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Abstract. The use of colloidal suspensions as model systems to study crystalliza-
tion is briefly reviewed. It is shown how the classical theories of crystal nucleation
and crystal growth can be applied to colloidal hard-spheres. Predictions are com-
pared with experimental observations.

1. Introduction

Suspensions are called colloidal when the size of the suspended particles is be-
tween 1 nm and 1 um. On the one hand, these particles are larger than atoms or
small molecules. On the other hand, the particles are sufficiently small to undergo
vivid Brownian motion, due to interactions with solvent molecules, and sedimen-
tation is generally slow, if it occurs at all. More specifically, we shall consider
suspensions of monodisperse spherical particles with a diameter ¢ ranging from
0.2 — 1 um. Like atomic systems, such suspensions can undergo crystallization,
resulting in a regular spatial arrangement of the particles. We briefly review the
use of such suspensions as models to study crystallization. The main part of this
contribution consists of an attempt to adapt the classical theories of crystal nucle-
ation and crystal growth to describe the crystallization kinetics in suspensions of
colloidal hard-spheres.

Colloidal suspensions have several properties that render them suitable as
model systems for studying crystallization. First of all, it should be noted that
colloidal suspensions are thermodynamically equivalent to atomic systems [1,2].
Thermodynamic properties of an atomic system can be calculated using statistical
mechanics, starting from the interaction potential. The same can be done for
a colloidal suspension, when instead of the bare interaction potential between
colloidal particles the potential of mean force is used, in which the forces exerted
by the solvent molecules are taken into account. Therefore, colloidal suspensions
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Figure 1. CSLM graph of two colloidal crystals in equilibrium with a colloidal fluid. Average of ten
scans (~ 10 s). Silica particles (¢ = 430 nm) with a fluorescent core, coated with stearyl alcohol
and dispersed in chloroform. These particles are somewhat charged and crystallize at ¢ = 0.07 (bar
5 pm). Reprinted with permission from Ref. [3]. Copyright 1994 American Chemical Society.

can serve as models for atomic systems.

The size of colloidal particles has a number of consequences. Firstly, it allows
suspensions to be studied conveniently with experimental techniques such as
light scattering and light microscopy. An example of two colloidal crystals in
coexistence with a colloidal fluid is shown in Figure 1. This micrograph has been
made using fluorescence confocal scanning laser microscopy (CSLM), from a
dispersion of silica particles with a fluorescent core [3]. In the fluid phase the
particles are blurred because significant diffusion occurs during the observation
time (~ 10 s).

Secondly, colloidal crystals are very weak. A measure for the strength of a
material is the bulk modulus, which we estimate as K ~ kgTo~3, where kT is
the thermal energy. A colloidal particle being about a thousand times larger than
an atom, the bulk modulus is roughly smaller by a factor of 10° for a colloidal
crystal. As a consequence of this, external fields such as the gravitational field
have an important effect on such crystals. Shearing a colloidal crystal, by shaking
the sample, s often sufficient to shear melt the crystal.

Thirdly, dynamics are much slower in colloidal systems. A measure for this
is the “structural relaxation time”, expressed as 7 = D/o?, where D is a self-
diffusion coefficient. It gauges the time needed for a particle to diffuse over a
distance equal to its own diameter. This time scale is again much larger for a
colloidal fluid compared to an atomic fluid, roughly by a factor 10°. As a result,
once a metastable fluid has been created by shear melting a crystal, recrystallization
typically takes place on atime scale > 1 s. Therefore, all stages of crystal formation
(nucleation, growth, and ageing) are, in principle, amenable to direct observation.
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Also it is easy to prepare long-lived amorphous (glassy) states.

Finally, particle interactions, ranging from very soft interactions to hard-sphere
behaviour, can be tuned by chemical modification of the particle surface and by
changing the solvent. A popular model system consists of polystyrene spheres,
suspended in water. Due to the presence of ionizable groups on the particle surface,
these particles are charged and have a soft, long-ranged repulsive interaction. At
fow ionic strength body-centered-cubic (bec) crystals are formed, whereas face-
centered-cubic (fcc) crystals may be obtained if the electrostatic interactions are
sufficiently screened off by adding salt. At the other end of the spectrum we
find particles with a harshly repulsive interaction. The experiments we discuss
below have been performed using polymethylmethacrylate (PMMA) particles,
sterically stabilized by chains of poly-12-hydroxystearic acid. Suspended in a
solvent such as decalin, these particles behave as colloidal hard-spheres. These
particles crystallize into close-packed structures. Although fce is believed to be
the stable crystal structure, structures showing a somewhat disordered stacking
of close-packed crystal planes have also been observed [4]. For a more detailed
discussion of colloidal crystals, and experimental techniques to study them, the
reviews by Pieranski [5], Pusey [6], and Sood [7] can be consulted.

