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Effect of quenched size polydispersity on the fluid-solid transition
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We study the effect of quenched size polydispersity on the phase behavior of charged colloidal sus-
pensions using free-energy calculations in Monte Carlo simulations. The colloids are assumed to
interact with a hard-core repulsive Yukawa (screened-Coulomb) interaction with constant surface
potential, so that the particles are polydisperse both in size and charge. In addition, we take the size
distribution to be fixed in both the fluid and crystal phase (no size fractionation is allowed). We study
the fluid–solid transition for various screening lengths and surface potentials, finding that upon in-
creasing the size polydispersity the freezing transition shifts toward higher packing fractions and the
density discontinuity between the two coexisting phases diminishes. Our results provide support for
a terminal polydispersity above which the freezing transition disappears. © 2011 American Institute
of Physics. [doi:10.1063/1.3580284]

I. INTRODUCTION

The discovery that a system of hard spheres undergoes a
first-order freezing transition is undoubtedly one of the mile-
stones of computer simulations applied to statistical mechan-
ics. In the mid-1950s the existence of such a transition was
an important open question and no convincing answer could
be given starting from first principles. Therefore, it was no
surprise that at a symposium held in 1957 at the Stevens Insti-
tute of Technology in Hoboken, New Jersey, during a discus-
sion led by G. E. Ulhenbeck a vote on this question taken
among prominent scientists, including several Nobel laure-
ates, ended in a draw.1 The hesitation of half of the audience
is understandable, because the fact that purely repulsive parti-
cles can form a stable crystal is far from obvious. The question
was finally settled in favor of the existence of a fluid-crystal
transition thanks to the seminal molecular dynamics simula-
tions by Alder and Wainwright2 and Monte Carlo simulations
by Wood and Jacobson,3 as well as the later and conclusive
Monte Carlo study by Hoover and Ree.4 In more recent years,
owing to notable advances in the synthesis of colloidal parti-
cles, the existence of the phase transition has also been con-
firmed by extensive experimental evidence: the classic inves-
tigation of Pusey and van Megen5 reported the spontaneous
formation of beautiful hard-sphere crystals.

It is now widely accepted that excluded-volume interac-
tions and repulsive short-range forces play a major role in de-
termining the existence of a freezing transition: indeed, the
latter is found in the high-density end of the phase diagram of
most systems containing particles with a core. This is the case
of hard-core repulsive Yukawa (or screened Coulomb) fluids,
which have been extensively adopted as models for suspen-
sions of charge-stabilized colloids6 proving quite successful
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in their use as long as the standard DLVO theory7 is applica-
ble and the Van der Waals interactions are negligible. One of
the main features in the phase diagram of such systems is a
freezing transition between a fluid and a crystalline solid—
either a body-centered cubic (bcc) or a face-centered cu-
bic (fcc) phase depending on the inverse Debye screening
length and the volume fraction—which has been consistently
observed in experiments8 and predicted by theory9, 10 and
simulation.11

A feature of colloidal dispersions that is not considered
in the simple hard-core Yukawa model is polydispersity, i.e.,
a stochastic variation in one or more properties (for instance
size, shape, or charge) of the particles. That polydispersity
might have a deep impact on the freezing transition is in-
tuitive, since the very idea of a periodic, regular lattice is
somewhat at odds with a random variation in any property
of the particles. Indeed, polydisperse systems usually have
different—and richer—phase diagrams if compared to their
monodisperse counterparts.12 While a small degree of poly-
dispersity is expected to introduce a mere distortion in the
phase boundaries, leaving the topology of the phase diagram
largely unaffected, higher degrees of polydispersity might sig-
nificantly change the phase behavior of the system giving
birth to new phases or suppressing existing phase transitions.
In this regard, a clear distinction should be made between the
general case and the case we will address, namely, the one of
quenched polydispersity.

In order to elucidate this point, let us focus on the freez-
ing transition of a fluid whose particles are polydisperse in
size. The composition of the whole system, regardless of its
phase behavior, is quantified by the so-called parent size dis-
tribution, which determines the probability that any given par-
ticle has a certain diameter. If the system separates into a fluid
and a solid, then a daughter size distribution is associated
with each phase. Attainment of thermodynamic equilibrium
generally implies that the particles fractionate (i.e., distribute
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themselves unevenly) over the two phases, so that the daugh-
ter size distributions differ from the parent. Fractionation
is indeed the key element bestowing richness and variety
to polydisperse phase diagrams. However, in real experi-
ments size fractionation might suffer from dynamical slowing
down,13–16 or even be suppressed on purpose by compress-
ing the system sufficiently fast to high density by centrifugal
forces, gravity, or dielectric compression.17, 18 If fractionation
is completely avoided the daughter size distributions are nec-
essarily equal to the one of the parent phase: we refer to this
scenario with the term quenched polydispersity.

The phase behavior of polydisperse hard spheres, the
cleanest polydisperse system in which the freezing transition
may be studied, has been the subject of extensive investiga-
tion in the literature. For instance, it is well-known that hard
spheres with a sufficient amount of size polydispersity can
form upon compression glassy states instead of crystalline
solids.13–16, 19–22 The question concerning the existence of
a terminal polydispersity above which no stable crystal can
exist has prompted a substantial amount of theoretical23–29

and computational16, 30–35 work devoted to the determination
of an accurate equilibrium phase diagram for polydisperse
hard spheres.

Conversely, to the best of our knowledge no similar ef-
fort has been devoted to polydisperse hard-core Yukawa flu-
ids. Therefore, in this work we plan to (i) elucidate the effect
of polydispersity on the liquid–solid phase boundary, and its
dependence on the parameters of the Yukawa tail; (ii) ascer-
tain the existence of a terminal polydispersity above which
the crystal phase is suppressed in favor of a glassylike state;
(iii) check whether the phenomenon of re-entrant melting pre-
dicted for hard spheres25 takes place. We tackle the problem
by performing free energy calculations via Monte Carlo sim-
ulation, which allows us to map out the phase boundaries. We
shall restrict ourselves to the case of quenched polydispersity,
which is easier to deal with but also has practical relevance
for experiments that exploit size polydispersity to make amor-
phous and glassy states.

