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CHAPTER 1

INTRODUCTION

If we knew what it was we were doing, it would not

be called research, would it? textssssssssssssssssssss

Albert Einstein

F
luid flow and mass transport in porous media is an important process

in natural composite materials (soils, rocks, woods, hard and soft tissues,

etc.) and many engineered composites (concrete, bioengineered tissues, etc.),

at various spatial and temporal scales. Each of these scales contains specific in-

formation about the underlying physical process. Pore-scale modeling together

with upscaling techniques allow the transfer of information, i.e., laws which

are given on a micro-scale to laws valid on a larger scales. To do so, it is nec-

essary to identify and understand (multiphase) flow and (reactive) transport

processes at microscopic scale and to describe their manifestation at the macro-

scopic level (core or field scale). In the case of virus and colloid transport in

porous media, understanding the transport mechanisms has recently attracted

significant attention, especially in the case of groundwater polluted by contam-

inants that could adsorb to colloids. Colloids can enhance pollutant mobility

[McCarthy and Zachara, 1989], and field-based results suggest the importance

of colloids in the transport of low-solubility contaminants [Vilks et al., 1997,

Kersting et al., 1999]. Enhanced mobility together with very limited acceptable

concentrations of hazardous solutes (in the range of few parts per billion) have

raised more attention to the modeling and accurate prediction of the migration

and distribution of contaminants.
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The design of successful subsurface remediation technologies is based upon the

understanding of the (reactive) transport processes at the smaller scales. This

information can be obtained by extensive experimental characterization, which

is usually very expensive and time-consuming. As such, mathematically based

numerical modeling has provided an indispensable tool to reduce experimental

investigations and to make them more cost-effective.

At the pore scale, a porous medium system consists of a series of void spaces

distributed heterogeneously, and one or more fluid phases present simultane-

ously (e.g. as air and water under partially saturated conditions). As a solute

transports within these phases, it may undergo absorption, reaction, and trans-

formation. These transport processes are further complicated by the hetero-

geneity within the subsurface system’s physical and chemical characteristics.

The inherent pore scale heterogeneity, as well as the complexity involved in the

physics of (partially-) saturated systems, result in a significant challenge to the

development of fundamental theories of flow and transport, which are crucial

to the design and investigation of new remediation technologies. To date, many

difficult problems still remain to be resolved, and standard theories which have

been in existence for several decades have proven to be inadequate to solve

these problems. The purpose of this research is to improve the understanding

of (partially-) saturated flow and (reactive) transport in porous media by using

an alternative modeling approach: Pore Network Modeling (PNM). For a bet-

ter understanding of the macroscopic modeling, the scale issues in subsurface

systems should be understood first.

1.1 Issues of scale

Since modeling in porous media involves transfer of data over several length

scales, scaling effects are of great importance. If the solute undergoes reaction

and adsorption, reactive parameters must also be included in upscaling pro-

cesses. The state of the system (e.g., whether saturated, wether occupied by

different phases) is also a critical factor which can affect the macro-scale behav-

ior of the system. Indeed, many studies of flow and transport in porous media

were motivated by one central question, namely, how do pore scale processes in

a medium influence the effective upscaled transport parameters? Without good

insight into such influence, accurate forecasting models and sound remediation

techniques cannot be developed. Pore scale modeling and the upscaling process

contain three components: (i) defining or conceptualizing pore scale geometry

2
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and structure, (ii) composing and solving the equations of physics at the pore

scale and (iii) defining macroscopic parameters, or upscaling. Through upscal-

ing, appropriate parameter values are assigned to larger scale models. Discrep-

ancies between measured values under static conditions and the results obtain

though dynamic experiments and modeling show the need for a comprehensive

study of upscaling from pore-to-core scales in which parameters are much easier

to measure. While modeling at a larger scale, it is usually not feasible to take

all pore scale properties, such as interfaces, into account. However, without in-

clusion of these effects in macro-scale descriptions, neither the techniques nor

can their predictions gain credibility.

The length scale of interest in porous medium systems may vary from a molec-

ular level (on the order of 10−11 to 10−9m) to a mega level (on the order of

10+2km for some regional applications). The scale hierarchy associated with

flow and transport problems in porous media, is often divided into: molecular

scale, micro or pore scale, macro or lab scale, meso or field scale, and mega

or regional scale. Because natural porous media are neither homogeneous nor

uniformly random, measurements of constitutive parameters may have mean-

ing with respect to one scale. Instrumentation used in measuring parameters

at one scale may appear to have little relevance to other scales [Celia et al.,

1993]. As a result, developing models that reflect the broad range of scales in

a systematic and consistent way is an open problem with enormous complexity

[Miller and Gray, 2002].

1.2 Continuum modeling approach

It is sometimes difficult to verify solutions at the pore scale because most

instruments are available for characterizing systems at a larger scale, often

in terms of parameters that are not defined at the pore scale. The standard

way to overcome this difficulty is to define macroscopic variables by averaging

microscopic values over a representative elementary volume (REV) [Bear, 1972],

in which laboratory experiments can be carried out. This will be the continuum

scale where the standard porous medium continuum modeling approach applies.

The standard approach starts from various balance equations governing the

fluid flow in porous media by averaging variables over an REV. Through

averaging, the intricate variations due to the microscopic heterogeneity are

smoothed out, and the governing equations can be considered as equations

that describe an equivalent homogeneous system. In applying the continuum

3
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approach, macroscopic medium parameters, such as permeability, saturation,

upscaled adsorption rates, and dispersion coefficients need to be introduced.

As the microscopic governing equations contain no information regarding these

macroscopic parameters, they form an undetermined system, insufficient to be

closed unless further equations are supplied. The additional equations, which

are an important part of the continuum theory, are known as constitutive re-

lations. These relations, such as the relation between permeability and pore

properties of porous media, depend upon the internal constitution of the partic-

ular porous material considered. By upscaling from the pore scale, constitutive

relations can be determined for a specific case. Because the constitutive re-

lations are ultimately used to model macro-scale problems, understanding of

the pore-scale processes and proper incorporation of their effects in larger-scale

relations must be accomplished.

Although applying the continuum modeling approach is a common practice,

there are some difficulties and drawbacks involved when applying the contin-

uum approach. Performing experiments to reveal the constitutive relationship

is usually difficult and costly. For example, serious experimental difficulties

are encountered in measuring relative permeabilities or solute dispersivity in

a porous medium. The lack of available constitutive data is frequently cited

by both petroleum and groundwater engineers as a primary barrier to accept-

able predictions (e.g. Abriola and Pinder [1985], Aziz and Settari [1979]).

In addition, although constitutive relations have a crucial bearing on the ac-

curacy of subsurface flow models, they are approximate solutions and often

uncertain [Miller et al., 1998, Genabeek and Rothman, 1996]. Over the past

two decades, much effort has been expended to develop alternate theories to

the standard approach. For example, Gray and Hassanizadeh have suggested

a more complete approach of modeling multiphase flow based on integration

over a REV to produce mass, momentum, and energy conservation equations

that are formulated based on volume, interfacial area and contact lines [Gray

and Hassanizadeh, 1991b, Hassanizadeh and Gray, 1993, 1979, 1980, Gray and

Hassanizadeh, 1991a].

1.3 Pore-scale modeling approach

Pore-scale modeling provides opportunities to study transport phenomena in

fundamental ways because detailed information is available at the microscopic

pore scale. This offers the best hope for bridging the traditional gap that ex-

4
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ists between pore scale and macro (lab) scale descriptions of the process. As a

result, consistent upscaling relations can be performed, based on physical pro-

cesses defined at the appropriate scale. Pore-scale modeling offers an important

tool to develop constitutive relations that are difficult and even impossible to

obtain by lab experiments. The basic strategy is to perform numerical experi-

ments analogous to those performed in the laboratory. However, the pore-scale

simulation provides more versatility in choice of parameters, a greater variety

of quantitative data and frequency of observation, and more importantly, easier

design of numerical experiments. Recent advances in micro-model experiments

and high-resolution tomographic imaging (e.g. Spanne et al. [1994], Soll et al.

[1994], Buckles et al. [1994], Ferreol and Rothman [1995]), which allows for ac-

curate representation of pore morphology, have spurred an explosion of interest

in pore-scale modeling. The effect and significance of these pore-scale processes

are then able to be incorporated into constitutive theories to achieve an accu-

rate description of larger-scale phenomena of interest. Moreover, pore-scale

modeling provides a significant means to investigate closure relations involv-

ing new variables, such as interfacial area and common line length, and new

theories that seek to describe the behavior of these new variables.

Despite the large number of numerical studies of single-phase and multiphase

systems that have been done, pore-scale study in porous media is still in its

scientific infancy, since it is only over the last decade that relatively inexpensive

high-performance computers have become available. Current pore-scale appli-

cations are limited to relatively small domains and simple problems [Pereira,

1999, Blunt, 2001]. However, the dramatic evolution of computational capa-

bilities offers us new opportunities for simulating larger domains and modeling

a wider range of processes. This makes pore-scale approaches potentially at-

tractive for industrial or field applications as measurement tools to compute

transport properties, such as relative permeability and unsaturated dispersivity

of a particular subsurface system. One can imagine that computer simulations

may be employed to complement processes such as dispersivity measurements

under different degrees of saturations that normally can take up as long as

months to perform in the laboratory. In particular, if the current rate of in-

crease in computing power continues, one can foresee, perhaps on the order of

a decade, the capability of simulating microscopic flows that include large-scale

heterogeneities.

One well-known method for pore-scale modeling in porous medium is Pore

Network Modeling (PNM) [Fatt, 1956b]. In PNM, fluid flow and (reactive)
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solute transport processes are simulated directly at the microscopic scale with-

out assuming a priori the traditional macroscopic equations (such as the fa-

mous Darcy law). This is done by creating a simulated porous medium made

by pore bodies and pore throats of different sizes (the “geometry” of the

porous medium) variably connected to each other (the “topology” of the porous

medium) and then simulating through this network the fluid flow and (reac-

tive) solute transport process of interest at the microscale, with the relevant

physics implemented on a pore to pore basis. Compared to other pore scale

modeling methods, such as the lattice-Boltzmann method, pore-network mod-

els are computationally effective. Recent advances have allowed modeling a

degree of irregularity in pore cross-sectional shape that was not available in

earlier PNMs. In addition, pore-network models are capable of incorporating

some important statistical characteristics of porous media such as pore sizes

[Øren et al., 1998b, Lindquist et al., 2000], coordination number distributions

[Raoof and Hassanizadeh, 2009] and topological parameters such as Euler num-

ber [Vogel and Roth, 2001].

Pore network modeling can provide flow, relative permeabilities, capillary pres-

sures and solute concentration data in an efficient way, which could be difficult

to measure through experimental methods. In addition, using PNM, one can

explore the sensitivity of these data to a variety of different conditions. In-

deed the scope for utilization of PNM is in fact much wider and extends to the

study and optimization of a variety of transport processes and to most of those

cases where laboratory investigation would be long, costly or technically very

difficult. As examples, pore-network models have been widely used to study:

multiphase flow in porous media [Celia et al., 1995, Blunt, 2001, Joekar-Niasar

et al., 2008b, 2010]; chemical and biological processes, such as the dissolution of

organic liquids [Zhou et al., 2000b, Held and Celia, 2001, Knutson et al., 2001b];

biomass growth [Suchomel et al., 1998c, Kim and Fogler, 2000, Dupin et al.,

2001]; and adsorption [Sugita et al., 1995b, Acharya et al., 2005b, Li et al.,

2006b]. In recent pore-scale modeling, various types of adsorption reactions

have been used: linear equilibrium (e.g., Raoof and Hassanizadeh [2009]) and

nonlinear equilibrium [Acharya et al., 2005b]; kinetic adsorption (e.g., Zhang

et al. [2008]); and heterogeneous adsorption in which adsorption parameters

were spatially varying (e.g., Zhang et al. [2008]).

Pore geometry and topology have a major influence on solute transport and/or

multiphase flow in porous systems. Sok et al. [2002] concluded that it is ex-

tremely important to ensure that a pore-network model captures the main

6
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features of the pore geometry of porous medium. The primary topological fea-

ture of a pore system is the coordination number distribution. Physical flow

and solute transport properties on the other hand require, in addition, exact or

approximate equations of motion. Often this involves steady or unsteady state

transport of physical quantities such as mass, energy, charge or momentum.

Pore-network models are commonly based on an idealized description of pore

spaces [Scheidegger, 1957, De Jong, 1958]. However, in order to mimic realistic

porous media processes, network models should reproduce the main morpholog-

ical and topological features of real porous media. This should include pore-size

distribution, and coordination number and connectivity [Helba et al., 1992, Hil-

fer et al., 1997, Øren et al., 1998b, Ioannidis and Chatzis, 1993a, Sok et al.,

2002, Arns et al., 2004]. In the present study, we have used a Multi-Directional

Pore Network (MDPN) for representing a porous medium. One of the main

features of our network is that pore throats can be oriented not only in the

three principal directions, but in 13 different directions, allowing a maximum

coordination number of 26, as shown in Figure 1.1.

Figure 1.1: Schematic of a 26-connected network. Numbers inside
the squares show tube directions and others are pore body numbers
[Raoof and Hassanizadeh, 2009].

Flow and transport processes are simulated at the pore scale in detail by explic-

itly modeling the interfaces and mass exchange at surfaces. The solution of the

pore network model provides local concentrations and enables computation of

the relationship between concentrations and reaction rates at the macro scale

to concentrations and reaction rates at the scale of individual pores, a scale at

which reaction processes are well defined [Li et al., 2007a,b]. Comparing the
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result of pore-scale simulations with and appropriate model representing the

macro-scale behavior, one can study the relation between these two scales.

1.4 Research objectives

This research aims to identify and describe the physical/chemical processes that

govern the transport of both passive and reactive/adsorptive solutes in porous

media by using PNM. We consider mass transfer of reactive/adsorptive solutes

though interfaces, under both saturated and partiality saturated conditions.

While under saturated conditions the interfaces are only those of solid-water

interfaces, under partially saturated conditions, there will be also mass transfer

though air-water interfaces.

This study is aimed at describing steady state Newtonian fluid flow in a rigid

porous medium. During miscible displacement, reactive solutes in a (partially-

) saturated medium are transported in a single fluid phase (water being the

carrier). The most common transport case that one encounters is adsorption,

which, in large, is controlled by the reactivity of the solutes in the fluid phase

and the chemical affinity and physical heterogeneity of the solid phase. In

this study, we have utilized a Multi-Directional Pore-Network (MDPN) model

[Raoof and Hassanizadeh, 2009]. Fundamental laws of physics are applied at

the pore scale, whereas the macroscopic quantities (such as permeability, dis-

persivity and average concentrations) are obtained through averaging over the

pore network domain. To meet our objectives we focus on both physical and

topological heterogeneities (different sized pores, variable coordination num-

bers) and chemical processes. Hence, we focus on a more realistic microscopic

structure, applying equations of microscopic physics and chemistry and per-

form rigorous upscaling. There are many other novel and unique aspects to

this thesis, though which we develop more accurate and realistic schemes to

study flow and transport under partially saturated conditions. For this purpose

we have developed an extensive FORTRAN 90 modular package which covers:

generation of random structure networks; simulation of drainage process; dis-

cretization of pore spaces on the basis of saturation state of each pore; and

solution of flow and reactive transport under both saturated and unsaturated

conditions using several algorithms. The governing equations are solved apply-

ing a fully implicit numerical scheme; however, efficient substitution methods

have been applied which make the algorithm more computationally effective

and appropriate for parallel computations.
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By averaging over a representative MDPN, we calculate upscaled relevant pa-

rameters for saturated conditions, including permeability, dispersion coefficient,

coefficient of variation of pore water velocities, measures of plume spreading,

and upscaled adsorption parameters. For the case of partially saturated con-

ditions the results consist of the (upscaled) capillary pressured-saturation rela-

tion, relative permeability, total interfacial area, specific surface area of reactive

interfaces, unsaturated dispersivity-saturation relation, fraction of percolating

saturated pores, coefficient of variation of pore water velocities, and adsorption

parameters.

The averaging helps to gain a better understanding of the flow and reactive

transport at the core scale; whenever possible, we have compared our results

with the results of experimental observations and analytical equations. In this

way, we evaluate the limitations and sufficiency of available analytical equa-

tions and macro scale models for prediction of transport behavior of (reactive)

solutes.

1.5 Outline of the thesis

This thesis contains six major themes and hence, each chapter is an inde-

pendently readable manuscript. However, the formulations, algorithms, and

capabilities made in each chapter are included in subsequent chapters which

collect all chapters into one piece. On the basis of the physics of the process

to be studied, the thesis is divided into three parts:

• Part I: Generation of Multi-Directional Pore Network (MDPN)

• Part II: Upscaling and pore scale modeling under saturated conditions

• Part III: Upscaling and pore scale modeling under partially-saturated

conditions

Part I:

Since pore-space structure is one of the major features controlling both flow

and transport processes, we have started this research by generating a more

realistic pore network compared to the traditional networks used in many ear-

lier studies.

Chapter 2 is devoted to the development of a new approach for construc-

tion of MDPN models. According to this technique, the continuum pore space

domain is discretized into a network of pore elements, namely pore bodied and
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pore throats. The Multi-Directional capability of the pore network allows a

distribution of coordination numbers ranging between zero and 26, with pore

throats orientated in 13 different directions, rather than the 3 directions com-

monly applied in pore network studies. This property helps to capture a more

realistic distribution of the flow field which is essential in determining upscaled

parameters such as (relative) permeability or (unsaturated) dispersions coeffi-

cients. The generation of the MDPN is optimized using a Genetic Algorithm

(GA) method and the morphological characteristics of such networks are com-

pared with those of physical sandstone and granular samples by comparing

coordination number distributions. Good agreement was found between sim-

ulation results and observation data on coordination number distribution and

other network properties, such as numbers of pore bodies, pore throats, and

average coordination number. This method can be especially useful in studying

the effect of structure and coordination number distribution of pore networks

on reactive transport and multiphase flow in porous media systems.

Part II:

The second part, Chapters 3 and 4, covers the upscaling pore scale modeling

under saturated conditions.

Chapter 3 deals with the upscaling transport of adsorbing solutes from

micro scale to the effective pore scale. We assumed micro scale equilibrium ad-

sorption, which means that concentration of adsorbed solute at a point on the

grain surface is algebraically related to the concentration in the fluid next to

the grain. We have shown that due to concentration gradients developed within

the pore space, the equilibrium adsorption may not hold in the upscaled limit

where we deal with average concentrations. The main objective of Chapter

3 is to develop relationships between the pore-scale adsorption coefficient and

the corresponding upscaled adsorption parameters. Two approaches are used:

theoretical averaging and numerical upscaling. In the averaging approach, equi-

librium adsorption is assumed at the pore-scale and solute transport equations

are averaged over an REV. This leads to explicit expressions for macro-scale

adsorption rate constants as a function of micro-scale parameters such as pore

scale Peclet number and the pore scale distribution coefficient. The upscaled

adsorption parameters are found to be only weak functions of velocity; they

strongly depend on geometry of the pore and the diffusion coefficient as well

as the pore-scale distribution coefficient. Results of the two approaches agree

very well. The upscaling relations from this chapter are appropriate to be used

within core scale models, represented by PNM.

10
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Chapter 4 presents the continuation of upscaling from effective pore scale

to the core scale where Darcy-scale flow and transport parameters are applied.

This is done by utilizing the upscaling relations developed in Chapter 3 and

applying them into the MDPN model developed in chapter 2. This enabled

us to scale up from a simplified, but reasonable, representation of microscopic

physics to a scale of interest in practical applications. This procedure has re-

sulted in relationships for core scale adsorption parameters in terms of micro-

scale parameters. We find relations between core-scale adsorption parameters

and local-scale transport coefficients, including molecular diffusion coefficient,

specific surface area, and average pore-throat size.

We have shown that even if there is equilibrium adsorption at the pore wall

(i.e., grain surface), one may need to employ a kinetic description at larger

scales. In contrast to some studies that reported dependency of reaction pa-

rameters on flow rate, we found that that these upscaled kinetic parameters

are only a weak function of velocity.

Part III:

Part III of the thesis deals with flow and transport of both reactive/adsorptive

and passive solutes under partially saturated conditions.

Chapter 5 deals with construction of a new formulation for pore-network

modeling of two-phase flow. Pore-network models of two-phase flow in porous

media are widely used to investigate constitutive relationships between satu-

ration and relative permeability as well as capillary pressure. Results of many

studies show a discrepancy between calculated relative permeability and cor-

responding measured values. An important feature of almost all pore-network

models is that the resistance to flow is assumed to come from pore throats

only; i.e., the resistance of pore bodies to the flow is considered to be negligible

compare to the resistance of pore throats. We have shown that the resistance

to the flow within filaments of fluids in drained pore bodies is comparable to

the resistance to the flow within (drained) pore throats. In this study, we

present a new formulation for pore-network modeling of two-phase flow, which

explicitly accounts for the resistant to the flow within the drained pore bod-

ies and calculates fluxes within drained pore bodies. Steady-state conditions

are imposed on the network and the Kirchoff problem is solved numerically by

using preconditioned conjugate gradients [Hestenes and Hestenes, 1980]. The

solution provides fluxes and the resulting relative permeability-saturation rela-

tion under different saturations. In a quantitative investigation, we have shown

the significance of this effect under primary drainage conditions, by applying

11
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our formulation in a MDPN model. Resulting saturation-relative permeability

relationships show very good agreement with measured curves.

Chapter 6 is devoted to the study of the dispersion coefficients under par-

tially saturated conditions using a new formulation. It is known that in unsatu-

rated porous media, the dispersion coefficient depends on the Darcy velocity as

well as saturation. The dependency of dispersion on velocity is fairly studied,

however, there is not much known about its dependence on saturation and the

underlying process. The purpose of this chapter is to investigate how the lon-

gitudinal dispersivity varies with saturation. We have represented the porous

medium with our MDPN. Both pore bodies and pore throats have volumes and

we assign separate concentrations to each of them. Further, since pore geom-

etry and corner flows greatly influence transport properties, efforts are made

to include different angular cross sectional shapes for the pore throats. This

includes circular, rectangular, and irregular triangular cross sections, which

are important especially under unsaturated/two-phase flow and reactive trans-

port. After the construction of the pore network, dispersivity was calculated

by solving the mass balance equations for solute concentration in all network

elements and averaging the concentrations over a large number of pores. We

have introduced a new formulation of solute transport within a pore network

which helps to capture the effect of limited mixing under partially-saturated

conditions. In this formulation we refine the discretization on the basis of the

saturation state of pores. We assign separate concentrations to different cor-

ners of a given drained pore body and also assign different concentrations to

different corners of a drained angular pore throat. This formulation allows a

very detailed description of pore-scale solute transport processes by accounting

for limitations in mixing as a result of reduced water content. The numerically

computed dispersivities successfully explain the results obtained through ex-

perimental studies, and show the underlaying pore scale processes contributing

to dispersion under unsaturated conditions.

Chapter 7 deals with transport of adsorptive solute under partially satu-

rated conditions. All of the modeling capabilities developed in previous chap-

ters are included in this chapter. Compared to column scale experimental

studies on adsorptive transport, there is lack of pore scale modeling studies,

especially under unsaturated porous media. Under unsaturated conditions, the

system contains three phases: air, water, and solid. The principal interactions

usually occur at the solid-water interfaces (sw) and air-water interfaces (aw)

and are thus greatly influenced by water content. In this chapter, we have for-
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mulated various types of adsorption: i) two site (sw and aw interfaces) kinetic;

ii) two site equilibrium; and iii) one site (sw or aw interfaces) kinetic and one

site equilibrium.

To numerically solve the mass balance equations, we have applied a fully im-

plicit numerical scheme for transport of adsorptive solute under unsaturated

conditions. Through applying an efficient numerical algorithm, we have re-

duced the size of system of linear equations by a factor of at least three, which

significantly decreases computational time.

1.6 Programming issue

CPNS: Complex Pore Network Simulator

Through this study to generate pore networks and accurately simulate fluid

flow and transport of reactive/adsorptive solute, we have developed an ad-

vanced FORTRAN 90 modular package. All the above mentioned formulations

and capabilities are included in CPNS, which enables one to simulate fluid flow

and transport of adsorptive/reactive solutes under both saturated and partially

saturated conditions to upscale from pore scale to the core scale. For this study,

three programming languages are used: Visual Basic Application (VBA) in Ex-

cel, MATLAB programming, and FORTRAN 90 programming. The inputs for

the model are inserted into Excel sheets which are then recorded as input files

using Excel VBA to be used by the FORTRAN simulator. Throughout the ex-

ecution of the model, data and results are transferred to MATLAB using MAT-

LAB Engine for possible analysis and post processing. Since various physical

(saturated and unsaturated) and chemical (tracer, equilibrium adsorption, ki-

netic adsorption, system of reactions) conditions should be simulated, to keep

numerical commutations efficient, we designed CPNS as a modular package

composed of separate interchangeable components, each of which accomplishes

one mode of simulation. Figure (1.2) shows the flowchart of CPNS.

The last version of CPNS (not included in this thesis) is capable of simulating

transport of multi-competent chemical species undergoing equilibrium and/or

kinetic reactions [Raoof et al., 2011]. Both advective and diffusive transport

processes are included within the pore spaces. To simulate chemical reactions,

MDPN is coupled with the Biogeochemical Reaction Simulator (BRNS) [Reg-

nier et al., 2002, 2003], which performs the reaction part. This gives major

advantages for simulation of complicated system of reactions. The coupling

between transport and reaction parts is done though a non-iterative sequen-

13
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tial splitting operator. After each transport time step, the concentrations of

components within pore bodies and pore throats are transferred to BRNS for

calculation of chemical reactions. In the case of reactions with the solid sur-

faces, pore geometries will change which, in turn, causes changes in porosity.