In the remainder we shall focus on crystallization in suspensions of hard-sphere
colloidal particles. The hard-sphere interaction potential is given by

V(r) = o0, r<o;
V(i) = 0,r2o0.

Whereas for atomic systems temperature usually is the parameter that controls
crystallization, for hard spheres the control parameter is the volume fraction
¢ = ma3p/6, where p is the particle number density. Using computer simulations,
such particles have been shown to crystallize into an fce lattice on increasing
density [8] and the coexistent phases are at ¢r = 0.494 and ¢y = 0.545 [9].

Experimental observations of hard-sphere dispersions [10] show that the con-
centration range where crystallization is observed is very narrow, and that crystal-
lization proceeds fastest near ¢y, the melting volume fraction. At higher volume
fraction the particle diffusion slows down. Homogeneous crystal nucleation sub-
sequently ceases at a certain volume fraction. Recent work on hard-sphere disper-
sions by van Megen and Underwood shows that this occurs at the glass transition
volume fraction (¢g = 0.58), above which dynamic light scattering shows that
the structure is arrested [11]. For ¢ > g crystal growth is still found to proceed,
however.

Our aim is to construct a model to describe nucleation and growth of colloidal
crystals. This model has been presented in more detail in Ref. [12]. We follow
the approaches by Pusey [6] and by Russel [13], where the particle dynamics are
expressed in terms of self diffusion coefficients, and therefore we first discuss the
behaviour of these coefficients in colloidal suspensions in Section 2. In Section
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3 the classical theories for crystal nucleation and for c'rystal growth are adapFed
to describe the behaviour of colloidal particles. In Sec;tlon 4 the theoFy is applied
to hard spheres and results are compared with experimental data. Finally, some

limitations of the approach presented here are discussed.

2. Diffusion

Although there is a thermodynamic analogy between atomig systems and col_loidal
suspensions, there is an important difference in the descr}ptlon of the dynamics for
the two types of system. For atomic systems the dynamics follow from Newton’s
laws of motion. Characteristic of colloidal suspensions is that the colloidal parti-
cles are much larger (and have a much larger mass) than the solvent molecules.
Therefore, the solvent degrees of freedom relax on a much shorter time scale than
those of the colloidal particles. Due to interactions with solvent molecules the
velocity fluctuations of the colloidal particles decay on a time scale over which
the particles move only a distance that is a fraction of their own size. This results
in a diffusive (Brownian) motion of the colloidal particles [6]. The mean squared
displacement ((AR)?) as a function of time ¢ for a sphere at infinite dilution is
given by

{(8R)?) = 6Dot, (1)
where Dy is the Stokes-Einstein diffusion coefficient,
kpT
Do= 3", @
™o

with 7 the solvent viscosity. At finite volume fraction ¢ of colloidal particles,
distinction can be made between the collective diffusion coefficient, D,, and
the self diffusion coefficient, D;. The collective diffusion due to concentration
gradients is described by D,, whereas D; describes ((AR)?) for a selected particle.

Below we express the dynamics of colloidal particles in terms of D; to estimate
the rates of crystal nucleation and growth. Therefore we will first examine in more
detail this self diffusion coefficient. Different behaviour is observed at short times,
when particles have moved a small distance compared to o, and at longer times.
At short times a particle only experiences the presence of other particles through
hydrodynamic interactions, whereas at longer times also direct particle interactions
become important. These two time regimes are treated separately. For a detailed
discussion of this matter see Ref. [6].

2.1. SHORT-TIME SELF DIFFUSION

To first order in ¢, the short-time self diffusion coefficient, D§ , 1s calculated to be
given by [14,15]
DS = Do(1 = 1.83¢). (3)
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Figure 2. Comparison of our empirical expressions for D} (Eq. (4), solid line) and Dy (Eq. (6) with
¢. = 0.58 and 6 = 1.74, dashed line).

