AU TN = g mZiciu) = T 8(Ti), (A8)  plicit in the available volume of “empty” spacey, which
i< resembles herg{"].
which completes the proof. We will now show that, starting from EqA15) we re-

In princip|e, by measuring the average insertion prob.Cover a well-known relation by scaled particle theffmnd
ability Eq. (A4), the configuration integral follows. However, by Widon? between insertion probability and chemical po-
even for moderate]y dense, and still rather small Systeméyential. It is shown that the latter relation Only holds for a
(Pins(N)) rapidly goes to zero. Fortunate{f;,{(N)) can be  system in the thermodynamic limit.

factored as Equation(A15) may be written as
(Pind N)Y=(Pind 1)Ping(2| 1) Ping(3]1,2 - Vo' Quii :
A3(N+1) Qu '’ (AL5)
X Pins(N|1,2,...(N—=1))), (A9) N
where P,((j|1,2,...,( — 1)) is shorthand for the probability ©"
of accepting particlg atr; provided that {—1) sphere cen- \/BN>
ters are afry---r(j_1)}. The next step is the crucial one. For ~ In AN D) =INQn+1=INQn=B(FN—Fn+1),
hard spheres, the average of all possible insertion sequences (A16)

equals the sequence of averages, . .
with Fy the Helmholz free energy of a system containkhg

(Pind1)Ping(2[1)---Ping(N[1,2,..(N—1))) hard spheres. The chemical potential is defined as

:<Pins(1)><Pins(2|1)>'“<Pins(N|1121---(N_1))>- _(tﬂ:) (AL7)
(A10) VN,
On the right-hand siderhs) of Eq. (A10), the terms are av-  comparing Eqs(A17) and (A16), and noting that
erages over all possible configurations, in other words, the
insertion probability P;,«(N|1,2,...,0N—1))) is the insertion im(Fy.,—F )/1(f)
probability of theNth sphere into a system containintyl ( N+L TN OGN Tv
—1) spheres, averaged over all possible configurations of the
(N—1) spheres. The terms on the rhs of E4L10) relate to N—ce, (A18)
the available volume via we immediately identify
VIV =(PidN+1[1,2,...N))V, (A11) v
that is, the insertion probability of amNH 1)th sphere center Bu=- In( A3(N+1) [N=e]. (A19)

into a system o hard spheres is just the ratio of the avgll— With negligible error, in the limitN—, Eq. (A19) can be
able volume of the system & hard spheres and the avail- _ .
; : written as
able volume for a single sphere without any others present.
Combining Eqs(A9)—(A1l) with Eq. (A4) gives

(N)
Vo ) . (A20)

N-1 Bu= - ln( A3N
J

Zn= JEO Ve, (A12) This relation follows from scaled particle thed®/Since the

insertion probability of anl+ 1)th hard particle in a system

of N hard particles i$;,.= V{V/V, Eq.(A20) can be seen to

resemble the well known general expression of the chemical

potential obtained by Widorif: Clearly, it is an asymptotic

relation that does not apply to small systems.

with V=V in our definition. Equatio{A12) has for the

first time been obtained by Speetfywho used a lattice and

subsequently let the lattice parameter go to zero.
Equation(A12) can be written as a recursive relation,

Zy=Vg' VZy 1, (A13)
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