
THE JOURNAL OF CHEMICAL PHYSICS 134, 074505 (2011)

Phase diagrams of colloidal spheres with a constant zeta-potential
Frank Smallenburg,1 Niels Boon,2,a) Maarten Kater,2 Marjolein Dijkstra,1 and
René van Roij2
1Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands
2Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

(Received 29 September 2010; accepted 26 January 2011; published online 18 February 2011)

We study suspensions of colloidal spheres with a constant zeta-potential within Poisson–Boltzmann
theory, quantifying the discharging of the spheres with increasing colloid density and decreasing salt
concentration. We use the calculated renormalized charge of the colloids to determine their pair-
wise effective screened-Coulomb repulsions. Bulk phase diagrams in the colloid concentration–salt
concentration representation follow, for various zeta-potentials, by a mapping onto published fits of
phase boundaries of point-Yukawa systems. Although the resulting phase diagrams do feature face-
centered cubic and body-centered cubic phases, they are dominated by the (re-entrant) fluid phase
due to the colloidal discharging with increasing colloid concentration and decreasing salt concentra-
tion. © 2011 American Institute of Physics. [doi:10.1063/1.3555627]

I. INTRODUCTION

Charged colloidal particles suspended in a liquid elec-
trolyte are interesting soft-matter systems that have gener-
ated fundamental as well as industrial attention for decades.1

Understanding the stability and phase behavior of these sys-
tems as a function of colloid concentration and ionic strength
is an important theme in many of these studies. A key role
is played by the electrostatic repulsions between the col-
loidal spheres, which are not only capable of stabilizing
suspensions against irreversible aggregation due to attrac-
tive Van der Waals forces,2 but are also the driving force
for crystallization,3 provided the surface charge on the col-
loids is high enough and the range of the repulsions long
enough.1–3 The classic theory that describes the electrostatic
repulsions between charged colloidal particles in suspension
goes back to the 1940s, when Derjaguin, Landau, Verwey,
and Overbeek (DLVO) found, within linear screening theory,
that suspended spheres repel each other by screened-Coulomb
(Yukawa) interactions.4, 5 The strength of these repulsions in-
creases with the square of the colloidal charge, and they decay
exponentially with particle–particle separation on the length
scale of the Debye screening length of the solvent.6 This pair-
wise Yukawa form is a corner stone of colloid science and can
explain a large number of observations.1–3 For instance, the
experimentally observed crystallization of charged colloidal
spheres into body-centered cubic (bcc) and face-centered cu-
bic (fcc) phases upon increasing the colloidal packing fraction
at low and high salt concentrations,7–10 respectively, is in fair
agreement with simulations of Yukawa systems.11–14 Interest-
ingly, in these simulation studies, as well as in many other
studies,15–19 the charge of the colloids is assumed to be inde-
pendent of the colloid density and the salt concentration.

Experiments on deionized aqueous suspensions of
highly charged spherical latex colloids with ionizable
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mail: n.j.h.boon@uu.nl.

sulphate groups showed indeed evidence for an effective
charge that is independent of volume fraction using elas-
ticity and conductivity measurements.20–22 Differences
between the effective charge obtained from conductivity
and elasticity measurements were attributed to either charge
renormalization15 or macroion shielding due to many-body
effects.23–25 Similar conclusions were obtained for silica
particles with ionizable carboxylate groups on the surface.26

The constant-charge assumption was argued to break
down, however, in some recent studies where the electro-
static repulsions were argued to be reduced with increas-
ing colloid concentration. Biesheuvel,27 for instance, argues
that experimental equilibrium sedimentation–diffusion pro-
files of charged silica spheres in ethanol at extremely low
salt concentrations28 are better fitted by a charge-regulation
model than by a constant-charge model.29 More recent evi-
dence for a concentration-dependent colloidal charge stems
from re-entrant melting and re-entrant freezing observations
of PMMA spheres in a solvent mixture of cis-decaline and
cyclohexyl bromide, i.e., the phase sequence upon increas-
ing the colloid concentration is fluid–crystal–fluid–crystal.30

In addition, direct force measurements between a single pair
of colloidal PMMA spheres in hexadecane, a pair that is part
of a triplet, and a pair that is part of a multiplet have very
recently revealed a significant reduction of the force with in-
creasing number of neighboring particles.31 Interestingly, in
the three experiments of Refs. 28, 30, and 31 the solvent is a
nonpolar medium.