II. MODEL

A. Interaction energy

We consider a system of N spherical particles, polydis-
perse in size, enclosed in a box of volume V . Let r i denote the
spatial coordinate of particle i , and let σi and ai = σi/2 be its
diameter and radius, respectively. The pair potential v(ri j ) is
taken as pairwise additive, comprising a hard-core and a re-
pulsive Yukawa tail:

v(ri j ) =
⎧⎨
⎩

+∞ ri j < ai + a j

εi j
ai + a j

ri j
e−κ(ri j −ai −a j ) otherwise ,

(1)

where ri j = |r i − r j | and κ is the inverse screening length.
The contact value εi j of the pair potential in the context

of the standard DLVO theory is given by Ref. 7

εi j = β−1 Zi Z j

(1 + κai )(1 + κa j )

λB

ai + a j
, (2)

where β = 1/kB T , kB is the Boltzmann constant and T the
temperature, Zi and Z j are the charge number of particle i and
j , respectively, expressed in units of the elementary charge
and λB = e2/εkB T is the Bjerrum length with e the elemen-
tary charge and ε the dielectric constant of the solvent. In
practice the charge of a particle will be a (possibly stochastic)
function of its size, so a system polydisperse in size will also
be polydisperse in charge: the simplest case is that of con-
stant surface charge density, according to which the particle
charge is proportional to the square of its linear size. Another
important condition, which is often met in colloidal disper-
sions and therefore will be adopted in this work, is the one
of constant surface potential, i.e., the electrostatic potential
measured on the surface of a particle is the same for each par-
ticle in the system, regardless of its radius. In the context of
linear Poisson–Boltzmann theory, which underlies the deriva-
tion of the screened Coulomb part in the standard DLVO po-
tential (1), the electrostatic potential �i on the surface of a
single, isolated particle i embedded in the electrolyte reads as
follows:7

�i = (βe)−1 Zi

1 + κai

λB

ai
. (3)

If the electrostatic potential is taken as a constant (�i = �),
independent of particle number i , Eqs. (2) and (3) imply

εi j ∝ ai a j

ai + a j
, (4)

the constant of proportionality being the same for all pairs.
If, moreover, we choose a reference particle diameter σ̄ and
call ε̄ the contact value for the pair interaction of two particles
with reference size σ̄ , we can express the pair interaction of
any two particles in the system in the following way:

v(ri j ) =
⎧⎨
⎩

+∞ ri j < ai + a j

ε̄
σiσ j

σ̄ ri j
e−κ(ri j −ai −a j ) otherwise .

(5)

This will be taken as the final expression defining the poten-
tial energy of the system, being conveniently characterized
by the two parameters ε̄ and κ , besides the typical particle
diameter σ̄ .

In order to make contact with experiments, one can also
show from Eqs. (2) and (3) that

βε̄ = (βe�)2 σ̄

4λB
; (6)

typical values for a colloid in a low dielectric solvent at room
temperature are8 � = 25 mV, λB/σ̄ = 0.01, which roughly
corresponds to βε̄ ≈ 20.

B. Polydispersity

The polydispersity of the system is most easily modeled
by a normalized size distribution N (σ ), which is defined such
that the number of particles with a diameter between σ and
σ + dσ is given by NN (σ )dσ . In the absence of a clear ex-
perimental indication, the choice of N (σ ) is somewhat ar-
bitrary. The size polydispersity p is defined as the ratio be-
tween the standard deviation and the mean value of the size
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distribution:

p =
√

σ 2 − σ̄ 2

σ̄
, (7)

where the averages σ̄ and σ 2 are defined by

σ̄ =
∫

dσ σ N (σ ) , σ 2 =
∫

dσ σ 2 N (σ ) . (8)

In this work, we assume that the particle diameters follow a
log-normal distribution:

N (σ ) = 1

z
√

2π σ
exp

[
− (log(σ/σ̄ ) + z2/2)2

2z2

]
, (9)

with z =
√

log(1 + p2). No particular reason supports this
choice; viable alternatives, also found in literature include
top-hat, triangular, and Gamma (Schultz) distributions. How-
ever, once the polydispersity index p is fixed we expect the
results to depend not too markedly on the shape of the distri-
bution.

Equation (9) defines the parent distribution: the quantity
NN (σ )dσ corresponds to the total number of particles in the
box having a diameter between σ and σ + dσ . If the system
phase separates into two phases, then a daughter distribution
function Dω(σ ) can be attributed to each phase ω (ω = I, II)
in such a manner that NωDω(σ )dσ is the number of particles
in phase ω with a diameter lying in the interval [σ, σ + dσ ],
Nω being the total number of particles belonging to that phase.
Conservation of particle numbers requires that

NI + NII = N , (10a)

NIDI(σ ) + NIIDII(σ ) = NN (σ ) . (10b)

The constraint of quenched polydispersity forces the daughter
size distributions to match that of the parent phase:

DI(σ ) = DII(σ ) = N (σ ) . (11)

If the system is allowed to fractionate, i.e., particles with di-
ameter σ may distribute themselves unevenly over the two
daughter phases, not a priori constraint exists, as long as
Eq. (10) is satisfied together with the conditions for thermo-
dynamic equilibrium, as will be explained below.