Estimates have been provided for the second-order term [16]. These results are
supported by experiments [17,18]. For the description of crystallization, however,
it is necessary to have an expression for D at high ¢, where the fluid is in
fact metastable. Following Russel [13], we assume that DS — 0as ¢ — Preps
the volume fraction at random close packing (¢p = 0.64 [19]). We choose an
expression of the type

Df = DO(I - ¢/¢rcp)ﬁ~ )
Imposing the low-density limit, Eq. (3), yields an exponent § = 1.17.

2.2. LONG-TIME SELF DIFFUSION

To first order in ¢, the long-time self diffusion coefficient, DE, has been calculated
to be [20,21]
DE = Dy(1 - 2.104). (5)

Again little is known about the behaviour at high ¢, where crystallization occurs.
Supported by experimental studies [22,23] we again choose an expression of the
form

DE=Dy[1-¢/8]°. (6)

Assuming DL — 0 at the glass transition, we put ¢ = ¢ = 0.58 [24]. The
experimental data could be represented reasonably well, over the whole volume
fraction range, with Eq. (6) putting 6 = 3¢, = 1.74. In Figure 2 our empirical
expressions for DS and DE are compared. Note that both coefficients are much
smaller than Dg at ¢ > 0.5, where crystallization occurs.
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3. Nucleation and growth of crystals

In this section some results from the classical theories for homogeneous crystal
nucleation and for crystal growth are adapted to describe crystallization in colloidal
suspensions.

3.1. NUCLEATION

We wish to calculate I, the rate of formation of nuclei per unit volume. In order
to do so we apply classical nucleation theory, in the form proposed by Turnbull
and Fisher for crystallization from the melt [25]. We express their result for the
steady-state nucleation rate as

I = fpexp(—AG,,/ksT), €))

where f is the transition rate for a particle in contact with the crystal nucleus to
become part of the nucleus, and AG,, is the free energy needed for creation of the
(spherical) critical nucleus, given by

16my3v?
AG, = 3T (8)
Here + is the surface free energy per unit surface between the liquid and the solid,
assumed equal for all exposed crystal planes, v is the volume per particle in the
solid phase, and Ay is the chemical potential difference between the two phases
(note that A < 0 means crystallization will proceed). The number of particles in
the critical nucleus, n,;, follows from

&)

In order to adapt Eq. (7) to crystallization in a colloidal suspension, it is assumed
that the incorporation of particles into the nucleus is a diffusive process. Therefore
f is estimated as

D,
f=% (10)

where Dy is a self diffusion coefficient and [ a typical distance over which diffusion
has to take place. Previously we mentioned the observation that homogeneous
nucleation seems to be arrested at the glass transition, where we assume that
DSL — 0 [11]. In view of these results it seems natural to choose Dy = DXL. The
latter is calculated from Eq. (6) with ¢, = 0.58 and § = 1.74. Estimating the
characteristic diffusion distance as

[=ap™!/3, (11)
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Eq. (7) now becomes

DL
I= Ap*P=% exp(~AGp/ksT), (12)

where we have introduced the prefactor .A. According to the brief derivation given
here A = 6/7. However, for atomic systems both theoretical and experimental
results for A vary rather much and therefore it is by no means obvious that
A = O(1) (see, for instance, Ref. [26]). The same expression for I was proposed
previously by Russel [13].

3.2. GROWTH

To calculate the growth rate of crystals we use the theory of Wilson [27] and
Frenkel [28]. This theory describes the so-called normal growth, where it is as-
sumed that growth can take place at any surface site. This requires that the interface
is rough, which is probably justified for the colloidal suspensions discussed here
(see also Fig. 1). The result for the net growth rate of a crystal, v, is given by

v =y, [1 — exp(Au/ksT)] . (13)

In this expression the prefactor v,, gives the maximum rate at which particles
can be incorporated into the crystal, and the term [1 — exp(Ap/kgT)] gives the
“sticking probability” that a particle will actually become part of the crystal. If
Ap = 0, the net growth rate is zero, whereas for large (negative) Ay the maximum
growth rate is attained.

For colloidal suspensions we assume that Eq. (13) is applicable and that the
maximum growth rate is determined by diffusion of single particles near the crystal
surface. Using again the characteristic length scale ! from Eq. (11), we obtain

D
Vm = B"l‘s (14)

where the prefactor B is expected to be O(1) and D; is a self diffusion coefficient.
Combination with Eq. (13) yields

y = B-Da—sgblﬂ [1 ~ exp(Au/ksT)] . (15)

The same procedure was followed by Russel, except that he used the estimate
[ = ¢ [13]. For suspensions of charged colloidal particles, crystallizing at low
volume fraction (¢ < 0.001), Eq. (15) was verified using direct observations [29].
For these particles, Dy = Do ~ D3 was used.