In fact, the experimental findings of Ref. 31 could well
be interpreted and explained in terms of constant-potential
boundary conditions on the colloidal surfaces, rather than the
more usual constant-charge assumption. The present article
addresses the consequence of constant-potential boundary
conditions for the packing fraction–salt concentration phase
diagram of Yukawa systems by calculating the colloidal
charge and the effective screening length for various zeta-
potentials as a function of salt and colloid concentrations.
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Perhaps surprisingly, such a study has not yet been performed.
In the case of high zeta-potential, this requires nonlinear
screening theory, and hence the renormalized rather than
the bare colloidal charge determines the effective screened-
Coulomb repulsions between the colloids.8, 15, 18, 26, 32–36 For
this reason, we use the renormalized charge throughout. We
also compare our constant-potential calculations with those
of an explicit charge-regulation model,37–42 and conclude that
their results are qualitatively similar, and even quantitatively
if they are considered as a function of the effective screening
length.

II. MODEL AND THEORY

We consider N colloidal spheres of radius a in a solvent
of volume V , temperature T , dielectric constant ε, and
Bjerrum length λB = e2/εkB T . Here e is the elementary
charge and kB is the Boltzmann constant. The colloidal
density is denoted by n = N/V and the packing fraction by
η = (4π/3)na3. The suspension is presumed to be in osmotic
contact with a 1:1 electrolyte of Debye length κ−1 and total
salt concentration 2ρs . We are interested in suspensions of
charged colloids of which the surface (zeta) potential ψ0

rather than the charge Ze is fixed. We will show that this
constant-potential condition mimics charge-regulation on
the colloidal surfaces fairly accurately. The first goal of
this article is to calculate Z as a function of η for fixed
dimensionless combinations κa, a/λB , and φ0 ≡ eψ0/kB T .
This result will then be used to quantify the effective Yukawa
interactions between pairs of colloids, and hence the phase
boundaries between fluid, fcc, and bcc crystalline phases.

In the actual suspension of constant-potential colloidal
spheres, the charge distribution of each of the N colloids
will be distributed heterogeneously over its surface due to the
proximity of other colloids in some directions. This leads to a
tremendously complex many-body problem that we simplify
here by assuming a spherically symmetric environment for
each colloid, which is nevertheless expected to describe the
average electrostatic properties realistically. Below we will
calculate the electrostatic potential ψ(r ) at a radial distance
r from a charged colloidal sphere at a given zeta-potential ψ0,
i.e., at a given value ψ(a) = ψ0. The colloidal charge Ze then
follows from Gauss’s law,

ψ ′(a) = − Ze

εa2
, (1)

where a prime denotes a radial derivative.
We first consider a single colloid in the center of a

spherical Wigner–Seitz cell of radius R, such that the cell
volume equals the volume per particle, (4π/3)R3 = V/N ,
which implies R = aη−1/3. The radial coordinate of the cell
is called r . We write the ionic density profiles for r ∈ (a, R)
as Boltzmann distributions ρ±(r ) = ρs exp(∓φ(r )), with φ(r )
= eψ(r )/kB T the dimensionless electrostatic potential.
Together with the Poisson equation ∇2φ = −4πλB(ρ+(r )
− ρ−(r )), this gives rise to the radially symmetric Poisson-
Boltzmann (PB) equation and boundary conditions (BCs)

φ′′(r ) + 2

r
φ′(r ) = κ2 sinh φ(r ), r ∈ (a, R); (2)

φ(a) = φ0; (3)

φ′(R) = 0, (4)

where a prime denotes a derivative with respect to r . Note that
BC (4) implies charge neutrality of the cell. Once the solution
φ(r ) is found for given η, κa, and φ0, e.g., numerically on
a radial grid, the colloidal charge Z follows from Eq. (1),
which we rewrite in dimensionless form as

ZλB

a
= −aφ′(a). (5)

From the numerical solutions that we will present below,
it turns out that Z decreases monotonically from a finite
asymptotic low-η (large-R) value Z0 to essentially 0 at η � 1
(or R � a).