C. Reminder on polydisperse phase equilibria

A polydisperse system can be considered as a multicom-
ponent mixture with an infinite number of species. However,
several subtleties arise and care must be taken to properly de-
fine thermodynamic quantities. In the polydisperse limit, the
thermodynamic potential of a homogeneous bulk phase de-
pends on the usual thermodynamic variables and becomes a
functional of the size distribution function. For instance, the
Helmholtz free energy F of a homogeneous daughter phase
with a size distribution D(σ ) is given by36

F = F(T, V ; ND(σ )). (12)

Subsequently, one can obtain the pressure by P(T, ρ;
D(σ )) = (−∂ F/∂V )ND(σ ),T , where ρ = N/V denotes
the particle number density, whereas the chemical potential
μ (which is now a function of the particle diameter σ ) is

defined through a functional derivative:

μ(σ, T, ρ;D(σ )) =
(

δF

δND(σ )

)
V,T

. (13)

The conditions for phase coexistence are given by a straight-
forward generalization of those for a mixture with a finite
number of components:36

TI = TII ,

PI(TI, ρI;DI(σ )) = PII(TII, ρII;DII(σ )) , (14)

μI(σ, TI, ρI;DI(σ )) = μII(σ, TII, ρII;DII(σ )) ∀σ .

Equation (14), when supplemented with Eq. (10), forms the
thermodynamic basis for studying phase equilibria in poly-
disperse systems.

A substantial simplification arises if the constraint (11)
of quenched polydispersity is imposed. In that case, the func-
tional dependence on the size distribution function D(σ ) be-
comes immaterial and the Helmholtz free energy F(T, V, N )
is simply a function of temperature, volume, and number of
particles. As a consequence, the dependence on D(σ ) drops
out for the pressure P(T, ρ) and the chemical potential re-
duces to that for a one-component system:

μ(T, ρ) =
(

∂ F

∂ N

)
V,T,D(σ )

=
∫

μ(σ, T, ρ;D(σ ))D(σ ) dσ .

Moreover, the conditions (14) for phase coexistence can be
cast in the same form as the ones for a monodisperse system:

TI = TII ,

PI(TI, ρI) = PII(TII, ρII) , (15)

μI(TI, ρI) = μII(TII, ρII) .

Owing to these simplifications, once the Helmholtz free en-
ergy is known for both phases a standard common tangent
construction37 can be used to locate the densities of the coex-
isting phases.

III. METHODS

The task is now to devise a Monte Carlo strategy to deter-
mine, at fixed temperature, the densities of the coexisting fluid
(F) and crystalline solid (S) phases in a hard-core repulsive
Yukawa system in the quenched polydispersity case. Concern-
ing the crystalline solid phase, the most natural choice for the
lattice structure is the one being stable in the monodisperse
limit, but other choices can be made as well.

The size polydispersity of the system is described by
one of the realizations of the entire stochastic set {�i }, that
is one of the possible assignments of sizes to the particles
drawn in accordance with the underlying probability distri-
bution function. As a first remark, we note that the defini-
tion for the Helmholtz free energy F(T, V, N ) for quenched
polydispersity is stochastic: formally, the free energy of a
polydisperse finite system is a function of the entire stochas-
tic set {�i } of particle diameters: only in the thermodynamic
limit it becomes a true functional of the size distribution
function N (σ ) .52 To deal with the finite size of the system
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inherent to a Monte Carlo simulation, at least two strategies
are viable: either we explore different realizations of the poly-
disperse system in the course of the same simulation (for ex-
ample devising moves which change the size of the particles),
or we perform a separate simulation for a number of realiza-
tions and then average the results a posteriori. In this work,
we pursued the second approach. In order to ensure a good
sampling of the disorder, the size of the simulated system and
the number of independent realizations should be balanced.

A. Fluid and solid free energy

Free energy calculations via Monte Carlo simulation are
notoriously a time-demanding task, so the number of direct
free energy evaluations should be kept to a minimum. At fixed
temperature once the free energy of a homogeneous phase is
known at a reference density ρ0, the entire branch of the free
energy can be determined provided the equation of state for
the same phase (in the form of the pressure as a function of
density) is available. This is most readily seen by defining the
dimensionless free energy per particle

f (T, ρ) = βF

N
, (16)

and hence,

f (T, ρ) = f (T, ρ0) +
∫ ρ

ρ0

β P(T, �)

�2
d� . (17)

The equations of state for both the fluid and the crystalline
solid phase can be computed using standard computer simu-
lations in the N PT ensemble;39 the remaining task is thus to
estimate the reference part f (T, ρ0).

To this end, we first split the free energy in the sum of an
ideal gas term and an excess term:

f (T, ρ) = f id(T, ρ) + f ex(T, ρ) . (18)

The ideal gas term for a polydisperse system with a generic
size distribution function D(σ ) can be derived (with some
caveats involving logarithmically divergent quantities) from
the equivalent expression for a multicomponent mixture; the
final result reads as follows:36

f id(T, ρ;D(σ )) =
∫

dσ D(σ )[log(ρD(σ )�3(σ )) − 1] ,

(19)
where �(σ ) stands for the thermal de Broglie wavelength,
which has a dependence on the size of the particle through its
mass. Defining an effective thermal wavelength �̄ (or equiv-
alently an effective mass m̄) so that

log �̄3 =
∫

dσ D(σ ) log(�3(σ )) , (20)

Equation (19) can be recast in the suggestive form

f id(T, ρ;D(σ )) = log(ρ�̄3) − 1 +
∫

dσ D(σ ) log (D(σ )) ,

(21)
that is, the ideal gas free energy density of a polydisperse
system equals that of a monodisperse, one-component sys-
tem comprising particles with an effective mass m̄ plus
an ideal mixing term involving the distribution function
D(σ ). Under the constraint of quenched polydispersity, the

size distribution function of the two daughter phases equals
that of the parent distribution DI (σ ) = DI I (σ ) = N (σ ), and
hence f id(T, ρ;D(σ )) = f id(T, ρ;N (σ )). In this particular
case, the contribution arising from the entropy of mixing is
identical in both daughter phases and can be neglected in the
determination of phase equilibria. The same holds for the ad-
ditive constant involving the effective thermal wavelength �̄,
therefore particle masses play no role either.

