
Cell polarity: ROPing the ends together
Jian Xu and Ben Scheres
Cell polarity plays an important role in plant development, but

the mechanisms that first establish polarity cues remain

obscure. By contrast, a flurry of information has recently

emerged on the elaboration of cell shape from such unknown

initial cell-polarity cues. Recent studies suggest that Rho-

related GTPases in plants (ROPs), and their effector targets

among the ROP-interactive CRIB motif-containing proteins

(RICs), mediate two antagonistic pathways that have opposing

action on cell polarization. ROP proteins appear to interact

directly with upstream regulators of the ARP2/3 complex,

which are conserved modulators of the actin cytoskeleton.

ROP function is dependent on the class 1 ADP-ribosylation

factors (ARFs), which are core components of the vesicle

transport machinery that are also involved in the polar

localization of PIN-FORMED (PIN) family auxin efflux

facilitators.
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Introduction
Cells can be viewed along three orthogonal axes. When

one axis can be clearly distinguished from the others a cell

is said to be ‘axialized’. The distribution of subcellular

structures and molecules may be asymmetric along one or

more particular axes, making one end of the cell different

from the others. This often stunning internal asymmetry

is known as ‘cell polarity’.

Cell polarity plays important roles in both animal and

plant development. For example, in Caenorhabditis ele-
gans, Drosophila melanogaster and Arabidopsis thaliana, the

main body axis is defined by the polarity of the single-

celled zygote and polar information is used for patterning

and cell specification along this axis.

In plants, single-cell systems such as pollen tubes or root

hairs have been used to reveal molecular components that
www.sciencedirect.com
are required for apical–basal cell polarity and polar out-

growth. At the multicellular level, the polar localization of

the PIN-FORMED (PIN) family auxin transport facil-

itators has yielded valuable molecular markers for cell

polarization and better understanding of coordinated cell

polarity in plant growth and development.

In this review, we can discuss only brief highlights of

recent findings that have contributed to our understand-

ing of the mechanisms that control cell polarity in plants.

Several recent accounts provide further reading [1�–3�].

ARFs, ARF–GEFs and vesicle trafficking
ADP-ribosylation factors (ARFs) are core factors for vesi-

cle trafficking. ‘Class 1’ ARF proteins regulate intracel-

lular vesicular trafficking at multiple stages of the

secretory and lysosomal/vacuolar transport pathways in

mammalian and plant cells [4–8]. In particular, they

participate in the formation of transport vesicles and

the selection of transmembrane protein cargo from donor

compartments in mammalian cells [9,10].

The vesicle transport inhibitor Brefeldin A (BFA) inter-

feres with ARF action in mammalian, fungal, and plant

cells [11,12]. BFA treatment compromises specific cell

polarization processes such as the establishment of api-

cal–basal polarity in root-hair-bearing epidermal cells

(trichoblasts), reflected by root hair position defects

and by defects in polar outgrowth [13], indicating that

ARF-dependent vesicle trafficking is involved in cell

polarity.

Consistent with a potential role for the ARF proteins in

the establishment of plant cell polarity, mutations in the

GNOM/EMB30 gene, which encodes a BFA-sensitive

guanine nucleotide exchange factor for ARFs (ARF–

GEF) [14,15], lead to aberrant cell shape and orientation

of cell division [15,16]. GNOM/EMB30 localizes to endo-

cytic organelles, where it controls the polarized vesicle

trafficking of the BFA-sensitive auxin efflux facilitator

PIN1 to the basal end of the plasma membrane [17,18].

Weak alleles show auxin-related defects that support a

specialized function for the GNOM ARF–GEF in polar-

auxin transport [19�].

Plants have many class 1 ARF proteins [18,20] and

Arabidopsis ARF1 complements the ARF1 ARF2 yeast

double mutant [7], suggesting that class 1 ARF proteins in

Arabidopsis have canonical cellular functions. Co-localiza-

tion studies reveal that Arabidopsis ARF1 is localized to

the Golgi apparatus and endocytic organelles in both

onion and Arabidopsis cells [21�]. Manipulation of Arabi-
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dopsis ARF1 function influences cytokinesis and polar

outgrowth [21�]. Moreover, the position of root hair out-

growth is affected when GTP- and GDP-locked mutants

of ARF1 are expressed at early stages of cell differentia-

tion but after they exit mitosis, revealing specific mod-

ulation of apical–basal epidermal polarity by ARF1-

dependent vesicle trafficking machinery in a distinct

phase of plant development [21�].

ROPs and RICs
Targets for ARF-dependent vesicle trafficking are sug-

gested by the observation that BFA inhibits early polar

localization of RHO-of-plants proteins (ROPs) at the root

hair initiation site [22]. ROPs are homologs of RHO/RAC/

CDC42 RHO-family GTPases, which include key reg-

ulators of cell polarity in yeast and animals [23]. Among 11

Arabidopsis ROP genes [24], ROP1, ROP2 and ROP4 are

essential for pollen tube or root hair outgrowth

[21�,22,25,26,27��]. Consistent with its role in plant cell

polarity, the expression of ROP2 is highly enriched in the

apical plasma membranes of the root meristematic cells

[28], and ROP2 localizes to the future site of root hair

formation as well as to the tips of growing root hairs

[21�,25]. ROP2 partially co-localizes with the endocytic

marker FM4-64 upon BFA treatment, and both polar

ROP2 localization to the hair tip and the activity of

ROP2 in this region requires ARF1 function [21�], sup-

porting the idea that root hair outgrowth involves ARF-

dependent polar localization of ROP proteins [22].

