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A variational approach based on the Gibbs-Bogoliubov inequality is used in order to evaluate the
free energy of simple fluids described by a double-Yukawa pair potential. A hard-sphere reference
fluid is used to describe the fluid phases, and an Einstein reference crystal to describe the solid
phases. Apart from the usual type of phase diagram, typical of atomic simple fluids with long-ranged
attractions, we find two types of phase diagrams, specific to colloidal systems with intermediate and

short-ranged attractions.

One of the latter phase diagrams exhibits an isostructural solid-solid

transition, which has not yet been observed experimentally.

PACS number(s): 64.70.Dv, 64.10.+h, 82.70.—y

I. INTRODUCTION

Simple fluids [1] are systems of identical particles
whose interactions can be adequately described in terms
of a spherically symmetric pair potential V(r) of the
generic form

r

Vi) =et (=), (11)

o
where € measures the strength of the interaction and o is
a measure of the diameter of the particles, r being their
center-to-center distance. Although triplet forces may
occur in even the simplest atomic system (such as argon)
[2], most of them can be adequately described in terms
of the pair forces generated by (1.1) with simple forms of
¢(z), such as the well-known Lennard-Jones (LJ) form

buste) =4 (- 5).

where .z = r/0. Many molecular and ionic systems can
be given a similar simple fluid description [1,2]. More sur-
prisingly, a vast amount of evidence has been gathered
in recent years that, at the other extreme, very complex
supramolecular systems (such as carefully prepared col-
loidal dispersions) [3] can often be described well in terms
of a simple fluid of spherically symmetric colloidal parti-
cles interacting via a solvent-mediated effective pair po-
tential of the form (1.1) [4]. This is true only as far as the
equilibrium properties of these complex systems are con-
cerned (so that the hydrodynamic interactions between
the colloidal particles set up by the motion of the solvent
can be neglected) [3] and we will thus henceforth restrict
ourselves to these equilibrium properties. The major dif-
ference between the simple fluid description of atomic
and colloidal systems stems then from the very different
values of the scales, ¢ and o, and the form of ¢(z) in
(1.1). Since € and o can be absorbed in the scales of the
temperature (T'), the density (p), and the pressure (p) by

(1.2)
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using the following reduced thermodynamic variables:

t= kBT/6> p= PU3, p= p0'3/€, (13)
where t is the reduced temperature (kg being Boltz-
mann’s constant), g the reduced number density, and p
the reduced pressure, the remaining difference, when us-
ing these reduced variables, will stem only from the form
of the reduced pair potential ¢(z) versus the reduced
distance z. Whereas in the atomic systems the form of
¢(z) barely changes, this is no longer true in the colloidal
systems where, by some clever chemical engineering, one
can produce a much larger variety of forms [3]. This
then raises the question of how the equilibrium phase be-
havior of a simple fluid changes when one systematically
changes the form of the potential function ¢(z). From
the above it will be clear that most of these forms will
lie outside the range accessible to atomic systems but
could be investigated experimentally by studying suit-
ably prepared colloidal dispersions [3,4]. In general one
expects the phase behavior of colloidal systems [3] to be
similar to that of other simple fluids [1]. For instance,
in most monodisperse charge-stabilized colloidal disper-
sions ¢(z) is purely repulsive and well approximated by
a Yukawa form, viz., ¢(z) ~ e~**/z, of variable range
1/X. Under these circumstances the colloidal particles
have been shown to undergo an order-disorder transition
between a fluidlike configuration (F') and a solidlike con-
figuration (S) [5]. Depending on the range () the result-
ing (colloidal) crystalline configuration will have a body
centered cubic (bcc) or a face centered cubic (fcc) struc-
ture with in between a structural bce-fee transition [5-8].
This is qualitatively similar to the phase behavior of soft
spheres [1], viz., ¢(z) = 1/z™. In the case of sterically
stabilized colloidal dispersions [3] one can even set up an
experimental system where the colloidal particles mimic
a system of hard spheres with an order(S)-disorder(F’)
transition which fits quantitatively to the freezing of hard
spheres into a compact lattice [4]. When nonadsorbing
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polymer is added to a sterically stabilized dispersion, the
resulting ¢(z) will have both a repulsive (due to volume
exclusion) and an attractive (due to polymer depletion)
component as for the atomic simple fluids [3,4,9]. Al-
though these attractions have a very different origin, the
resulting potential can be qualitatively similar to that
of an atomic system. One major difference between the
colloidal and the atomic simple fluid, which can have
an important effect on the phase diagram, stems from
the fact that, while in atomic systems the range of the
attractions is always larger than or comparable to the
range of the repulsions, this is no longer the case in col-
loidal systems where the range of the attractions can be
controlled by varying the size (i.e., radius of gyration)
of the added polymer [3]. The prevailing situation here
is that the range of the attractions is shorter than the
range of the repulsions. This leads to new physical phe-
nomena not encountered for the atomic simple fluids. An
already well-documented effect concerns the disappear-
ance of the high-density fluid phase or “liquid” phase of
the colloidal particles when the range of the attractions
shrinks to below one-third of the diameter of the col-
loidal particles [3,9]. Recently, it was shown on the basis
of computer simulations [10] that for attractions with a
range roughly one order of magnitude smaller a novel
phenomenon, namely, an isostructural solid-solid transi-
tion, should appear in the ordered phase of the colloidal
particles. This phenomenon has not yet been seen exper-
imentally but has been confirmed by a series of theoreti-
cal calculations [11,12] which systematically explored the
changes occurring in the phase diagram of a simple fluid
when varying the range of the attractions relative to the
range of the repulsions. It is our purpose here to provide
more details about one of these calculations [11].