Within linear-screening theory at low packing fraction,
where sinh φ � φ, the potential distribution can be solved
for analytically, yielding φ(r ) = φ0a exp[−κ(r − a)]/r , such
that the colloidal charge takes the asymptotic low-η and
low-φ0 value

Z0λB

a
= (1 + κa)φ0. (6)

In the Appendix, we show that the discharging effect with
increasing η, as found from the nonlinear screening theory
discussed above, can also be approximated within linear
screening theory, yielding

Z (η, κa) = Z0

1 + η/η∗ , η∗ = (κa)2

3(1 + κa)
, (7)

where η∗ is a crossover packing fraction at which the
colloidal charge has decayed to half its dilute-limit value Z0

given in Eq. (6). For typical numbers of experimental interest,
e.g., a/λB = 100 and κa = 0.25, we then find Z0 = 125φ0

and η∗ = 0.017. With φ0 � 1 − 2, which corresponds to
a surface potential of 25–50 mV, we should expect a few
hundred charges in the dilute limit and a significant charge
reduction for η � 10−2.

The constant-potential boundary condition that we em-
ploy here is supposed to mimic charge regulation on the
colloidal surface through an association–dissociation equilib-
rium of chargeable groups on the surface. Here we consider,
as a typical example, the reaction SA ⇔ S++A− where a neu-
tral surface group SA dissociates into a positively charged sur-
face group S+ and a released anion A−. The chemistry of such
a reaction can be characterized by a reaction constant K such
that [S+][A−]/[SA] = K , where the square brackets indicate
concentrations in the vicinity of the surface where the reac-
tion takes place. If we now realize that Z ∝ [S+], we find for
the usual case where [S+] � [SA] that Z ∝ 1/[A−]. For the
case that the released anion is of the same species as the anion
in the reservoir, such that [A−] = ρs exp[φ(a)], we thus have

Z = z exp(−φ(a)), (8)

where the prefactor z, which is a measure for the surface
chargeability,43 accounts for the chemistry, the surface-site
areal density, and the total area of the surface between the
colloidal particle and the electrolyte solution. Note that
Eq. (8) relates the (yet unknown) colloidal charge Z to the
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(yet unknown) zeta-potential φ(a), for a given z. A closed
set of equations for charge-regulated colloids is obtained by
combining the PB equation (2) with BC (4) at the boundary
of a spherical Wigner–Seitz cell of radius R, with BC (3)
replaced by

aφ′(a) = −λB z

a
exp(−φ(a)), (9)

for some given chargeability z. The resulting solution φ(r )
gives the zeta-potential φ(a) as well as the colloidal charge Z
using Eq. (8). When comparing the constant-potential model
with the ionic association–dissociation model, we will tune
the chargeability z such that the low-η results for Z coincide
for both models.

It is well known that nonlinear screening effects, in par-
ticular counterion condensation in the vicinity of a highly
charged colloidal surface, reduce the effective colloidal
charge that dictates the screened-Coulomb interactions be-
tween the colloids.15, 18, 32–34, 44 The so-called renormalized
colloidal charge, Z∗, can be calculated from the electrostatic
potential φ(r ) as obtained from the nonlinear PB equation by
matching the numerically obtained solution at the edge of the
cell to the analytically known solution of a suitably linearized
problem. By extrapolating the solution of the linearized prob-
lem to the colloidal surface at r = a, one obtains the effective
charge by evaluating the derivative at r = a using Eq. (5).
Following Trizac et al.,45 the renormalized charge Z∗ can be
written as

Z∗λB

a
= − tanh φD

κ̄a
((κ̄2a R − 1) sinh[κ̄(R − a)]

+ κ̄(R − a) cosh[κ̄(R − a)]), (10)

where the “Donnan” potential is defined as φD ≡ φ(R), i.e.,
the numerically found potential at the boundary of the cell,
and where the effective inverse screening length is

κ̄ = κ
√

cosh φD. (11)

Note that Z∗ and κ̄ can be calculated for the constant-potential
as well as the association–dissociation model in a spherical
cell.