In such a cases, the pressure field will be recalculated after each reaction time

step to calculate new permeabilities. Through this process we can simulate

porosity/permeability evolutions due to chemical reactions, and calculate the

relation between permeability and porosity for a specific network [Raoof et al.,

2011].

14
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Figure 1.2: Flowchart of CPNS showing the relation between different parts of
the model.
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CHAPTER 2

A NEW METHOD FOR GENERATING

MULTI-DIRECTIONAL PORE-NETWORK MODEL

Creativity is not the finding of a thing, but the making

something out of it after it is found.textttttttttttttttttttt

James Russell Lowell

Abstract

I
n this study, we have developed a new method to generate a Multi-Directional Pore

Network (MDPN) for representing a porous medium. The method is based on a

regular cubic lattice network, which has two elements: pore bodies located at the

regular lattice points and pore throats connecting the pore bodies. One of the main

features of our network is that pore throats can be oriented in 13 different directions,

allowing the maximum coordination number of 26 that is possible in a regular lattice

in 3D space. The coordination number of pore bodies ranges from 0 to 26, with a

pre-specified average value for the whole network. We have applied this method to

reconstruct real sandstone and granular sand samples through utilizing information

on their coordination number distributions. Good agreement was found between sim-

ulation results and observation data on coordination number distribution and other

network properties, such as number of pore bodies and pore throats and average co-

ordination number. Our method can be especially useful in studying the effect of

structure and coordination number distribution of pore networks on transport and

multiphase flow in porous media systems.
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2.1 Introduction

Pore-scale processes govern the fundamental behavior of multi-phase multi-

component porous media systems. The complexity of these systems, the diffi-

culty to obtain direct pore-scale observations, and difficulties in upscaling the

processes have made it difficult to study these systems and to accurately model

them with the traditional averaging approaches. Determination of most mul-

tiphase properties (e.g., residual saturation) and constitutive relations (e.g.,

capillary pressure, relative permeability) has been based primarily on empir-

ical approaches which are limited in their detail and applicability. Pore-scale

modeling (e.g., pore-network and Lattice-Boltzmann model) has been used to

improve our descriptions of multiphase systems and to increase our insight into

micro-scale flow and transport processes. its power and versatility lies in its

ability to explain macroscopic behavior by explicitly accounting for the relevant

physics at the pore level. However, in order to produce realistic predictions,

network models require accurate descriptions of the morphology of real porous

medium. Previous works have clearly demonstrated the importance of the ge-

ometric properties of the porous media, in particular, the distributions of sizes

and shapes of pores and throats and the characterization of porethroat correla-

tions [Larson et al., 1981, Øren and Pinczewski, 1994, Blunt et al., 1994, 1992,

Helba et al., 1992, Øren et al., 1992, Ioannidis and Chatzis, 1993b, Paterson

et al., 1996b, Pereira et al., 1996, Knackstedt et al., 1998]. Equally important to

the geometric properties are network topology parameters such as connectivity

or coordination number and coordination number distribution. Coordination

number, z, is defined as the number of bonds (or pore throats) associated to a

site (or pore body) in the network.

Pore geometry and topology have a major influence on solute transport and/or

multiphase flow in porous systems. For example, in multiphase flow, the non-

wetting phase may be trapped if it is completely surrounded by the wetting fluid

and in this case, no further displacement is possible in a capillarity-controlled

displacement. These isolated nonwetting blobs are at residual saturation and

their size distribution and shape can have significant effects on fate and trans-

port of dissolved pollutants [Mayer and Miller, 1992, Reeves and Celia, 1996,

Dillard and Blunt, 2000]. The nonwetting blobs assume shapes that are influ-

enced by the pore geometry and topology (e.g., aspect ratio, connectivity, and

pore-size variability) and their size can range over several orders of magnitude.

Sok et al. [2002] have concluded that a more complete description of network

topology is needed to accurately predict residual phase saturations. Therefore,
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it is extremely important to ensure that a pore-network model captures the

main features of the pore geometry of porous medium.

The primary topological feature of a network is the coordination number. As

has been noted by many authors [Chatzis and Dullien, 1977, Wilkinson and

Willemsen, 1983], the coordination number will influence the flow behavior

significantly. It also has a significant impact on the trapping of the residual

nonwetting phase in multiphase flow; e.g., through bypassing and piston-like

pore filling [Fenwick and Blunt, 1998].

A pore network model must represent not only the mean coordination number

but also the distribution of the coordination number of the medium. Despite

the overwhelming evidence for the presence of a wide range of coordination

numbers in real porous media, in most recent network modeling studies, a

regular network with a fixed coordination number of six has been used. This

means that a given site is connected to six neighboring sites via bonds, which

are only located along the lattice axes in three principal directions. This kind

of model neglects the topological randomness of porous media. It also shows

direction dependence. For example, if the pressure gradient if applied in a di-

agonal direction, the resulting flow could not happen in this direction as there

are no direct network connections in any diagonal direction. We refer to this

type of network as a ”three-directional lattice” pore-network.

With respect to coordination number, Ioannidis et al. [1997a] measured the

average coordination number, z, for serial sections of a sandstone core and

for stochastic porous media [Ioannidis and Chatzis, 2000] and found z = 3.5

and z = 4.1, respectively. Bakke and coworkers [Bakke and Øren, 1997, Øren

et al., 1998b, Øren and Bakke, 2002a, 2003b] developed a process-based re-

construction procedure which incorporates grain size distribution and other

petrographical data obtained from 2D thin sections to build network analogs

of real sandstones. They report mean coordination numbers of z = 3.5 − 4.5

[Øren and Bakke, 2002a, 2003b].

Direct measurements of 3D pore structure using synchrotron X-ray computed

microtomography (micro-CT) [Flannery et al., 1987, Dunsmuir et al., 1991,

Spanne et al., 1994] coupled with skeletonization algorithms [Thovert et al.,

1993, Lindquist et al., 1996, Bakke and Øren, 1997, Øren et al., 1998b, Øren

and Bakke, 2002a, 2003b] indicate that z = 4 for most sandstones.

Arns et al. [2004] did a comprehensive study of the effect of network topology

on drainage relative permeability. They considered the topological properties

of a disordered lattice (rock network) derived from a suite of topological images

21
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of Fontainbleau sandstone (z = 3.3-3.8) which displayed a broad distribution of

coordination number [Venkatarangan et al., 2000]. They have constructed some

different network types and compared them to the rock network. The first net-

work type was a regular cubic lattice network with fixed coordination number

of 6 and identical geometric characteristics (pore and throat size distribution).

Comparison between the relative permeability curve for the rock network and

that computed on the regular cubic lattice showed poor agreement. The second

network type was a regular lattice network with average coordination number

similar to the rock network. This network also showed poor agreement in com-

parison with the rock network. Their result showed that matching the average

coordination number of a network is not sufficient to match relative perme-

abilities. Topological characteristics other than mean coordination number are

important in determining relative permeability. The third network was a ran-

dom structure network with coordination number distribution which closely

matched that of the equivalent rock network. They observed a more reason-

able approximation to the relative permeability curves. Their results clearly

show the importance of matching the full coordination number distribution

when generating equivalent network models for real porous media. They have

increased the size of network and found network sizes up to the core scale still

exhibit a significant dependence on network topology.

Direct mapping from a real sample will yield a disordered lattice, whereas sta-

tistical mapping, for the sake of convenience, is done on regular lattices. There

are some studies showing the equivalence of regular and disordered systems

(e.g., Arns et al. [2004], Jerauld et al. [1984]) having the same coordination

number distribution. This formally justifies application of work on regular lat-

tices to real porous media.

Studies done by Venkatarangan et al. [2000] involving the use of high-resolution

X-ray computer tomography for imaging the porous media have shown that

there is a wide-ranging coordination number in real porous media. They used

images from four different Fontainbleau sandstone samples, with porosities of

7.5%, 13%, 15%, and 22% to find geometric and topological quantities required

as input parameters for equivalent network models. They found coordination

numbers larger than 20, depending on medium porosity. For example, they

found coordination numbers up to 23 at 15% porosity and 14 at 13% porosity.

The maximum coordination number decreased considerably with decreasing

porosity.

In fact, most studies [Ioannidis et al., 1997a, Venkatarangan et al., 2000, Øren
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and Bakke, 2003b] show that rock samples exhibit a broad distribution of coor-

dination numbers. Whilst the majority of pores were 3-connected, some pores

displayed z > 15 [Ioannidis and Chatzis, 2000, Venkatarangan et al., 2000,

Øren and Bakke, 2003b].

[Øren and Bakke, 2003b] have used information obtained from 2D thin sections

to reconstruct 3D porous medium of Berea sandstone. They found the coordi-

nation number ranging from 1 to 16 with an average value of 4.45.

In particular, the distribution of z on disordered networks was shown to have

a strong effect on the resultant residual phase saturation. Al-Raoush and Will-

son [2005] have produced high-resolution, three-dimensional images of the inte-

rior of a multiphase porous system using synchrotron X-ray tomography. The

porous medium was imaged at a resolution of 12.46µm following entrapment

of the nonwetting phase at residual saturation. Then they extracted the phys-

ically representative network structure of the porous medium. They found

that the mean coordination number of pore bodies that contained entrapped

nonwetting phase was 10.2. This was much higher than the mean coordina-

tion number of the system, which was 3.78. In this study, we present a new

method to generate a Multi-Directional Pore Network (MDPN) for represent-

ing a porous medium. The method is based on a regular cubic lattice network,

which has two elements: pore bodies located at the regular lattice points and

pore throats connecting the pore bodies. One of the main features of MDPN

is that pore throats can be oriented in 13 different directions, allowing a max-

imum coordination number of 26 that is possible in a regular lattice in 3D

space. The coordination number of pore bodies ranges from 0 to 26, with a

pre-specified average value for the whole network.

2.2 Methodology and Formulation

2.2.1 General Network Elements in MDPN

Consider a lattice composed of an array of cubes. Let us call the line intersec-

tions, “sites”, and the segments connecting them, “bonds”. A bond is assumed

to exist between each pair of nearest neighbor sites in the lattice. In this multi-

directional 3D network, the bonds are aligned in 13 different directions. Figure

(2.1) shows all possible connections for site no. 14 in the center of a 3× 3× 3

network, consisting of 8 cubes. Therefore, in a cubic lattice, one bond can

be connected to a maximum 50 neighboring bonds. A site can be connected

to a maximum of 26 nearest neighbor sites, which is equal to the maximum
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coordination number, z = 26.

For simplicity of description of the network, let us assume that the flow is from

left to the right, as determined by macroscopic pressure gradient. Denote the

number of lattice sites in the flow direction by Ni, and let Nj and Nk denote

the number of sites in the other two directions. Thus, the size of a 3D network

is Nijk (= Ni×Nj ×Nk).

Let Njk(= Nj × Nk) be the size of a two-dimensional rectangular grid per-

pendicular to overall flow direction. Choice of the numbering of lattice bonds

directions is not critical; in Figure (2.1), directions 1, 2, and 3 are chosen to be

parallel to three principal directions of the underlying 3D grid (i.e., directions

i, j, and k). Note that, to keep the figure less crowded, we have shown lattice

bonds passing through site 14 only. All other lattice bonds in network receive

the same direction number as their parallel bond in the Figure (2.1).

Figure 2.1: Schematic of the Multi-directional pore network consist-
ing of 8 cubes, size: Ni = 3, Nj = 3, Nk = 3. Numbers inside the squares
show bond directions and others are site numbers. To keep the figure
less crowded, only bonds which are connecting site 14 to its neighbor-
ing sites are shown.

The lattice numbering system of lattice is shown in (2.1): starting from the first

vertical plane at left, within each Njk plane, sites are numbered from bottom

right to top left and then continued with the next Njk plane in the overall flow

direction.

A given site can be connected to two other sites along any given direction
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number: one in the forward direction (increasing site number) and one in the

backward direction (decreasing site number). For example, in the direction no.

1, site 14 is connected (in forward direction) to site no. 23 and (in backward

direction) to site no. 5.

Obviously, sites which are located on the boundaries have smaller coordination

numbers. For example, in Figure (2.1), the only site with all connections in all

the 13 directions is site number 14, since the rest of the sites are situated on

the boundaries of the network.

2.2.2 Network Connections

Based on the numbering system described above and shown in Figure (2.1),

we can provide expressions for determining the connections between various

sites inside a general network. Table (2.1) gives expressions for finding sites

connected to site number N in forward directions. As an illustration, the site

numbers connected to site N = 14 in Figure (2.1) are also given.

Assuming horizontal overall flow direction, we also assume that sites in the left

and right boundaries cannot connect to other sites in the same plane, but can

only connect to sites inside the network. As a result of this restriction, assigning

different pressure values to different sites on the left or right boundaries would

not cause any in-boundary-plane flow.

Table 2.1: Expressions for finding all sites connected to site number N in the
forward directions. In example of Figure (2.1), Nk = 3 and Njk = 9.

Direction number General expression
for site N

Example of Figure
(2.1), site N=14

1 N +Njk 23
2 N + 1 15
3 N +Nk 17
4 N +Njk +Nk 26
5 N +Njk −Nk 20
6 N +Njk −Nk − 1 19
7 N +Njk +Nk − 1 25
8 N +Njk −Nk + 1 21
9 N +Njk +Nk + 1 27
10 N +Njk + 1 24
11 N +Njk − 1 22
12 N +Nk + 1 18
13 N +Nk − 1 16
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2.2.3 Connection Matrix

Perhaps the best way to get a desired pattern in the network, to generate the

bonds, and understand the effect of the network boundaries on the bonds is

to examine the matrix of connections. Figure (2.2) shows a fully connected

network of size Ni = Nj = Nk = 3 and the corresponding connection matrix.

The connection matrix is a centrosymmetric matrix (symmetric with respect

to both the main diagonal and the anti-diagonal) of size Nijk ×Nijk (27× 27

in the example of Figure 2.2). In Figure (2.2b), each row or column number

is a site number. The matrix entries are direction numbers. An entry has a

nonzero value only if the corresponding sites are connected to each other in the

network.

Blank entries in the connection matrix correspond to sites which are not con-

nected to each other or are the effect of network boundaries. The total number

of nonzero entries in each row is the coordination number for the site number

corresponding to that row. Clearly, coordination number is maximum (z = 26)

for sites inside a network and has a smaller value for sites on the boundaries.

Since, in this example, site 14 is the only site with all 26 connections, only row

14 has 26 nonzero entries.

In the connection matrix, the upper triangle (above the diagonal line in Fig-

ure (2.2b)) contains forward connections of the network and the lower triangle

contains backward connections. For example, site number 10 is connected to

sites 1, 2, 4, and 5 in the backward direction and to sites 11, 13, 14, 19, 20, 22,

and 23 in the forward direction. Note that all entries in a minor diagonal have

the same value, which is a lattice direction number. Because the connection

matrix is always symmetric, we only need to keep the upper triangle, which

has 13 minor diagonals. Furthermore, the connection matrix is sparse and we

can convert the full matrix to compact form by eliminating zero elements.

2.2.4 Elimination Process

Since real porous media are topologically random with a wide distribution of

coordination numbers, we generate random networks with topological proper-

ties which can be specified arbitrarily. These networks can provide a better

match to real porous media topology than regular networks with a fixed coor-

dination number. This results in a random network, which can match both the

mean and the distribution of coordination numbers of a porous medium.

The coordination number of 26 is much larger than the commonly observed
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(a)

(b)

Figure 2.2: Network with full connections with the size: Ni = 3, Nj = 3, Nk =
3. (a) Configuration of the network (site numbers are shown for some nodes and
system of numbering is the same as in Figure 2.1). (b) The corresponding con-
nection matrix. Empty boxes indicate that no connection between corresponding
sites exists.
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mean value of coordination numbers. To have a smaller mean coordination

number and a desired coordination number distribution, we should eliminate

some bonds in the network. It is worth mentioning that, after the elimination

process, the connection matrix is no longer centrosymmetric and is only a sym-

metric sparse matrix. There are many ways to eliminate some of the bonds (see

e.g., Arns et al. [2004]). One approach is to eliminate all the connections along

some specific direction numbers and keep the rest of connections. In this way,

we will construct regular-pattern networks. Figure (2.3) shows the structure of

some regular-pattern networks.

In general, one may follow a random or a regular elimination procedure. We

have chosen the former approach and have formulated a consistent and flexible

procedure. Suppose each bond may exist in only two possible states: “open”

or “blocked”. We further assume that each bond’s state is random and inde-

pendent of its neighbors. We then determine a set of 13 threshold numbers,

pi, i = 1, 2, . . . , 13, one for each direction. Each pi value is between zero and

one and denotes the probability of having a bond in direction i. Next, during

network construction (e.g., putting the connection matrix together), for each

and every possible bond, we generate a random number with uniform distribu-

tion, also between zero and one, which we call its elimination number. If this

elimination number is greater than the threshold number of the corresponding

direction, the bond’s state is assigned to be blocked; otherwise it is open. So,

the larger the threshold number, pi, the more the chance to have an open (con-

necting) bond in direction number i. There are two limiting cases: (a) If the

threshold number pi is equal to 1.0, then all the bonds along lattice direction

i will be open; (b) If the threshold number pi is equal to zero it means all

bonds along that lattice direction i will be blocked, indicating no connectivity

along that direction. By putting p1 = p2 = p3 = 1.0 (direction numbers: 1, 2, 3

in Figure 2.2)) and zero for the other 10 directions, we will end up with the

commonly used regular network with z = 6.0 with connections only in three

principal directions.

If we choose the same value, Π, for all the threshold numbers, say p1 = p2 =

· · · = Π, then as Π increases from zero, more and more sites become connected

into one giant cluster. At some point, the connected cluster spans the entire

lattice both vertically and horizontally. The threshold number at which this

happens (approximately 0.08 for a cubic lattice network of size 30× 30× 30) is

called the critical probability, pc, also known as the cubic lattice bond percola-

tion threshold. This elimination procedure varies directly with the proportion
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Figure 2.3: Regular-pattern networks constructed by eliminating all
the connections along some specific direction numbers. Network (a)
is equivalent to the bundle-of-tubes model, and network (b) is the
commonly used regular structure network with connections only in
principal directions. (c)-(f) show networks with connections in diag-
onal directions, in 2D and 3D domains.
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of open bonds (not the sites), so it is called bond percolation [Berkowitz and

Ewing, 1998].

As fluid can flow only through bonds which are “open”, below the (critical) pc

value the lattice will have zero conductivity, while above pc, the conductivity

will rise as pi increases. Hence, there is a strong relation between connectivity

of the elements (the so-called microscopic properties) and the physical proper-

ties of the entire system (or the so-called macroscopic properties).

There are some observations which have also been made in earlier studies (e.g.,

Berkowitz and Ewing [1998]). First, as the proportion of open sites increases,

the proportion of blocked sites that have open neighbors also increases. Sec-

ond, once Π > pc, we will find that some bonds can have fluid flowing through

them (the ensemble of these bonds is called the backbone of the network), while

others are simply isolated clusters or dead-end bonds; the proportion of these

branches varies as a function of Π. Third, the clusters grow larger (and merge)

with an increase in Π. The reverse happens to the blocked bonds; they reduce

in number and become more and more isolated as the probability of open sites

increases.

We can generate a network with a pre-specified mean coordination number,

z, by choosing a common threshold number Π = z/26 for all directions. For

example, we can generate a network with the mean coordination number of 6

by choosing Π = 6/24 = 0.231 for all directions. Obviously, the coordination

number distribution still ranges from 0 to 26 for any given z.

When threshold numbers are chosen to be all different, we can create differ-

ent connectivities in different directions. This can result in anisotropic lattices.

For example, Friedman and Seaton [1996] considered anisotropic lattices. They

found that permeability and diffusive properties depend strongly on anisotropy

induced by directionally different coordination numbers, and by anisotropic

pore size distributions.

It is also possible to assign correlated elimination numbers in various directions.

The correlation length, the range over which status of one bond is correlated

with (or influenced by) status of other bonds, can be chosen based on desired

lattice spacings or prescribed size of pore bodies. This allows us to create an

anisotropic network with more connections, and as a result a larger permeabil-

ity in certain directions. In an elaborate simulation study, Jerauld and Salter

[1990] found that, as the degree of correlation between nearby bonds increased,

saturated permeability increased. An explanation for this increase in saturated

permeability with increased correlation can be found in the Ambegaokar et al.

30



2.2 Methodology and Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1971] model of hopping conductivity, which holds that flow through a random

medium is dominated by a few pathways of high conductivity. Correlation ap-

pears to increase the probability and/or the conductance of some individual

pathways [Jerauld and Salter, 1990]. Also, Renault [1991] found that as the

correlation length was increased from 0 to 5 times that of the site spacing, the

percolation threshold decreased. In our study, in the test cases of Sect. 2.3,

we have used different threshold numbers for different directions. However, the

generated elimination numbers have been uncorrelated.

Another approach to reduce the coordination number from 26 to a pre-specified

value is to choose a regular elimination pattern. For example, we may assign

blocked states for two successive bonds and an open state for the third bond,

and repeat this pattern for all directions. We can also apply a combination of

random and regular patterns to obtain specific connectivities and coordination

number distributions for the network.

2.2.5 Isolated Clusters and Dead-End Bonds

We now proceed to the issue of conduction through the bonds. Obviously,

flow problems are of interest only for Π > pc. Note that, after the elimination

process, many of the connected bonds will not conduct flow, since they neither

belong to the percolating cluster nor do they form dead-end pores. Examples of

possible situations are shown in Figure (2.4), where dead-end bonds are shown

as hollow circles crossed by a line, and isolated sites and isolated clusters are

marked by hollow circles and squares, respectively. The network backbone does

not include isolated sites and clusters. Isolated sites and clusters also may cause

numerical problems since they lead to a singular or ill-conditioned coefficient

matrix for simulating flow within the network. Therefore, we should find all

the isolated sites and clusters and eliminate them from our network. Regarding

dead-end pores, we may choose to omit them if they are not important for a

given process (such as flow), or keep them for processes where they pay a role

(such as solute transport with diffusion).

It is worth mentioning that one can avoid this situation (isolated clusters and

dead-end pores) through the choice of threshold number. For example, we can

put p1 = 1.0 so that all the bonds in the overall flow direction are open. And

then we can apply elimination to the other directions.

Dead-end sites (sites with only one bond connected to them) have only one

nonzero value in their corresponding row index in the connection matrix. So,

we can find them fairly easily and eliminate them from the connection matrix
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Figure 2.4: Example of eliminated sites, isolated clusters, and dead-
end bonds.

or we can keep them as the dead-end pores of porous media.

Finding and eliminating isolated clusters is not as easy as in the case of dead-

end sites. To do so, we employ a search algorithm to find the “backbone”. We

start from one of the boundaries across which flow is allowed. For each and

every site on that boundary, we apply a search algorithm to find all the sites

connected to it directly or through other sites. At the end, if we reach the

other flow boundary, it means that this group of sites forms a backbone. After

finding the backbone, we eliminate all other bonds as they belong to isolated

clusters. To do tracking, it is crucial to have an efficient search algorithm. We

have employed a algorithm based on the frequency of bonds. The details of our

algorithm are given in Appendix A. Looking at the topology of the resulting

network, our network is of semi-regular type since, after the elimination process,

we do not always have a site at each lattice point. In fact, lattice points do

not even need to be exactly in regular cubic pattern, and we have freedom to

shift them away from the lattice point and/or move them into the position of

eliminated pores or clusters, given that they would not have any contact with

any other neighboring site (Figure 2.5). This feature along with different pore

body sizes (thus, different bond lengths) makes this network a semi-irregular

type. However, since such a network is a subset of a regular network (e.g., the

cubic lattice network), sites are only connected to their nearest neighbors and

the network contains no long bonds. Arns et al. [2004] considered the effect of
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disordered topology on relative permeability. They generated diluted networks

with a disordered topology and z = 4, where the positions of the pore centers

of the sample were preserved during the network construction. They compared

relative permeabilities for these networks with those for a regular network.

The effect of topological disorder on relative permeability was minor. Their

result is in agreement with the findings of Jerauld et al. [1984] who showed

that disordered topology had little effect on the percolation and conduction

properties of networks. The observed equivalence of regular and disordered

systems formally justifies application of work on regular-based lattices to real

porous media.

Figure 2.5: A network of size: Ni = 10, Nj = 1, Nk = 10. Isolated
clusters are eliminated and locations of some sites are modified to get
an irregular lattice.

2.3 Test Cases (Optimization Using Genetic Al-

gorithm)

To illustrate the applicability and versatility of our method, we have em-

ployed it to generate two different networks, representing a consolidated porous

medium and a granular soil sample. In principle, through an optimization pro-

cess, one can match various characteristics such as coordination number distri-
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bution, average coordination number, number of pores, and number of bounds.

In the test cases presented here, we have chosen to match the coordination

number distribution of the porous media under study. Thus, threshold num-

bers, Π, are the variables to be optimized. The generated elimination numbers

have been chosen to be uncorrelated.

Other porous media characteristics (listed in Table 2.2) have been used to ver-

ify the resulting networks after optimization. The optimization is based on

minimizing an objective or fitness function. The sum of the absolute values

of differences between the coordination number distribution of the real porous

medium and the generated network was used as the fitness function. We have

employed a genetic algorithm (GA) for the purpose of optimization. GAs have

been used to solve difficult problems with objective functions that are not well

behaved, i.e., they do not possess properties such as continuity, or differentia-

bility. [Davis, 1991, Goldberg, 1989, Holland, Michalewicz, 1994, Houck et al.].