As usual, the theoretical determination of the phase
diagrams proceeds via an accurate estimate of the free
energy of the different phases involved. In [11] we based
these estimates on the Gibbs-Bogoliubov inequality (see
[1,12] and Sec. II below). For the systems described in
Sec. III the corresponding reference systems which enter
this inequality will be discussed in detail in Secs. IV and
V. The construction of the resulting phase diagrams is
given in Sec. VI while the final Sec. VII gathers our
conclusions.

II. VARIATIONAL PROCEDURE AND
GIBBS-BOGOLIUBOV INEQUALITY

We consider a system of N particles enclosed in a vol-
ume V at the equilibrium temperature 7. Assume that
we write the Hamiltonian describing the interactions be-
tween these particles as

H(A) =Ho+AAH (0<A<1), (2.1)
where Hy = H(X = 0) is the Hamiltonian of a reference
system and Hy; = H(A = 1) = Ho+ AH the Hamiltonian
of the system we want to study, A being a charging pa-
rameter. The Helmholtz free energy (at the given N, V, T
values) corresponding to (2.1) is defined by

e PFR) = / dl e PHX), (2.2)
where 8 = 1/kpT and the right-hand side of (2.2) is a
shorthand notation for the canonical partition function
defined over the phase space I' of the Hamiltonian (2.1).
The Gibbs-Bogoliubov (GB) inequality states then that

AF = F(A=1)—F(A=0) < (AH)x=0, (2.3)
where () denotes the canonical average corresponding
to (2.2). Indeed, from (2.2) and (2.1) we have O\ F(A) =
(AH)» with 9y = /0X and hence AF = [ dA(AH),,

which we rewrite as
1 A
AF = / d\ I:(AH))\_:O +/ d)\’ O (AH>)‘I:|
0 0
1
— (AH)rz0 - B / dA
0

A
x /0 dN ((AH — (AH)x)2),,, (2.4)

which implies (2.3).