In the fluid phase, the dilute limit where the excess con-
tribution vanishes can be reached starting from any density
without incurring a phase transition, so the entire branch of
the free energy density of the fluid phase fF(T, ρ) can be com-
puted from the knowledge of the equation of state alone:

fF(T, ρ) = f id
F (T, ρ) +

∫ ρ

0

β PF(T, �) − �

�2
d� . (22)

The same does not hold in the crystalline solid phase, and the
need arises for a direct evaluation of the reference free energy
density fS(T, ρ0

S ). To fulfill this goal a number of approaches
exist; in this work we adopted the method of Frenkel and Ladd
(also termed Einstein integration), which appears to be the
most widely used and tested to date. In the following we will
just introduce its main features referring the interested reader
to the original articles40, 41 for further details.

The key idea of the method is to build a reversible ther-
modynamic path between the system of interest and the non-
interacting Einstein crystal, i.e., a system of noninteracting
particles linked to their respective lattice sites by harmonic
springs, whose free energy can be computed exactly. For a
system comprising particles with a hard core, this is achieved
by introducing an auxiliary potential energy function Uλ con-
taining a coupling parameter λ whose purpose is to smoothly
switch off interparticle interactions other than the cores while
switching on the lattice springs:

Uλ(rN ) = UHS(rN ) + (1 − λ)U (rN ) + kB T λα

N∑
i=1

|ri −Ri |2
σ̄ 2

.

In the previous expression UHS(rN ) is the potential energy
due to the pairwise sum of hard-sphere potentials, U (rN ) the
remaining part of the interparticle potential, α a dimension-
less spring constant common to all particles and {Ri } the set
of ideal lattice points of the crystal; when λ = 0 the system
of interest is recovered, while in the limit λ → 1, provided
the spring constant α is chosen sufficiently high to render the
presence of the cores immaterial, the noninteracting Einstein
crystal is approached. It then follows that the free energy den-
sity of the system is given by41

fS(T, ρ) = 1

N

∫ 1

0
dλ

〈
βU (rN ) − α

N∑
i=1

|r i − Ri |2
σ̄ 2

〉CM

λ

+3(N − 1)

2N
log

(
α�̄2

πσ̄ 2

)
+ 1

N
log

(
�̄3

V (2π N )1/2

)
,

(23)

Downloaded 14 Sep 2011 to 131.211.104.231. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



154504-5 Freezing of polydisperse charged colloids J. Chem. Phys. 134, 154504 (2011)

where the notation 〈·〉CM
λ stands for an ensemble average in

the N V T ensemble for a system interacting with the potential
energy function Uλ(rN ) and subject to the constraint of fixed
center of mass.53

The free energy computed according to Eq. (23) is sub-
ject to finite-size effects decaying as N−1: to properly deal
with this issue, one usually repeats the calculation varying the
number of particles and then extrapolates the result to the ther-
modynamic limit.40, 41 In this work we instead stick with a sin-
gle calculation relying on a large system size, already required
to properly account for particle polydispersity, to reduce the
spurious effects.

B. Algorithm

Below we describe in more detail the procedure that we
used to map out the phase boundaries. First, we set the pa-
rameters of the pair potential (5), choosing the dimensionless
reference contact value βε̄ and the inverse screening length
κσ̄ , and the total number of particles N . Moreover, we choose
a lattice structure for the polydisperse crystal—typically, we
select the structure of the solid coexisting with the fluid in the
monodisperse case, the interparticle potential being equal—
and a density ρ0

S for the reference free energy evaluation.
Then, for each value of the polydispersity index p, nr re-
alizations of the system are constructed by drawing random
diameters from the log-normal distribution (9). The particles
are initially arranged with a density ρ0

S on a regular lattice
having the preselected structure: this is achieved by trial and
error, positioning the particles one after another at the sites
of the lattice as the random diameters are being drawn; as
soon as an overlap occurs, the whole procedure is restarted
from the very beginning, so that the parent distribution N (σ )
is not biased. The procedure becomes inefficient as p and ρ0

S

increase and beyond a certain limit the polydisperse crystal
cannot be constructed within a reasonable time; a fictitious
line (not well-defined as it depends on the number of particles
and on the time that one is prepared to wait) can be drawn in
the phase diagram in the packing fraction η - polydispersity
p plane where the polydisperse crystal cannot be constructed
and is therefore likely unstable.

Einstein integration is performed on the initial configu-
ration to get the solid free energy at the reference density.
We use the same configuration to start the computation of
the solid branch of the equation of state, and, after melting
the crystal, of the fluid branch. Once all realizations of the
polydisperse system have been processed, we take averages
over the different outcomes.54 Finally, we evaluate the fluid
and solid free energy as a function of density by means of
Eqs. (22) and (17), respectively, and determine the density
of the coexisting phases by imposing the conditions of two-
phase equilibrium (15). The conversion between density and
packing fraction is performed at the end of the whole proce-
dure by using the actual mean volume of the particles com-
puted over the different realizations.

C. Technical details

All the simulations are carried out in a cubic box with
periodic boundary conditions and the minimum image con-

vention; the number of particles is chosen so that in the solid
phase an integer number of primitive lattice cells fits into
the box. A spherical cutoff is applied to the pair potential (5);
the cutoff radius rc is set beforehand and kept constant during
the course of a simulation: care is taken to ensure that it never
exceeds half of the box length. No tail correction is applied
to compensate for the cutoff: on the one hand, the exponen-
tial decay of the potential makes the correction negligible if
rc is sufficiently large;55 on the other hand, the actual evalua-
tion of the tail correction is not straightforward in the case of
polydispersity.

Equations of state are computed by means of simula-
tions in the NPT ensemble. For a single branch several tens
of points are sampled and later interpolated by the virial
expansion

β P(T, ρ) − ρ

ρ2
=

M∑
j=0

b jρ
j , (24)

with fitting coefficients {b j } and a polynomial degree
M � 10.