The genetic algorithm provides a method for solving both constrained and un-

constrained optimization problems. In our case, the valid range for threshold

numbers is between zero and one. However, to prevent generation of networks

with huge variations in connectivities in different directions, we have changed

the upper bound constraint to 0.30. By enforcing this condition, we make sure

that the generated networks have acceptable connectivities (without meaning-

less topologies). The genetic algorithm differs from more traditional search

algorithms in that it works with a number of candidate solutions (a popula-

tion) rather than just one solution. The algorithm begins by creating a random

initial population. Then at each step, it selects individuals at random from the

current population and uses them to produce the next generation. Over suc-

cessive generations, the population “evolves” toward an optimal solution (for

details of the method, readers are referred to [Houck et al.]). We have chosen

the initial population size of 70. In order to minimize the objective function,

the genetic algorithm produced 200 successive generations. The results of op-

timization are shown in the following sections.

2.3.1 Generating a Consolidated Porous Medium (Sand-

stone Sample)

For this test case, we have chosen data reported by Al-Kharusi [2006] on a

Fontainebleau sandstone sample. They have utilized the concept of maximal

balls [Silin et al., 2003] to compute the locations and sizes of pores and throats
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and to create a topologically equivalent representation of 3D images.

As mentioned above, a representative network was created through optimizing

threshold numbers, π, such that the coordination number distribution of the

resulting network matches the measured coordination number distribution of

the sample. These are both shown and compared in Figure (2.6). The opti-

mization was performed through 200 generations using the genetic algorithm.

Figure 2.6: Comparison between coordination number distributions
from real porous media and generated network.

After optimization, to verify the accuracy of the resulting network, various ge-

ometrical characteristics of the generated network were compared with those of

the sandstone sample, reported in Table (2.2). It is evident that there is a good

agreement between various characteristics of two networks, with relative errors

ranging from 0.7% (for porosity and number of pores) to 7.1% (for number of

bounds).

After generating the network, we used it as the skeleton and assigned site and

bond size distributions to match the measured porosity. The radii of sites were

given by an uncorrelated truncated lognormal probability distribution and the

radii of bonds were determined by size of the sites which are located at the two

ends of each bond. This scheme was adopted from Acharya et al. [2004] and

used by Joekar-Niasar et al. [2008b]. The resulting porosity is shown in Table

(2.2).
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Table 2.2: Properties of the generated network and those reported by Al-
Kharusi [2006].

Characteristic Data
reported by
Al-Kharusi
[2006]

Generated
model

Relative
error

Number of pores 4997 5030 0.7%
Number of bonds 8192 7605 7.1%
Mean coordination number 3.2 3.03 5.3%
Number of bonds to inlet 227 238 4.8%
Number of bonds to outlet 206 219 6.3%
porosity(%) 13.6 13.5 0.7%

2.3.2 Generating a Granular Porous Medium

For this test case, we have chosen data on coordination distribution of a gran-

ular soil. The method to extract the topological information can be found in

Thompson et al. [2006]. They presented a new algorithm for extracting topolog-

ical information of powders and granular materials from high-resolution binary

volume data to get a vast amount of morphologic information such as size dis-

tribution, porosity, particle aspect ratio, and coordination number.

According to the procedure explained in Sect. 2.3, we have generated a pore

network representing of the sample through optimizing threshold numbers, π.

The coordination number distribution of the granular sample and the resulting

network are shown and compared in Figure (2.7). An independent measure of

accuracy of our resulting network is provided by comparing various characteris-

tics of the generated network with soil sample (Table 2.3). There is agreement

between the different characteristics of two networks. However, considering the

relative errors (between 8.4 and 21.4%), the generated network is not as good

as the one for the Fontainebleau sandstone sample.
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Figure 2.7: Comparison between coordination number distributions
from real porous media and generated network.

Table 2.3: Properties of the generated network and those extracted by Thomp-
son et al. [2006].

Characteristic Physical
repre-
sentative
network

Generated
model

Relative
error

Number of pores 4564 4056 11.1%
Number of bonds 12534 10674 14.8%
Mean coordination number 5.4 4.7 12.9%
Number of bonds to inlet 214 232 8.4%
Number of bonds to outlet 196 238 21.4%

2.4 Conclusions

We have presented a new method to generate a Multi-Directional Pore Net-

work (MDPN) for representing porous media with coordination number up to

26. We used distribution of coordination number and applied the same into

multi-directional cubic lattice network rather than using direct mapping into

a physically representative disordered network (e.g., based on the X-ray tomo-

graphic images).

This new method is straightforward to program and is fast, resulting in reduced

running time. For example, for a network with size Ni = 300, Nj = 100, and
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Nk = 100, and average coordination number 6, a CPU time of 20s on an Intel

2.40GHz processor with 2.00GB of RAM is needed to generate the network

and detect dead-end bonds and isolated clusters.

It is possible to construct networks with regular or random connection struc-

tures with a wide range of coordination number distributions as well as different

directional connectivities. A quantitative comparison between properties of our

generated network and those of consolidated and granular porous media sam-

ples shows that intrinsic properties, such as mean connectivity, coordination

distribution, and porosity, are adequately captured in the reconstruction by

this semi-regular multi-directional network. An effective optimization process

using a genetic algorithm was employed to reproduce the coordination number

distributions. The coordination number distributions of the generated net-

works and the real porous media are in good agreement, showing the genetic

algorithm may be a promising and effective approach for optimization purposes

in pore networks.
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CHAPTER 3

UPSCALING TRANSPORT OF ADSORBING

SOLUTES IN POROUS MEDIA

Money won’t buy happiness, but it will pay the salaries

of a large research staff to study the problem.textssssss

Bill Vaughan

Abstract

A
dsorption of solutes in porous media is commonly modeled as an equilibrium

process. Indeed, one may safely assume that within the pore space, the con-

centration of adsorbed solute at a point on the grain surface is algebraically related

to the concentration in the pore close to the grain. The same, however, cannot be

said about average concentrations. In fact, during solute transport, concentration

gradients develop within the pore space, and these could potentially give rise to a

scale-dependent adsorption process. The main objective of this research is to under-

stand better the relations between the adsorption coefficient at the pore scale and

the corresponding upscaled adsorption parameters. Two approaches are used for the

purpose of upscaling: a)theoretical averaging of solute transport equation, and b)

numerical upscaling.

In the averaging approach, pore-scale equations of solute transport are presented.

Equilibrium adsorption is assumed to hold at this scale. Next, the equations are

averaged and macro-scale equations are obtained. As a result, explicit expressions

are derived for macro-scale adsorption rate constants as a function of micro-scale

parameters. By examining these expressions, necessary conditions for the equilib-

rium assumption to hold at the macro-scale are determined. In the second approach

(numerical upscaling), two models are employed for the purpose of upscaling: 1) a
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Single-Tube Model, in which we simulate solute transport within a single tube, under-

going equilibrium adsorption at the pore wall, and 2) an upscaled 1D model coupled

with kinetic adsorption. The flux-averaged concentration breakthrough curves from

the Single-Tube Model are used to determine the upscaled adsorption rate constants

as functions of pore-scale hydraulic and adsorption parameters. Results theoretical

averaging and numerical upscaling agree very well.

3.1 Introduction

The first continuum scale for the description of flow and transport processes is

the pore scale. Commonly, physicochemical processes are reasonably well un-

derstood and described by simple relationships at the pore scale. For example,

mixing due to diffusion is described by Fick’s law, equilibrium dissolution is ex-

plained by Raoult’s law, and adsorption at the grain surface is assumed to follow

an equilibrium relationship. In practice, however, we make measurements and

model transport phenomena on scales much larger than the pore scale. Much

effort is being made to understand and quantify links between these scales; in

particular, the dependence of mass transfer on hydrodynamic properties of the

system (e.g., Quintard and Whitaker [1995], Wood et al. [2000, 2004, 2007],

Edward and David [1995], Edwards et al. [1993], Kechagia et al. [2002], Mauri

[1991], Mojaradi and Sahimi [1988], Pagitsas et al. [1986], Ryan et al. [1980],

Sahimi [1988], Shapiro and Brenner [1986, 1987, 1988]). Often, discrepancies

between observation and theory arise because the large-scale description of

transport does not account for some important aspects of small-scale behavior

[Bryant and Thompson, 2001, Raje and Kapoor, 2000, Gramling et al., 2002].

Commonly, small-scale effects are lumped into empirical terms or coefficients

that depend on porous media properties and structure [Guo and Thompson,

2001]. Hence, inclusion of subscale mass transfer effects in the description of

porous systems is essential to develop theoretically sound equations for describ-

ing modeling mass transfer at the larger scales.

Because of limitations in measurements at small scale and in observation fre-

quency, experiments alone cannot provide sufficient qualitative and quantita-

tive understanding of transport; theoretical work is also needed. In porous

media, upscaling may start either at the molecular level (e.g., Murdoch and

Hassanizadeh [2002]) or at the pore scale (e.g., Whitaker [1969, 1986], Has-
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sanizadeh and Gray [1979]). The most common approach is upscaling from the

pore scale, where the principal idea is to average the pore-scale transport and

reaction processes over a representative support volume to produce a macro-

scopic model of the reactive transport.

Reaction processes such as adsorption, mineral dissolution, or homogeneous

reactions could greatly influence transport of dissolved matter in the soil and

groundwater [Serrano, 2003, Bolt, 1979, Weber et al., 1991, van der Zee, 1990,

Acharya et al., 2005b]. These processes typically occur at solid-fluid bound-

aries or fluid-fluid interfaces. Commonly, adsorption is modeled as a (linear)

equilibrium process [Weber et al., 1991]. The equilibrium assumption means

that the chemical potential of the solute in the fluid next to the solid grain

is equal to the chemical potential of the solute adsorbed to the grain. This

assumption is probably acceptable in most interactions at the pore scale, that

is, at the pore boundaries. The same, however, cannot be said at larger scales,

where we work with average solute concentrations. Owing to the variation of

concentration within the pore and mass transfer at the grain surface, the solute

concentration close to the wall will be different from the average concentration

in the bulk fluid [Binning and Celia, 2008, Meile and Tuncay, 2006, Li et al.,

2008, Kechagia et al., 2002]. Thus, the adsorbed solute concentration, which

could be in equilibrium with the solution concentration close to the adsorbed

site, may not be in equilibrium with the average concentration of solution.

Instead, one often has to use a so-called kinetic relationship between average

concentration of dissolved and adsorbed solutes. This is particularly the case

if the porous medium has a microscopically heterogeneous structure, such as

found in aggregated porous media or fractured media.

Studies of reactive solute transport commonly involve a series of batch exper-

iments, through which reaction parameters are obtained. Given the fact that

in batch experiments, there are no spatial variations in the concentration field

(as it is a well-mixed system), the reaction models and reaction parameters

actually pertain to the pore scale. In an open system, where diffusion and/or

hydrodynamic dispersion occur, gradients in concentration exist, as observed

both in experiments (e.g., Rashidi et al. [1996], Kapoor et al. [1998], Taylor

[1953], Aris [1999] and through numerical simulations (e.g., Li et al. [2006b],

Cao and Kitanidis [1998], Shapiro and Adler [1997]). As such, the reaction rates

are an outcome of coupling between the reaction and hydrodynamic processes

[Li et al., 2008]; this coupling can be the reason for much faster laboratory mea-

sured reaction rates of many minerals than those observed in the field [White
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and Brantley, 2003, Maher et al., 2004]. Then the question arises as to what

extent pore scale reaction models and parameters are applicable at the macro-

scale.

Recently, Meile and Tuncay [2006] addressed this question for the case of min-

eral dissolution and homogenous reaction with the aid of a pore-scale numerical

model. They found that macro-scale descriptions of these processes are differ-

ent from pore-scale descriptions because of the effect of small-scale gradients

in concentration fields. To investigate these effects, they numerically generated

virtual porous media using random placement of identical spherical particles

and solved diffusion and reaction in the resulting pore spaces. They showed

that upscaled values of reaction and dissolution rates depend on the type of

reaction, pore geometry, and macroscopic concentration gradient. They found

that differences between these two scales become more significant for surface

reactions as compared to homogeneous reactions. A limitation in the work

of Meile and Tuncay [2006] is that they considered only diffusion transport

and neglected advection. Other modeling studies have shown that the role

of advection on the distribution of chemicals at the pore level is very impor-

tant (e.g., Bryant and Thompson [2001], Knutson et al. [2001a], Robinson and

Viswanathan [2003], Szecsody et al. [1998]).

Li et al. [2006b] studied the effect of pore-scale concentration gradients on a

mineral dissolution rate influenced by advection. They introduced two kinds of

models for minerals that could dissolve at different rates. First, they developed

a Poiseuille flow model that coupled the reaction rate to both advection and

diffusion within a pore space. Next they developed a “well-mixed reaction”

model that assumed complete mixing within the pore. They have shown that

concentration gradients could cause scale dependence of reaction rates. Signif-

icant concentration gradients would develop when diffusion is slower than the

advection process, provided that rates of advection and reaction are compara-

ble. This shows the effect of pore-scale gradients and residence times on the

transport of reactive solutes. The effect of residence times on reactive transport

was also addressed by Robinson and Viswanathan [2003], who showed the im-

portance of pore-scale gradients, especially for nonlinear reactions; solute pulses

of short duration; and systems with broad residence time distribution curves.

Characteristic timescales of reaction processes pose constraints for transport

models [Mo and Friedly, 2000, Cao and Kitanidis, 1998].

Experimental studies (e.g., Guo and Thompson [2001]) as well as pore-scale

numerical models [Knutson et al., 2001a] have shown the dependence of mass
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transfer coefficients (e.g., in dissolution process) on the hydrodynamics of porous

media. For example, Knutson et al. [2001a] found that the dimensionless mass

transfer coefficient of dissolution increased with Peclet number, Pe.

Another method for the upscale adsorption process in porous media is the ho-

mogenization technique. Auriault and Lewandowska [1996] have used a homog-

enization technique (double asymptotic developments) to derive a macroscopic

equation for the average concentration field of a solute that, at micro scale, is

undergoing adsorption. They found effective parameters (e.g., dispersion ad-

sorption tensor) that characterize the medium at the macro scale. Through

various characteristic dimensionless parameters, they have shown the practi-

cal importance of processes in different flow/transport regimes. The macro-

scopic parameters were found to be dependent only on the microscopic trans-

port parameters and microscopic geometrical properties. However, they found

conditions under which the macroscopic model does not exist, for example,

Pe � O
(
ε−1
)

where ε, the homogenization parameter, is the ratio of the

micro-scale heterogeneities size to the macro-scale domain size. As, under some

conditions, the problem could not be homogenized, they described nonhomog-

enizable and homogenizable domains in terms of characteristic dimensionless

parameters. The existence of nonhomogenizable domains demands caution in

applying their method to real situations.

Van Duijn et al. [2008] applied the homogenization technique to study adsorp-

tive solute transport in a capillary slit. They found upscaled equations using the

asymptotic expansion technique in terms of the ratio of characteristic transver-

sal and longitudinal lengths under dominant Peclet and Domkohler numbers.

They have distinguished different characteristic timescales for longitudinal,

transversal, desorption, and adsorption processes. They have derived effective

models for various conditions including linear adsorption-desorption, nonlin-

ear reactions, and equilibrium adsorption. They have verified their method

through comparison of solutions with numerical solutions of original problems

with and without adsorption. They did simulations with high Peclet numbers

(larger than 104). They found excellent agreement between results of their

models and original problems.

This research is aimed at developing upscaled relationships for adsorption in

terms of pore-scale properties through both theoretical and numerical averag-

ing. We wish to find relations for upscaled transport coefficients for a solute

that, at the pore scale, undergoes diffusion and advection as well as first-order

equilibrium reaction at the solid surface. First, the problem of solute transport
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is formulated at the pore scale utilizing equilibrium adsorption. Then the equa-

tions are averaged, and upscaled equations are obtained. As a result, explicit

expressions are derived for the mass exchange between fluid and solid phases in

terms of average concentrations. Next, steady state flow and transient adsorp-

tion in a single tube are simulated numerically. The resulting breakthrough

curves from this single-tube model are compared to the solution of the 1-D,

continuum scale, transport equation to estimate upscaled adsorption parame-

ters.

3.2 Theoretical upscaling of adsorption in porous

media

3.2.1 Formulation of the pore-scale transport problem

Consider the transport of a solute in the pore space of a granular soil. Processes

affecting transport are considered to be advection, diffusion, and chemical re-

action within the water phase, plus adsorption to the solid phase at the pore

boundaries. The general form of the equation of mass balance for the solute is:

∂ci

∂t
+∇ ·

(
civ
)

+∇ · ji = r̂i (3.1)

where: ci(ML−3) is the mass concentration of solute i in a pore; v (LT−1) is

the interstitial water velocity; r̂i (ML−3T−1) is the rate of chemical reaction

with other solutes, and ji (ML−2T−1) is the diffusive flux of the solute. The

diffusive flux, ji, is given by Fick’s first law:

ji = −Di
0∇ci (3.2)

where Di
0 [L2T−1] is the molecular diffusion coefficient of solute i in water.

In principle, one should solve this equation within the pore space of the soil

subject to boundary conditions. At a point on the pore boundary, adsorption

causes a flux of solute from the fluid to the solid phase; this gives rise to an

increase in the mass density of adsorbed solutes. The rate of adsorption is

equal to the solute mass flux normal to the pore boundary,
(
civ + ji

)
·n. Thus,

the following condition at the pore boundary holds
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∂si

∂t
= (civ + ji).n|s (3.3)

where: si [ML−2] is the mass of adsorbed solute per unit area of the solid

grains, n is the unit vector normal to the pore wall; and |s denotes evaluation

of the preceding quantity within the pore but at the solid surface. Because si

is unknown, an additional equation is needed in order to have a determinate

system. That extra equation comes from the continuity of chemical potential

at the grain surface. This condition leads to an equilibrium relationship, a

linear approximation of which yields

si = kiD c
i
∣∣
s

(3.4)

where ci
∣∣
s

is the solute concentration of fluid at the pore wall and kiD [L] is an

equilibrium, pore-scale distribution coefficient.

The set of Equations 3.1 through 3.4, together with conditions at the outside

boundaries of the porous medium and an appropriate set of initial conditions,

completely specify the solute transport problem at the pore scale.

3.2.2 Averaging of pore-scale equations

We would like to upscale Equations (3.1)-(3.4) to the macro scale. To do so, we

need to define an averaging volume, commonly denoted as the representative

elementary volume (REV) [Bachmat and Bear, 1987]. This is a well known con-

cept and has been extensively discussed in the porous medium literature (see,

e.g., Bear [1988], Bachmat and Bear [1986], Hassanizadeh and Gray [1979]).

Denote the volume occupied an REV by V . Volume V is, in turn, composed

of two subvolumes: V f occupied by the fluid phase and V s occupied by the

solid grains. The boundary of solid grains is denoted Afs; the superscripts, f

and s, are used to denote the fluid and solid phases, respectively. Note that

the averaging volume V is taken to be invariant in time and space, whereas the

subvolumes V f and V s may vary both in time and space.

We shall integrate the fluid Equation (3.1) over V f , and the interface condi-

tion (Equation 3.3) will be integrated over Afs. First, we need to define the

following average properties:

average mass concentration

ci ≡ 1

V f

∫
V f

cidV ; (3.5)
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average flow velocity:

vf ≡ 1

V f

∫
V f

vdV ; (3.6)

Note that this volume-averaged definition of the flow velocity is admissible only

if the fluid mass density variations are small (see Hassanizadeh and Gray, 1979,

for discussion);

average diffusion flux

j
i ≡ 1

V f

∫
V f

jidV ; (3.7)

average chemical reaction rate

ri ≡ 1

V f

∫
V f

ridV ; (3.8)

and average adsorbed mass fraction

si ≡ 1

ρsV s

∫
Afs

sidA, (3.9)

where ρs [ML−3] denotes the solid mass density.

Note that the average mass density of the sorbed solute is now defined in the

form of mass fraction (mass of solute per unit mass of grains), si [MM−1], as

is common in solute transport.

To upscale Equation (3.1), we need to integrate it over V f . To do so, we

need averaging theorems which relate the average of a derivative to the deriva-

tive of the average [Whitaker, 1969, 1986, Hassanizadeh et al., 1986, Gray

and Hassanizadeh, 1998]. Averaging of Equation (3.1) over V f results in the

(macro-scale) Equation (3.10). Details of averaging are given in Appendix C.

∂nci

∂t
+∇ ·

(
nciv

)
+∇ ·

(
nJi
)

= nri − Û i, (3.10)

where v is the average flow velocity, and ri is the reaction rate; the macro-scale

adsorption term, Û i [ML−3T−1], is defined by
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Û i =
1

V

∫
Afs

(
ci (v −w) + ji

)
· ndA (3.11)

where w is the velocity of the solid-fluid interface. In (3.10) Ji denotes the

macro-scale hydrodynamic dispersion vector and accounts for diffusion as well

as the mixing of solutes as a result of pore-scale velocity variations

Ji = nciṽ + nj
i
, (3.12)

where ṽ denotes the pore-scale velocity deviations, defined as

ṽ = v−vf (3.13)

Next, the microscopic boundary condition (3.3) is averaged over Afs. The time

average theorem and definition (3.9) are needed. The result is the following

macroscale differential equation for the averaged adsorbed solute concentration

∂ (1− n) ρssi

∂t
= Û i (3.14)

Equations (3.10) and (3.14) provide two equations to be solved for ci and si,

provided that an appropriate relationship is found for the adsorption rate Û i.

This term represents the exchange of mass between solid grain and the fluid

phase. Such a mass exchange could be due to thawing, freezing, dissolution,

precipitation, or adsorption. Here we consider the case of adsorption only and

assume that adsorbed mass has no effect on the fluid or solid mass density.

Phase change, dissolution, and precipitation are neglected.

Because there is no phase change, the normal water flux at the grain boundary,

(v −w) · n in Equation (3.11) will be identically zero. Substitution of Fick’s

law (Equation 3.2) in Equation (3.11) yields

Û i = − 1

V

∫
Afs

Di
0

∂ci

∂n
dA (3.15)

where ∂(·)
∂n denotes the derivative in the direction normal to the grain surface.

We now assume that ∂ci

∂n can be approximated as follows

∂ci

∂n

∣∣∣∣
Afs

=
(
ci
∣∣
s
− ci

∣∣
pore

)
/d (3.16)
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where ci
∣∣
s

denotes solute concentration in the fluid at the pore wall, and ci
∣∣
pore

denotes the solute concentration within the pore at some distance d. We now

employ Equation (3.4) to eliminate ci
∣∣
s

from (3.16) and substitute the result

back into (3.15)

Û i = − Di
0

V kiDd

∫
Afs

sidA+
Di

0

V d

∫
Afs

ci
∣∣
pore

dA (3.17)

There is of course no information on the value of ci
∣∣
pore

. However, it is plausible

to assume that ci
∣∣
pore

is a function of average fluid concentration, ci. This

means that we may replace ci
∣∣
pore

by f( ci) in Equation (3.17) and set

ci
∣∣
pore

= f( ci ) (3.18)

Use of this approximation (Equation 3.18), recognizing the fact that ci is a

constant within the averaging volume, and use of Equation (3.4) and (3.9),

leads to the following macro-scale relationship

Û i = − Di
0

kiDd
(1− n) ρssi +

SDi
0

d
f( ci) (3.19)

where S [L−1] denotes the solid grain specific surface area, S = Afs/V . Substi-

tution of this result into the adsorbed mass balance (3.14) yields the standard

linear kinetic adsorption equation:

∂ (1− n) ρssi

∂t
= Û i = nkattf( ci)− (1− n) ρskdets

i (3.20)

where the kinetic rate coefficients, katt and kdet [T−1], are defined by

katt =
SDi

0

nd
(3.21a)

and

kdet =
Di

0

kiDd
(3.21b)

The mass balance equation for the solutes now becomes

∂nci

∂t
+∇ ·

(
ncivi

)
+∇ ·

(
nJ i

)
= nri − nkattf( ci) + (1− n) ρskdets

i (3.22)
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which, together with Equation (3.20), forms a set of two equations to be solved

for ci and si.

3.2.3 Kinetic versus Equilibrium Effects

It is shown here that, even if the adsorption process can be described by a

linear isotherm at the pore scale, in general, it has a kinetic nature at the

macro scale. The question is “when we can assume an equilibrium isotherm at

the macro scale?”. That would be the case, of course, if the kinetic process is

very fast. This can be studied best if we write the kinetic Equation (3.20) in

an alternate form that is commonly employed

Û i = κ (1− n) ρs
(
Ki
Df( ci)− si

)
(3.23)

where κ and Ki
D are the macro-scale kinetic rate coefficient and distribution

coefficient, respectively, and are defined as

κ =
Di

0

kiDd
(3.24a)

Ki
D =

SkiD
(1− n) ρs

(3.24b)

From (3.24a), the kinetic rate coefficient can be viewed as the ratio of the

micro-scale diffusion mass flux, Di
0∆ci/d, to the amount of mass which is to

be adsorbed, i.e. kiD∆ci. Obviously, the faster the diffusion process, the larger

the kinetic coefficient (thus, the smaller the kinetic effect). On the other hand,

the larger the amount of mass to be adsorbed, the more important the kinetic

effect will be.

It is interesting to note that Equations (3.24) allow us to write the macro-scale

kinetic rate coefficient as a function of the macro-scale distribution coefficient;

this can be achieved by eliminating kiD between the two equations in (3.24a).

We obtain

κ =
SDi

0

ρs(1− n)dKi
D

(3.25)

The inverse of the kinetic coefficient, κ−1, is the characteristic time scale of the

kinetic process. If this characteristic time is of the same order of magnitude as,

or bigger than, the residence time of solutes in pores, d/v, (i.e., for κ−1 ≥ d/v)
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then the kinetic process will be important. This condition can be represented

by the dimensionless number σD

σD =
ρs(1− n)vKi

D

SDi
0

(3.26)

Thus, if σD ≥ 1, then kinetic effects are important. Note that if the flow

velocity is very small, then the kinetic effects become negligible. In the limiting

case of no flow, as is the case in batch experiments, the equilibrium relationship

(3.24) applies with no approximation. Thus, batch experiments can be used to

obtain the macro-scale distribution coefficient.