The way in which we will use the GB inequality is as
follows. Let F(N,V,T) be the Helmholtz free energy of
the system of interest and Fo(N,V,T) that of the ref-
erence system and assume that H; and H, differ only
because the pair potentials V(r) and Vy(r) differ. Then
we can rewrite (2.3) as

F(N,V,T) < F(N,V,T)
EF()(N,V,T) + %/ dl‘l / dl‘zpo(l‘l,l‘z)
x[V(r12) — Vo(ri2)], (2.5)

where r12 = |r; — rz| and po(ri,rz) denotes the pair-
density of the reference system. In any case, the best
estimate for F' we can obtain from (2.5) is by minimizing
the upper bound F; hence

F(N,V,T) = min F(N,V,T), (2.6)
where the minimization refers to the free parameters of
the reference system. To implement the variational pro-
cedure based on (2.6) we have hence to look for a refer-
ence system which is at the same time simple enough to
allow for an easy evaluation of F' and realistic enough so
that the minimum of F provides an accurate estimate of

F.

III. CHOICE OF A PAIR POTENTIAL FOR THE
SYSTEM

Before considering the choice of the reference system
we have first to specify the system itself. As already
stated in Sec. I, we will consider a simple fluid with a
pair potential of the general form (1.1) but as we are in-
terested not only in atomic simple fluids (such as argon)
but also in the simple fluid description of colloidal dis-
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persions with depletion forces, we will have to allow for
large variations in the form of ¢(z) of (1.1). One form
of ¢(z) which satisfies this requirement and at the same
time leads to easy-to-compute expressions for (2.6) is the
following so-called double-Yukawa (DY) form:
b(z) = g(e—m—l) —e b1y g5 p, (3.1)
where a, b, ¢ are positive parameters. By construction we
have ¢(x = 1) =0, ¢(x < 1) > 0, and ¢(z > 1) < O,
while ¢(z) has a minimum for z = o > 1 such that

1+ azxg

— ela=b)(@o—1)
1+ b(Do

¢ (z0) = 0, (3.2)

The value of ¢(x) at this minimum will set the scale
for the temperature. Keeping € of (1.1) as this scale we
will hence fix ¢ of (3.1) to be such as to satisfy
1

il (e—b(zo—l) _ e—a(zo—l)),
Zo

d(zo) = —1, (3.3)

o=

which can be used to eliminate ¢ from (3.1), leaving us
with a two-parameter potential. Instead of the original
parameters, a and b, it is physically more interesting to
use as parameters the position of the minimum, z¢, and
a second parameter é characterizing the range of the at-
tractive part of ¢(z). To obtain an estimate of this range
we put § = (z1 — xo)/xo > 0, where z; (z1 > xo) is the
value of = for which ¢(z) has dropped to 1% of its value,
—1, at the minimum:

1 _0.01

¢(zy) = —0.01, = (e”b(wl—l) _ e—a(ml—l)).
C

(3.4)

Using (3.1)-(3.4) we will eliminate (a,b) in favor
of (zo,z1) and characterize ¢(z) through the physi-
cally more transparent parameters z¢o and §. The two-
parameter family of potentials constructed in this way
is very flexible and many particular potentials can be
approximated by it. For instance, the well-known LJ po-
tential of (1.2) can be approximated by using (3.1) with

TABLE 1. The parameters defining the potential (3.1) as
obtained from Egs. (3.2)—(3.4) for (a) three cases typical of
atomic simple fluids, i.e., § ~ 1 and (b) four cases typical of
colloidal simple fluids, i.e., § ~ 1072, Below we will label
these different cases by their value of 4.

a b c To T )
(a) Atomic
14.4 2.7 2.1 1.12 2.62 1.34
14.4 5.2 3.1 1.10 1.97 0.79
14.4 14.0 104.1 1.07 1.51 0.41

(b) Colloidal

200 198.0 273.6 1.0050 1.038 0.0328
400 398.0 545.5 1.0025 1.019 0.0165
500 498.0 681.4 1.0020 1.015 0.0130
670 661.4 209.6 1.0015 1.012 0.0105

2 T T

¢ (x)

0.9 1.6 2.3 3.0

¢ (x)

|
1.03
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X

FIG. 1. The DY potential ¢(x) of (3.1) versus = for (a)
the three cases of Table I(a), § = 1.34 (full curve), § = 0.79
(dotted curve), and § = 0.41 (dashed curve); and (b) three
of the four cases of Table I(b), § = 3.28 x 10~ % (full curve),
§ = 1.65x1072 (dotted curve), and § = 1.05x10~2 (dashed
curve). The full dot indicates, for each case, the position of
1.

apy = 14.3959, by = 2.6978, (3.5)
which correspond to
i =2% ~ 112, oV =2.62. (3.6)

For the discussion below we will concentrate mainly on
the seven cases of Table I. The corresponding potentials
are shown in Fig. 1. These potentials differ mainly by
the range of the attractive part.