III. EFFECTIVE CHARGE AND SCREENING LENGTH

For both the constant surface potential (CSP) and the
association-dissociation (AD) model discussed above we cal-
culated the bare colloidal charge Z , the effective (renormal-
ized) charge Z∗, and the effective inverse screening length κ̄

in the geometry of spherical Wigner-Seitz cells. In Fig. 1 we
show ZλB/a (full curves) and Z∗λB/a (dashed curves) as a
function of packing fraction η, for two screening constants for
both the CSP model (black curves) and the AD model (red
curves), in (a) for fixed zeta-potential φ0 = 1 and in (b) for
φ0 = 5. In all cases the chargeability parameter z of the AD
model is chosen so as to agree with the CSP model in the low-
density limit η → 0. For low packing fractions, the red and
black curves show agreement for equal κa, by construction.
At higher η the agreement is only qualitative, and the charges
predicted by the AD model exceed those of the CSP model,
which should not come as a surprise since the former interpo-

FIG. 1. The bare colloidal charge Z (continuous black curves) and the renor-
malized charge Z∗ (dashed black curves), both in units of a/λB (see text), as
a function of the colloidal packing fraction η for several screening parameters
κa, for constant surface potentials (a) φ0 = 1 and (b) φ0 = 5. The red curves
denote Z and Z∗ as obtained from the association–dissociation model, with
the chargeability z chosen such that the surface potential in the dilute limit
η → 0 equals φ0.

lates between the constant-charge and the constant-potential
model. The close agreement between Z and Z∗ for all κa
at φ0 = 1 in Fig. 1(a) is also to be expected, since φ0 = 1
is not far into the nonlinear regime. By contrast, deep in the
nonlinear regime of φ0 = 5, as shown in Fig. 1(b), there is
a significant charge renormalization effect such that Z∗ < Z
by a factor of about 1.2 and 1.5 for κa = 0.1 and κa = 0.5,
respectively. The merging of the red and black curves at high-
η in Fig. 1(b) is due to the reduction of the charge into the
linear-screening regime such that Z = Z∗. The increase of
Z∗ with κ , as observed in both Figs. 1(a) and 1(b), is in line
with well-known charge-renormalization results,15, 18, 32–34, 45

and with Eq. (6).
In Figs. 2(a) and 2(b) we plot, for the same zeta-potentials

as in Figs. 1(a) and 1(b), the effective screening parameter κ̄

as a function of η for several reservoir screening constants κ .
At low enough η, where κ R 
 1, the two screening constants
are indistinguishable from each other in all cases. The reason
is that the cell is then large enough for the potential to decay
to essentially zero at r = R, such that the asymptotic decay
of φ(r ) is governed completely by the screening constant κ of
the background (reservoir) salt concentration. At larger η, and
hence smaller cells, φ(R) is no longer vanishingly small and
the ion concentrations ρ±(R) at r = R deviate considerably
from the ionic reservoir concentration ρs . This larger ionic
concentration at the cell boundary, which represents an en-
hanced ion concentration in between the colloidal particles in
the true many-body system, leads to a larger effective screen-
ing constant κ̄ with increasing η at a fixed κ , as is shown in
Figs. 2(a) and 2(b). Given that larger charges are obtained in
the AD model than in the CSP model at high η, the number of
counterions in the cell, and hence κ̄ , is also larger in the AD
model.
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FIG. 2. The effective inverse screening length κ̄ as a function of the packing
fraction η for several reservoir screening parameters κa, for constant surface
potentials (a) φ0 = 1 and (b) φ0 = 5 as represented by the black curves. The
red curves denote κ̄ as obtained from the association–dissociation model,
with the chargeability z chosen such that the surface potential in the dilute
limit η → 0 equals φ0. Note that κ̄ = κ in all cases for η → 0.

IV. EFFECTIVE INTERACTIONS AND PHASE
DIAGRAMS

Once the effective colloidal charge Z∗ and the effec-
tive screening length κ̄−1 have been determined from the
numerical solution of the PB equation in a spherical cell, ei-
ther for constant-potential or association–dissociation bound-
ary conditions, the effective interactions u(r ) between a pair
of colloidal particles separated by a distance r follows, as-
suming DLVO theory, as

u(r )

kB T
=

⎧⎨
⎩

∞, r < 2a;

λB

(
Z∗ exp(κ̄a)

1 + κ̄a

)2 exp(−κ̄r )

r
, r > 2a,

(12)

where we include a short-range hard-core repulsion for over-
lapping colloids and ignore Van der Waals forces (which is
justified for index-matched particles). Note that the pair po-
tential u(r ) depends on density-dependent parameters Z∗ and
κ̄ , and, therefore, contains two many-body effects, (i) charge
renormalization and (ii) colloidal discharging with increasing
density. However, one could expect macroion shielding as an-
other many-body effect.8, 26, 35, 46 In states where the pair in-
teraction u(r ) is so weak that a fluid phase results, we expect
the macroion shielding to be weak; in crystalline states with
strong effective pair interactions macroion shielding could
also be significant. We expect, however, that the strongest un-
derlying assumption in crystalline states is the spherical cell
employed in our calculations. The actual Wigner–Seitz cell in
face-centered-cubic and body-centered-cubic crystal phases
will probably generate an anisotropic charge distribution on
constant-potential colloids and hence anisotropic pair interac-
tions. Such a problem could in principle be tackled with the
numerical technique developed in Ref. 47, but due to its nu-
merical involvement such a study is left for future work. Be-