In the following section, we will perform numerical experiments to explore the

assumptions leading to Equations (3.24) and also find an approximate value

for d in Equation (3.16).

3.3 Numerical upscaling of adsorbing solute trans-

port

Perhaps the simplest step in upscaling is to replace the three-dimensional flow

and concentration fields within the pore (or a tube) by 1D fields, whereby ve-

locity and concentration are averaged over the pore cross section. As mentioned

in the Introduction, this upscaling has been considered for homogeneous reac-

tions as well as dissolution. Here we treat the upscaling of adsorptive solute

transport.

To analyze the scale dependence of adsorption process, we have developed

two models: a) a Single-Tube Model in order to simulate details of transport

within a pore, and b) an equivalent upscaled 1D model for the cross-sectionally-

averaged concentration. These models allow us to investigate some of the as-

sumptions made in our upscaling approach and also to verify results of that

approach.

3.3.1 Flow and transport at pore scale (Single-Tube Model)

Consider a long single tube with a constant circular cross section with ra-

dius R0. We assume fully developed, steady-state, laminar flow in the tube

(Poiseuille flow) so that the velocity distribution is given by [Daugherty and
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Franzini, 1965]

v(r) = 2v

[
1−

(
r

R0

)2
]

(3.27)

where r is the radial coordinate, v(r) is the local fluid velocity, v is the average

flow velocity, and R0 is the radius of the cylinder. In the Single-Tube Model,

adsorption occurs only at the wall of tube, Figure (3.1). In this study, changes

in the radius of the tube due to the adsorption process are neglected.

The mass transport in the tube is given by

Figure 3.1: Conceptual representation for the Single-Tube Model.
The velocity profile is assumed to be parabolic.

∂c

∂t
+ 2v(1−

( r
R

)2

)
∂c

∂z
= D0

[
∂2c

∂z2
+

1

r

∂

∂r

(
r
∂c

∂r

)]
(3.28)

where D0 [L2T−1] is molecular diffusion coefficient and z is the axial direction

along the tube.

In the tube, the wall acts as an adsorbent and therefore, the adsorption rela-

tion must appear in the boundary condition to the differential Equation (3.28).

Adsorption to the wall may be described by the following equation which pre-

scribes that the diffusive mass flux to the wall is the only source of accumulation

at the wall
∂s

∂t
= −D0

∂c

∂r

∣∣∣∣
s

(3.29)

where s [ML−2] is adsorbed mass per unit area. This is just Fick’s law, Equa-

tion (3.3). As in section 3.2, we assume that linear equilibrium adsorption

(Equation 3.4)holds at the wall, characterized by the distribution coefficient

value, kD [L]:

s = kD c|s (3.30)
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We introduce the following dimensionless variables and parameters:

c∗ =
c

c0
; r∗ =

r

R0
; z∗ =

z

R0
; t∗ =

v̄t

R0
; Pep =

v̄R0

D0
; s∗=

s

c0R0
; κ =

kD
R0

(3.31)

where c0 is concentration at the inlet boundary. Here Pep is the pore-scale

Peclet number, which expresses the ratio between the magnitude of the advec-

tive and diffusive transport terms.

Substituting in Equation (3.28) gives the pore-scale dimensionless mass trans-

port equation

∂c∗

∂t∗
+ 2(1− r∗2)

∂c∗

∂z∗
=

1

Pep

[
∂2c∗

∂z∗2
+

1

r∗
∂

∂r∗

(
r∗
∂c∗

∂r∗

)]
(3.32)

The dimensionless boundary conditions for our model are

at z∗ = 0, c∗ = 1.0 (3.33a)

at z∗ =∞, ∂c∗

∂z∗
= 0 (3.33b)

at r∗ = 0,
∂c∗

∂r∗
= 0 (3.33c)

at r∗ = 1,
∂c∗

∂r∗
= −Pep

∂s∗

∂t∗
(3.33d)

Substitution of Equation (3.30) in the boundary condition (3.33d) results in:

∂c∗

∂r∗
= −Pep κ

∂c∗

∂t∗
at r∗ = 1 (3.34)

It is evident that Pep and κ are the two parameters in this set of Equations

(3.32)-(3.34) which control the transport and reaction processes within the

tube.

The package, Flex-PDE (Flex, 2005) has been used to numerically solve this

set of equations. We have simulated solute transport for a range of values

of parameters Pep and κ. The solution of Equations (3.32)-(3.34) results in

a concentration field c∗ (z∗, r∗, t∗) for different values of Peclet number (Pep)

and dimensionless distribution coefficient (κ). This concentration field and its

cross-sectional average, c̄∗ (z∗, t∗), may be considered to be equivalent to “ob-

servation data”. We then use these observed data to obtain a relationship for
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upscaled adsorption parameters.

3.3.2 Flow and Transport at 1-D Tube Scale

One can obtain the first level of upscaling by averaging the pore-scale con-

centration over the cross section of the tube. This results in the 1D average

concentration field, c̄∗ (z∗, t∗), to which we refer as the 1D tube scale. Now,

the question arises what the governing equation should be for this average con-

centration. To answer this question, we examine a typical breakthrough curve

of average concentration for an adsorbing solute at a position far from the tube

inlet (e.g., at z∗ = 100), as shown in Figure (3.2).

Figure 3.2: Breakthrough curve of average concentration (solid line)
and its non-Gaussian derivative (dashed line); based on simulations
from Single-Tube Model with continuous input.

It is evident that the breakthrough curve shows a nonideal behavior with a

nonsymmetric derivative. The tailing observed here suggests that, at this scale,

adsorption would be better to be described as a kinetic process. The governing

equations for the 1D transport of a kinetically adsorbing solute are

∂c∗

∂t∗
+
∂c∗

∂z∗
=

1

Pe

∂2c∗

∂z∗2
− ∂s∗

∂t∗
(3.35)
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∂s∗

∂t∗
= k∗attc

∗ − k∗dets
∗ (3.36)

where, Pe = vR0

DL
, which involves the average flow velocity v and the longitu-

dinal dispersion coefficient, DL. Note that Pe is the tube-scale Peclet number;

it is different from the pore-scale Pep, which is based on a diffusion coefficient

(see Equation (3.31)).

Further, k∗att and k∗det are dimensionless adsorption and desorption rate coeffi-

cients, respectively. These are related to the dimensional coefficients, katt and

kdet, through the following relationships:

k∗att =
kattR0

v
, k∗det =

kdetR0

v
(3.37)

These equations contain three parameters: Pe, k∗att and k∗det. We have eval-

uated these parameters by fitting the solution of this set of equations to the

average breakthrough concentration, c̄∗(z∗, t∗), obtained from the Single-Tube

Model for various values of pore-scale Peclet number (Pep) and κ. This proce-

dure results in relationships between the three upscaled parameters (Pe, k∗att
and k∗det) and their corresponding pore-scale parameters (Pep and κ). We have

used the cross-sectional averaged concentrations from the Single-Tube Model

to find corresponding upscaled adsorption parameters. A similar approach was

used by Li et al. [2008] for upscaling of dissolution processes under steady-state

flow conditions. They studied upscaling of mineral dissolution within a single

pore. Reactive flow experiments were performed in a cylindrical pore, 500 µm

in diameter and 4000 µm long, drilled in a single crystal of calcite. They em-

ployed the Single-Tube Model to simulate the concentration of Ca2+ resulting

from dissolution of calcite. A kinetic calcite dissolution formula (from Chou

et al. [1989]) was assumed to hold at the wall of tube. Then, the flux-average

concentration of Ca2+, calculated from the Single-Tube Model, was compared

to the measured Ca2+ concentration from the experiment for different pH and

flow conditions. They found excellent agreement between modeling results and

results of experiment. This, we believe, is an indication of the applicability of

our procedure in upscaling from pore to tube scale.

3.3.3 Upscaled Peclet number (Pe)

Here we assume that the dispersion is not affected by the adsorption process.

Therefore, we evaluate the upscaled Peclet number (Pe) for the case of a non-

adsorbing solute (i.e., κ = 0). This is done by fitting the breakthrough curve
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from the Single-Tube Model to the solution of the 1D transport equation (Equa-

tion (3.32)) with no adsorption (i.e., katt = k∗det = 0). Figure (3.3) shows the

resulting graph, where Pe is plotted as a function of pore-scale Peclet number

(Pep). In the same figure, the Taylor dispersion formula (Equation 3.38) [Tay-

lor, 1953, Aris, 1999] for the upscaled Peclet number in a tube is also plotted.

1

Pe
=

1

Pep
+
Pep
48

(3.38)

The excellent agreement indicates the accuracy of our numerical code in cap-

turing the transport within the tube and also shows that the Taylor assumption

is valid for this problem. We use Equation (3.38) to obtain the upscaled Peclet

number (Pe) in the simulations of adsorbing solute in the next section.

Figure 3.3: Graph of Pe versus Pep. The points are the result of fitting
of the breakthrough curve of average concentration (with κ = 0) to
Equation (3.32) to find Pe. The solid line shows the Taylor formula,
Equation (3.38).

3.3.4 Upscaled adsorption parameters (k∗
att and k∗

det)

As we employ the Taylor formula to estimate the upscaled Peclet number,

there are only two upscaled parameters, k∗att and k∗det, left to be determined as

a function of pore-scale parameters

k∗att = f(Pep, κ) (3.39a)

k∗det = f(Pep, κ) (3.39b)

57



3. Upscaling of Adsorbing Solutes; Pore Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The CXTFIT curve-fitting program [Toride et al., 1995] was used for the pur-

pose of solving Equations (3.35) and (3.36) and fitting to the breakthrough

curves. Figure (3.4) shows an example fit to a breakthrough curves and the

corresponding parameters. Through the fitting process, we have been checking

the covariance matrix to make sure that parameters are not correlated.

This procedure was repeated for a range of pore-scale parameters (1 < Pep <

Figure 3.4: The resulting breakthrough curves for pore-scale (circles)
and 1D upscale (solid line) models. In this illustration, at the pore-
scale parameters are: Pep = 35 and κ = 5.0. And the corresponding
upscaled parameters by fitting found to be: k∗att = 0.14 and k∗det = 0.05.
Using Equation (3.38), Pe will be 1.3.

300, and 0.1 < κ < 20), and finding the corresponding upscaled k∗att and k∗det
we could determine relations between these set of parameters. Figures (3.5)

and (3.6) show the resulting plot of k∗att and k∗det as functions of Pep and κ.

From the relations shown in Figures (3.5) and (3.6), we found the best fit

formulas (through minimizing the least squares) for k∗att and k∗det

k∗att =
4.0(1− e−3κ)

Pep0.95
(3.40a)

k∗det =
9.0

(0.5 + 4.5κ)Pep0.95
(3.40b)

We define the upscaled distribution coefficient (KD) by:
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(a)

(b)

Figure 3.5: The relation between macro-scale k∗det as a function of pore-scale
(a) Pep and (b) κ.

KD =
k∗att
k∗

det

= 0.4
(
1− e−3κ

)
(0.5 + 4.5κ) (3.41)

According to Equation (3.41), the upscaled distribution coefficient, KD, is inde-
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(a)

(b)

Figure 3.6: The relation between macro-scale k∗att as a function of pore-scale
(a)κ and (b) Pep.

pendent of Peclet number. It is, practically, a linear function of the pore-scale

distribution coefficient, κ, as shown in Figure (3.7).

The linearity of the upscaled distribution coefficient, KD, as a function of the
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Figure 3.7: The relation between upscaled distribution coefficient
(KD = k∗att/k

∗
det) as a function of the pore-scale dimensionless distribu-

tion coefficient, κ for the Single-Tube Model.

pore-scale distribution coefficient, κ, also shows the validity of our upscaling

process. Both KD and κ are a measure of the capacity of the porous medium

to absorb mass and thus they should be linearly related.

3.4 Discussion of results

Equations (3.40a) and (3.40b) can be converted to dimensional forms using

Equations (3.31) and (3.37). This gives

katt =
4.0(1− e−3

kD
R0 ) v

0.05

D0.95
0

R1.95
0

(3.42a)

and

k
det

=
9.0 v

0.05

D0.95
0

(0.5 + 4.5kDR0
)R1.95

0

(3.42b)

We observe that katt and kdet are only weak functions of velocity but they

depend strongly on the geometry of the pore space and the diffusion coefficient

as well as the pore-scale distribution coefficient. We could compare Equations

(3.42) with corresponding equations derived using the averaging method in

Section 3.2.2. For the case of the Single Tube, it is plausible to assume that

ci
∣∣
pore

, at a position somewhere between the pore center and pore wall (denoted

by wR0, where 1.0 > w > 0) will be equal to the average fluid concentration,

ci. This means that in Equation (3.19) we may set
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f(c) = c and d = wR0 (3.43)

As a result Equation (3.19) leads to the following macro-scale kinetic adsorption

relationship:

Û i = nkattc
i − (1− n) ρskdets

i (3.44)

where the kinetic rate coefficients, katt and kdet [T−1], are defined by

katt =
SDi

0

nwR0
(3.45a)

kdet =
Di

0

kiDwR0
(3.45b)

Indeed, if we acknowledge the fact that, for a tube, porosity is unity and the

specific surface area is S = 2
R0

, Equations (3.45) reduce to

kavgatt =
2D0

wR2
0

(3.46a)

kavg
det

=
D0

kiDwR0
(3.46b)

where superscript avg stands for the averaging method. Recall that wR0 de-

notes the radial position of a point in the pore where point concentration ci
∣∣
pore

is equal to average concentration ci (see Equation 3.43). These equations agree

quite well with Equations (3.42) which were obtained through numerical aver-

aging.

In Equations (3.42), if we neglect the dependence on the velocity and the

exponential term and approximate (0.5 + 4.5kDR0
) ≈ 4.5kDR0

, we obtain the ap-

proximation:

katt =
4Di

0

R2
0

(3.47a)

kdet =
2Di

0

kDR0
(3.47b)

We notice that the two equation sets, (3.46) and (3.47), are the same if w =
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0.5, which means that we should expect concentration ci
∣∣
pore

appearing in

Equation (3.16) to be equal to the average concentration, ci, at r = 0.5R0.

This possibility has been verified by plotting concentration breakthrough curves

at r = 0, r = 0.5R0 and r = R0, as well as the average concentration, ci,

in Figure (3.8). The agreement between ci and ci
∣∣
r=0.5R

is excellent. This

result suggests that Equations (3.46) provide a very good approximation for

the upscaled kinetic adsorption coefficients. The parameters w must be seen

as an empirical factor which will be different for different pore structures.

Figure 3.8: Comparison between average concentration breakthrough
curve and breakthroughs of concentrations at three different positions
in the tube.

3.5 Conclusion

In this work, we have shown that even if there is equilibrium adsorption at the

pore wall (or at the grain surface), one may need to employ a kinetic description

at the larger scale. This result was obtained through theoretical averaging,

from pore to REV scale, as well as numerical averaging, from pore to tube

scale. Both approaches result in formulas for macro-scale kinetic adsorption

parameters as a function of pore-scale parameters such as Peclet number and

distribution coefficient. Formulas from the two approaches agree very well.

The upscaled adsorption parameters are found to be only weak functions of

velocity; they strongly depend on the geometry of the pore and the diffusion

coefficient in the solution as well as the pore-scale distribution coefficient.

The relations for upscaled transport coefficients are appropriate for use in pore-
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network models where tube-scale relationships are needed to model adsorbing

solute transport in individual pore throats. Using the pore-network model we

could scale up from the pore scale to the scale of an REV or even to core scale.
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CHAPTER 4

UPSCALING TRANSPORT OF ADSORBING

SOLUTES IN POROUS MEDIA: PORE-NETWORK

MODELING

Experience is a good school. But the fees are high.

Heinrich Heine

Abstract

T
he main objective of this research is to enhance our understanding of, and ob-

tain quantitative relationships between, Darcy-scale adsorption parameters and

pore-scale flow and adsorption parameters, using a 3D MDPN model. This involves

scale up from a simplified but reasonable representation of microscopic physics to

the scale of interest in practical applications. This upscaling will be carried out in

two stages: i) from a local scale to the effective pore scale, and ii) from effective the

pore scale to the scale of a core. The first stage of this upscaling, from local scale to

effective pore scale, has been discussed in Chapter 3. There, we found relationships

between local-scale parameters (such as the equilibrium adsorption coefficient, kd, and

the Peclet number, Pe) and effective parameters (such as the attachment coefficient,

katt, and the detachment coefficient, kdet). Here, we perform upscaling by means of a

3D MDPN model, which is composed of a large number of interconnected pore bodies

(represented by spheres) and pore throats (represented by tubes). Upscaled transport

parameters are obtained by fitting the solution of the classic advection-dispersion

equation with adsorption to the average concentration breakthrough curves at the

outlet of the pore network. This procedure has resulted in relationships for upscaled

adsorption parameters in terms of micro-scale adsorption coefficient and flow velocity.
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4.1 Introduction

Transport of reactive/adsorptive solutes in soils and aquifers plays an impor-

tant role in a variety of fields, including leaching of agrochemicals from the soil

surface to groundwater, uptake of soil nutrients by plant roots, and remedia-

tion of contaminated soils and aquifers. Geochemical modeling has been widely

employed to improve our understanding of the complex processes involved in

fluid-solid interactions [Steefel and Lasaga, 1994, Gallo et al., 1998, Bolton

et al., 1999] and to study environmental problems related to groundwater and

subsurface contamination [Saunders and Toran, 1995, Xu et al., 2000, Mayer

et al., 2002]. In reactive solute transport, we should, in general, model various

reaction processes including: adsorption-desorption; precipitation-dissolution;

and/or oxidation-reduction. Studies of many contaminated field sites have

demonstrated that adsorption-desorption is one of the most significant geo-

chemical process affecting the transport of inorganic contaminants [Kent et al.,

2008, Davis et al., 2004a, Kohler et al., 2004].

4.1.1 Discrepancy between observations

In practical applications, we are interested in describing solute transport phe-

nomena at scales larger than the scale at which the generic underlying processes

take place (e.g., the pore scale). Commonly, in field or in lab experiments, reac-

tive transport coefficients are employed which are obtained from experimental

data. Measurement of the reaction coefficients usually employs well-mixed

batch or flow-through reactors [Lasaga, 1998]. In batch systems, the assump-

tion is that the aqueous phase is stirred rapidly enough so that concentration

gradients are eliminated; this removes the effect of subscale transport by dif-

fusion and/or advection within the pore spaces. In such cases, reaction is

surface-controlled and depends only on the uniform chemistry of the aqueous

solution. In natural systems, however, reactions are inevitably subject to the

influence of transport via advection, molecular diffusion, and/or dispersion.

As such, adsorption rates are an outcome of the coupling between reaction

and hydrodynamic processes [Li et al., 2007b]. These potential discrepancies

between batch experiments and the field can be the reason for much larger,

laboratory-measured reaction rates for many minerals than those observed in

the field [White and Brantley, 2003, Maher et al., 2004].

For upscaling batch experimental results to the field, we need to know the

dependency of the macro scale sorption coefficients on flow velocity and pore-
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scale properties. Existence of such relations is a question of great interest.

However, often, there is no agreement on such dependencies. For example,

there is no consensus on the dependency of adsorption coefficients on aver-

age flow velocity. Experimental results are conflicting. Some researchers have

reported a decrease of retardation coefficient with an increase in pore-water

velocity [Kim et al., 2006, Maraqa et al., 1999, Huttenloch et al., 2001, Shi-

mojima and Sharma, 1995, Jaynes, 1991, Pang et al., 2002, Nkedi-Kizza et al.,

1983, Schulin et al., 1987, Ptacek and Gillham, 1992]. The reason for this in-

verse relationship between velocity and retardation factor is pointed to be the

interaction time, which decreases as velocity increases. Dependencies of kinetic

adsorption/desorption coefficients on velocity have been observed [Akratanakul

et al., 1983, Lee et al., 1988, Bouchard et al., 1988, Brusseau et al., 1991a,b,

Brusseau, 1992a, Ptacek and Gillham, 1992, Maraqa et al., 1999, Pang et al.,

2002]. Kinetic adsorption coefficient has been often found to be inversely re-

lated to velocity. The inverse relationship indicates that the degree of nonequi-

librium transport increases with pore-water velocity, which is also observed

by Bouchard et al. [1988]. Similar results have been also found for physical

nonequilibrium [Pang and Close, 1999a].

In contrast to the above-mentioned studies, using pore-scale modeling, Zhang

et al. [2008], Zhang and Lv [2009] have found upscaled sorption parameters to

be independent of pore-water velocity. Raoof and Hassanizadeh [2010a] have

also found a negligible dependency of effective adsorption rate coefficients on

pore-water velocity.

4.1.2 Pore scale modeling

A full understanding of the dependence of column and field-scale reactive trans-

port parameters on pore-scale processes would require measurements of con-

centrations at various scales. Such measurements are, however, very difficult

and quite expensive if possible at all. Therefore, alternative ways to understand

and transfer pore-scale information to larger scales, and to establish relation-

ships among them, must be found.

Using pore-scale modeling, one can simulate flow and transport at the pore scale

in detail by explicitly modeling interfaces and mass exchange at interfaces. By

comparing the result of pore-scale simulations with models representing the

macro-scale behavior, one can study the relation between these two scales.

The two best-known methods for pore-scale modeling are pore-network mod-
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els [Fatt, 1956b] and lattice-Boltzmann method [Sukop and Thorne, 2006]. A

pore-network model is based on representing the void space of a porous medium

as an interconnected network of pores. Commonly, an average pressure and/or

concentration is assigned to a given pore body or pore throat. For each pore,

change in solute mass is described by mass balance equations [Lichtner, 1985].

Using information on local surface area, and applying an area-normalized re-

action rate, a kinetic reaction is calculated for each pore.

Pore-network models have been widely used to study multiphase flow in porous

media [Celia et al., 1995, Blunt, 2001, Joekar-Niasar et al., 2008b, 2010] and

chemical and biological processes such as: dissolution of organic liquids [Zhou

et al., 2000b, Held and Celia, 2001, Knutson et al., 2001b]; biomass growth

[Suchomel et al., 1998c, Kim and Fogler, 2000, Dupin et al., 2001]; and ad-

sorption [Sugita et al., 1995b, Acharya et al., 2005b, Li et al., 2006b]. One

shortcoming of a pore-network model is its idealization of the pore space using

simple geometries; often, pores are assumed to have uniform circular or square

cross-sectional shapes. This makes it difficult to simulate some processes, such

as biogeochemical reactions, that could lead to a significant change in the pore

geometry as a result of dissolution, precipitation, and/or biological clogging.

However, pore-network models are computationally cheap, and recent advances

have allowed modeling a degree of irregularity in channel cross-sectional shape

that was not available in earlier models. In addition, pore-network models are

capable of capturing important statistical characteristics of porous media such

as pore size distributions [Øren et al., 1998b, Lindquist et al., 2000], together

with coordination number distributions [Raoof and Hassanizadeh, 2009] and

topological parameters such as Euler number [Vogel and Roth, 2001].

The Lattice Boltzmann (LB) approach [Chen and Doolen, 1998, Tartakovsky

et al., 2007] provides a reliable representation of pore geometries, but at the

cost of substantial computational effort [Pan et al., 2004, Vogel et al., 2005]. In

the area of porous-medium flow, LB methods have been applied to a variety of

problems: to simulate the flow field (e.g., Acharya et al. [2007a]) and measure

permeability (e.g., Pan et al. [2001, 2006], Zhang et al. [2000]); to simulate two-

phase flow (e.g., Shan and Chen [1994], Miller et al. [1998]); to model species

transport (e.g., Zhao and Sykes [1996], Gunstensen and Rothman [1993]); and

to model interphase mass transfer (e.g., Martys and Chen [1996]). Contrary to

pore-network modeling, in which one normally does not discretize within the

pores, LB models can directly simulate fluid flow and biogeochemical processes

within individual pores, without the need to simplify the pore geometry. In
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a combination with imaging technologies such as X-ray computed tomography

[Wildenschild et al., 2002, O’Donnell et al., 2007], LB models can provide a

powerful tool to study flow and transport processes at the pore scale. How-

ever, LB models are expensive in terms of both computational storage and

run-time requirements, and little work has been done to use LB modeling on

real porous media.

4.1.3 Applications of pore-scale modeling to solute trans-

port

Since pore-scale modeling addresses the gap between pore scale and macro

scale representation of processes, it has received increased attention as a useful

upscaling tool. It can be used to relate concentrations and reaction rates at

the macro scale to concentrations and reaction rates at the scale of individual

pores, a scale at which reaction processes are well defined [Li et al., 2007a,b].

In recent pore-scale modeling, various types of adsorption reactions have been

used, including linear equilibrium (e.g., Raoof and Hassanizadeh [2009]) and

nonlinear equilibrium [Acharya et al., 2005b], kinetic adsorption (e.g., Zhang

et al. [2008]), and heterogeneous adsorption in which the adsorption parame-

ters were spatially varying (e.g., Zhang et al. [2008]).

Zhang et al. [2008]) used pore-scale modeling to find upscaled adsorption rate

coefficients. They simulated spatio-temporal distributions of solutes and ob-

tained upscaled concentrations by averaging the simulated results. Averaged

values were used to calculate the upscaled reactive and transport parameters.

At the pore scale, they specified linear kinetic adsorption and found that the

upscaled adsorption remains first-order kinetic and could therefore be described

by a constant rate coefficient. In addition, they found that upscaled adsorp-

tive parameters were independent of flow rate. For the case of heterogeneous

adsorption at the pore scale, the upscaled adsorption kinetics continued to be

independent of velocity, but could not be described by a constant reaction rate

constant.