IV. VARIATIONAL DESCRIPTION OF THE
FLUID PHASES

In the case of a disordered fluid phase we have for the
pair density of (2.6)



po(r1,T2) = p°go(r12), (4.1)

where p is the number density (p = N/V) and go(r12) the
pair-correlation function of the reference system. For the
reference fluid phase we will use a hard-sphere (HS) fluid,
in which case [ dr gus(r)Vas(r) = 0 and (2.6) becomes

f(pa T) = fHS(pa T)

+27rp/ drr? gus(r/ous, nus)V (r),

HS

(4.2)

where f denotes the variational free energy per particle
and fgs that of the HS fluid, oys is the HS diameter,
and nus = mpodg/6 the corresponding packing fraction.

The justification for our using the DY form of (3.1)
to describe the system’s pair potential stems from the
fact that its combination with the HS fluid as reference
system for the fluid leads to an expression in (4.2) which
involves the Laplace transform of rgus(r):

o0
/ dy e *Y ygus(y; nus) = zH(z;nus),
o

which, within the Percus-Yevick (PY) approximation for
the HS fluid, is known analytically [13]:

L(z,z)

H(zz) = 12zL(z,z) + S(z,z)e*’ (4.3)
where
L(z,z) = (1+x/2)z + (1 + 2x), (4.4a)
S(z,z) = (1 — z)%2% + 6x(1 — x)2% + 18222
—12z(1 + 2z). (4.4b)

Within the same PY approximation the HS free energy
fus can be written

Bfus(p,T) = In(pA®) — 1 + fX (nus), (4.5)

where A = h//2rmkpT denotes the thermal de Broglie
wavelength for particles of mass m and

3z(2 —x)
*(e) = 2270 11— 4.6
o) = ZE=2) —1n(1 - ) (146)
is the (dimensionless) excess free energy. Introducing

the dimensionless variables (1.3), we obtain the follow-
ing variational free energy

%f(n,t;/\) =t (lnn— glnt+C— 1) + tfr (nA?)

+ 12¢cnA® [ae® H (a,n)®) — beP H (bA,nA%)] .
(4.7)

where ngs = A3, i.e., n = mpo3/6, and A = ogs/co, while
C = In(6A3/m03), with Ay = h/v/2mme, is a constant.
Equation (4.7) has to be minimized [for a given potential
(a, b, c)] with respect to the variational parameter A (such
that nus = nA® < 1) for given values of the thermody-
namic parameters (7,t). The way in which the minimum
of (4.7) with respect to A is formed is illustrated in Fig.
2. If Apin(n,t) denotes the value of A for which (4.7)
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FIG. 2. The reduced variational free energy per particle,
Bf, of the fluid phase [see (4.7)] vs the variational parame-
ter A for the § = 1.34 case at p = 0.8 and t=1 (full curve).
The full dot indicates the position of Amin. Also shown are
the hard-sphere reference free energy (dashed curve) and the
perturbation term (dotted curve).

attains its minimum the resulting estimate for the free
energy obtained from the GB inequality (2.6) is

f(ﬂ,t) = f~(77»t§ )‘min(n? t))

The quality of this estimate depends (1) on the quality of
the PY description (4.3)—(4.6) of the HS fluid and (2) on
the quality of the HS fluid as a reference fluid for the fluid
described by the DY pair potential (3.1). The quality of
the PY approximation for the HS is very satisfactory (see,
e.g., [1]) while the quality of the HS system as a reference
fluid for the DY system was found in [14] to be equally
satisfactory for the particular case of the LJ potential.
Here we will use this variational description of the DY
fluid for a whole family of potentials, all having the same
strength as the LJ potential but with a different range
(mostly shorter than for the LJ case) for the attractions.
We found the present method to be very flexible, easy to
implement, and fairly accurate. For instance, the critical
temperature of the LJ system is reproduced to within 5%
(cf. also [11]).