To compute the reference solid free energy within the
Frenkel–Ladd method, the integral in Eq. (23) is evaluated
by a numerical quadrature rule using a total of thirty nodes.
We divide the interval spanned by λ in the two subinter-
vals [0 − 0.2) and [0.2, 1.0], and apply to each one the 15-7
Gauss–Kronrod rule,42, 43 which has the advantage over the
commonly used Legendre rule of providing an estimate of
the error in the result. The rationale behind the splitting is
that the integrand is steeper near the left end of the interval,
where the springs are less effective in confining the particles
close to the lattice sites, therefore, it is convenient to concen-
trate the quadrature nodes in that region. We set the value of
the spring constant α sufficiently high so that the noninter-
acting regime is reached when λ = 1. We verify this by com-
paring the average value of the internal energy with the value
expected for the harmonic potential of the springs on the basis
of the equipartition theorem.56

The conditions of two-phase equilibrium (15) are han-
dled by standard solvers of nonlinear equations: the chemi-
cal potential μ is computed without performing derivatives
by means of the thermodynamic identity

βμ(T, ρ) = f (T, ρ) + β P(T, ρ)

ρ
. (25)

Simulations are accelerated by a combination of high and
low level optimizations. A cell-list method is used to track the
position of the particles: a regular grid of cells, able to ex-
pand and shrink along with the box, is set up so that on aver-
age a cell contains only a few particles. The distance between
each pair of cells—expressed in units of the box length, in or-
der to be unaffected by scaling operations—is precomputed
at the beginning of the simulation, and a list is associated
with each cell with pointers to the other cells sorted in or-
der of increasing distance: in this way, the set of cells that are
within the cutoff distance from any given cell can be identified
at constant computational cost without performing any addi-
tional distance calculation. Moreover, the single-instruction,
multiple-data extensions of Intel and AMD processors are
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TABLE I. Summary of the parameters characterizing the four different model systems that have been simulated.
From left to right: label of the model; dimensionless contact value of the pair potential βε̄, inverse screening
length κσ̄ and cutoff radius rc/σ̄ of the pair potential; lattice structure (FCC or BCC) and packing fraction η0

S
coexisting with the fluid in the monodisperse case (for systems A-C the estimate is based on the phase diagrams
found in Ref. 11; for system D the mapping of the hard-core Yukawa model onto the point Yukawa model devised
in the same article has been applied); number of particles N ; number of realizations nr per polydispersity value
over which averages were taken; dimensionless spring constant βασ̄ 2 of the Einstein crystal; maximum value of
the polydispersity pmax for which fluid–solid coexistence could be determined.

Lbl βε̄ κσ̄ rc/σ̄ Lattice η0
S N nr βασ̄ 2 pmax

A 20 10 3.0 FCC 0.29 5324 5 4000 0.095
B 81 3.333 5.0 BCC 0.108 4394 5 4000 0.125
C 20 3.333 4.0 BCC 0.28 4394 5 4000 0.100
D 1200 0.7 20.0 BCC 0.0029 4394 5 100 0.220

exploited to achieve a limited amount of low-level parallelism
in the computation of particle interactions.

IV. RESULTS AND DISCUSSION

We now apply the procedure outlined in Sec. III to a
number of hard-core Yukawa systems. Four different systems,
which we label with letters from A to D, are considered: a de-
tailed list of the parameters defining each system can be found
in Table I. We only take into account the solid phase that co-
exists with the fluid phase in the absence of polydispersity,
all other parameters for the screening length and reference
contact value being equal. It is indeed possible that beyond
a certain degree of polydispersity another structure might be
stable, but this issue has not been addressed here.

Systems A,B,C are models of micrometer-sized colloids
with a surface potential in the range 25–50 mV dispersed in
a low dielectric solvent at room temperature; the parameters
were chosen to allow a comparison with data available in the
literature for the monodisperse case.11

System D is devised to mimic the experiments in-
volving highly charged water-in-oil droplets reported by
Leunissen et al.,44 in which a stable crystalline solid at ex-
tremely low packing fraction and high polydispersity was
seen. No details are to be found in the original article, but
a rough analysis of the pictures reveals a packing fraction in
the order of 10−3 and a polydispersity as high as 20%. The
parameters of the potential are set according to the mapping
of the hard-core Yukawa model onto the point Yukawa model
devised in Ref. 11 in such a way that in the absence of polydis-
persity the fluid–solid transition occurs at a packing fraction
of the same order of the aforementioned estimate.

A. Phase diagrams

The phase behavior of system A is presented in the
packing fraction, polydispersity (η, p) plane in Fig. 1. In the
absence of polydispersity the phase boundaries are fully con-
sistent with the results of Hynninen and Dijkstra11 (see also
the column η0

S of Table I). As the polydispersity increases,
two phenomena occur: (i) the freezing transition shifts toward
higher packing fractions; (ii) the difference �η between
the packing fraction of the solid and the packing fraction of
the fluid decreases. This trend, made explicit in the inset of the

figure, suggests the existence of a terminal polydispersity pt

at which the density gap closes (�η = 0). The main diagram
also shows that just below pt re-entrant melting takes place,
that is the solid melts upon compression.

To gain a better understanding of these features, in
Fig. 2 the difference between the chemical potential of the
coexisting solid and fluid phase �μ is plotted as a function of
the pressure β P σ̄ 3 for several values of the polydispersity p:
in such a diagram, phase coexistence corresponds to �μ = 0,
whereas �μ ≶ 0 marks the stability of a single phase. For
most values of the polydispersity the curve shows only one
intersection with the �μ = 0 axis, which marks the fluid-to-
ordered solid transition. For sufficiently high polydispersity,
however, a second intersection appears, and a disordered, flu-
idlike configuration becomes favoured again when the pres-
sure is raised above a prescribed value. The terminal poly-
dispersity pt may be defined as the one corresponding to a
curve tangent to the horizontal axis. Finally, when p > pt the
curve lies entirely in the region of stability of the single fluid
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FIG. 1. Quenched-polydispersity phase diagram of hard-core Yukawa par-
ticles with βε̄ = 20, κσ̄ = 10 (system A) presented in the packing fraction
η - polydispersity p plane. Symbols denote the results from Monte Carlo
simulations, whereas lines serve as guides to the eye. Re-entrant melting can
be seen in the upper right part of the diagram, corresponding to polydisper-
sity p = 0.093 and p = 0.095. “FCC” denotes the stable face-centered-cubic
phase and “FLUID” the stable fluid phase. The four state points denoted by
W-Z are object of structural analysis later in the text. In the inset, the differ-
ence between the packing fraction of the solid and the one of the fluid across
the main (that is, nonre-entrant) freezing transition is plotted as a function of
the polydispersity p.
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FIG. 2. System A: difference between the chemical potential of the solid μS

and the chemical potential of the fluid μF plotted as a function of the pressure
for a choice of indices of polydispersity.