For practical and/or computational reasons (lack of data and/or insufficient

computer power) it is not always possible to simulate problems across widely

varying length scales. To overcome this problem, Raoof and Hassanizadeh

[2010a] have performed upscaling of adsorptive solute transport for an indi-

vidual pore. The aim was to find effective pore-scale adsorption parameters

for a solute which undergoes local equilibrium adsorption at the solid-water

69



4. Upscaling Adsorbing Solutes: Pore-Network Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface. They performed pore-scale simulations for a wide range of local-

scale distribution coefficients and Peclet numbers. Through these simulations,

they found relationships for the upscaled parameters as a function of underly-

ing pore-scale parameters. Such relations are useful to perform upscaling by

means of pore-network model. They have shown that even if there is equilib-

rium adsorption at the pore wall (i.e., at the grain surface), one may need to

employ a kinetic description at larger scales. They have also shown this kinetic

behavior through employed volume averaging method, yielding very similar re-

sults for upscaled kinetic parameters. These kinetic expressions are sometimes

referred to as “pseudokinetics”, because they are a result of averaging to larger

scales, and are not inherent to the underlying surface reaction [Binning and

Celia, 2008]. Scale-dependent pseudokinetics has been observed for relatively

simple sorption systems, with local equilibrium [Burr et al., 1994, Espinoza and

Valocchi, 1997, Rajaram, 1997].

Li et al. [2006b] used pore-network modeling to investigate scaling effects in

geochemical reaction rates accounting for heterogeneities of both physical and

mineral properties. In particular, they upscaled anorthite and kaolinite reac-

tion rates under simulation conditions relevant to geological CO2 sequestration.

They found that pore-scale concentrations of reactants and reaction rates could

vary spatially by orders of magnitude. Under such conditions, scaling effects

are significant and one should apply an appropriate scaling factor; i.e., using

lab-measured rates directly in the reactive transport models may introduce

errors. To find macro-scale reaction rates analogous to CO2 injection con-

ditions, Algive et al. [2007b] have used pore-network modeling together with

experimental work (on a glass micromodel) to evaluate effects of deposition

regimes on permeability and porosity. Diffusion was taken into account in the

calculation of the effective reaction coefficient at the macro scale, so that mass-

transfer-limited reaction could be studied. They found that both pore-scale

and macro-scale transport processes are needed for explaining deposition pat-

terns; while macroscopic parameters controlled the concentration field and its

variation, microscopic parameters determined the deposition rate for a given

macroscopic concentration field.

Although there are some studies on upscaling of reaction rate coefficients, many

of them do not provide an explicit relationship between pore scale and upscaled

parameters. In this work, we present a methodology for using a pore-network

model to investigate scaling effects in adsorption rates. The aim of this research

is to find a relation between macroscopic (Darcy scale) and local scale transport
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coefficients for an adsorbing solute. We assume that at the solid grain surfaces

adsorption occurs as a linear equilibrium process; the corresponding local-scale

adsorption coefficient, kd, is assumed to be constant throughout the porous

medium. Upscaling will be carried out in two stages: i) from a local scale to

the effective pore scale, and ii) from the effective pore scale to the scale of a

core represented by the pore-network model. The first stage of this upscaling,

from local scale to the effective pore scale, has been discussed in Chapter 3.

There we found relationships between local-scale parameters (such as the local

equilibrium adsorption coefficient, kd, and the Peclet number, Pe) and effective

pore-scale parameters such as attachment and detachment coefficient, katt and

kdet. Here, we perform upscaling by means of a 3D MDPN. This procedure re-

sults in relationships for upscaled adsorption parameters in terms of local-scale

adsorption coefficient and flow velocity.

4.2 Description of the Pore-Network Model

In this study, we have utilized a MDPN model [Raoof and Hassanizadeh, 2009]

to simulate porous media. One of the main features of our network is that pore

throats can be oriented not only in the three principal directions, but in 13

different directions, allowing a maximum coordination number of 26, as shown

in Figure (2.1). To get a desired coordination number distribution, we follow

an elimination procedure to block some of the connections. The elimination

procedure is such that a pre-specified mean coordination number can be ob-

tained. A coordination number of zero means that the pore body is eliminated

from the network, so there is no pore body located at that lattice point. A

pore body with a coordination number of one is also eliminated except if it is

located at the inlet or outlet boundaries (and it is a part of the flowing fluid

backbone). This means that no dead-end pores are included in the network.

Details of network generation can be found in Chapter (2).

A 5× 5× 5 subset of the network domain and the coordination number distri-

bution used in this study are given in Figure (4.1). The coordination number

ranges from 1 to 12, with an average value of z = 4.4.
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(a)

(b)

Figure 4.1: A representative domain of the multi-directional network structure
and the coordination number distribution. The average coordination number is
equal to 4.4.

4.2.1 Pore size distributions

In this study, we have used three different networks with different pore-throat

size distributions. All three networks have the same coordination number dis-

tribution and the same pore body size distribution. The radius of pore bodies

is given by an uncorrelated, truncated, lognormal probability distribution with

an average of R = 0.33 mm. The radius of a pore throat is determined from

the sizes of the two terminating pore-bodies. Figure (4.2) shows the distribu-
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tion of pore-body radii together with three distributions for pore throat radii.

The pore throat radius distributions were chosen to from different degrees of

overlap with the pore-body radius distributions. The network contains 22,491

pores (Ni = 51, Nj = Nk = 21).

Figure 4.2: The distribution of pore-body radius (solid line) together
with distributions of pore-throat radius (R(a), R(b), and R(c)) shown
with dotted lines. The average radius of each distribution is shown
above it.

4.3 Simulating flow and transport within the

network

4.3.1 Flow simulation

In this work, we consider saturated flow through the network. A flow field is

established in the network by imposing two different pressures on two opposing

boundaries of the network. All other boundaries of the network parallel to the

overall flow direction are no-flow boundaries. We assume that the volumetric

discharge, qij , through a given pore throat,ij, can be prescribed by the Hagen-

Poiseuille equation [Acharya et al., 2004]

qij =
πR4

ij

8µl
(Pj − Pi) (4.1)
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where Rij is the radius of the pore throat, µ is the fluid dynamic viscosity,

and Pi and Pj are pressures at pore bodies i and j, respectively. Equation

(4.1) is valid for laminar flow over a wide range of Reynolds number and is

assumed to be appropriate for describing flow in a cylindrical pore [Bear, 1988].

For incompressible, steady-state flow, the sum of discharges of pore throats

connected to a pore body must be zero

zi∑
j=1

qij = 0 j = 1, 2, . . . , zi (4.2)

where zi is the coordination number of pore body i. Equation (4.2) is applied

to all pore bodies except those on the two flow boundaries where pressures are

specified.

The system of Equations (4.1) and (4.2) for all pores results in a linear system

having a sparse, symmetric, positive-definite coefficient matrix to be solved for

pore body pressures [Suchomel et al., 1998c]. The flow velocity in all pore

throats can be calculated using Equation (4.1).

Considering the network as an REV, the average pore water velocity, v, can be

determined as

v =
QL

V f
=

Q

θA
(4.3)

where Q is the total discharge through the network (the sum of fluxes through

all pore throats at the inlet or outlet boundary of the network), L is the network

length in the flow direction, V f is the total fluid volume present in the network,

θ is porosity, and A is the cross-sectional area of the network perpendicular to

the overall flow direction. Since we are modeling saturated porous media, the

fluid volume is the sum of volumes of all pore bodies and pore throats.

4.3.2 Simulating adsorbing solute transport through the

network

Transport through the medium is modeled by writing mass balance equations

for each element of the network (i.e., pore bodies and throats). Figure (4.3)

shows a schematic example of pore bodies interconnected by means of pore

throats within the network.
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Figure 4.3: An example of interconnected pore bodies and pore
throats. Flow direction is from pore body j into pore body i in tube
ij. Node j is the upstream node.

We assume that each pore body and pore throat is a fully mixed domain.

Therefore, a single concentration is assigned to each pore body or pore throat

[De Jong, 1958, Li et al., 2007b]. For a given pore body, i, (e.g., in Figure 4.3)

we can write the mass balance equation

Vi
dci
dt

=

Nin∑
j=1

qijcij −Qici (4.4)

where ci is the pore-body average mass concentration, cij is the pore-throat

average mass concentration, Qi is the total water flux leaving the pore body,

Vi is the volume of pore body i, and Nin is the number of pore throats flowing

into pore body i. As the total water flux entering a pore body is equal to the

flux leaving it, we have

Qi =

Nin∑
j=1

qij (4.5)

Note that, in Equation (4.4), we have neglected adsorption of solutes to the

pore body walls. Adsorption of the solutes to the walls of the pore throats is

taken into account as explained below. At the local-scale, i.e., at the wall of

the pore throats, the solute adsorption is assumed to occur as an equilibrium

process. Assuming linear equilibrium, we may write s = kd c|wall, where s is

the adsorbed concentration at the grain surface [ML−2], c|wall [ML−3] is the

solute concentration in the fluid phase next to the wall, and kd [L] denotes the
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local-scale adsorption coefficient, assumed to be constant for all pores through-

out the network.

However, as shown by Raoof and Hassanizadeh [2010a], the adsorption pro-

cesses averaged over the whole pore throat should, in principle, be modeled as

a kinetic process. Thus, the mass transport equation for a given pore throat

may be written as:

Vij
dcij
dt

= |qij | cj − |qij | cij − Vijkatt,ijcij + Vijkdet,ijsij (4.6)

where Vij is the volume of the pore throat, qij denotes the volumetric flow

within the tube, sij is the average adsorbed concentration, and katt,ij and kdet,ij

are attachment and detachment rate coefficients of tube ij, respectively. The

first term on the right hand side of Equation (4.6) account for the mass entering

from the upstream node j and the second term is the mass leaving the pore

throat into the downstream pore body.

We also need an equation for the adsorbed mass concentration:

dsij
dt

= katt,ijcij − kdet,ijsij (4.7)

The effective pore-scale kinetic adsorption coefficients, katt,ij and kdet,ij , de-

pend on the local Peclet number and local-scale equilibrium adsorption coef-

ficient, kd, at the pore wall. Empirical relationships for a single pore were

developed by Raoof and Hassanizadeh [2010a], through simulation of flow and

transport within a single tube and then averaging results to get the effective

pore-scale adsorption parameters.

The resulting relationships for a pore throat ij are [Raoof and Hassanizadeh,

2010a]:

katt,ij =
4.0(1− e−3

kd,ij
Rij ) vij

0.05

D0.95
0

R1.95
ij

(4.8)

kdet,ij =
9.0 vij

0.05

D0.95
0

(0.5 + 4.5
kd,ij
Rij

)R1.95
ij

(4.9)

where vij is the average velocity, Rij is the radius of the tube ij, and D0 is the

molecular diffusion coefficient.

Combination of Equations: (4.4), (4.6), and (4.7) results in a linear set of

equations to be solved for ci, cij , and sij . The number of unknowns is equal

to 2 ∗Ntube +Nnode (Ntube is number of pore throats and Nnode is number of
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pore bodies). To get a more efficient numerical scheme, we have discretized

Equations (4.6) and (4.7) for pore throats and then we have substituted them

into the mass balance equation for the pore bodies (Equation (4.4)). This

reduced the number of unknowns to Nnode which is much smaller than 2 ∗
Ntube +Nnode. The detail of discretization of the system of equations is given

in Chapter 8, Section 8.2.1. For the accuracy of the scheme, the minimum time

step was chosen on the basis of pore throat residence times [Suchomel et al.,

1998c, Sun, 1996]

∆t < min {Tij} = min
{
Vijq

−1
ij

}
(4.10)

where Tij denotes fluid residence time pertaining to the pore throat ij. At

designated times (t >> ∆t), the concentrations of pore bodies that belong to a

particular tier of the pore network are averaged to get breakthrough curves. A

tier is defined as the group of pore bodies which possess the same longitudinal

coordinate. The concentrations of pore bodies are weighted by their discharges;

this results in a flux-averaged concentration. That is, the resulting normalized

average concentration, c(x, t), is given by

c(x, t) =

[∑Nt

i ci(x, t)Qi∑Nt

i Qi

]
1

c0
i = 1, 2, 3, . . . , Nt (4.11)

where c0 is the inlet solute concentration and the symbol Nt denotes the total

number of pore bodies that are centered at the longitudinal coordinate x. The

longitudinal coordinate could be chosen as an interval of `, i.e. x = 1`, 2`, . . . , L

where ` is the distance between centers of two adjacent pore bodies and L is

the network length. The breakthrough curves have been obtained by plotting

c(x = L, t) vs. time. Figure (4.4) shows an example of the breakthrough curve

at the outlet of the network.

4.4 Macro-scale adsorption coefficients

The pore-network model described above simulates a 1D column experiment

and results in a macro-scale concentration field. Governing equations for solute

transport through such a column may be modeled by the Advection Dispersion

Equation (ADE)

θ
∂c

∂t
+ ρb

∂s

∂t
+ θv

∂c

∂x
= θDL

∂2c

∂x2
(4.12)
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Figure 4.4: Example of resulting breakthrough curve from the network as
a result of a pulse input with concentration of c0 = 1.0. The symbols indicate
average concentrations computed from the network model and the solid line is the
solution of the continuum scale, 1D equation with kinetic adsorption (Equations
4.12 and 4.13)

where s [MM−1] is the average adsorbed mass per unit mass of the solid phase,

θ is the porosity, ρb is the bulk density, v is average pore-water velocity, and

DL is the longitudinal dispersion coefficient. Assuming that adsorption follows

first-order kinetic behavior at this scale, we also have

∂s

∂t
=

θ

ρb
kcattc− kcdets (4.13)

where kc
att

and kc
det

are core-scale attachment and detachment rate coefficients,

respectively.

Equations (4.12) and (4.13) contain a number of parameters. The porosity, θ,

and bulk density, ρb, are known for the pore network. The average pore-water

velocity is determined as explained in Section 4.3.1. Dispersion and core-scale

adsorption coefficients remain to be determined. One method to determine

these coefficients is by fitting the solution of Equations (4.12) and (4.13) to the

flux-averaged concentration breakthrough curve at the outlet of the network.

These are discussed in the next two sections.

4.4.1 Dispersion coefficient

We assume that dispersion is not affected by the adsorption process. Therefore,

we evaluate the longitudinal dispersion coefficient, DL, by simulating the trans-
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port of a non-reactive tracer through the pore network (i.e., kd = 0) and assume

that it will be the same for adsorbing solutes. Fitting the analytical solution

of Equation (4.12) [Van Genuchten and Alves, 1982] to the breakthrough curve

of effluent concentration, dispersion coefficient is computed using the method

of least squares. We have checked that the size of the pore network is large

enough to obtain asymptotic values of dispersivity. Figure (4.5) shows the dis-

persion coefficient as a function of average velocity in the network. This is

clearly a linear relationship from which we calculate the dispersivity value for

our specific network to be 1.4× 10−3m.

Figure 4.5: Dispersion coefficient as a function of mean pore-water
velocity. The slope of the line is equal to dispersivity which is 1.4 ×
10−3m.

4.4.2 Core-scale kinetic rate coefficients (kc
att and kcdet)

Once the dispersion coefficient is estimated, there are only the two core-scale

parameters, kcatt and kcdet, to be determined as a function of average pore-water

velocity and local-scale distribution coefficient

kcatt = f(kd, v) (4.14a)

kcdet = f(kd, v) (4.14b)

The CXTFIT program [Toride et al., 1995] was used to simulate reactive trans-

port at the macro-scale and to fit the resulting breakthrough curves to the
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flux-averaged concentration breakthrough curves calculated using the pore-

network model. By repeating the procedure for a range of pore-scale parameters

(10−4m < kd < 10−2m, and 0.05m/d < v < 4.0m/d) and finding the corre-

sponding core-scale parameters, we find relations between these set of param-

eters. Figures (4.6) and (4.7) show the adsorption parameters (kcatt and kcdet)

as a function of the local-scale distribution coefficient, kd.

Figure 4.6: Detachment rate coefficient as a function of local-scale
distribution coefficient, kd. The relation is shown in log-log scale.

Figure 4.7: Attachment rate coefficient as a function of local-scale
distribution coefficient, kd

Equations (4.8) and (4.9) show that the effective pore-scale attachment and

detachment rate constants are very weak functions of velocity. This dependency

can cause the core-scale attachment and detachment coefficients to be also a

function of average pore-water velocity. Indeed, as shown in Figure 4.10, the

core-scale detachment coefficient increases with increase in velocity. However,
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the dependency decrease at higher velocities. This behavior is to be expected

considering the power, 0.05, of the velocity term in Equation (4.9). This means

that dependence on velocity is significant only for small velocities.

Figure 4.8: Detachment rate coefficient as a function of average pore
water velocity.

4.4.3 Core-scale distribution coefficient (Kc
D
)

We define the core-scale distribution coefficient, Kc
D

, as

Kc
D

=
kcatt
kc

det

(4.15)

Since we obtained core-scale coefficients, kcatt and kcdet, we can calculate up-

scaled distribution coefficient. The result is shown in Figure (4.9). It is evident

that Kc
D

is a linear function of the pore-scale distribution coefficient, kd. This

linear relationship is a verification of our upscaling process. Since both Kc
D

and kd are a measure of the capacity of the porous medium to adsorb mass,

and given the fact that kd is kept constant for all pores, they should be linearly

related. We have found that the proportionality constant in this linear relation

is equal to the solid specific surface area, S (the solid surface area divided by

the total sample volume) i.e. Kc
D

= Skd. Since in our pore-network model, ad-

sorption is taking place only in the pore throats (pore bodies are considered to

be non adsorptive), we use only the surface of pore throats to calculate specific

surface. Figure (4.9) is based on results from a network with the value of S

equal to 5.28 × 103m−1, which is exactly the slope of the line fitting the data

points.
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Figure 4.9: Upscaled distribution coefficient, Kc
D

, as a function of
local-scale distribution coefficient, kd. The circles are the results of
network simulations. A linear equation fits the data: Kc

D
= Skd. S is

equal to 5.28 × 103m−1.

4.5 Discussion

Figures (4.6) and (4.7) show that the core-scale attachment and detachment

rate constants are functions of the local-scale adsorption coefficient and the

average pore-water velocity. Combining these graphs results in a surface plot of

kcdet(kd, v), as shown in Figure (4.10) for the network (Rthroat = 0.17×10−3m).

We have fitted an equation to this surface

kc
det

=
D0.95

0 v
0.05

(0.02 + 0.5 kd)R
0.95 (4.16)

Using a volume averaging method, Raoof and Hassanizadeh [2010a] derived

the following relationship for macro-scale kinetic adsorption coefficient for a

general porous medium

kcdet =
2D0

kdR
(4.17)

If, in Equation (4.16), we neglect the dependency on velocity and approximate

(0.02 + 0.5 kd) ≈ 0.5 kd, we can confirm that the two equations are in full

agreement.

Clearly, knowing the upscaled detachment rate coefficient and the upscaled

distribution coefficient, we can obtain a relationship for upscaled attachment

coefficient
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Figure 4.10: Calculated values of the core-scale detachment coeffi-
cient, kcdet, as a function of the local-scale distribution coefficient, kd,
and mean pore-water velocity. The circles are data points and the
surface represents results of Equation (4.16) fitted to kcdet −kd − v data
points.

kc
att

= Kc
D
kc

det
= S kd

D0.95
mol v

0.05

(0.02 + 0.5kd)R
0.95 (4.18)

This equation may be approximated by

kc
att

=
S D0

0.5R
(4.19)

which is the same as the equation derived through the averaging method by

Raoof and Hassanizadeh [2010a].

As mentioned above, Equations (4.16) and (4.18) were obtained based on results

from a specific pore network. We have verified these equations by applying

them to another pore network with the same pore-body size distribution as in

Figure (4.2) but with a different mean pore-throat size, as well as a network

with different pore-body size distribution and a mean pore-body diameter of

0.36 × 10−3m. Figures (4.11) and (4.12) show the results of the verification;

plotted lines are obtained from Equation (4.16) for these networks while the

circles indicate pore-network computations. It is evident that the agreement is

excellent.

Equations (4.16) and (4.18) show the upscaling relations for the core scale
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Figure 4.11: Simulated kcdet against local-scale kd for a network with
the same pore-body size distribution as shown in Figure (4.2), but
with R = 0.26 × 10−3m. The circles are simulated results and the lines
are based on Equation (4.16).

Figure 4.12: Simulated kcdet against local-scale kd for network with a
different pore-body size distribution than shown in Figure 4.2. The
mean pore-body size is 0.36× 10−3m. The circles are simulated results
and the line is based on Equation (4.16) for corresponding parameter
values.
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attachment and detachment rate constants. It is of interest to evaluate the

degree of non-equilibrium using these relations. An important criterion for

the classification of reactive transport problems is the Damkhler number, Da,

which is the ratio of the advection time scale (L/v) to the typical time scale

of the adsorption (defined as (1/kdet)), with L being loosely defined as some

characteristic length of the domain

Da =
kcdet L

v
(4.20)

As a rule of thumb, adsorption is considered to be (quasi) equilibrium, if

Da >> 1, and kinetic for Da << 1. While the results of simulations using

slower velocities and higher detachment coefficients show equilibrium behav-

ior at the network scale, the behavior was kinetic under higher velocities and

lower detachment coefficient values. In this work, using different combinations

of pore-water velocity and distribution coefficient, different Da numbers were

obtained, which ranged from less than unity (e.g., 0.05) to Da numbers as large

as 90.0. Using Equation (4.16), we can calculate kcdet to estimate Da number

for different values of the local-scale distribution coefficient. An increase in the

local-scale kd will result in a decrease in the core-scale detachment coefficient,

which in turn results in a smaller Da number and kinetic effects becoming more

significant.

To determine the role of the local-scale heterogeneity, we have made pore-

network simulations where different values of local kd are assigned to different

pores, following a log-normal distribution. Figure (4.13) shows the distribution

of local-scale kd used within the network.

In addition to simulations applying the above kd distribution, we have also

repeated the simulations using the average value of the kd distribution. We

have calculated the average of kd weighted with the specific surface area

kd =

Ntube∑
i=1

kdiSi

Ntube∑
i=1

Si

(4.21)

where Si and kdi are the specific surface area and the local distribution coeffi-

cient, respectively, for pore throat i. In both cases, we have fitted the solution

of a 1D analytical solution of the advection dispersion equation with kinetic

adsorption to the breakthrough curve of the average concentration at the out-

let of the network to obtain upscaled kinetic parameters. This procedure was
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Figure 4.13: Distribution of the local-scale distribution coefficient, kd, within
the network for the calculation of Figure (4.14).

repeated for a range of velocities between 0.5 and 5.5m/d. Figure (4.14) shows

the dependency of the core-scale detachment coefficient on velocity for both

cases. It is evident that heterogeneity in local-scale distribution coefficient

does not significantly affect the value of the upscaled detachment coefficient.

Figure 4.14: Core-scale detachment rate coefficient, kcdet, as a function
of average pore-water velocity.

Figure (4.14) shows that the heterogeneity of local-scale kd does not consider-

ably affect the dependency on velocity.
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4.6 Conclusions

The transport of adsorptive solutes in porous media is a scale dependent pro-

cess. We need to apply effective adsorption parameters at different scales.

In our previous study [Raoof and Hassanizadeh, 2010a], we have shown that,

starting from equilibrium at the local scale (at the wall of pores), the effec-

tive form of adsorption at the pore scale could be kinetic. In this study, using

a MDPN model for simulating adsorptive solute transport, we have extended

upscaling to the core scale for the case of saturated porous media with homoge-

nous local-scale adsorption. In particular we have challenged the conventional

view of reactive transport where a single adsorption parameter is used for the

whole network. The model allows us to investigate how various micro-scale

parameters affect transport properties of a medium.

Different combinations of local-scale distribution coefficient and pore-scale ve-

locity have been used to obtain upscaled adsorption parameters. Through this

procedure, we found relationships between core-scale adsorption parameters

and local-scale transport coefficients, including the molecular diffusion coeffi-

cient,the grain specific surface area, and average pore-throat size. We have

shown that even if there is equilibrium adsorption at the pore wall (or at the

grain surface), one may need to employ a kinetic description at larger scales.

In contrast to some other studies, which reported dependency of reaction pa-

rameters on flow rate, we have shown that these kinetic parameters are only a

weak function of velocity; in this aspect, our result is more in agreement with

the study done by Zhang et al. [2008] and Zhang and Lv [2009] who have shown

that adsorption parameters are not dependent on flow rate.

Natural porous media are most likely to be heterogeneous with correlated spa-

tial distributions. Therefore, treating adsorption as homogenous is an idealiza-

tion. Quantifying adsorptive heterogeneity and also dependencies of adsorption

parameters on velocity for the case of unsaturated porous media are areas that

still need to be investigated.

We should state that the statistical distributions (pore sizes, kd, coordination

number, and etc) in this study have been uncorrelated, and under correlated

distributions one may need more statistical parameters to define upscaled co-

efficients.
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CHAPTER 5

A NEW FORMULATION FOR PORE-NETWORK

MODELING OF TWO-PHASE FLOW

The question is not what you look at, but what you see.

Henry David Thoreau

Abstract

P
ore network models of two-phase flow in porous media are widely used to in-

vestigate constitutive relationships between saturation and relative permeability

as well as capillary pressure. Results of many studies show discrepancy between cal-

culated relative permeability and corresponding measured values. Often calculated

values overestimate the measured values. An important feature of almost all pore-

network models is that the resistance to flow is assumed to come from pore throats

only; i.e., the resistance of pore bodies to the flow is considered to be negligible

compare to the resistance of pore throats. We contend that this simplification may

considerably affect the magnitude of the relative permeability curves.