(4.8)

V. VARIATIONAL DESCRIPTION OF THE
SOLID PHASES

Although the HS solid is presumably also a good ref-
erence system for the solid phases of the DY system, we
will not use it here because no analytic expressions are
available to describe the HS solid, even in the PY ap-
proximation. Instead, we will use as reference system
an Einstein solid characterized by the following reference
Hamiltonian:

N

1 k
Hy = Z (Z—mpf + E(rj - l_?)z) )

i=1

(5.1)
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where (p;,r;) denote the momentum and position of par-
ticle j of mass m bound harmonically to the site rg. For
a solid phase of the DY system of a given structure we
will use an Einstein solid of the same structure, fixing
hereby {r?}, while the value of the spring constant k will
be determined variationally. In order to implement the
GB inequality (2.6) with (5.1) the reference free energy
per particle fo(ca, T) is easily computed as

A o
= Tln | —4/— 5.2
fo(a,T) = 3kg n(a”w)’ (5.2)
where « is a dimensionless spring constant
ko?
= — 5.3
T 2kpT (5:3)
and (2.6) becomes
A o €«
- _ 0.
F(N,a,T) =3NkgTIn <; ;) + 3 ,Ej=1 W(z;;; @)
i
3

Here z2; = |r? — r?|/o and W (z};; @) represents a Gaus-
sian averaged DY potential (3.1)

W (2l a) = / dx; / 4%, Pa(3)6(255)0a(35), (5.5)

where z;; = |x; — x;|, X; = r;/0, and ¢,(x;) denotes the
normalized Gaussian density profile of particle ¢ around
the site r? = ox? as induced by (5.1):

2 (5.6)

with « still given by (5.3). If henceforth we only consider
perfect solids, i.e., crystals with all sites occupied, then
all sites are equivalent and the double sum of (5.4) can be
written as N times a simple sum over spherical shells a
distance £} = z; from the lattice site 7 taken as origin
(z§ = 0). The variational free energy per particle is then
given by

flp,t;a) = gt(lna —Int —1) + t(C — In(6+/7))

1 ’
+§Z W(z?,a),
3

€

(5.7)

where the prime indicates that the origin is excluded from
the sum and we have introduced the dimensionless vari-
ables (1.3) and the constant C of (4.7). Equation (5.7)
has to be minimized [for a given potential (a,b,¢)] with
respect to a (0 < a < o0) for a lattice of given density
p = po? and temperature t. If amin(5,t) is the value of
a at the minimum, our estimate of the free energy per
particle of the given lattice structure is given by (2.6) as

f(B,t) = F(P,t; tmin(ps 1))-

In Fig. 3 we show how the minimum of the variational
free energy f of (5.7) is formed.

(5.8)

10 T T T

FIG. 3. The reduced variational free energy per particle,
Bf, of the (fcc) solid phase [see (5.7)] vs the variational param-
eter a for the § = 1.34 case at p = 0.8 and ¢t = 1 (full curve).
The full dot indicates the position of amin. Also shown are
the Einstein-solid reference free energy (dashed curve) and
the perturbation term (dotted curve).

For the DY potential (3.1) the expression (5.5) can be
explicitly evaluated as

W(z;a) = < [e“E(a;a;z) —eb E(b;a;w)] , (5.9)
T
where
E(y;a;z) = %eyz/za [e'ymerfc (y _—sz)
Y+ ax
— e¥%erfc | =— 5.10
()] ew

and erfc(z) = (2/y/7) [° dt e~t*. With the aid of (5.9)
and (5.10), the lattice sum (5.7) can be evaluated nu-
merically to any preassigned accuracy and the quality of
the estimate given by (5.8) will depend then only on the
quality of the Einstein solid as a reference system. From
simulation work [15,8] and previous theoretical work [16]
on different potentials it is known that the Einstein solid
is a good reference system and we will hence use (5.8)
here for the solid phases of the DY potential. The com-
bination of the Einstein solid and HS fluid as reference
systems also remains fairly accurate since we found [11]
that it reproduces, for instance, the triple-point temper-
ature of the LJ system to within 1%.