low, we will find a surprisingly large parameter regime, where
a fluid phase is predicted, which gives an a posteriori justifi-
cation for the use of the relatively simple pair potential u(r )
of Eq. (12).

One could use this pair interaction to simulate (or other-
wise calculate) properties of the suspension in a given state
point, e.g., whether the system is in a fluid or crystalline state.
We restrict our attention here to the limiting case in which
the colloidal particles are sufficiently highly charged and/or
sufficiently weakly screened, that the pair potential at con-
tact satisfies u(2a) 
 kB T , thereby effectively preventing di-
rect particle–particle contact. In this limit, the suspension can
be effectively regarded as a point-Yukawa system that can be
completely characterized by only two dimensionless parame-
ters U and λ for the strength and the range of the interactions,
respectively. They are defined as

U =
(

Z∗ exp(κ̄a)

1 + κ̄a

)2
λB

a

(
3η

4π

)1/3

, (13)

λ = κ̄a

(
3η

4π

)−1/3

, (14)

such that the point-Yukawa interaction potential of interest,
in units of kB T , reads U exp(−λx)/x with x = r (N/V )1/3

the particle separation in units of the typical particle spacing.
Note that three dimensionless parameters would have been
needed if hard-core contact was not a low Boltzmann-weight
configuration, e.g., then the contact-potential βu(2a) (i.e., the
inverse temperature), the dimensionless screening parameter
κa, and the packing fraction η would be a natural choice. The
mapping of the phase diagram of the point-Yukawa system
onto hard-core Yukawa systems has been tested and verified
explicitly by computer simulation.14

The point-Yukawa system has been studied by simula-
tion in great detail over the years,11–14 and by now it is well
known this model features a disordered fluid phase and two
crystalline phases [(fcc) and (bcc)]. Their first-order phase
boundaries are well documented and can accurately be de-
scribed by curves in the two-dimensional (λ, U ) plane. Here,
we employ the fits for the phase boundaries of point-Yukawa
particles that were presented in Ref. 14, which were based on
the results of Hamaguchi et al.13 The melting–freezing line
between the bcc crystal and the fluid is accurately fitted by

ln U = 4.670 − 0.04171λ + 0.1329λ2 − 0.01043λ3

+ 4.343 · 10−4λ4 − 6.924 · 10−6λ5, (15)

for 0 ≤ λ ≤ 12,

and the bcc–fcc transition by

ln U = 97.65106 − 150.469699λ + 106.626405λ2

−41.67136λ3 + 9.639931λ4 − 1.3150249λ5

+0.09784811λ6 − 0.00306396λ7, (16)

for 1.85 ≤ λ ≤ 6.8.

Here we exploit these empirical relations as follows. For
given dimensionless colloid radius a/λB , screening constant
κa, and various η, we calculate Z∗ and κ̄a for the CSP and
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FIG. 3. Phase diagrams in the packing fraction-screening length (η, κ−1) representation for constant-potential colloids (radius a/λB = 100) interacting with
the hard-core Yukawa potential of Eq. (12), for surface potentials φ0 = 1, 2, 3, and 5. The black lines represent phase boundaries for the constant-potential
model, and the red dashed lines for the association–dissociation model with the surface potential equal to φ0 in the dilute limit. The dashed black lines indicate
extrapolation of Eq. (15) beyond its strict regime of accuracy. The inset in the phase diagram for φ0 = 5 represents η on a logarithmic scale for clarity. The labels
“Fluid,” “BCC,” and “FCC” denote the stable fluid, bcc, and fcc regions. We note that the very narrow fluid–fcc, fluid–bcc, and fcc–bcc coexistence regions are
just represented by single curves. The dotted blue curves represent the estimated crossover-packing fraction η∗ of Eq. (7), beyond which Z (η) < Z (0)/2.

the AD model in the spherical cell, as described in Sec. II.
These quantities can be used to compute the dimensionless
Yukawa parameters U and λ from Eqs. (13) and (14), such
that their phase and phase boundaries are known from Eqs.
(15) and (16).