phase and both the freezing transition and the re-entrant melt-
ing transition disappear.57

This scenario closely matches the one first predicted by
Bartlett and Warren25 and later confirmed by simulations by
Nogawa et al.16 for a hard-sphere system. Although close to
the terminal polydispersity the results might be affected by
numerical uncertainties inherent to any thermodynamic inte-
gration and to a lesser extent to equation of state calculations,
we believe that the topology of the phase diagram as depicted
in Fig. 1 is sound. The precise identification of the terminal
polydispersity pt , besides being prone to the aforementioned
numerical errors, would cost a great computational effort.
Nonetheless, a rough estimate is readily provided: by extrap-
olating the curve depicted in the inset of Fig. 1 the terminal
polydispersity can be bracketed as 0.095 < pt < 0.100.58

As a reference, we also show in Table II the variation
of the solid free energy between different realizations of the
polydispersity. For each value of polydispersity p, and for
each realization of the polydispersity we have generated, we
report the excess part of the dimensionless free energy per
particle fS computed at the reference density ρ0

S by means
of the Frenkel–Ladd method. The different realizations are
labeled with the first four moments of the sample diameter
distribution: mean (m), standard deviation (s), skewness (γ1),
and excess kurtosis (γ2). The excess free energy in the absence
of polydispersity is also shown.

We now discuss model system B, characterized by
stronger and more long-ranged interparticle interactions. The
phase behavior is shown in Fig. 3 in the packing fraction
η - polydispersity p plane. Due to the stronger repulsion,
freezing takes place at packing fractions significantly lower
than the ones typical of the previous system; apart from that,
the phase behavior is entirely similar. We stress two minor
differences: (i) re-entrant melting could only be determined
for the highest value of the polydispersity p = 0.125 just be-
fore the disappearance of the freezing transition at p 
 0.130
(see the caption of the figure); (ii) the solid supports a higher
degree of polydispersity than what seems possible in system
A: indeed, the terminal polydispersity can be estimated as
0.125 < pt < 0.130.

TABLE II. System A: variation of the excess part of the dimensionless
solid free energy f ex

S = βFex
S /N at the reference density ρ0

S between dif-
ferent realizations of the polydispersity, which are characterized by the first
four moments of the diameter distribution: mean (m), standard deviation (s),
skewness (γ1), and excess curtosis (γ2); the reference diameter σ̄ is taken as
the unit of length.

m s γ1 γ2 f ex
S (ρ0

S )

p = 0.000, ρ0
S = 0.55

. . . . . . . . . . . . 8.289

p = 0.050, ρ0
S = 0.55

1.00 0.0500 0.104 0.0218 8.420
1.00 0.0506 0.142 − 0.0278 8.457
1.00 0.0497 0.155 − 0.0155 8.428
0.999 0.0503 0.215 0.0789 8.412
1.00 0.0502 0.169 − 0.0637 8.417

p = 0.070, ρ0
S = 0.57

1.00 0.0686 0.198 0.147 9.241
1.00 0.0687 0.189 0.00208 9.277
1.00 0.0699 0.154 − 0.0471 9.248
1.00 0.0705 0.294 0.207 9.234
1.00 0.0692 0.186 0.0556 9.328

p = 0.090, ρ0
S = 0.60

1.00 0.0919 0.274 0.184 10.66
1.00 0.0910 0.278 0.106 10.62
0.999 0.0907 0.302 0.212 10.59
1.00 0.0900 0.291 0.170 10.61
1.00 0.0910 0.283 0.0910 10.70

p = 0.093, ρ0
S = 0.65

0.997 0.0929 0.281 0.0287 12.76
1.00 0.0922 0.281 0.203 13.09
1.00 0.0930 0.292 0.181 13.07
1.00 0.0940 0.250 0.119 13.03
0.998 0.0916 0.237 0.0179 12.76
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FIG. 3. Quenched-polydispersity phase diagram of hard-core Yukawa parti-
cles with βε̄ = 81, κσ̄ = 10/3 (system B) presented in the packing fraction η

- polydispersity p plane. Symbols and labels are the same as in Fig. 1. “BCC”
denotes the stable body-centered-cubic crystal phase. Re-entrant melting at
a packing fraction η ≈ 0.285 (not reported in the plot for graphical conve-
nience) was found at polydispersity p = 0.125. Simulations with p = 0.130
were performed and showed that in that case a fluidlike, disordered state is
always stable with respect to the ordered solid.
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FIG. 4. Quenched-polydispersity phase diagram of hard-core Yukawa parti-
cles with βε̄ = 20, κσ̄ = 10/3 (system C) presented in the packing fraction
η - polydispersity p plane. Symbols and labels are the same as in Fig. 1. See
the text for remarks on this figure.

Figure 4 reports the phase behavior of model system C
with a contact value of the pair potential identical to system
A, βε̄ = 20, and inverse screening length identical to model
B, i.e., κσ̄ = 3.333. Although the shape of the phase diagram
is in line with the previous two, the phase boundaries could
not be delineated here to their full extent, nor the terminal
polydispersity could be located. Indeed, beyond p = 0.1, the
highest value of polydispersity considered, we could not eval-
uate the free energy of the solid because the procedure out-
lined in Sec. III B failed to produce an initial crystal config-
uration with a density ρ0

S high enough for the crystal to be
stable against melting.