VI. PHASE TRANSITIONS OF DY SYSTEMS

The GB inequality (2.6) together with the HS fluid of
Sec. IV and the Einstein solid of Sec. V as reference
systems provide us with a convenient means to evalu-
ate free energies of simple fluids. When the simple fluid
is described by a DY potential (3.1) this method leads,
moreover, to analytic expressions for the variational free
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energies of the fluid (4.7) and solid (5.7) phases which
depend on only a single variational parameter and hence
are easily minimized. This is essential when, as here, the
final aim is to compute phase diagrams, which requires
that the free energies be computed for many thermody-
namic states and many phases. This is the more so when
the physical questions are concerned with the changes
which occur in the phase diagram when the potential is
changed within a three-parameter family of expressions
such as (3.1). As discussed already in Sec. III, the three
parameters (a,b,c) of (3.1) will be reduced to two in-
dependent ones by requiring that all the potentials ¢(z)
have the same value,—1, at their minimum z = z,, which
leads to ¢ = c(a,b). This restriction is without phys-
ical consequences because changing the strength of the
potential ¢(x) would only amount to change the tem-
perature scale, €, of V(r) in (1.1). A specification of
the remaining two parameters (a,b) is equivalent to a
specification of the two alternative parameters (zo,z;)
introduced in Sec. III. The parameter of physical in-
terest is § = (x1 — ¢)/zo, which is a measure of the
range of the attractions relative to that of the repulsions.
Some effects due to changes in ¢ can be observed but
we have found these to be much weaker than the changes
with respect to . We will thus simplify the discussion
below by focusing our attention mainly on the changes
induced by modifying 6. Similarly, we will restrict the
variation of the thermodynamic states to those regions of
the (p,t) plane which contain the characteristic points of
the phase diagram, such as critical and triple points. Fi-
nally, besides the fluid phases, we have investigated only
solid phases with a face centered cubic (fcc) structure
and verified that in the regions studied the other cubic
structures remained thermodynamically metastable (i.e.,
have a higher free energy) with respect to the fcc struc-
ture. We now study, within this restricted parameter
space, the various phase transitions of the DY system.

1.40 T T T T

t 0.90

0.65

0.40

FIG. 4. The fluid-fluid coexistence curves in the ¢-p plane
for the three potentials of Table I(a): § = 1.34 (full curve),
6 = 0.79 (dashed curve), and 6 = 0.41 (dotted curve). It is
seen that the critical temperature decreases while the critical
density increases when reducing 4.

A. The fluid-fluid transition

The free energy of a disordered translationally invari-
ant fluid phase of a DY system can be computed as indi-
cated in Sec. IV. The free energy f = f(n,t) is a convex
function of 1/n which for ¢ below some critical value, t.,
develops a van der Waals loop separating the free energy
of the fluid (F) into a low-density branch (F;) and a
high-density branch (F3). Performing Maxwell’s double
tangent construction on such a loop one finds the low-
density fluid phase F; and the high-density fluid phase
F, which can coexist at the given temperature. Exam-
ples of F;-F, coexistence curves obtained in this way are
shown in Fig. 4. It is seen there that t. increases with ¢
while the critical density p. decreases. For atomic simple
fluids the resulting F;-F, phase transition corresponds to
the gas (F)-liquid (F>) transition while for the colloidal
simple fluids it corresponds to the transition between two
disordered phases of different density.