For a/λB = 100, Fig. 3 shows the phase diagrams
that result from this point-Yukawa mapping procedure in
the (η, (κa)−1) representation, for the CSP model (black
curves) with surface potentials (a) φ0 = 1, (b) φ0 = 2, (c) φ0

= 3, (d) φ0 = 5, and for the corresponding AD model (red
curves). The dashed lines represent the phase boundary fits of
Eqs. (15) and (16) outside their strict λ-regime of applicabil-
ity. We restrict attention to η < 0.3, as the point-Yukawa limit
breaks down due to strong excluded-volume effects at higher

packing fractions. An expected feature is the shift of the freez-
ing curves to lower η for higher φ0, due to the higher (renor-
malized) charge and the stronger repulsions at higher φ0.
Due to the higher charges in the AD model, its crystallization
regimes (red curves) extend to somewhat lower η’s and longer
screening lengths than those of the CSP model (black curves).
However, the most striking feature of all these phase diagrams
is the huge extension of the fluid regime: at high and at low
screening length there is no crystalline phase at all (for η

< 0.3), while at some intermediate salt concentrations
the crystal phases are sandwiched in between an ordi-
nary low-density fluid and a re-entrant fluid phase. This
re-entrant fluid regime becomes more prominent with in-
creasing zeta-potential φ0. The underlying physics of this

FIG. 4. Phase diagrams in the packing fraction-effective screening length representation (η, (κ̄a)−1), for a/λB = 100, for constant-potential colloids with
(a) φ0 = 2 and (b) φ0 = 5, as well as for charge-regulated colloids. Lines, symbols, and colors as in Fig. 3.
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FIG. 5. Maximum and minimum effective screening lengths where bcc and
fcc can be found as a function of the surface potential, assuming a constant
surface potential for a/λB = 100. The bcc regime is in between the two black
lines, and the fcc regime below the blue line. The red points indicate the
results from the AD model.

finite-salt and finite-η regime where bcc and fcc crystals
exist is the discharging of the colloids with increasing
η and decreasing salt concentration: (i) although at high
salt (small screening length) the colloidal charge is high,
the screened-Coulomb interaction is then so short ranged
that the system resembles a hard-sphere system that will
only crystallize at η � 0.5; (ii) at low salt (long screening
length) the colloidal charge is too low to have seizable
repulsions that drive crystallization. Only at intermedi-
ate salt and intermediate colloidal packing the charge is
high enough and the screening sufficiently long ranged
to drive crystallization. The dotted blue curves in Fig. 3
represent the crossover packing fraction η∗ of Eq. (7) beyond
which the colloidal charge has been reduced to less than 50%
of its dilute-limit value. Our expression for η∗ indeed roughly
coincides with the onset of the re-entrant fluid regime.
Equation (7) thus provides a quick guide to estimate where
or whether re-entrant melting is to be expected at all. Inter-
estingly, at φ0 = 3, there are values for κa (albeit in a very
narrow range) where a phase sequence fluid–bcc–fcc–bcc is
predicted here upon increasing the colloidal packing fraction,
showing a re-entrant bcc phase appearing after the fcc crystal.
Moreover, for η > 0.5, one expects hard-sphere freezing
into a fcc (or hcp) stacking on the basis of hard-sphere
interactions, so the fcc phase is then also re-entrant. Clearly,
the re-entrant bcc–fcc–bcc transition only occurs in a tiny

parameter regime and may well disappear (or appear much
more strongly) in more detailed calculations that take, for
instance, the nonspherical symmetry of the fcc and bcc phases
into account—this would render the colloidal charge distri-
bution heterogeneous and would complicate the calculations
considerably. We expect, however, that our main finding—a
phase diagram with a huge fluid part and a strongly reduced
crystalline part due to the discharging of the colloids with
lowering the salt concentration and increasing η—is a robust
prediction.