It is not obvious which diffusion coefficient has to be used to describe growth
of hard-sphere crystals. On the one hand, since it is assumed that diffusion has to
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take place on a length scale [ > o, it seems appropriate to use the choice Dy = DE.
On the other hand, an important observation is that growth of heterogeneously
nucleated crystals is found to proceed at concentrations above the glass transition,
where DE = 0[24]. This again suggests that the growth kinetics are best expressed
in terms of DJ, since short-time self diffusion is expected to remain non-zero at
concentrations above the glass transition (see Section 2). In view of computer
simulation results [30] it is conceivable that co-operative motions of particles near
the crystal surface are important, and that therefore neither DS nor D¥ provide a
good description of crystal growth. However, as a practical approach, we examine
both choices Dy = D$ and D = DE.

4. Hard spheres

In this section we apply the theory presented in the preceding sections to calculate
the nucleation rate and the growth rate of hard-sphere crystals. In order to calculate
the nucleation rate from Eq. (12) expressions are needed for y and Ap.

Firstly, we consider the surface free energy. A number of theoretical studies
of the hard-sphere liquid-crystal interface have appeared, using different modi-
fications of density functional theory. The most accurate theory available seems
to be the one due to Curtin [31]. The values for the fcc (100) and (111) crystal
planes differ little; we use the average v = 0.65 kgT/o2. This value is also used
in the metastable region and it is not corrected for the surface curvature. It is by
no means clear that these assumptions are justified (see, for instance, Ref. [32]).

Secondly, we have to calculate Ap. We assume that, although the system
is not at thermodynamic equilibrium, the nucleation takes place at mechanical
equilibrium [13]. At the freezing concentration, ¢ = ¢, the osmotic pressure of
the initial fluid ITjiq = ITeoex, Where the subscript denotes properties at coexistence.
This fluid coexists with a solid with ¢, = ¢, the melting volume fraction. When
a metastable fluid is prepared, ¢ > ¢r and Iljq > Tlcoex. Due to this increased
pressure the initially formed nucleus will have a volume fraction ¢ > ¢u.

To calculate ¢ we first have to specify equations of state, both for the fluid
phase and for the solid phase. A good expression for the (metastable) liquid at
high density is [33]

I _ 3¢)m

= , 16
T~ bm— @ (16)

where we take ¢, = ¢rp = 0.64. For the hard-sphere fcc crystal Eq. (16) can

also be used, with ¢,, = dgec = 7r/3\/§ ~ 0.74 [34]. Using Eq. (16), both for the
fluid phase and for the solid phase, ¢ is obtained by solving

Hso1(¢so1) — Mot () = Tiig(¢) — Thig(&r). (17
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Figure 3. Calculated dimensionless nucleation rate I* [solid line, Eq. (19)] and number of particles
in the critical nucleus n., [dashed line, Eq. (9)] for hard spheres. (Q) Data [ * Schiitzel and Ackerson
with A = 10[35). (Q) Data I'* Henderson, arbitrary units [36].

To calculate Ay, we use for each phase

po=pooex _ 1 [ (Qﬁ) _ L (i@)d_ﬁé
kBT _kBT deoex a¢ d¢—kBT Deoex ap ¢ (18)

After solving Eq. (18) for both phases using Egs. (16) and (17), Al = gl —
g is calculated. At ¢ = ¢r, A = 0, and Au decreases continuously with
increasing ¢. At ¢ = 0.58 we obtain Ay = —2.5 kpT'. As crystallization proceeds,
for the metastable liquid ¢ decreases, I1 decreases, Ay — 0, and therefore the
crystallization kinetics will become time dependent. In the present discussion we
neglect this effect.
From Eq. (12) we calculate a dimensionless nucleation rate
5 3y 3
Io 4r3(yo?/kgT) } a4