Figure 5 shows the phase diagram of model system D,
characterized by a highly repulsive long-ranged interparticle
potential. The general trend uncovered in the previous sys-
tems is fully confirmed even in this extreme case. Moreover,
our results confirm that an extremely dilute crystal (η ≈ 10−3)
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FIG. 5. Quenched-polydispersity phase diagram of hard-core Yukawa parti-
cles with βε̄ = 1200, κσ̄ = 0.7 (system D) presented in the packing fraction
η - polydispersity p plane. Symbols and labels are the same as in Fig. 1.
Note the difference in the packing fraction scale between this figure and the
previous three. The highest degree of polydispersity investigated for which
fluid–solid coexistence was found is p = 0.22; simulations with p = 0.23
were performed but in that case a fluidlike, disordered state is always stable
over the ordered solid.
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FIG. 6. Quenched-polydispersity phase diagram of polydisperse hard
spheres presented in the packing fraction η - polydispersity p plane. Sym-
bols and labels are the same as in Fig. 1. Note the difference in the packing
fraction scale between this figure and the previous four. The highest degree
of polydispersity investigated for which fluid–solid coexistence was found is
p = 0.06.

can sustain a polydispersity as high as 20% without melting,
a fact that substantiates the findings of Leunissen et al.44 The
terminal polydispersity is indeed quite large and can be brack-
eted as 0.22 < pt < 0.23. In the range of pressures we inves-
tigated (rather limited) no evidence was found of re-entrant
melting.

For comparison, we also map out the phase diagram for
polydisperse hard spheres using the same procedures. The
phase diagram is presented in Fig. 6. We again find that the
freezing transition shifts toward higher packing fractions and
that the difference between the packing fraction of the co-
existing solid and fluid phase decreases upon increasing the
polydispersity. For polydispersities p > 0.06, we were not
able to construct a crystalline phase using the procedure as
described above or by compressing a polydisperse crystal
phase to higher densities while retaining the crystalline order
(no melting). Hence, we are not able to investigate whether or
not a terminal polydispersity exists for hard spheres.

A comparative plot of the effects of polydispersity on
the location of the fluid–solid transition and on the width of
the coexistence region in the four model systems and in a
hard-sphere system is presented in Fig. 7. In the left panel, we
plot the relative shift (η̄ − η̄0)/η̄0 of the fluid–solid transition
as a function of the polydispersity p, where η̄ = (ηF + ηS)/2
is the mean packing fraction of the phase separated system.
In the right panel, we present the difference �η/�η0 be-
tween the packing fraction of the solid and the fluid phase
normalized by the corresponding value at p = 0 as a function
of p. We find that the normalized difference increases with
decreasing κσ̄ .

B. Microscopic structure of the polydisperse solid

A further question that can be addressed concerns the de-
gree of microscopic order in the polydisperse solid. The solid
is initially built as a perfect crystal, with FCC or BCC struc-
ture, but in the course of a simulation the particles are free to
rearrange themselves. To this end, we consider the four state
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FIG. 7. Comparative plot of the effect of polydispersity in systems A-D and
a hard-sphere system. Symbols are the results of Monte Carlo simulations,
lines are guides to the eye. (Left panel) Relative shift (η̄ − η̄0)/η̄0 of the fluid–
solid transition as a function of the polydispersity p: η̄ = (ηF + ηS)/2 is the
mean packing fraction of the phase separated system, η̄0 is the value of the
same quantity in the absence of polydispersity. (Right panel) Difference be-
tween the packing fraction of the solid and the fluid (�η) normalized by the
corresponding value at p = 0 (�η0) plotted as a function of the polydisper-
sity p.

points W,X,Y,Z in the phase diagram of model system A (see
Fig. 1) and analyze the microscopic structure of the system
at each point. The selected points correspond to a value of
polydispersity (p = 0.093) close to pt : W and X identify the
coexisting fluid and solid phase, respectively, corresponding
to the main freezing transition, whereas Y and Z correspond
to the coexisting solid and fluid phase associated with the re-
entrant melting transition.

The radial distribution function corresponding to state
point W, computed considering all pairs of particles irrespec-
tive of their size, is depicted in the upper panel of Fig. 8 and
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FIG. 8. Upper panel: radial distribution function g(r ) as a function of dis-
tance r of model A at state point W in Fig. 1. Lower panel: radial distribution
function g(r ) of model A at state point X (full line) compared to that of a
monodisperse system at the same density (dashed line).

shows a low degree of coordination as one expects in a fluid
state. On the contrary, the radial distribution function of the
solid across the phase boundary (state point X), reported in the
lower panel, shows a much higher degree of coordination and
the features typical of a crystalline arrangement. As a compar-
ison, the radial distribution function of a monodisperse system
with the same density is superimposed in the same plot: apart
from a certain amount of smearing due to polydispersity in
the former case, the two have the same structure. The radial
distribution functions corresponding to state points Y and Z
exhibit the same features and are not shown.

As a further inquiry on the microscopic structure of the
system, we perform an analysis of the local degree of crys-
talline order by employing the Q6 bond order parameter.45–47

This is one of a series of order parameters that can be used
to distinguish fluid and solid domains in a system of parti-
cles, exploiting the fact that in a solid the local environments
of neighboring particles are strongly correlated, whereas the
same correlation is much less pronounced in a fluid sam-
ple. More precisely, we associate with each particle a set of
vectors—hereafter called bonds—by drawing lines between
the particle and each of its neighbors. We then investigate the
degree of correlation between the sets of bonds belonging to
neighboring particles.

To this end, we project the local particle density around
each particle in the sample onto the set of spherical harmon-
ics {Y m

l }: although an exact expansion would require har-
monics of all orders, we make the hypothesis that the set of
harmonics corresponding to a single, suitably chosen order
l suffices for our needs. Accordingly, we associate with each
particle i a set of complex numbers {ql,m(i)} with m ∈ [−l, l]:

ql,m(i)
.= 1

Nnb(i)

Nnb(i)∑
j=1

Y m
l (r̂ i j ) , (26)

where the sum runs over all Nnb(i) neighbors of the particle—
defined for instance as the particles lying within the first
minimum of the radial distribution function—and r̂ i j are
the orientations of the bonds linking the particle with its
neighbors.