In this study, we present a new formulation for pore-network modeling of two-phase

flow, which accounts for the resistant to the flow within the pore bodies. In a quan-

titative investigation, we have shown the significance of this effect under primary

drainage conditions. The pore space is represented by cubic pore bodies and paral-

lelepiped pore throats in a MDPN. model, which allows for a distribution of coor-

dination numbers ranging between zero and 26. This topological property, together

with geometrical distributions of pore sizes are used to mimic the microstructure of

real porous media. Under unsaturated conditions, the wetting fluid is considered to

fill only spaces along edges of cubic pore bodies.
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We show that the resistance to the flow within these filaments of fluids is comparable

to the resistance to the flow within pore throats. The resulting saturation-relative

permeability relationships show very good agreement with measured curves.

While our computations have been restricted to relative permeability curves, they

demonstrate the significance of this formulation of pore-network modeling to pre-

dict other transport properties such as dispersivities and mass transfer coefficients,

through including limited mixing within the pore bodies. We will address this issue

in Chapter 5.

5.1 Introduction

5.1.1 Pore-network modeling

Understanding of multiphase flow and transport in porous media is of great

importance in many fields, including contaminant cleanup and petroleum engi-

neering. Modeling multiphase fluid flow in porous media requires specification

of the capillary constitutive properties of the porous medium. Examples are i)

the relationship between the capillary pressure, Pc (the difference between the

pressures in the nonwetting and wetting fluids) and the fluid saturation, S, ii)

the relative permeability, kr, as a function of either the saturation or capillary

pressure, and iii) the relationship between dispersivity and saturation in solute

transport processes.

The relative permeability of a fluid is a measure of the conductance of the

porous medium for that fluid at a given saturation. Relative permeability

measurements on field samples are difficult and time consuming. In general,

experimental determination of the Pc − S relationship is easier than measure-

ment of relative permeability. For this reason, empirical relationships, such as

those of Brooks and Corey [Brooks and Corey, 1964] and Van Genuchten [van

Genuchten, 1980], are often used to model the dependence of relative perme-

ability on capillary pressure or saturation.

Another approach for obtaining multiphase constitutive properties is to use

Pore-Network Models (PNMs). One of the early attempts to estimate relative

permeability was using a bundle-of-capillary-tubes model. This was based on

the assumption that a porous medium may be modeled as bundle of capillary

tubes of various diameters. However, such models ignore the interconnected

nature of porous media and often do not provide realistic results. PNMs, first
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suggested by Fatt [1956b], offer a more realistic approach for calculating mul-

tiphase constitutive properties. The vast majority of PNMs consist of pore

bodies (or nodes) and pore throats (or channels), along with a selected topo-

logical configuration which prescribes how pore bodies are connected via pore

throats. The pore bodies are meant to represent larger void spaces found in

natural porous media. The narrow openings that connect the adjacent pore

bodies are modeled by the pore throats, which are essentially capillary tubes.

The pore-network approach for modeling multiphase flow properties has been

employed extensively in the petroleum engineering literature [Chatzis and Dul-

lien, 1977, 1985, Larson et al., 1981, Chandler et al., 1982, Wilkinson and

Willemsen, 1983]. In recent years, the pore-network approach has been also

explored in the fields of hydrology and soil physics [Ferrand and Celia, 1992,

Berkowitz and Balberg, 1993, Ewing and Gupta, 1993a,b] and upscaling of reac-

tive transport [Acharya et al., 2005a, Li et al., 2006b, Raoof and Hassanizadeh,

2010b].

Because of their ability to simulate the highly disordered geometry of pore

space and relatively low computational cost, PNMs hold promise as tools for

predicting multiphase flow properties of specific porous media. For example,

the dependence of capillary pressure on saturation is modeled by determining

the location of fluid-fluid interfaces throughout the network using the Young-

Laplace equation (e.g., Dullien [1991]). This is sometimes modified by other

pore-level mechanisms, such as snapoff during imbibition (e.g., Chandler et al.

[1982], Yu and Wardlaw [1986]). Also, the dependence of relative permeability

on saturation is determined by computing the resistance to flow in the con-

nected portion of a fluid. In these calculations, resistance to the flow within

the pore bodies is commonly ignored, assuming that conductance within the

pore bodies is much higher that the conductance within the pore throats (see

e.g., Joekar-Niasar et al. [2008a]). This means that fluid fluxes within the

pore bodies are not calculated. The significance and effects of this assumption,

however, have been never investigated.

5.1.2 Pore-network construction

The pore morphology of natural porous media is quite complex and its descrip-

tion is a formidable problem. However, in many studies related to porous me-

dia, geometrical features are crucial even though it is very hard to get detailed

information about them [Adler, 1992]. The morphology of a porous medium

consists of its geometrical properties (the shape and volume of its pores) and
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its topological properties, i.e. the way in which the pores are connected to

each other. A regular array of spheres and cylinders is one of the simplest

representation of porous media, which never occurs in natural systems. Never-

theless, because of the relative simplicity of these patterns, many studies have

focused on such network structures, either experimentally, theoretically, or nu-

merically (e.g., Fatt [1956a], Kruyer [1958], Mayer and Stowe [1965]). There are

several approaches to identifying and specifying the porous medium morphol-

ogy. These approaches may be classed into two broad categories: experimental

imaging and numerical simulation of porous media.

One approach that can be adopted to get the morphology of porous media

is to use synchrotron X-ray microtomography to directly image the three-

dimensional pore structure of the rock at very high resolution, so as to capture

as much details as possible. These images can then be used to generate a

network. This approach has been used, for example, by Ferreol and Rothman

[1995], Lindquist et al. [2000] and Arns et al. [2001, 2003a]. This is a direct and

accurate method, and generally leads to results that are in reasonable agree-

ment with experiments. However, even with the recent advances of computer

technology, this is a time-consuming process, and the size of the modeled do-

main is typically limited to a few centimeters or less. Another experimental

approach is to use information obtained from so-called “serial sectioning”, i.e.

cutting the sample and mapping the thin sections [Zinszner and Meynot, 1982].

Since the experimental measurements are time-consuming and expensive, the

use of numerically-simulated porous media is conceptually appealing. It is pos-

sible to generate porous media based on measured statistical properties of real

porous media. Compared to sequential sectioning the numerically-simulated

media do not include full details of three-dimensional features. In general,

certain features of the real system are selected (such as porosity, pore-size dis-

tribution and correlation functions), and then porous media are generated so as

to mimic the real porous medium by matching these properties, and to get some

major topological properties (such as coordination number distribution). Using

these properties, we can generate a simplified, but intricately constructed and

well-characterized, pore network that can be used to study various flow pro-

cesses in a relatively simple yet generally accurate manner [Pan et al., 2001].

In this study, we represent porous media by a numerically simulated domain,

which allows a distribution of coordination number ranging between zero and

26. We will show that this topology will result in a more accurate flow field

compared to the regular 3D pore network model with a fixed coordination num-
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ber of six.

There exist many PNM studies investigating various geometrical and topologi-

cal properties of porous media and their effect on flow and transport in porous

media. They include: the effect of pore size distribution [Lindquist et al., 2000,

Jerauld and Salter, 1990], network structure and coordination number [Al-

Kharusi and Blunt, 2008, Sok et al., 2002, Mahmud et al., 2007, Arns et al.,

2004, Øren and Bakke, 2003a, Mogensen and Stenby, 1998], pore angularity

and shape factors [Sholokhova et al., 2009, Zhang et al., 2010, Patzek and Kris-

tensen, 2001, Øren et al., 1998a], and correlation functions [Arns et al., 2003b,

Rajaram et al., Ferrand et al., 1994, Lymberopoulos and Payatakes, 1992, Jer-

auld and Salter, 1990, Tsakiroglou and Payatakes, 1991, Renault, 1991, Ioan-

nidis et al., 1993]. In almost all of these studies, the selected pore size distri-

butions are such that most of the pore space is assigned to the pore bodies. In

such cases, the modeling of flow within pore bodies will be of major influence

on hydrodynamic properties of the network, certainly in the case of flow on

partially drained pore spaces. This issue, however, unlike the above-mentioned

properties of porous media has not been addressed in any pore-network study.

We will address this particular issue in this study.

5.1.3 Objectives and approach

Under partially-saturated conditions, much of a pore body is occupied by the

non-wetting phase, such that the wetting phase can only flow through the

edges, similar to the flow conditions within drained pore throats. Under these

conditions, the effect of resistance within the pore-bodies become important

and comparable to pore throats; taking this effect into account can improve

the result of kr − S calculations. This is, however, not possible within current

pore-network modeling approaches. In fact, this is one of the shortcomings

of pore-network modeling compared to other pore-scale modeling approaches,

such as lattice-Boltzmann method (LBM). LBM has the advantage that it fully

discretizes the space within each pore space. In PNM, however, the smallest

discretization unit is normally one pore body or pore throat. That is, in PNM,

only one (average) pressure (or one average concentration) is assigned to each

pore body. Thus, using pore body or pore throat discretization, one needs

to apply so-called effective parameters [Meile and Tuncay, 2006, Raoof and

Hassanizadeh, 2008, 2010b]. While this assumption may be acceptable for a

fully saturated pore body (considering the large size of a pore body compared

to pore throats connected to it), it is a crude approximation when the water
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phase is present only in the corners and edges of a pore body. This could be

one of the reasons for the discrepancies often found between PNM prediction

of relative permeability and experimental observations.

To include the effect of resistance to flow of the wetting phase within the pore

bodies, we propose a new formulation for two-phase flow and transport under

partially-saturated conditions. In this new formulation, we further discretize

the pore bodies and treat each corner and each edge of a pore body as a

separate domain, with its own pressure and concentration, different from those

of the wetting phase in other corners of the same pore body. Details of this

approach will be given in this chapter and its utility is illustrated by calculation

of relative permeability curves.

5.2 Network Generation

5.2.1 Pore size distributions

In the present study, the pore structure is represented using a MDPN model

in three-dimensional space. Because natural porous media can be mostly de-

scribed by a lognormal distribution [Bear, 1988], the pore-body radii are as-

signed from such a distribution, with no spatial correlation, expressed by:

f (Ri, σ) =

√
2 exp

[
− 1

2

(
ln

Ri
Rm

σ

)2
]

√
πσ2Ri

[
erf

(
ln Rmax

Rm√
2σ2

)
− erf

(
ln

Rmin
Rm√
2σ2

)] (5.1)

where Rmin, Rmax, and Rm are the minimum, maximum, and mean of the

distribution, respectively; and σ2 is the variance of the distribution. The pore

structure is constrained to be isotropic, in the sense that the same values of

R-coefficients and σ2 are specified for all pores oriented along all network di-

rections.

In this study, five different networks were constructed: three generic networks,

and two networks which represented specific porous media. The three generic

networks had the same coordination number distribution, the same distribu-

tion of pore body radii, but different pore throat size distributions. Figure

(5.1) shows the distribution of pore body sizes and the three different distribu-

tions for pore throat radii. Pore body radii are taken from the uncorrelated,

truncated, lognormal distributions (figure 5.2). Pore throat radii are corre-
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lated to the pore body radii. Thus, the three networks have different aspect

ratio’s (ratio of pore body to pore throat radius). Properties of the two porous-

medium-specific networks will be given later.

Figure 5.1: The distribution of pore-body radii (columns) together with three
distributions of pore-throat radii (R1, R2, and R3) (lines). The mean radii of
the pore-body and pore-throat distributions are shown above each distribution.

5.2.2 Determination of the pore cross section and corner

half angles

A key characteristic of real porous media is the angular form of pores. It has

been demonstrated that having pores with a circular cross section, and thus

single-phase occupancy, causes insufficient connectivity of the wetting phase

and as a result poor representation of experimental data [Zhou et al., 2000b].

Angular cross sections retain the wetting fluid in their corner and allow two or

more fluids to flow simultaneously through the same pore. Pores which are an-

gular in cross section are thus a much more realistic model than the commonly

employed cylindrical shape. In the present work, pore bodies are considered to

be cubic in shape, whereas, pore throats are assigned a variety of cross sectional

shapes including circular, rectangular, and scalene triangular.

The shape of an angular pore cross section is prescribed in terms of a dimen-

sionless shape factor, G, [Mason and Morrow, 1991] which is defined as

G =
A

P 2
(5.2)
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where A and P are the area and the perimeter of the cross section, respectively.

The shape factor replaces the irregular and complicated shape of a pore throat

by an equivalent irregular, but simpler, shape. The value of shape factors

for pore throats are chosen from a truncated lognormal distribution (Equation

5.1), with a minimum shape factor value of zero corresponding to a slit, and

a maximum value of 0.08 corresponding to a circular cross section. Values

between zero and 0.048 correspond to triangular cross sections (with maximum

value of 0.048 for an equilateral triangle), and values between zero and 0.062

correspond to rectangular cross section (with the maximum value corresponding

to a square).

For a triangular cross section, there is a relationship between shape factor and

corner angles [Patzek, 2001], given by

G =
A

P 2
=

1

4
3∑
i=1

cot(Anglei)

=
1

4
tanα tanβ cot(α+ β) (5.3)

where α and β are the two corner half-angles subtended by the two longest

sides of the triangle. It is clear from the above equation that for a single value

of the shape factor, a range of corner half angles are possible. We follow the

procedure employed by Patzek [2001] to select a nonunique solution for corner

half-angles. We start by selecting the upper and lower limits of the corner

half-angle, β, assuming β < α. These two limits are

βmin = arctan

[
2√
3

cos

(
arccos

(
−12
√

3G
)

3
+

4π

3

)]
(5.4)

βmax = arctan

[
2√
3

cos

(
arccos

(
−12
√

3G
)

3

)]
(5.5)

We randomly pick a value, β = βmin + (βmax − βmin) .ϕ, between the two

limits. Where ϕ is a uniformly distributed random number, between 0 and 1.

We calculate the corresponding value of α by inverting Equation (5.3)

α = −1

2
β +

1

2
arcsin

(
tanβ + 4G

tanβ − 4G
sinβ

)
(5.6)

The third and smallest corner half-angle, γ, is then obtained from γ = π
2 −

(α+ β). After determining the corner angles, finding the triangle size requires

specifying a length scale. We have chosen the radius of the equivalent circle

of a pore cross section as the length scale. One way to select this radius is
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to relate it to the radii sizes of the two terminating pore bodies, as suggested

by Raoof and Hassanizadeh [2010b]. By equating the area of the triangle to

the area of the equivalent circle we fully specify the triangular cross-section.

Similarly, for rectangular pore-throats, the rectangle area is obtained from the

area of the equivalent circle. Knowing the area and the shape factor, we can

calculate the dimensions of the rectangle by solving a quadratic equation.

5.2.3 Coordination number distribution in MDPN

One of the main features of the MDPN is that pore throats can be oriented not

only in the three principal directions, but in 13 different directions, allowing

a maximum coordination number of 26, as shown in Figure (2.1). To get a

desired coordination number distribution, we follow an elimination procedure

to rule out some of the connections. The elimination procedure is such that a

pre-specified mean coordination number can be obtained. A coordination num-

ber of zero means that the pore body is eliminated from the network, so there

is no pore body located at that lattice point. A pore body with a coordination

number of one is also eliminated except if it is located at the inlet or outlet

boundaries (so it belongs to the flowing fluid backbone). Thus no dead-end

pores are included in the network. Details of network generation can be found

in Chapter 2.

Since in many pore-network modeling studies, a fixed coordination number of

six is employed, we chose to generate a stochastic network with the coordina-

tion number ranging from zero to 16, but with a mean coordination number

of six. However, we shall also present results for networks with other mean

coordination numbers, related to some real porous media. The distribution of

coordination number and a representative domain of the network used in this

study are given in Figure (5.2).

5.2.4 Pore space discretization

Flow in both pore bodies and pore throats arises from pressure gradients. The

conductivity of a flow path is dominated by the narrowest constriction along

the path. Under saturated conditions, considering the larger sizes of pore bod-

ies compared to pore throats, one may safely neglect the resistance to the flow

within pore bodies (thus assuming zero pressure gradient within a pore body)

and assign conductances only to the pore throats. This has been the common

practice in almost all pore-network models. However, under unsaturated con-
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Figure 5.2: The coordination number distribution and a representative sub-
domain of MDPN. The mean coordination number is equal to 6.0.

ditions, a given pore body or pore throat can be invaded and filled mostly by

the non-wetting phase, forcing the wetting phase to flow only along the edges.

Figure (5.3) shows a schematic example of two pore bodies connected to each

other by a pore throat of triangular cross section. Under such conditions, pore

throats are no longer necessarily the narrowest constriction along the flow path.

In fact, resistance to the flow within the edges of pore bodies may be compa-

rable to, or even larger than, the resistance to flow within the pore throats.

Thus, it is more realistic to consider conductance, and calculate fluxes, within

the pore bodies as well as pore throats. This lower conductivity of a pore body

can also reduce the connectivity among saturated pore throats connected to a

drained pore body (such as pore throats number 2, 3, 4 in Figure 5.3b), and

thus reduce their effective conductance although they are still saturated.

Figure 5.3: (a) Example of two drained pore-bodies connected to each other by
a drained pore throat with triangular cross section, and (b) a pore body which is
invaded by non-wetting phase, through one of its throats, and as a result reduces
the connectivity of the neighboring saturated pore throats.
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Our new approach to include the resistance to the flow within pore bodies is

implemented as follows. Resistance to flow within a pore body is assumed to

be negligible as long as the pore body is saturated; and a single pressure is

assigned to the whole pore, assuming the local pressure gradient is negligible.

As soon as the non-wetting phase invades the pore body and occupies the bulk

space of the pore, we consider each corner of the pore as a separate element

with its own pressure. Thus, for a cubic pore body, 8 different corner elements

exist with 8 different pressure values assigned to them. We refer to the corner

elements as pressure nodes. Flow between the pressure nodes occurs through

the 12 edges of the pore body (see Figure 5.3a). The conductance of each edge

needs to be determined as a function of the thickness of the water film residing

in the edge. This thickness depends on the radius of curvature of the fluid-fluid

interface, which in turn depends on the capillary pressure. Pore body corners

are connected to the neighboring pore body corners via pore throats. Thus we

need to specify connections of pore throats to the corners of pore bodies. The

algorithm which has been used to associate different pore throats to different

corners of neighboring pore bodies is described in Appendix B.

5.3 Modeling flow in the network

5.3.1 Primary drainage simulations

We wish to simulate primary drainage in a strongly-wet porous medium, and to

obtain capillary pressure-saturation and relative permeability-saturation curves.

The network is assumed to be initially fully saturated with the wetting phase.

The network is placed between two fluid reservoirs each at a specified pres-

sure. The pressure of the wetting phase in the outlet reservoir is fixed to zero.

The pressure of the non-wetting phase in the inflow reservoir is also speci-

fied but is increased incrementally. Thus, the network will be subjected to

incrementally larger capillary pressures. At any given capillary pressure, two

kinds of computations are carried out. First, the equilibrium positions of all

wetting-nonwetting interfaces within the network are determined. From this

information, the average saturation of the network at any given capillary pres-

sure is calculated. The plot of average saturation as a function of imposed

capillary pressure results in the capillary pressure-saturation curve.

In another set of calculations, permeabilities of the network to the two fluids

are calculated. For these calculations, at any imposed capillary pressure, Pc,

and thus for the corresponding distribution of the two fluids in the network, a
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small flux of each fluid is established. This is done by imposing a small pressure

gradient within each fluid; that is a small pressure difference ∆pα (α = w, n)

is assumed to exist between input and output reservoirs. ∆pn and ∆pw are

chosen such that the imposed capillary pressure, Pc is still present through-

out the network. The corresponding permeabilities of the network for the two

fluids can be determined, as explained shortly in the following sections. This

is the common approach in most pore-network models for calculating relative

permeabilities. In these computations, the friction between the two fluids at

their interface is neglected. Therefore, it may be assumed the the fluids flow

does not disturb the equilibrium positions of the fluid-fluid interfaces in the

network. Also, the flow of the two fluids is decoupled, i.e., each fluid flows in

its own domain. Obviously, the wetting phase occupies the corners and edges of

drained pores; whereas the non-wetting phase flows through the middle of the

pores. Therefore, it is admissible to assign a single pressure to the non-wetting

phase within a given pore body, which is the common assumption in all pore-

network models. As explained earlier, the wetting phase occupying corners of

a pore body may have different pressure in different corners of the same pore.

This is the approach followed here. While this may affect the calculation of

permeabilities of the wetting phase, it has no consequence for the determination

of permeability of the non-wetting phase. Therefore, in this work, we do not

calculate the permeability of the non-wetting phase, as our results will not be

different from common pore-network approaches. In the following, we explain

the procedure for calculating the wetting phase permeability under drainage

conditions.

First, the criterion for the invasion of pores at a given capillary pressure is dis-

cussed. As explained above, at any imposed capillary pressure, we determine

the location of all fluid-fluid interfaces within the network. The non-wetting

phase invades all accessible pore bodies and throats whose capillary pressure

is smaller than the imposed capillary pressure. The entry capillary pressure is

given by the Laplace equation [Bear, 1988]:

Pc = Pn − Pw = γwn

(
1

r1
+

1

r2

)
=

2γwn
rc

(5.7)

where rc is the mean radius of curvature. For a capillary tube of radius r,

we have rc = r/ cos θ (Young-Laplace’s equation), in which θ is the contact

angle between the fluid-fluid interface and the capillary wall. Comparing this

entry pressure with the imposed capillary pressure will determine which pores

are invaded by the non-wetting phase, and what the corresponding curvatures
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of the fluid-fluid interfaces are. Thus the positions of all fluid-fluid interfaces

throughout the network is determined.

5.3.2 Fluid flow within drained pores

In order to calculate flow of fluids through the network, we need to calculate

fluxes within each individual pore. In our network model, pores, and therefore

wetting phase domains, may have different cross sections.

The problem of laminar flow through a circular pipe results in the well-known

Hagen-Poiseuille equation. In the case of a non-circular cross-section, the prob-

lem has been solved for simple shapes, such as ellipses and rectangles. However,

for complex cross-sectional geometries, such as scalene triangles, no analytic so-

lutions exist, so other approaches must be considered.

In the present work, we use numerical solutions to find the conductivity of a

pore with a (scalene) triangular cross section. We assume that the pores have

a uniform cross section that occupies a two-dimensional region in the (x, y)

domain. We assume that there is fully-developed incompressible laminar flow

in the axial direction of a pore under a constant pressure gradient. The gov-

erning equations are a simplified form of the Navier-Stokes equation and the

conservation of mass, which can be combined to provide [Berker, 1963]

∇2vz =
1

µ

dp

dz
= constant (5.8)

where z is the co-ordinate along the axis of the tube, vz is the velocity of the

fluid, p is the pressure, and µ is the fluid viscosity. As mentioned above, dp/dz

is considered to be constant along the tube. The velocity must satisfy the

no-slip boundary condition along the solid-water interface. We assume that

no momentum is transferred across the fluid-fluid interface (i.e., a perfect slip

condition exists and the surface shear stress is zero)

vz = 0 at the fluid− solid interface (5.9)

n · ∇vz = 0 at the fluid− fluid interface

Figure (5.4) shows an example of a tube with triangular cross section which

has been invaded by the non-wetting phase and, as a result, the wetting phase

resides in the corners. Next, we make the governing equations dimensionless

using the radius of curvature of the air-water interface, rc (shown in Figure
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5.4), as the reference length scale, defining the dimensionless variables

l∗ =
l

rc
; ∇∗ = rc∇; v∗ =

v

vR
; p∗ =

p

∆p
(5.10)

where vR is the characteristic velocity and ∆p is the pressure difference across

the pore. We have chosen vR =
r2c

dp
dz

µ . As a result, Equation (5.8) reduces to

∇∗2v∗z = 1 (5.11)

(a)

(b)

Figure 5.4: (a) Corner flow in a tube with triangular cross section. The velocity
profile shows change in velocity in middle of the corner flow domain. The half
corner colored in dark shows the simulated flow domain, which is shown in part
(b) of the figure, where α is the corner half angle.

The dimensionless velocity (i.e., the solution of Equation 5.11) is independent

of the pressure gradient and depends only on the cross section geometry, namely

the half-angle α. Therefore, we solve Equation (5.11) numerically for a wide

range of corner half angles. The flow rate can be determined from

Q =

∫
A

vzda = g
dp

dz
(5.12)

where g is the conductance of the flow domain. This equation can be made
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dimensionless to obtain a formula for the dimensionless conductance, g∗

g∗ =
gµ

r4
c

=

∫
A∗

v∗zda
∗ (5.13)

We have performed this calculation for corner half-angles ranging from 5 to 75

degrees. The resulting graph is shown in Figure (5.5).

Figure 5.5: The dimensionless hydraulic conductance versus corner half-angle.
The line shows the result of this study and circles show the result obtained by
Patzek and Kristensen [2001] after rescaling the dimensionless groups used in
their study.

Patzek and Kristensen [2001] have also calculated the dimensionless conduc-

tance for drained triangular cross-sections. In their work, they used the side

length (shown as b in Figure 5.4b) as the reference length. Since rc and b are

related (rc = b × tan(α)), we can convert the results to each other. Their

results are shown as solid circles in Figure (5.5). It is clear that there is an

excellent agreement between the two results. However, there is an advantage in

choosing rc as the reference length. Under quasi-static conditions, the capillary

pressure and, therefore, the radius of curvature of all interfaces are the same

in the network (for all pores). Thus, at any given saturation (or any given

capillary pressure) a single curve can be used for all pores. This will not be the

case if b is used as the reference length. Also, using b as the reference length,

the relation between dimensionless conductance and corner half-angle will be

non-monotonic (see Patzek and Kristensen [2001]), while, as shown in Figure

(5.5), using rc as the reference length, we get a monotonic relation.

An important conclusion can be drawn from Figure (5.5) regarding the sig-

nificance of conductance of edges of pore bodies invaded by the non-wetting
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phase. Figure (5.5) shows a strong dependency of conductance on corner angle

(note the logarithmic scale of the vertical-axis in Figure 5.5). If the angle of

the edges within a pore body are larger than the corner angles of the neigh-

boring pore throats, then they will have much less conductance to the flow.