A genome-wide search for putative ROP effector targets

led to the identification of genes that encode ROP-inter-

active CRIB (for CDC42/RAC-interactive binding)

motif-containing proteins (RICs) [29]. The CRIB motif

is required for the specific interaction of RICs with GTP-

bound ROPs. RICs share little sequence homology with

each other outside of the conserved ROP-interactive

domain. The overexpression of RIC genes in pollen

causes various degrees of growth inhibition in pollen

tubes, implying that various RICs have distinct functions.

Like ROP1, both RIC3 and RIC4 cause depolarized

growth. Furthermore, they display ROP1-enhanced loca-

lization to the tip of pollen tubes, suggesting that these

RICs might be targets of ROP1 [29]. Indeed, RIC4

promotes F-actin assembly, whereas RIC3 activates cal-

cium ion signaling that leads to F-actin disassembly. Polar

outgrowth defects that are caused by the overexpression

or depletion of either RIC3 or RIC4 can be rescued by the

overproduction or depletion of the other protein. Thus,

ROP1 modulates actin cytoskeletal dynamics and polar

outgrowth in pollen tube by coordinating two counter-

acting downstream pathways that are controlled by the

ROP1 targets RIC3 and RIC4 [27��]. Similar ROP-

mediated regulatory mechanisms appear to account for

the jigsaw-puzzle shape of Arabidopsis leaf pavement

cells, in which locally activated ROP2 activates RIC4
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to promote the assembly of cortical actin microfilaments

that are required for the localized outgrowth of lobes

[30��]. At the same time, ROP2 inactivates RIC1, pro-

moting the formation of well-ordered cortical microtu-

bules and the microtubule-dependent suppression of

ROP2–RIC4 interaction in the indentation zone [30��].
Although the underlying mechanism by which microtu-

bules regulate ROP–RIC4 interaction is not known, these

findings suggest a fascinating precisely regulated cross-

talk between ROP-mediated signaling pathways, which

might serve as a general molecular mechanism for the

polar outgrowth of plant cells.

ARP2/3 and its upstream regulatory factors
The inhibitory activity of the potent actin filament-dis-

rupting drug latrunculin B suggests that actin cytoskeletal

dynamics play an important role during axis establish-

ment and polar outgrowth [31,32]. Recent genetic studies

in Arabidopsis demonstrate that the major actin protein

ACTIN2 is essential for both apical–basal root hair polar-

ity and polar outgrowth [33,34], further supporting the

importance of the actin cytoskeleton in plant cell polarity.

The seven-subunit actin-related protein (ARP)2/3 com-

plex is a conserved modulator of the actin cytoskeleton.

The identification of different subunit homologs in Ara-
bidopsis suggests the existence of a functional ARP2/3

complex in plants [3�]. Mutations in genes that encode

subunits of the ARP2/3 complex lead to increased F-actin

bundling and aberrant actin patches, which misdirect the

expansion of various cell types including trichomes, pave-

ment cells, hypocotyl cells and root hair cells [35–40].

These mutations reveal a pivotal role for the ARP2/3

complex and the actin cytoskeleton in controlling polar

cell expansion in plants.

In animal cells, the activity of the ARP2/3 complex is

regulated by a variety of proteins of the WAVE (for

Wiskott–Aldrich syndrome protein family verprolin

homologous)/SCAR (for suppressor of cAMP receptor)

complex [41–44]. In response to signals from the RHO

family small GTPase Rac1, alterations in the composition

and/or subcellular localization of the WAVE/SCAR com-

plex lead to ARP2/3 activation [41,43]. Putative homologs

for proteins of these upstream regulatory complexes were

identified recently in Arabidopsis and maize [45,46��,47–

49,50��,51–55]. In brick1 mutants of maize, the failure of

lobes to form along the margins of expanding leaf pave-

ment cells is associated with the loss of local enrichments

of cortical F-actin that are found at sites of lobe outgrowth

in wildtype cells [45]. Arabidopsis Atscar2/distored3, pirogi
( pir)/Atpir/Atsra1, gnarled/Atnap1 and klunker mutants

have trichome F-actin alterations and trichome morphol-

ogy defects that are nearly identical to those of Arp2/3

complex mutants and to those of plants that express

constitutively active ROP2 [46��,47–49,51,53,56]. More-

over, PIR/AtPIR/AtSRA1 directly interacts with ROP2
www.sciencedirect.com
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Figure 1

Processes contributing to cell polarization. Vesicle trafficking that is

mediated by Class 1 ARFs is required for the polar localization of ROP

GTPases, which control actin (ACT) assembly through RICs and WAVE/

SCAR–ARP2/3 pathways and microtubule (MT) bundling through other

RICs. ARF-mediated vesicle trafficking and a specific ARF–GEF

regulator of this process also control the localization of PIN proteins, and

the polarity of this localization is controlled by the PID kinase, which

functions as a binary switch. Polar localization cues for ROP localization

or activation and for PIN localization (black bodies) remain unknown.