The degree of correlation between the environments of
two neighboring particles i and j may be quantified by the fol-
lowing normalized scalar product, hereafter called bond cor-
relation index:

Si j =

l∑
m=−l

ql,m(i) q∗
l,m( j)

(
l∑

m=−l

|ql,m(i)|2
)1/2 (

l∑
m=−l

|ql,m( j)|2
)1/2 , (27)

where ∗ denotes complex conjugation. Note that, owing to the
property q∗

l,m = (−1)mql,−m , the latter is a real quantity.
In the upper panel of Fig. 9 we show the histogram

of the bond correlation index Si j in two systems of model
A—a monodisperse fluid and a monodisperse FCC crystal—
for two different symmetry indices l of the harmonic base
(l ∈ {4, 6}). We notice that in either case the distribution in
the fluid is much broader than the one pertaining to the crystal,
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FIG. 9. Distribution of bond order parameters. Upper panel: distribution of
the bond correlation index Si j in a monodisperse fluid and in a monodisperse
FCC crystal of model A corresponding to l = 4 and 6 of the (incomplete)
harmonic base. Lower panel: distribution of the number of neighbors per par-
ticle ni with bond correlation index exceeding the threshold value S̄ = 0.5;
the order of the spherical harmonics is chosen as l = 6.

which is peaked toward the upper end of the horizontal axis;
moreover, the distinction is sharper when l = 6. One may also
consider spherical harmonics of higher order: although this
is possible, it is not advantageous, since the order parame-
ter may become very sensitive to fluctuations in the position
of the particles leading to a broadening of the distribution.
Therefore, in the following we will use l = 6, which enables
a clear distinction to be drawn between a fluid and a crystal
and, at the same time, is low enough to be robust against fluc-
tuations.

In order to identify the fluid and crystal domains in the
system, we pick a threshold value S̄ for the bond correla-
tion index and associate with each particle i the number ni

FIG. 10. Snapshot of the system corresponding to the fluid state point W
of Model A in Fig. 1; polydispersity is p = 0.093. Particles are colored ac-
cording to their classification based on the Q6 bond order parameter (see the
text for details): light particles are fluidlike, dark particles are solidlike. The
crystalline fraction of the system is 3.9%.

FIG. 11. Snapshot of the system corresponding to crystal state point X of
Model A in Fig. 1; polydispersity is p = 0.093. Colors have the same mean-
ing as in Fig. 10. The crystalline fraction equals 99.4%.

of neighboring particles for which the bond correlation index
exceeds the threshold. In other words, ni is defined as the car-
dinality of the set {Si j |Si j > S̄}, where the index j runs over
the neighbors of particle i ; we call this latter quantity the num-
ber of correlated neighbors. In the lower panel of Fig. 9 we
show the histogram of ni for the two systems already consid-
ered, having fixed l = 6 and S̄ = 0.5. The distributions shown
in the panel suggest that we may use the number of correlated
neighbors as a practical means to distinguish fluidlike parti-
cles from solidlike particles employing a threshold value n̄ in
the range [5 − 8]; in the following we will take n̄ = 6.59

The bond order parameter just introduced allows us to es-
timate the crystalline fraction of the system, that is the fraction
of solidlike particles over the total number of particles, even
in the presence of polydispersity: in particular, we apply the
procedure to the four state points W-Z in the phase diagram of
model system A. The two fluid configurations (state points W
and Z) are obviously characterized by a low crystalline frac-
tion, namely 3.9% and 4.7%. Conversely, the crystalline frac-
tion corresponding to the solid configurations (state points X
and Y) is surprisingly high: 99.4% and 97.7%, respectively.
This shows that the solid retains the full degree of crystalline
order even close to the terminal polydispersity. Snapshots of
the system with the particles colored according to the bond
order parameter are presented for state points W and X in
Figs. 10 and 11, respectively.

V. CONCLUSIONS

We have studied the effect of quenched polydispersity on
the freezing transition of repulsive hard-core Yukawa fluids.
A theoretical analysis showed that the conditions for poly-
disperse two-phase equilibrium reduce under the constraint
of quenched polydispersity to the equivalent conditions for
a monodisperse system. Monte Carlo simulations allowed us
to map out the phase diagram of four model systems which
span a broad spectrum of interactions, from hard-spherelike to
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highly repulsive. In all systems polydispersity shifts the freez-
ing transition toward higher packing fractions and narrows the
density gap between the fluid and the solid. Our results con-
firm the existence of a terminal polydispersity beyond which
the freezing transition disappears, so that a disordered, fluid-
like configuration—which eventually may give rise to a glassy
state—is stable across the whole density range. Close to the
terminal polydispersity the phenomenon of re-entrant melting
takes place. Finally, an analysis of the microscopic structure
of the system showed that across the freezing transition the
polydisperse solid is fully crystalline.

The freezing transition for monodisperse Yukawa
systems is well-described by a well-established empir-
ical freezing criterion,48 � ≡ v(ξ )(1 + κξ + 1

2 (κξ )2)/kB T
= 106, with ξ = (V/N )1/3 the typical particle spacing and
v(r ) the Yukawa potential between a pair of colloids at center-
to-center distance r . One might expect to find a similar empir-
ical freezing criterion for polydisperse systems with v(ξ ) re-
placed by either the pair interaction of two reference particles
or averaged over the size distributions of the two particles.
Unfortunately, we could not find a simple empirical freezing
criterion for polydisperse systems.

We stress again that the assumption of quenched polydis-
persity is fundamental for the previous results to hold. If par-
ticle fractionation could take place, the scenario may radically
change. Indeed, recent studies employing specialized Monte
Carlo simulation techniques49 suggest that in this more gen-
eral case no terminal polydispersity exists, since the system
can always freeze by splitting off a solid with a narrow size
distribution.50, 51 It will be interesting to investigate the effect
of fractionation on the phase diagram in future work.
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