In particular, for cubic pore bodies, their edge half angle is 45 and thus their

conductance will be less than that of pore throats with triangular cross section.

5.3.3 Regular hyperbolic polygons

It is possible to use similar procedure to calculate conductances for different

cross sectional shapes. Considering porous media of type glass beads or well

mature sand grains with spherical grain shapes, we may want to consider hy-

perbolic polygons as the cross-sectional shapes of the pores. Here, we present

calculation of dimensionless conductances for saturated pores with hyperbolic

polygons as their cross sectional shapes. A given hyperbolic polygons with ′n′

vertices can be generated using ′n′ circles with the same length and the same

radius of curvature. These circles (with radius R1 shown in Figure 5.6) could

be tangential to each other or merge into each other to give different corner

angles (shown as ϕ in Figure 5.6). For radius of circles, R1, Area of polygon,

A, and shape factor, G, we have the following relations [Joekar-Niasar et al.,

2010]

R1 = R
sin π

n

cosϕ− sin π
n

(5.14)

A =
nR2sin2 π

n(
cosϕ− sin π

n

)2 [cos2ϕ cot
π

n
− π

(
1

2
− 1

n

)
+ ϕ− 0.5 sin 2ϕ

]
(5.15)

G =
A

P 2
=

cos2ϕ cot πn − π
(

1
2 −

1
n

)
+ ϕ− 0.5 sin 2ϕ

4n
(
π
(

1
2 −

1
n

)
− ϕ

)2 (5.16)

We have considered different domain with different number of vertices (n),

starting from three up to n = 5. For each choice of n, we have considered

domains with different corner angles (ϕ), ranging between zero and the max-

imum possible value for each polygon, covering a range of shape factors. We
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have used the same governing equation and boundary conditions. However,

here we have chosen the radius of the inscribed circle, R, (which touches (is

tangent to) the n sides of polygon) to normalize the governing equation as well

as flow domains (R is shown in Figure 5.6). Doing so, all the domains will have

inscribed circle of radius one (i.e., R = 1).

Figure (5.6) show dimensionless velocity field in different domains with differen

dimensionless values of R∗, ϕ, and A∗.

Figure 5.6: Different type of regular polygons with n = 3, 4, and 5
(from top to bottom)
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Figure (5.6) show that, for a given cross section type, with increasing the

corner angle, the cross section changes from a regular hyperbolic polygonal cross

section to a regular polygonal cross section, and the shape factor increases. In

practice, the choice of cross section type is based on the measured shape factor

distribution of the pore throats acquired by image analysis [Joekar-Niasar et al.,

2010].

Integrating dimensionless velocity field over the flow domain, we calculated

dimensionless conductance for each domain. Figure 5.7 shows the relation

between dimensionless conductance and shape factor and number of vertices.

Figure 5.7: relation between dimensionless conductance, g∗, and shape
factor, G, and number of vertices, n.

Figure (5.7) shows that dimensionless conductance decreases with increase in

number of vertices and decresae in shape factor.

Figure (5.8) shows the relation between dimensionless conductance and ϕ for

polygons with different number of vertices. As shown in Figure (5.8), with

increasing of number of vertices, the maximum value of shape factor, possible

for a specific type of polygon, increases. The value of g∗ decreases with increase

in corner angle, ϕ.

5.3.4 Calculation of relative permeability curves

To calculate relative permeability, we need to solve for fluid flow within all pores

simultaneously. The governing system of equations is obtained by writing the

volume balance for each and every corner element of all pore bodies. A corner

element i is connected to three other corner elements in the same pore body
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Figure 5.8: Relation between dimensionless conductance g∗ and ϕ for
different number of vertices,n.

by edge elements, and also connected to corner elements of neighboring pore

bodies, j, through pore throats ij. The pore throat ij itself may have water

flowing along its corners (N corner
ij ). Therefore, the volume balance for a pore

body corner i may be written

NEdge
i∑
n=1

Qin +

NTube
i∑
j=1

Qij = 0 (5.17)

where NEdges
i is the number of edges through which corner i is connected

to other corner elements, n, within the same pore body, and Qin is the flow

through edge in (i.e., between corner i and corner n). For a cubic pore body,

NEdges
i = 3. Qij is the total flux through the pore throat ij connecting corner

element i and corner element j of a neighboring pore body. For drained pore

throats with flow along its edges, Qij is the summation of fluxes through all

edges. NTube
i is the number of pore throats connected to the corner element

i. The combination of Equations (5.12) and (5.17), written for all nodes of

pore bodies of the network result in a set of linear equations, whose solution

gives the flow field and fluxes in all network elements. Following solution, the

overall water flux, Qt, through the pore network is calculated. Subsequently,

the relative permeability of the network to water at a given saturation and

capillary pressure is calculated from Darcy’s law

krw =
µwQt

k A∆P/L
(5.18)
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where µ is fluid viscosity, k is the network intrinsic permeability, A is the net-

work cross-sectional area, L is the pore-network length in flow direction, and

∆P is the pressure difference between the inflow and outflow reservoirs.

Repetition of this process at consecutively larger imposed capillary pressures

results in a graph of capillary pressure versus saturation and relative perme-

ability versus saturation. Results are presented in Section 5.4.

5.4 Results

5.4.1 Flow field in the MDPN model

The calculation of relative permeability is based on computing local velocity

fields within individual pore elements of the network. Thus, the distribution of

velocity field within the network has a crucial role in determining the (relative)

permeability of the porous medium. Capturing an accurate velocity field can

help to calculate more accurate permeabilities. In this section, we show the

advantage of MDPN model in capturing a more accurate flow field.

Compared to the MDPN, a regular network with a fixed coordination number

of six has connections only in three principal directions. In this case, 1/3 of the

connections are perfectly parallel to the overall flow direction, while the rest

are completely perpendicular to the overall flow direction. Since 67% of the

connections are perpendicular to the flow direction, the overall flow direction

may not be the principal direction of the conductivity tensor. Also, the pore

throats which are parallel to the flow direction will have much higher velocities

compared to the pore throats perpendicular to the flow direction. This is

because parallel pore throats form a continues path from the inlet boundary

all the way to the outlet boundary. To illustrate this, we made a network with

connections only in direction numbers 1, 2, and 3 (i.e., a regular pore network

with connections only in three principal directions). After simulating the flow,

we averaged the velocities in each of the three directions to get three average

velocities, one for each direction. These are shown by white columns in Figure

(5.9). It is clear that the average velocity in the direction parallel to the flow

(nearly 0.04 m/day) is much larger than the average velocities in the other two

directions (about 0.015 m/day). Figure (5.10a) shows the scatter diagram of

velocities within the pores of the regular network, which also shows that pore

throats parallel to the flow direction have higher velocities. We also generated

a MDPN model which had connections in all 13 directions, and we averaged

velocities in each direction, resulting in 13 average velocities, also shown in
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Figure (5.9), as columns with the dark color. Figure (5.10b) shows the scatter

diagram of velocities in the MDPN. It is clear that in MDPN, velocities in

different directions are comparable and there is no strongly dominant direction.

This shows that, using the MDPN model one can get more realistic velocity

fields.

Figure 5.9: Average velocities in the three principal directions of a regular
network model (white columns), and in the 13 directions of MDPN Model (dark
columns). Direction number 1 is parallel to the overall flow (or pressure gradient)
direction, and directions number 2 and 3 are perfectly perpendicular to the
flow direction. The other directions are oblique with respect to the overall flow
direction (Figure 2.1).

5.4.2 Calculation of relative permeabilities using MDPN

model

We have chosen five different networks to study the effect of conductance

of drained pore bodies on the network permeability. The first three are the

generic network models (R1, R2, and R3) whose properties were presented in

Section 5.2. The other two networks were designed on the basis of properties

of two real porous media: a carbonate rock [Al-Kharusi and Blunt, 2008] and

a Fontainebleau sandstone [Lindquist et al., 2000]. The reason for choosing

these two porous media is their different topology; Fontainebleau sandstone

has a wide range of coordination numbers with a mean coordination number

of around 3.5, while the carbonate rock has a much larger mean coordination

number of 8.0.
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Figure 5.10: Scatter diagram of velocities vs. pore throat radius in (a) the
regular pore network and (b) within the MDPN model. Direction number 1
is shown using (red) dots, where (blue) squares and (black) circles are used to
show directions number 2 and 3, respectively. To keep the figure less crowded
we have only shown scatter diagram of velocities in directions number 1, 2 and
3 of MPNM.

5.4.2.1 Generic pore networks

We constructed three networks of size Ni = Nj = Nk = 20, which results in

8,000 lattice points for each network. The pore size distributions were presented
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in Figure 5.1. Other properties of these networks are given in Table (5.1).

Table 5.1: Statistical properties of the three generic network models.

Property Value
Number of pore bodies 7, 725
Number of throats 20, 839
Number of inlet pore throats 773
Number of outlet pore throats 763
Average coordination number 6.0
Porosity (networks: R1 toR3) 0.24 to 0.11
Conductivity (m/d),(networks:R1 toR3) 6.5 to 0.14

Table (5.1) indicates 7,725 pore bodies in each network, while the potential

number of pore bodies is 8,000. The difference is due to the fact that some

pore bodies lost all their connections through the elimination process [Raoof

and Hassanizadeh, 2009], explained in section 5.2. Figure (5.11) shows the

capillary pressure-saturation curves for these three networks.

Figure 5.11: Capillary pressure-saturation curves for three generic pore net-
works. The pore throat size distributions (R1, R2, and R3) are shown in Figure
(5.1).
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For cubic pore bodies, the edge half-angle is 45◦ and thus the edge conductance

can be calculated from Figure (5.5) at any given capillary pressure. However, to

explore the effect of resistance within partially-drained pore bodies, additional

simulations were done for two smaller edge angles (thus, larger conductances),

and the corresponding kr−Sw relations were compared. The results are shown

in Figure (5.12), where, for the sake of comparison, the kr − S curves for the

cases in which the resistance to the flow within the pore bodies were ignored is

also shown (solid lines without markers). This has been done using the same

computational algorithm, but assigning a very large conductance to the edges

within the drained pore-bodies.
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Figure 5.12: Relative permeability curves for (a) pore network R1 and (b) pore
network R3 (pore network R2 showed similar results and is not shown here). The
plots with g∗ = 1.3E−3 show the case of cubic pore bodies (45dge angles). The
solid lines (without markers) show the relative permeability when the resistance
to the flow within pore bodies is neglected.

From Figure (5.12), it is clear that including the resistance to the flow within

the pore bodies results in considerably smaller values for kr. That is, neglecting

the resistance to the flow within pore bodies will cause overestimation of the

relative permeability. Clearly, this overestimation is less when pore bodies have

high values of conductances.
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5.4.2.2 Relative permeability for a carbonate rock

In this section, we are applying the new formulation to a network which is based

on the statistical properties of a carbonate rock. Al-Kharusi and Blunt [2008]

applied a methodology to extract networks from pore space images of carbonate

rock samples, in order to make predictions of multiphase transport properties.

They started with a 2D thin-section image; then, converted it statistically

to a 3D representation of the pore space. Using concept of maximal ball [Al-

Kharusi and Blunt, 2008, 2007], they constructed a 3D pore-network model and

simulated primary drainage, waterflooding, and secondary drainage processes

[Valvatne and Blunt, 2004]. In that model, the resistance to flow was assigned

to pore throats only. The simulated results were compared to the laboratory-

measured values obtained though centrifuge experiments. The good agreement

for capillary pressure-saturation and intrinsic permeability implied that they

had estimated pore and throat sizes correctly (Figure 5.13). However, the pre-

dicted wetting-phase relative permeability was overestimated compared to the

experimental results, as shown in Figure (5.14). They mentioned the large co-

ordination number (which was derived using imaging technics) as a potential

reason for discrepancy between relative permeabilities. As another potential

source of discrepancy, they mentioned the fact that the pore-network model

did not capture all local heterogeneities of the sample due to the size of the

network. All of these arguments could potentially explain the overestimation

of the relative permeability. However, we believe that this discrepancy could

have been minimized by taking into account the resistance to the flow within

(partially-) drained pore bodies. To verify this explanation, we generated a

network with similar properties to those used by Al-Kharusi and Blunt [2008].

The capillary pressure-saturation curves obtained from our network and the

network model of Al-Kharusi and Blunt [2008] are shown in Figure (5.13), to-

gether with the Pc−Sw curve measured in the centrifuge experiments. There is

good agreement between the two pore-network modeling results and measured

values. There is also a good agreement between calculated values of absolute

permeability using our network and that of Al-Kharusi and Blunt [2008] (Table

5.2). The relative permeability results of both pore-network models are shown

in Figure (5.14) together with values obtained from the centrifuge experiments.

It is clear that including the resistance to the flow within pore bodies improves

the agreement between simulated and measured values of relative permeability.

An important observation from Figure (5.14) is that the maximum discrepancy

between results from Al-Kharusi and Blunt [2008] and experiments occurs at
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Table 5.2: Statistical properties of the Carbonate Network Model.

Property value
This study Al-Kharusi and Blunt [2008]

Number of pores 641 643
Number of throats 2284 2623
Mean coordination number 7.7 7.9
Absolute permeability (mD) 2.80 3.1

Figure 5.13: Comparison between Pc − Sw curves obtained from two network
models together with the measured values of capillary pressure-saturation during
primary drainage experiment.

higher saturations (0.75 < Sw < 1). This can be explained by the fact that

the largest pore bodies, which have the largest contribution to the flow under

saturated conditions, are invaded first during drainage. The invasion of such

large pores, and the subsequent corner flow along their edges, considerably de-

creases the permeability of the medium to the wetting phase, which can only

be modeled by taking into account the resistance of pore bodies to the flow. As

explained earlier, drained pore bodies could also considerably reduce the con-

nectivity of saturated pore throats connected to them. The high coordination

number in carbonate rock could increase the accessibility of the non-wetting

phase to the larger pores. During recent years, the importance of coordina-

tion number distribution on flow and transport has been examined by some
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Figure 5.14: Comparison between relative permeability curves obtained from
two networks together with the measured values during primary drainage exper-
iment.

researchers [Mahmud et al., 2007, Sok et al., 2002, Arns et al., 2004, 2003b].

5.4.2.3 Pore Network model of Fontainebleau sandstone

In the previous section, we considered a carbonate rock with a mean coordina-

tion number close to 8.0. However, this value of coordination number is too high

for some other types of porous media, for example, sandstones. In sandstones

the average coordination number typically varies between 3 and 4 [Øren and

Bakke, 2003a]. To generate pore networks with statistical properties similar

to sandstones, we have chosen data reported by Lindquist et al. [2000]. Using

direct measurements, they obtained flow-relevant geometrical properties of the

void space for a suite of four samples of Fontainebleau sandstone, with porosi-

ties ranging from 7.5% to 22%. The measurements were obtained through the

analysis of three-dimensional synchrotron X-ray computed microtomographic

images. They reported comprehensive data on measured distributions of coor-

dination number, channel length, throat size, and pore volume.

The mean coordination number varied from z = 3.37 for a sample with φ = 7.5

% to z = 3.75 with φ = 22 %. Whilst for the majority of pores the coordination

number was close to 3, some pores displayed z > 15 [Ioannidis and Chatzis,

2000, Lindquist et al., 2000, Øren and Bakke, 2003a]. The detailed information

and the distribution of statistical properties of the network can be found in

Lindquist et al. [2000] and Lindquist and Venkatarangan [1999]. Table (5.3)

shows the mean values of pore sizes together with mean coordination number.
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Table 5.3: Statistical properties of sandstone samples analyzed in Lindquist
et al. [2000] and Lindquist and Venkatarangan [1999].

Porosity (%) Mean
coord.
number

Mean pore
radius (µm)

Mean throat
radius (µm)

7.5 3.3 50.6 18.4
13 3.49 45.8 21.3
15 3.66 48.5 24.7
22 3.75 43.5 22.6

Since the statistical properties of different samples of the Fontainebleau sand-

stone are not considerably different, we have chosen the properties of only one

of the samples, namely the sample with porosity of 15.0% to generate a net-

work. Figure (5.15) shows the coordination number distribution of the sample

(reported by Lindquist et al. [2000]) together with the coordination number

distribution of the generated network.

Figure 5.15: Measured coordination number distribution of the Fontainebleau
sample, φ = 15% (from Lindquist et al. [2000]) together with the coordination
number distribution of the equivalent stochastic network used in this study.

Figure (5.15) shows a good agreement between simulated and measured distri-

butions of coordination numbers. From Figure (5.15), it can be seen that the

measured coordination number distribution starts from the value of 3.0, while

our stochastic network shows coordination numbers as low as one. The reason

is that Lindquist et al. [2000] eliminated all pores with coordination number
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of one and retained only the percolating backbone of the pore space. In our

stochastic network, we also eliminated pores with the coordination number of

one, except those which were located at the inlet and outlet boundaries of the

network, since they are carrying flow and belong to the percolating backbone.

The other difference is that Lindquist et al. [2000] defined pores with coordina-

tion number two to be part of a channel; in our stochastic network, the pores

with coordination number of two are kept as pore bodies.

Figure (5.16) shows the resulting relative permeabilities with and without con-

sidering resistance to the flow within the pore bodies. Here again, neglecting

pore body resistance to the flow results in a significant overestimation of rela-

tive permeability.

Figure 5.16: Comparison of relative permeability computed with and without
consideration of pore body resistance to the wetting flow.

5.4.3 The concept of equivalent pore conductance

An alternative method to the approach presented here is to modify the con-

ductance of pore throats to account for the resistance to the flow within the

two adjacent pore bodies [Mogensen and Stenby, 1998, Sholokhova et al., 2009,

Fenwick and Blunt, 1998, Dillard and Blunt, 2000]. This can be done through

assigning an effective conductance to a given pore throat, for example as the

harmonic mean of its own conductances and those of its two neighboring pore

bodies [Fenwick and Blunt, 1998, Dillard and Blunt, 2000]:
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1

gt
=

1

gij
+

1

2

(
1

gi
+

1

gj

)
(5.19)

where gi and gj are conductances of pore bodies i and j, respectively, gij is

the conductance of the connecting throat between bodies i and j, and gt in the

total conductance to be assigned to the pore unit.

However, this correction term is constant (i.e., it is independent of saturation).

In the presence of the non-wetting phase, one should make the conductances

of pore bodies and pore throats a function of saturation. Thus we propose to

modify Equation (5.19) as follows:

1

gt(Sw)
=

1

gij(Sw)
+

1

2

(
1

gi(Sw)
+

1

gj(Sw)

)
(5.20)

Because a pore body is connected to a few pore throats, one can use half pore-

body length to calculate its contribution to the conductance of a pore throat

connected to it.

Another approach would be to use gij but modify it for the effect of pore body

resistance using a correction term which is a function of saturation. In this

way, we do not need to calculate conductances of pore bodies explicitly. As a

first-order correction, we have used the harmonic mean of saturations of two

pore bodies adjacent to a pore throat in the following form:

gt(Sw) = 2gij
Sw,iSw,j
Sw,i + Sw,j

(5.21)

where Sw,i and Sw,j are saturations of pore bodies i and j, respectively. Figure

(5.17) shows the comparison between our formulation and effective conductance

approach (i.e., Equations 5.20, and 5.21).

Although, there is some deviation between the curves, the overall good agree-

ment suggests that a simple correction of pore throat conductances with the

saturation of its neighboring pore bodies may be sufficient.

However, in the equivalent pore conductance approach, we do not explicitly

solve for fluid fluxes within pore bodies. The flow velocity distribution, includ-

ing flow velocities in edges of pore throats and pore bodies is necessary for an

accurate simulation of solute transport. Simulating flow and transport along

edges of drained pore bodies allows for modeling limited mixing within the pore

bodies in the presents of non-wetting phase.
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Figure 5.17: Relative permeability curves obtained from our approach, i.e.,
including conductance of both pore bodies and pore throats (solid line), together
with calculation of kr using effective conductance approaches, Equations (5.20)
and (5.21) (dashed lines). Circles show measured values during primary drainage
experiment by Al-Kharusi and Blunt [2008].

5.5 Conclusion

In this study, we have presented a new formulation for pore-network mod-

eling of two-phase flow which enables us to calculate more accurate relative

permeability-saturation (kr − Sw) relationships. This goal was achieved by

including the resistance to the flow within pore bodies of a MDPN model.

Through quantitative analysis, we have calculated the influence of pore body

resistance under primary drainage conditions. Since pore bodies vary consid-

erably in size in porous media, including their effect will influence the relative

permeability curve. Using several pore-network models with different coordina-

tion number distributions, we have shown that including the resistance to the

flow within the pore bodies significantly affects simulated kr − S relationship

and can improve the accuracy of results of pore-network models.

The approach presented helps to reduce sensitivity of pore-network modeling

to pore space discretization, based on direct imaging of porous media samples.

As mentioned earlier, based on images, the pore space is commonly partitioned

into pore bodies and pore throats. This nontrivial partitioning has a major ef-

fect on results of flow calculations in current pore-network models [Sholokhova

et al., 2009], because the pore bodies do not contribute to the resistant to the

flow. But, because we account for the flow resistance within pore bodies as

well as pore throats, the results are less sensitive to the division of pore space

into pore bodies and pore throats.
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5.5 Conclusion

Our approach is also expected to be of significance in determining other trans-

port properties such as dispersivities and mass transfer coefficients. Under un-

saturated conditions, because of the presence of the non-wetting phase within

the central part of the pore space, there will be limited mixing of solutes or

particles within the bore bodies. However, all solute transport models assign

one average concentration to each pore body implying that there is full mix-

ing within the pore body. Using our new formulation, since we can calculate

pressure and fluxes within pore bodies, limited mixing will result.

Of course, in natural porous media, the pores are mostly irregular. With

current measurement and imaging techniques it is possible to extract the sizes

and angularity and shape factors for both pore bodies and pore throats (Zhang

et al. [2010]). Considering the sizes of pore bodies and their shape factors

reported in the literatures, we can conclude that including the effect of them can

improve the results of pore-network modeling (Lindquist et al. [2000]; Zhang

et al. [2010]).
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CHAPTER 6

DISPERSIVITY UNDER PARTIALLY-SATURATED

CONDITIONS; PORE-SCALE PROCESSES

Make everything as simple as possible, but not simpler.

Albert Einstein

Abstract

I
t is known that in unsaturated porous media, the dispersion coefficient depends on

the Darcy velocity and soil water saturation. In 1D flow, it is commonly assumed

that the dispersion coefficient is a linear function of velocity with the coefficient of

proportionality being the dispersivity. However, there is not much known about its

dependence on saturation. The purpose of this study is to investigate how the longitu-

dinal dispersivity varies non-linearly with saturation using a pore network model. We

discretize the porous medium as a network of pore bodies and pore throats of finite

volumes. The pore space is modeled using a MDPN which allows for a distribution

of coordination numbers ranging between zero and 26. This topological, property

together with geometrical distributions, are used to mimic the microstructure of real

porous media. The dispersivity was calculated by solving the mass balance equations

for solute concentration in all network elements and averaging the concentrations over

a large number of pores.

We have introduced a new formulation of solute transport within a pore network

which helps to capture the effect of limited mixing within the pores under partially-

saturated conditions. This formulation allows a very detailed description of solute

transport processes within the pores by accounting for limitations in mixing within

drained pore bodies and pore throats as a result of reduced water content. We found

that dispersivity increases with the decrease in saturation, reaches a maximum value,

and then decreases with further decrease in saturation.
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The numerically-computed dispersivities are compared with the results from reported

experimental studies. The agreement between the results demonstrates the capability

of this formulation to properly produce the effect of saturation on solute dispersion.

While these computations have been restricted to the flow and transport of inert

solutes and determination of their dispersivities, they demonstrate the significant po-

tential of this formulation of pore-network modeling for predicting other transport

properties, such as mass transfer coefficients under reactive/adsorptive solute trans-

port, through including limited mixing within pores.

6.1 Introduction

Mechanical dispersion in porous media occurs because water flow velocity varies

in magnitude and direction as a result of meandering through the complex pore

structure [Perfect and Sukop, 2001]. The degree of spreading is related to:

distribution of the water velocity within the pores; the degree of solute mixing

because of convergence and divergence of flow paths; and molecular diffusion

[Bolt, 1979, Leij and van Genuchten, 2002].

6.1.1 Dispersion under unsaturated conditions

The most established model for describing solute transport in porous media

is the Advection-Dispersion Equation (ADE), which can be used to model the

porous medium as a single-porosity domain. However, when there is prefer-

ential transport by a secondary pore system, another theoretical description

must be used. For the latter case, several models exist, including a two-domain

approach for both water and solute transport [Gerke and van Genuchten, 1993],

and the mobile-immobile model for solute transport [Smet et al., 1981]. When

observed breakthrough curves (BTCs) in unsaturated porous media show a

tailing effect, a mobile-immobile model can be applied successfully [Gaudet

et al., 1977].

In saturated porous media, the longitudinal dispersion coefficient has often

been expressed [Bear, 1972, Scheidegger, 1961, Freeze and Cherry, 1979]

D = De + αvn (6.1)

where the first term, De [L2T−1], is the effective diffusion coefficient, while the

second term describes the coefficient of hydrodynamic dispersion, where α is
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the (longitudinal) dispersivity, v [LT−1], denotes the pore-water velocity, and

n is an empirical constant. Often, D exhibits an almost linear dependence with

pore-water velocity, (i.e., n = 1), especially in the case of non-aggregated soil

or glass beads [Bear, 1972, Bolt, 1979]. The dispersivity, α, is assumed to be

an intrinsic soil property for saturated flow.