B. The isostructural solid-solid transition

When the free energy of a perfect crystal phase of a DY
system is computed as indicated in Sec. V, a very similar
behavior is found. The free energy of the solid phase (S)
is again separated into a high-density branch (S;) and
a branch of lower density (S;), corresponding hence to
a more expanded solid, by a van der Waals loop. This
occurs for temperatures below a critical temperature ¢,
different from ¢.. In particular, the changes with respect
to & are much weaker for ¢/ than for t.. The result-
ing S1-S» transition thus ends always in a critical point
(Fig. 5). This is possible because the present transition is
isostructural and hence without symmetry breaking. In
other words, the high-density (S;) and low-density (S2)

2.4 T T

2.2 —

1.8 -

po’

FIG. 5. The isostructural (fcc) solid-solid coexistence
curves in the t-p plane for the three potentials of Table I(b): §
= 1.65x1072 (full curve), § = 1.30x10~? (dashed curve), and
§ = 1.05x1072 (dotted curve). It is seen that the critical den-
sity increases when reducing é while the critical temperature
remains almost constant.
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solids have the same symmetry and differ only in their
density. Similar results have been found in the computer
simulations of Bolhuis and Frenkel [10] and in our related
theoretical calculations [11,12]. This transition is differ-
ent from a structural phase transition between two solids
of different density and different structure, for which the
symmetry breaking excludes the existence of a critical
point. Notice that the word “solid” is used here in its
usual sense for atomic simple fluids while for colloidal
simple fluids it designs a periodic configuration of the
colloidal particles. Such colloidal “crystals” have only
very soft mechanical properties when compared to atomic
solids. The above symmetry considerations, however, ap-
ply to both systems. Both types of systems could, in
principle, exhibit both isostructural and structural phase
transitions. We have made a limited number of searches
for a face centered cubic (fcc) to body centered cubic
(bcc) structural phase transition but found that, at least
in the parameter space investigated here, the bcc struc-
ture is always metastable because it has a higher free
energy than the fcc structure. Other structural transi-
tions, such as to a hexagonal close packed structure, are
still possible but these usually involve such small free-
energy differences that it does not appear reasonable to
investigate them within the present variational approach.
Henceforth we will thus assume that there is only one sta-
ble structure for the DY solids which we take to be the fcc
structure although, within the present approximation, it
could be any of the compact structures.

C. The fluid-solid transition

The total free energy of the DY system will thus con-
sist of a fluid branch F (consisting of two sub-branches
F, and F; for t < t.) and a solid branch S (consisting
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FIG. 6. The fluid—(fcc) solid coexistence curves in the t-5
plane for the three potentials of Table I(a): § = 1.34 (full
curve), § = 0.79 (dashed curve), and § = 0.41 (dotted curve).
It is seen that reducing & lowers the density of the fluid phase
and increases the slope of the solid coexistence line.

of two sub-branches S; and S; for ¢t < t.). Since both
the F branch and the S branch are convex functions of
1/p it is always possible to perform a double tangent con-
struction between these two branches. The correspond-
ing F-S transition corresponds to the freezing-melting
transition of the atomic systems or to the order-disorder
transition of the colloidal dispersions. Since the two co-
existing phases always have a different symmetry there
can be no critical point, i.e., the transition remains first
order throughout the whole density-temperature plane
(Fig. 6). As such, the F-S transition will divide the
density-temperature plane into a region occupied by the
fluid phases and one occupied by the solid phases. When
the above F-F, and S-S, transitions are situated in the
“wrong” region of the density-temperature plane, they
will be preempted by the F-S transition. The very po-
sition of this F-S transition thus plays a crucial role for
the final outlook of the phase diagram of the DY systems.

1.50

1.25

t 1.00

0.75

0.50 | | 1 |
0.0 0.4 0.8 1.2

1.25 F .

t 1.00 .