Experimentally, it is not always possible or convenient to
characterize the screening in terms of the Debye length κ−1 of
the (hypothetical) reservoir with which the suspension would
be in osmotic equilibrium. For instance, in conductivity mea-
surements at finite colloid concentration, one essentially mea-
sures the ionic strength of the sample, which is directly related
to the effective screening constant κ̄ rather than κ . Also, any
measurement of effective colloidal interactions will yield κ̄ .
Because of this accessibility of κ̄ , we replot in Fig. 4 the phase
diagrams for φ0 = 2 and φ0 = 5 of Fig. 3, but now in the
(η, (κ̄a)−1) representation. While the phase behavior in, for
example, a sedimentation experiment will be easier to com-
pare to the phase diagrams shown in Fig. 3, the representation
of Fig. 4 could be useful in cases where no ion reservoir is
present, while the effective screening length is known. Inter-
estingly, the CSP and AD model are much closer together in
Fig. 4 compared to Fig. 3, and the re-entrant fluid phase ap-
pears even more pronounced in this representation.

In order to quantify in which finite salt-concentration
regime bcc and fcc crystals are expected in a colloidal con-
centration series 0 < η < 0.3, we analyze the maximum and
minimum values of κ̄a at which these two crystal phases can
exist, as a function of the zeta-potential φ0, for a/λB = 100.
Fig. 5 shows the resulting screening-length regimes, both
for bcc (black curves) and fcc (blue curve), where the lowest
screening length for fcc crystals is set to zero because of the
hard-sphere freezing into fcc at η = 0.5 even for 1/κa → 0
—of course we only restricted attention to η < 0.3 until now
so strictly speaking also the fcc phase should have had a
nonvanishing lower bound. Nevertheless, despite this small
inconsistency, Fig. 5 clearly shows not only that a larger
zeta-potential gives rise to a larger crystal regime, but also
that for all φ0 there is a limiting screening length beyond

FIG. 6. Phase diagrams in the packing fraction–screening length representation (η, (κ̄a)−1), for constant-potential colloids with (a) φ0 = 5 for a/λB = 10 and
(b) φ0 = 1 and for a/λB = 1000. Lines and symbols as in Fig. 3.
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which neither fcc nor bcc crystals can exist, both for the CSP
and the AD model.

So far we focussed on a/λB = 100, which in aque-
ous suspensions corresponds to a colloidal radius of about
70 nm. However, the colloidal size regime can easily be
a factor 10 larger or smaller, and for that reason we
also consider the CSP model for a/λB = 10 and 1000. In
Fig. 6, we show the phase diagrams for the smaller colloids
with φ0 = 5 in (a), and for larger colloids with φ0 = 1 in
(b). When compared to the larger colloids (a/λB = 100), the
phase diagram for the smaller colloids comes closest to the
one shown in Fig. 3(b) for φ0 = 2, but the reentrant fluid
has disappeared completely. Additionally, the smaller parti-
cles need a much higher potential to crystallize—the phase
diagram for a/λB = 10 at φ0 = 1 does not show a crystal
phase at all for η < 0.3. Similarly, the larger colloids require
a much lower surface potential to resemble the phase dia-
gram shown in Fig. 3(c). Additionally, the range of screen-
ing lengths where a reentrant fluid exists is much larger than
for a/λB = 100. Given that φ0 = 5 is a rather high poten-
tial that may be difficult to achieve in reality while φ0 = 1
is frequently occurring, one concludes that re-entrant melting
occurs in the largest salt-concentration regime and is hence
easiest observable by tuning the salt, for larger colloids.

V. SUMMARY AND CONCLUSIONS

Within a spherical cell model, we have calculated
the bare charge Z , the renormalized charge Z∗, and the
effective screening length κ̄−1 of colloidal spheres at a
constant zeta-potential φ0. We find from numerical solutions
of the nonlinear Poisson–Boltzmann equation that these
constant-potential colloids discharge with increasing packing
fraction and ionic screening length, in fair agreement with
analytical estimates for the dilute-limit charge Z0 in Eq. (6)
and the typical crossover packing fraction η∗ given in Eq. (7).
We also show that the constant-potential assumption is a
reasonably accurate description of charge regulation by an
ionic association–dissociation equilibrium on the colloidal
surface. We use our nonlinear calculations of Z∗ and κ̄ to de-
termine the effective screened-Coulomb interactions between
the colloids at a given state point, and we calculate the phase
diagram for various zeta-potentials by a mapping onto empir-
ical fits of simulated phase diagrams of point-Yukawa fluids.
This reveals a very limited regime of bcc and fcc crystals: in
order to form crystals, the charge is only high enough and the
repulsions only long ranged enough in a finite intermediate
regime of packing fraction and salt concentrations; at high
η or low salt the spheres discharge too much, and at high
salt the repulsions are too short ranged to stabilize crystals.
In the salt-regime where crystals can exist, the discharging
mechanism gives rise to re-entrant phase behaviour, with
phase sequences, fluid–bcc–fluid and even fluid–bcc–fcc–bcc
(although in an extremely small regime) upon increasing the
colloid concentration from extremely dilute to η = 0.3.