Red arrows: vesicle trafficking control. Black arrows: protein activity

control.
with isoform specificity and with selectivity for active

forms of the protein [46��], although in vivo interaction

and its significance has yet to be investigated. Together,

these findings strongly suggest that ROP signaling, the

ARP2/3 complex and its upstream regulatory complexes

play essential roles in the local modulation of actin

cytoskeletal dynamics, which in turn regulate axis estab-

lishment and polar outgrowth in plants.

Polar PIN protein localization
Polar transport of auxin plays crucial roles in axis estab-

lishment and polar growth during both embryonic and

post-embryonic development [2�,57]. Both the presump-

tive auxin influx carrier AUX1 and the PIN efflux facil-

itators display an asymmetrical subcellular localization at

the plasma membranes of auxin-transporting cells, which

correlates with the presumed direction of auxin flow

[58,59]. PIN proteins act redundantly, and their expres-

sion and localization undergo dynamic changes in

response to developmental regulation [60,61��] or envir-

onmental stimuli, such as light or gravity [62], which

makes them excellent read-outs for cell polarity.

Besides the earlier-mentioned role of vesicle-trafficking

machinery in polar PIN protein localization, the serine-

threonine kinase PINOID (PID) acts as a major deter-

minant of PIN protein localization [63��]. In cells in which

PID is present above a threshold level, PIN proteins are

targeted to the apical membrane, whereas low levels of

PID activity lead to the basal localization of the PIN

proteins. The dependence on kinase activity of the pre-

cise switching between two alternative localizations sug-

gests that PID mediates the choice of PIN trafficking or

docking to alternative localization cues.

Interestingly, the accumulation of PID transcript is

strongly and rapidly upregulated by auxin, the early

expression of PID mRNA in the embryo is dependent

on PIN1, and the recycling of PIN proteins from the

membrane appears to be auxin dependent [64,65,66�],
suggesting a tight connection among auxin, polar auxin

transport, PINs and PID. Moreover, PID interacts with

two calcium-binding proteins TOUCH3 and PID-BIND-

ING PROTEIN 1 (PBP1) [67], supporting a role for

calcium ion signaling in a PID-dependent signaling path-

way for the control of PIN protein localization. PID

protein localization should reveal whether ARF-depen-

dent vesicle-trafficking machinery is involved in the

localization or function of PID, for which a mechanism

has been proposed that resembles insulin-stimulated

GLUT4 transport in mammalian insulin-responsive tis-

sues [68].

Polar PIN protein localization also appears to require

sterol function because mutations in the Arabidopsis sterol

biosynthesis gene ORC/Sterol methyl-transferase 1 (SMT1)

lead to reduced auxin transport and mis-localization of
www.sciencedirect.com
PIN proteins [69]. The underlying mechanisms, however,

remain to be discovered. The internalization of sterols

and PIN2 exhibited similar kinetics and pharmacological

sensitivities, raising the possibility that the redistribution

of sterols plays a role during the endocytic recycling of

PIN proteins [70]. Sterol transport to the plasma mem-

brane is actively mediated by P-glycoproteins (PGP)/

multiple drug resistance (MDR) proteins in animal cells

[71]. Mutations in PGP/MDR-related genes from plants

result in the mislocalization of PIN proteins and in

defective auxin transport [72–74], suggesting a potential

mechanism by which PGP/MDR-related proteins in

plants mediate the transport of sterols to distinct mem-

brane domains in response to yet unknown signals, result-

ing in the polar localization of PIN proteins. Alternatively,

PGP/MDR-related proteins might interact with PIN

proteins and regulate their localization directly.
Current Opinion in Plant Biology 2005, 8:613–618
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In summary, the subcellular localization of PIN proteins

is known to rely on targeted vesicle transport, on PID

kinase activity, and on the function of sterol and PGP/

MDR-related proteins but the initial cues for the polar

localization of PIN proteins are as yet unknown.

Conclusions
Many of the components that are involved in polarized

growth and polar protein distribution have recently been

discovered and are beginning to be connected within

pathways that lead from regulators to cytoskeletal ele-

ments (Figure 1). Vesicle trafficking plays a central role in

polarized growth, but the specific controls of this process

during cell polarization need to be identified, for example

by studies on regulators of vesicle fusion [75,76]. How-

ever, the nature of initial polarity cues remains unknown.

Emerging connections between lipid signaling and cell

polarity might help in the identification of such cues [77–

79]. After that, the challenge will be to find out whether

diverse cues regulate the polar activity and localization of

diverse proteins in distinct or in related pathways, or

whether a very small set of initial polar marks are used

by all systems that elaborate plant cell polarity. Can we

rope these ends together?
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