0.75 — m

0.0 0.4 0.8 1.2

po’

FIG. 7. The phase diagram in the t-p plane for (a) the § =
1.34 and (b) the § = 0.79 case. This phase diagram is typical
for atomic simple fluids (§ 2 1). It is seen that the major
effect of reducing § is to lower the F;-F, critical point while
the F1-F>-S triple point changes very little.
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D. Phase diagrams

Knowing, for a given ¢ value, the different free-energy
branches and the location of the double tangents one can
separate the stable from the metastable phase transitions
by constructing the convex envelope of the total free en-
ergy. When changing moreover the value of ¢, the stable
transitions will generate the phase diagram. In this way
we have found three distinct types of phase diagram for
the DY systems. As stated already above, all these dia-
grams must exhibit a S-F transition. In the first type of
phase diagram the F;-F5 transition is stable while the S;-
S transition is always metastable. The resulting phase
diagram will hence exhibit a F;-F, critical point and a
F1-F,-S triple point. (Fig. 7). This is the situation
which prevails for large 6 values. It is also the situation
which corresponds to (zo, 1) values typical of the atomic
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FIG. 8. The phase diagram in the t-p plane for (a) the §
= 0.41 and (b) the § = 3.28x1072 case. This phase diagram
is typical for colloidal simple fluids with intermediate-range
attractions (§ < 1). The major effect of reducing ¢ is to lower
the shoulder on the fluid side and to move the solid side of
the F-S coexistence to higher densities.

simple fluids (e.g., § > 1). In the second type of phase
diagram both the F;-F, and the S;-S, transitions are al-
ways metastable with respect to the F-S transition. In
such a diagram there are hence no critical or triple points
(see Fig. 8). This situation prevails when the value of §
is roughly one order of magnitude smaller than the values
characteristic of the atomic systems. The corresponding
(zo,z1)-values are typical for many colloidal dispersions.
Finally, in the third type of phase diagram, the Fj-F,
transition is always metastable with respect to the F-
S transition but the S;-S3 transition remains stable. In
such a phase diagram there is hence a S;-S; critical point
and a F'-S;-S; triple point (Fig. 9). This is the situation
which prevails for §-values roughly one order of magni-
tude smaller than those of the previous case. Such small
values of § are outside the realm of the atomic systems
but still quite realistic for the colloidal dispersions. Nev-
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FIG. 9. The phase diagram in the t-p plane for (a) the
§ = 1.65x1072 and (b) the § = 1.05x10~2 case. This phase
diagram is typical for colloidal simple fluids with short-ranged
attractions (§ ~ 10™2). The major effect of reducing § is seen
to be the lowering of the F-S,-S; triple-point temperature
while the S;-S2 critical point changes very little.
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ertheless, to the best of our knowledge, the correspond-
ing S-S, transition has not yet been observed. In this
respect it is important to realize that the latter transi-
tion is expected to occur in a density region where the
experimental systems are easily caught into glassy con-
figurations. Finally, it is interesting to note that when
comparing the results of [9-12] it is seen that while some
details do depend on the form chosen for ¢(x) they all
agree with respect to the location of the intermediate-4
range (0.42 & 20.02) separating the different types of
phase diagram.

VII. CONCLUSIONS

We have used the double-Yukawa expression of Sec.
IIT as a suitable means to study the effect of changes in
the pair potential on the phase diagram of systems which
can be described as simple fluids. In particular, we have
envisaged both the ordinary atomic simple fluids and the
simple fluid description of spherical colloidal particles dis-
persed in a host fluid to which nonadsorbing polymer,
producing attractive depletion forces, has been added.

The large number of free-energy estimates required to
produce these phase diagrams have been obtained from
a variational approach based on the Gibbs-Bogoliubov
inequality of Sec. II. Combining the double-Yukawa po-
tential with a hard-sphere reference fluid (Sec. IV) and
an Einstein reference solid (Sec. V) produces analytic
expressions for the variational free energies of the fluid
and solid phases which are easily minimized. In this way
we have found (Sec. VI) three distinct types of phase di-
agrams: one typical of the atomic simple fluids (Fig. 7)
and two pertaining more specifically to the realm of col-
loidal simple fluids (Figs. 8 and 9). In particular, it was
found that suitably prepared colloidal dispersions should
exhibit a phase diagram with an isostructural solid-solid
transition. These results are in agreement with other
recent findings [10,12].
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