The phase behavior of constant-potential or charge-
regulated colloids as reported here is quite different from that
of constant-charge colloids, for which the pairwise repulsions
do not weaken with increasing volume fraction or decreasing

salt concentration. As a consequence constant-charge colloids
have a much larger parameter-regime where crystals exist and
do not show the re-entrant behavior.11–14 The most direct com-
parison is to be made with the constant-charge phase diagrams
of Figs. 2 and 4 of Ref. 14, where the charge is fixed such
that the surface potential at infinite dilution corresponds to
φ0 � 1 and 2, respectively. Our theoretical findings can thus
be used to gain insight into the colloidal charging mechanism
by studying colloidal crystallization regimes as a function of
packing fraction and salt concentration.
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APPENDIX: JELLIUM MODEL

Although it is numerically straightforward to solve the
nonlinear PB equation (2) with BCs (3) and (4) in a spher-
ical Wigner–Seitz cell of radius R, it may also be conve-
nient to have analytic results that allow for quick estimates
of the (order of) magnitude of the colloidal charge Z . A stan-
dard approach is to linearize the sinh φ(r ) term of Eq. (2),
e.g., with φ(r ) − φ(R) as the small expansion parameter. The
resulting solution is then of the form φ(r ) = A exp(−κ̄r )/r
+ B exp(κ̄r )/r + C , with κ̄ defined in Eq. (11), C = φ(R)
− tanh φ(R), and with integration constants A and B fixed by
the two BCs. The algebra involved is, however, not very trans-
parent.

A considerable simplification is achieved if we consider
the so-called Jellium model, in which the central colloidal
sphere is no longer considered to be surrounded by only
cations and anions in a finite cell, but instead by cations, an-
ions and other colloids with charge Z (to be determined).32–34

A nonlinear PB equation and BCs can then be written, for
r ≥ a,

φ′′(r ) + 2

r
φ′(r ) = κ2 sinh φ(r ) − 4πλB Zn; (A1)

φ(a) = φ0; (A2)

φ′(∞) = 0, (A3)

where it is assumed that the “other” colloids are distributed
homogeneously with density n. From this, one derives di-
rectly that the asymptotic potential is given by

sinh φ(∞) = 4πλB Zn

κ2
= 3η(ZλB/a)

(κa)2
. (A4)

Now linearizing sinh φ(r ) with φ(r ) − φ(∞) as the small ex-
pansion parameter gives rise to the solution,

φ(r ) = φ(∞) + (φ0 − φ(∞))
exp(−κ̃(r − a))

r/a
, (A5)

where the effective screening length κ̃−1 is defined by

κ̃ = κ
√

cosh φ(∞). (A6)

We note that the average ion concentrations in the sys-
tem, within the present linearization scheme, is given by
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c± = ρs exp(∓φ(∞)), such that the corresponding screening
length κ̃−1 is given by κ̃2 = 4πλB(c+ + c−). In other words,
the effective screening length κ̃ and the asymptotic potential
φ(∞) of this jellium model play exactly the same role as κ̄

and φ(R) that we introduced before in the spherical cell. In
particular, κ̄−1 and κ̃−1 can be seen as the actual screening
length in the suspension (in contrast to the screening length
κ−1 of the ion reservoir).

From Eq. (A5) the colloidal charge Z follows, using
Eq. (5), as the solution of the transcendental equation

ZλB

a
= (φ0 − φ(∞))(1 + κ̄a), (A7)

where one should realize that both φ(∞) and κ̃ depend
on ZλB/a through Eqs. (A4) and (A6). It is possible to
solve Eq. (A7) explicitly in the dilute limit. For η = 0 one
finds φ(∞) = 0 from Eq. (A4), and hence Z = Z0 given by
Eq. (6). For finite but low-enough η for which φ(∞) � 1, one
can ignore O(η2) contributions, such that sinh φ(∞) � φ(∞)
and cosh φ(∞) � 1, to find Eq. (7) from the self-consistency
condition Eq. (A7).
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