I's —=
ADy

5/3 3¢ _
¢ / (1 _¢/¢G) exp{ 27¢2(A/.L/kBT)2
The result for I* and n,, is given in Figure 3. At ¢ ~ 0.57, n,, becomes of order
unity, so at high volume fraction the applicability of Eq. (19) becomes doubtful.
The nucleation rate increases with ¢ until ¢ = 0.56, due to the decrease of AG,.
At higher ¢, I* decreases again because DE vanishes at ¢g. Russel [13] predicts a
much more pronounced ¢-dependence of /*. The main cause for this discrepancy
seems to be that he uses ¥ = 4 kgT/a>.
Experimentally it is not obvious how / should be determined. The final crystal-
lite number density, N, can be determined using light scattering experiments or by
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Figure 4. Calculated dimensionless crystal growth rate for hard spheres using D; = DS (solid line)
and Dy = DF (dashed line). (&) Data Schitzel and Ackerson [35]. (A) Data Henderson, arbitrary
units [36].

direct counting. The question then is on what time scale these crystals have been
formed. Recently, small-angle light scattering was used to study crystallization in
hard-sphere dispersions [35]. The nucleation rate was estimated as N, divided by
1., the time needed for crystals to fill the sample, assuming that nucleation con-
tinues throughout the crystallization process. The results are included in Figure 3.
Using A = 10, the agreement with our prediction is reasonable. This agreement
is perhaps fortuitous, but nevertheless it is encouraging that the predicted absolute
nucleation rate seems reasonable.

Another set of experiments on hard-sphere dispersions, using light scattering
at the main (111) Bragg reflection angle, was carried out by Henderson [36]. To
calculate I he divides N, by #;, the induction time after which Bragg peaks become
visible, assuming that nucleation takes place only at this initial stage. In Figure
3 the results (in arbitrary units) agree well with the prediction, spanning three
decades in /.

Using Eq. (15) a dimensionless crystal growth rate is calculated,

Pz Y9 Dsip

<
I

where Dj is obtained from Eqgs. (4) and (6). The results are shown in Figure 4,
They depend rather much on the expression used for Dg. For D, = D%, v* not only
vanishes at a much lower ¢, the maximum is also an order of magnitude smaller
than for D = D;g.
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Experimentally v can be measured directly using microscopy. For hard-sphere
dispersions this does not seem to have been done. There is some experimental
information available for v, however. Schiitzel and Ackerson [35] interpret their
results in terms of a diffusion-controlled growth model. They calculate a growth
coefficient that does not seem to follow the behaviour of either of the two diffusion
coefficients Dy. We use their data to calculate v as R/, the typical crystal size at
completion time divided by the completion time (in their notation). Putting B = 1
we obtain the results given in Figure 4. The order of magnitude of v* is in between
the two predictions. The concentration dependence resembles most the prediction
using DE.

We also include in Figure 4 results by Henderson [36]. He calculates v from
the rate at which the Bragg peak intensity increases, yielding results in arbitrary
units. His values decrease rather steeply with ¢, even steeper than predicted using
D; = Dg.

5. Discussion

The use of colloidal suspensions as models to study crystallization has been
demonstrated. A simple model has been presented to describe crystallization in
hard-sphere suspensions. Although many assumptions had to be made in the
derivation, this approach may be of help to understand crystallization kinetics in
colloidal suspensions. Both for crystal nucleation and for crystal growth reasonable
agreement with experimental observations is obtained.

Several assumptions were already mentioned above. In addition, it should
be noted that crystal nucleation and crystal growth have been treated as if they
were independent processes. In practice, both will compete and crystallization
will therefore have a complex time dependence. Furthermore, the nucleation rate
was calculated using a steady-state assumption. Starting from a homogeneous
suspension a distribution of nucleus sizes will have to develop first. This will give
rise to an induction time before nucleation actually begins. A first quantitative
interpretation of such induction times in colloidal suspensions was given by Marr
and Gast [37].

Another factor of experimental importance, that we have not discussed so
far, is polydispersity. Colloidal suspensions are always somewhat polydisperse, a
relative standard deviation of the particle size of s = 0.05 being fairly good. For
hard spheres it is predicted, however, that crystallization will be suppressed when
the polydispersity exceeds a critical value, in the range 0.045 < s < 0.11 [6]. At
s = 0.075 crystallization seemed to be significantly hindered already [6].

To conclude, in the past few years, the first detailed studies of crystallization
kinetics in colloidal suspensions have appeared [29,36,38—41]. Such experiments,
combined with a more sophisticated theoretical interpretation, can yield a wealth
of information about the process of crystallization.
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