Equation (6.1) has been also used to describe the dispersion coefficient for

solute transport under unsaturated conditions, (e.g., Kirda et al. [1973], Yule

and Gardner [1978] and De Smedt et al. [1986]) in a modified form. A commonly

employed relationship is

D(θ, v) = De(θ) + α(θ)vn (6.2)

Hydrodynamic dispersion in unsaturated soils is more complicated than in satu-

rated soils. The resulting BTCs from experiments show greater solute spreading

and longer tailing at lower water contents compared to the saturated conditions

[Gupta et al., 1973, Krupp and Elrick, 1968].

High values of the dispersion coefficient, which have been observed in unsatu-

rated experiments [Kirda et al., 1973, De Smedt and Wierenga, 1984, Maraqa

et al., 1997, Matsubayashi et al., 1997, Padilla et al., 1999], have been at-

tributed to the presence of immobile water [Gaudet et al., 1977, De Smedt and

Wierenga, 1979, 1984]. However, dispersion phenomenon of solute movement

through unsaturated porous medium has not been fully studied, and there is no

single theory which can unify dispersion under both saturated and unsaturated

conditions. Although dispersion is known to be strongly dependent on both

flow velocity and water content in soil columns [Maciejewski, 1993], there is

not much information on the nature and functional form of such dependency

[Bear and Alexander, 2008]. This need prompts systematic investigations of

the relationships between saturation, and water velocity fluctuations and dis-

persivity in unsaturated porous media.

The fraction of immobile water (or mobile water with a very low velocity com-

pared to the average pore-water velocity) depends on the pore structure as

well as the saturation. When saturation decreases, flow paths will be longer

and the arrival time distribution will be more diverse, which causes higher

dispersion. Consequently, the variability of microscopic velocity and its di-

rection can be (much) larger than in saturated porous media. These effects,

observed in soil column experiments, have been subjected to different interpre-

tations, e.g. by describing molecular diffusion as a function of water content

[Nielsen and Biggar, 1960, Bresler, 1973, Kemper, 1966]. As water content

127



6. Dispersivity under Partially-Saturated Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

decreases, the pore-water velocity decreases and the geometry of the liquid

phase in water-conducting pores changes with less opportunity for mixing and

increased tortuosity.

6.1.2 Experimental works and modeling studies

Compared to studies done on saturated dispersion, there is much less research

conducted on dispersion under unsaturated conditions. De Smedt et al. [1986]

observed a substantial increase in dispersivity (by a factor of about 80) when

changing from saturated to unsaturated conditions. They have attributed this

behavior to the broader distribution of microscopic pore-water velocities en-

countered under unsaturated conditions. A possible cause for increase in dis-

persion could also be the existence of mobile and immobile water zones as the

soil becomes unsaturated. Results of their modeling showed that, on the aver-

age, 64% of the water in the sand column could be considered mobile and 36%

immobile, for almost all experiments.

To capture the effect of saturation on solute transport, Krupp and Elrick [1968]

performed a series of miscible displacement experiments in an unsaturated col-

umn packed with glass beads, all at a constant average velocity. The earliest

appearance of tracer in the effluent was observed at an intermediate saturation

in the range of 0.54 to 0.56. They attributed this behavior to the large degree

of disorder in the water distribution. Presence of filled and partially filled pores

and pore sequences cause mixing to be related to saturation in a complex way.

At higher water content, flow in filled pores was dominant, whereas at lower

water content, flow in partially filled pores and films dominated the displace-

ment.

Although dispersivity increases non-linearly with the decrease in saturation, a

major observation is that the relation is not monotonic and dispersivity reaches

a maximum value, αmax, at an intermediate saturation [Bunsri et al., 2008,

Toride et al., 2003]. We refer to this as the “critical saturation”, Scr. At sat-

urations lower than the critical saturation (i.e., Sw < Scr) the magnitude of

dispersivity reduces with further decrease in saturation.

Similar results were found by Bunsri et al. [2008], who performed experiments

on sand (with mean particle size of 250 µm) and soil columns (which contained

soil particle sizes up to 2.00 mm). They also performed numerical model-

ing to simulate the experimental data. The simulation results showed that

the magnitude of dispersivity under unsaturated conditions was larger than

its value under saturated conditions. They found that the dispersivity in the
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high-saturation range increased non-linearly with decrease in saturation down

to a critical saturation, Scr, when dispersivity started to decrease with further

decrease in saturation. The maximum dispersivity, αmax = 1.13 cm, occurred

at a saturation of Scr = 0.43.

Toride et al. [2003] have studied hydrodynamic dispersion in non-aggregated

dune sand to minimize the effect of immobile water. Experiments at unit-

gradient flow (i.e., the water velocity is equal to the unsaturated conductivity)

were conducted to measure solute BTCs under steady-state flow conditions.

Transport parameters for the ADE and the mobile-immobile model (MIM) were

determined by fitting analytical solutions to the observed BTCs. They found

the maximum dispersivity, αmax, of 0.97 cm occurring at Scr = 0.40, whereas

for saturated flow, dispersivity was equal to 0.1 cm, irrespective of pore-water

velocity, (which ranged from 2.08 to 58.78 m/d). The BTCs for unsaturated

flow showed considerable tailing compared with the BTCs for saturated flow.

This was also observed by Gupta et al. [1973] and Krupp and Elrick [1968].

The ADE described the observed data better for saturated than for unsatu-

rated conditions. Similar results were obtained by Padilla et al. [1999] for an

unsaturated sand with a mean particle size of 0.25 mm.

Since pore channels inside the porous medium are interconnected, solute par-

ticles moving in different channels may meet after traveling different distances,

resulting in mixing of the solute. Hence, mixing length theory could be applied

to dispersion phenomena in a porous medium. Using mixing length theory,

Matsubayashi et al. [1997] found that, under unsaturated conditions, the dis-

persion coefficient increases more rapidly with pore-water velocity compared to

saturated conditions, resulting in higher values of dispersivity. The dispersion

coefficient was expressed as [Matsubayashi et al., 1997]:

D (θ, v) = `σvel = `cv(θ)v (6.3)

where ` [L] is the mixing length, σvel is the standard deviation of the pore-

water velocity, v is the average velocity, and cv is the coefficient of variation of

pore-water velocity, defined as

cv =
σvel
v

=

(
v′2
) 1

2

v
(6.4)

where, v
′ ≈ overlinev − v and v, is the micro-scale pore-water velocity. They

found an increase in dispersivity with a decrease in saturation, down to a criti-

cal saturation (Scr), beyond which the value of dispersivity was almost constant
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with saturation (although the variance of the velocity field was still increasing).

In their study, the mixing length was equal to 0.23 cm for saturations less than

Scr, and then mixing length and hence the dispersion coefficient decreased to

reach its saturated value. To calculate velocity variations, they assumed a

porous medium consisting of bundles of capillary tubes. This assumption ig-

nores the complex and random inter-connectedness of porous media, which is

an important factor affecting the relation between degrees of saturation and

pore-water velocity variations. Using the same concept, Devkota et al. [1998]

developed relationships for dispersivity under unsaturated conditions. They

found similar results as Matsubayashi et al. [1997]. They utilized the Pc − Sw
and kr−Sw curves to calculate the mixing length at various saturations; based

on this they developed relationships for dispersivity as a function of satura-

tion. They suggested that the coefficient of variation of pore water velocities is

a constant, irrespective of saturation. This is not consistent with many other

studies. The coefficient of variation of pore water velocities is a constant for

saturated media. But, under unsaturated conditions, the change in saturation

will change the distribution of phases within the porous medium, which in turn

may cause changes in coefficient of variation of velocities.

While there are some studies on solute transport under unsaturated conditions

at the column scale, there is a lack of comprehensive research on this subject at

the pore scale to elucidate unsaturated dispersion based on pore-scale processes.

Investigating these processes is essential for explanation and understanding of

dispersion under unsaturated conditions. In addition, experimental work is

often difficult and/or expensive to perform. For example, it is difficult to es-

tablish uniform saturation and flow velocity throughout a column. This may

result in inaccurate estimation of transport parameters. Few data exist for low

water content because the concomitant low flow rates lead to time-consuming

displacement experiments, and apparatus-induced dispersion may result in bi-

ased transport parameters (James and Rubin, 1972). These difficulties make

the use of pore-scale modeling conceptually appealing.

The saturation dependency of the dispersion coefficient originates from pore-

scale processes governing the flow of water and transport of solute at the scale of

individual pores. An accurate prediction of the solute movement needs knowl-

edge of water movement at this scale. Since pore-scale modeling provides a

bridge between pore scale and macro scale representation of processes, it is

a useful means to study averaging effects. Using pore-scale models, one can

relate concentrations at the macro scale to concentrations and transport pro-
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cesses at the scale of individual pores. This could substantially enhance the

understanding of processes, such as dispersion, observed at the larger scales

(e.g., column scale).

Mohanty [1982] studied dispersivity under two-phase flow conditions using a

pore-network model. The pore space was divided into pore bodies (larger

openings) and pore throats (channels connecting pore bodies to each other).

They neglected solute residence time within the pore throats compared to that

through a pore body. The solute travel time through a pore body was calculated

as τi = Vi

Qi
, where Vi is the volume of pore body i and Qi is the volumetric

flux through the pore. The travel time of a tracer was the sum of the time

spent in all pore bodies on its path Ttot =
∑
t
τi. Through determination of the

longitudinal position of particles, the average and variance, σ, of the location

of all tracer particles was calculated. The dispersion coefficient, D, was then

calculated as:

D = lim
t→0

σ2

2t
(6.5)

They found that through smaller pore throats play a more important role in

determining dispersivity, they have less importance in determining permeabil-

ity.

6.1.3 Objectives and computational features

The main objective of this study is to examine dispersion over a wide range of

saturations to explain the relation between dispersivity and saturation (α−Sw
curve), by taking into account various pore-scale processes affecting this rela-

tion. We introduce a new formulation of solute transport within the pore net-

work which helps to capture the effect of limited mixing within drained pores

under partially-saturated conditions. In contrast to all former pore-network

studies, which assign one (average) pressure and one (average) concentration

to each pore element, we discretize pore spaces into separate smaller domains

in order to increase the accuracy of simulations. Discretizing the individual

pore spaces, fluid fluxes along corners of each pore are calculated and taken

into account in the simulation of solute transport. This allows us to model the

effect of limited mixing within pores.

In this paper, after construction of a MDPN model, drainage simulations are
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performed to determine pore-level distribution of each phase. Then, steady-

state flow is established and equations of mass balance are solved to calculate

transport properties of such a distribution and to obtain BTCs of solute con-

centration. The results of the modeling are also compared with experimental

observations to show the capability of this formulation.

The following morphological and computational features are introduced in the

present study

(1) The topology of the pore space is modeled using a MDPN which allows

a distribution of coordination numbers ranging between one and 26.

(2) To take into account the angularity of pores in natural porous media,

pore throats with various cross sections, with a wide range of shape factor

values and pore sizes, are used in the network. This includes rectangular,

circular, and various irregular triangular cross sections.

(3) The pore body size distributions are assumed to follow a truncated log-

normal distribution, without any correlation. The pore-throat size dis-

tributions are related to the pore body size distributions.

(4) Both pore bodies and pore throats are considered to have volume. This

means we solve mass balance equations and calculate solute concentra-

tions and mass fluxes within both pore bodies and pore throats.

(5) As soon as a pore body is (partially) saturated, it will be discretized

further into smaller regions occupied by water, each with its own flow

rate and concentration, in order to capture the effect of limited mixing

due to the partial filling of the pore.

(6) Upon invasion of a pore throat by the non-wetting phase, each edge of

the pore throat will be considered as a separate domain with its own flow

rate and concentration.

(7) Employing a fully implicit numerical scheme to calculate the unknown

connections, a substitution method is introduced which considerably re-

duces the computational time.

(8) Various parameters and relations, including coefficient of variation of the

velocities field, relative permeability-saturation (kr − Sw) curves, cap-

illary pressure-saturation (Pc − Sw) curves, and fraction of percolating

saturated pores are also computed.
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Since we are employing angular pores, the wetting phase is always connected

through the edges. This, together with the fact that we are ignoring the effect

of diffusion, means we do not have any tailing effect, as there is no diffusive

mass flux from zones of immobile water to the domain of mobile water. How-

ever, there are many pores with velocities much smaller than average velocity,

in which the fluid is practically immobile. It has been shown that the effect

of diffusion under unsaturated condition is mostly negligible. For example,

Maraqa et al. [1997] found the relative contribution of molecular diffusion to

the value of dispersion coefficient to be less than 1.0%. This is of course not the

case for the saturated experiments with low pore-water velocities (e.g., veloci-

ties around 1 cm/h or less), where there is a potential contribution of molecular

diffusion to the value of the hydrodynamic dispersion coefficient [Maraqa et al.,

1997].

6.2 Network Generation

6.2.1 Pore size distributions

In the present study, the pore structure is represented using a 3D MDPN model.

Because natural porous media can be mostly described by a lognormal distri-

bution [Bear, 1988], the pore-body radii are assigned from such a distribution,

with no spatial correlation, expressed by:

f (Ri, σ) =

√
2 exp

[
− 1

2

(
ln

Ri
Rm

σ

)2
]

√
πσ2Ri

[
erf

(
ln Rmax

Rm√
2σ2

)
− erf

(
ln

Rmin
Rm√
2σ2

)] (6.6)

where Rmin, Rmax, and Rm, are the minimum, maximum, and mean of the

distribution, respectively; and σ2 is the variance. The pore structure is con-

strained to be isotropic, in the sense that the same values for the R parameters

σ2 are specified for all pores oriented along all network directions.

In this study, four different networks were constructed: three generic networks,

and one network which represented a specific porous medium. The three generic

networks had different distributions of pore body and pore throat sizes, shown

in Figure (6.1), but the same coordination number distribution (figure 6.2).

Pore body radii are taken from uncorrelated truncated lognormal distributions,
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and pore throat radii are correlated to the pore body sizes. The difference be-

tween the generic networks is in the variances of pore sizes. The properties of

the porous-medium-specific network will be given later.
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Figure 6.1: Distributions of pore-body sizes (columns) together with distribu-
tions of pore-throat sizes (R1, R2, and R3) shown with lines. The mean sizes of
pore-body and pore-throat distributions are shown above each distribution.

6.2.2 Determination of the pore cross section and corner

half angles

A key characteristic of real porous media is the angular form of pores. It has

been demonstrated that having pores with a circular cross section, and thus

single-phase occupancy, causes insufficient connectivity of the wetting phase

and as a result poor representation of experimental data [Zhou et al., 2000a].

Angular cross sections retain the wetting fluid in their corners and allow two

or more fluids to flow simultaneously through the same pore. Pores which

are angular in cross section are thus a much more realistic model of a porous

medium than the commonly employed cylindrical shape. In the present work,

pore bodies are considered to be cubic in shape, whereas, pore throats are as-

signed a variety of cross sectional shapes including circular, rectangular, and

scalene triangular.

The shape of an angular pore cross section is prescribed in terms of a dimen-

sionless shape factor, G, [Mason and Morrow, 1991] defined as

G =
A

P 2
(6.7)
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where A and P are the area and the perimeter of the cross section, respectively.

The shape factor allows for replacing the irregular and complicated shape of

a pore by an equivalent irregular, but simpler, shape. The values of shape

factors for pore throats are chosen from a truncated lognormal distribution

(Equation 6.6) with a minimum of zero corresponding to a slit, and a maximum

of 0.08 corresponding to a circular cross section. Values for triangular cross

sections vary between zero and 0.048 (with the maximum corresponding to

an equilateral triangle), and for rectangular cross sections are between zero

and 0.062 (with the maximum corresponding to a quare). The formulation for

specifying angle values to triangular pores is presented in Section 5.2.2. After

determining the three angles, we still need to specify a length scale in order to

find the actual triangle size. As the length scale, we have chosen the radius of

a circle with an area equal to the pore cross-section area. One way to select

this radius is to relate it to the sizes of the two neighboring pore bodies, as

suggested by Raoof et al. [2010]. By equating the area of the triangle (which is

still unknown) to the area of the circle we can fully specify the triangular cross

section. Similarly, for rectangular pore throats, the rectangle size is obtained

from the area of the equivalent circle. Knowing the area and the shape factor,

we can calculate the actual dimensions of the rectangle by solving a quadratic

equation.

6.2.3 Coordination number distribution in MDPN

One of the main features of the MDPN approach is that pore throats can be

oriented not just in the three principal directions, but in 13 different directions,

allowing a maximum coordination number of 26, as shown in Figure (2.1). To

get a desired coordination number distribution, we follow an elimination pro-

cedure to rule out some of the connections. The elimination procedure is such

that a pre-specified mean coordination number can be obtained. A coordina-

tion number of zero means that the pore body is eliminated from the network,

so no pore body located at that lattice point. A pore body with a coordination

number of one is also eliminated except if it is located at the inlet or outlet

boundaries (so it belongs to the flowing fluid backbone). Thus, no dead-end

pores are included in the network. Details of the network generation can be

found in Chapter 2.

Since in many pore-network modeling studies, a fixed coordination number of

six is employed, we chose to generate a stochastic network with the coordina-

tion number ranging from zero to 16, but with a mean coordination number
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of six. However, we shall also present results for networks with other mean

coordination numbers, related to real porous media. The distribution of coor-

dination number and a representative domain of the network used in this study

are given in Figure (6.2).

(a) (b)

Figure 6.2: The coordination number distribution and representative MDPN
domain. The mean coordination number is equal to 6.0.

6.2.4 Pore space discretization

The conductivity of a flow path is dominated by the narrowest constriction

along the path. Under saturated conditions, and considering the larger sizes

of pore bodies compared to pore throats, one may safely neglect the resistance

to the flow within the pore bodies (thus zero pressure gradient within a pore

body) and assign conductances only to the pore throats. Similarly, it makes

sense to assign one (average) concentration to the pore body, assuming that

the solution is fully mixed within the pore body. This has been the common

practice in almost all pore-network models for simulation of flow and solute

transport [Li et al., 2007b,a, Acharya et al., 2005a]. However, in the the case of

unsaturated or two phase flow, a given pore body or pore throat can be invaded

and filled mostly by the non-wetting phase, forcing the wetting phase to flow

only along the edges. Figure (6.3) shows a schematic example of two pore bod-

ies connected to each other by a pore throat of triangular cross section. Under

such conditions, pore throats are no langer necessarily the narrowest constric-

tion along the flow path. In fact, resistance to the flow within the edges of

pore bodies may be comparable to or even larger than the resistance to flow

within the pore throats. To calculate more accurate relative permeability val-

ues, Raoof and Hassanizadeh [2011a] considered pore body conductances, and

calculated fluxes of the wetting phases along edges of pore bodies as well as
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pore throats. Through comparison with experimental measurement, they found

that including resistance to the flow within drained pore bodies can improve

the results of simulations and can provide information on fluxes within pore

bodies, which could be used to simulate solute transport.

In addition to its effect on flow within drained pores, the presence of non-

wetting phase within the bulk space of the pore also reduces the efficiency of

diffusion in smearing concentration gradients. Thus, under unsaturated con-

ditions, it is more appropriate to assign different concentrations to each edge

of a drained pore body, instead of assigning one average concentration to the

whole pore. It is worth mentioning that the lower conductivity of a drained

pore body can also reduce the connectivity and solute mass flux among any

saturated pore throats connected to a drained pore body (such as pore throats

number 2, 3, 4 in Figure 6.3b).

For the case of pore throats with angular cross section, after invasion of the

non-wetting phase, there will be flow of the water only along the edges of the

pore throats. Since the edges are separated from each other by the non-wetting

phase, there will be no mixing between them.

Figure 6.3: (a) Example of two drained pore-bodies connected to each other
by a drained pore throat with triangular cross section. Explicitly labeled is a
Corner Unit, which is comprised of a corner domain together with half of the
three neighboring edges connected to it. (b) A pore body which is invaded by the
non-wetting phase through throat number 1. this results in reduced connectivity
of the neighboring saturated pore throats (connected through throats number
2,3, and 4).

Our new approach to include concentration differences within pore bodies is

implemented as fellows. The concentration gradient within a pore body is

assumed to be negligible as long as the pore body is saturated; i.e., a single

concentration is assigned to the pore body. As soon as the non-wetting phase
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invades the pore body and occupies the bulk space of the pore, we consider

each corner of the pore as a separate element with its own pressure and con-

centration. Thus, for a cubic pore body, 8 different corner elements exist with

8 different pressure and concentration values assigned to them. Fluid flow and

solute mass fluxes between these elements occurs through the 12 edges of the

pore body (see Figure 6.3(a)).

In the same manner, we assign only one concentration to a saturated pore

throat. However, after invasion of the pore throat by the non-wetting, each

edge of the pore throat will have its own conductance (and flow rate), and we

assign separate concentrations to each edge.

The conductance of each edge needs to be determined as a function of the thick-

ness of water film residing in the edge. This thickness depends on the radius

of curvature of the fluid-fluid interface, which in turn depends on the capillary

pressure. Corner elements of a given drained pore body are connected to the

neighboring pore body corners via pore throats. Therefore, we need to spec-

ify connections of pore throats to the corners of pore bodies. The algorithm

used to associate different pore throats to different corners of neighboring pore

bodies is described in Appendix B.

6.3 Unsaturated flow modeling

We wish to simulate drainage in a strongly water wet porous media saturated

with water. The non-wetting phase is assumed to be air, which can flow under

negligibly small pressure gradient. To simulate drainage in our network, the

displacing air is considered to be injected through an external reservoir which is

connected to every pore-body on the inlet side of the network. Displaced water

escapes through the outlet face on the opposite side. Impermeable (no flow)

boundary conditions are imposed along the sides parallel to the main direction

of flow.

6.3.1 Drainage simulation

Initially, the network is fully saturated with water. At low flow rates, the

progress of the displacement is controlled by capillary forces. This forms the

basis for the invasion percolation algorithm used to model drainage [Wilkinson

and Willemsen, 1983, Chandler et al., 1982]. At every stage of the process, air

invades all accessible pore bodies and throats with the lowest entry capillary
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pressure. The capillary pressure of a meniscus is given by the Laplace equation

[Bear, 1988]

Pc = Pn − Pw = γwn

(
1

r1
+

1

r2

)
=

2γwn
r∗

(6.8)

where r∗ is the mean radius of curvature. For a capillary tube of radius r,

we have r∗ = r/ cos(θ) (Young-Laplace’s equation), in which θ is the contact

angle between fluid interface and the capillary wall. The invading fluid enters

and fills a pore throat only when the injection pressure equals or exceeds to or

larger than the entry capillary pressure of the pore.

We assume that the wetting phase is everywhere hydraulically connected. This

means that there will be no trapping of the wetting phase, as it can always

escape along the edges. The capillary pressure is increased incrementally so

that fluid-fluid interfaces will move only a short distance before coming to rest

in equilibrium at the opening of smaller pore throats.

6.3.2 Fluid flow within drained pores

To calculate the flow across the network, we need to calculate the flow of water

in saturated pores as well as along edges of drained pores. The conductance

of an angular drained pore depends on its degree of local saturation, which is

directly related to the radius of curvature of the meniscus formed along the

pore edges. However, Raoof and Hassanizadeh [2011a] have shown that if the

conductance is made dimensionless using the radius of curvature, then it be-

comes independent of saturation. They used a numerical solution to calculate

the dimensionless conductances of drained pores with scalene triangular cross

section. This was done by numerically solving the dimensionless form of the

Navier-Stokes equations and the equation of conservation of mass. They per-

formed calculations for a range of corner half-angles, from 5 degree to a wide

corner half-angle of 75 degrees. Figure (6.4) shows the computed dimensionless

conductance as a function of corner half-angle.

The dimensional form of conductance, g, which is a function of capillary pres-

sure, is

g = g∗
r4
c

µ
(6.9)

where rc is the radius of curvature of the interface and µ is the wetting fluid

viscosity. The radius of curvature rc depends on the capillary pressure prevaling
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Figure 6.4: The dimensionless hydraulic conductance versus corner half-angle
[Raoof and Hassanizadeh, 2011a].

in the pore. Thus, at any given capillary pressure, the dimensional conductance

of pore edges can be calculated.

From Figure (6.4) it is seen that the conductance is a very strong function of

corner angle(note the logarithmic scale of the y-axis in Figure 6.4). Therefore,

for a pore throat with irregular triangle cross section, each of its edges after

drainage can have quite different conductances. As a consequence, the flow

rates and residence times of different edges within the same pore throat could

be significantly different, even up to few orders of magnitude. For the case

of pore bodies, due to the random connection of pore throats to different cor-

ners of pore bodies, different pore edges will have different fluxes. Under such

conditions, the solution coming from upstream pores may not be fully mixed

within the whole pore body; the solution may exit the pore body via some fast

flow edges reducing mixing with other corners within the same pore body.

6.4 Simulating flow and transport within the

network

6.4.1 Flow simulation

In this work, we consider unsaturated flow through a porous medium. A flow

field is established in the network by imposing two different pressures on two

opposing boundaries of the network. All other boundaries of the network par-
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allel to the overall flow direction are no- flow boundaries. We assume that the

discharge, qij , through a given pore throat can be prescribed by the Hagen-

Poiseuille equation [Raoof et al., 2010]

qij = g
(pj − pi)

l
(6.10)

where qij is the volumetric flow rate through pore throat ij, g is the conductance

of the pore, and pi and pj are pressures at pore bodies i and j, respectively.

Equation (6.10) is valid for laminar flow over a wide range of Reynolds numbers

and is assumed to be appropriate for describing flow in pores [Bear, 1972]. For

pore throats with irregular triangular cross section, the volumetric flow though

the pore throat is the summation of flow within its three three edges

qij =

Nedge∑
k=1

gk
(pj − pi)

lij
(6.11)

where gk is the conductance of the kth edge of the pore throat, which can be

determined using graph of Figure (6.4) and Equation (6.10).

For incompressible, steady-state flow, the sum of discharges into and out a pore

body, or a pore-body corner in the case of a drained pore body, must be zero.

Considering fluxes within the pore bodies, the continuity equation is

NEdge∑
n=1

qi,n +

zi∑
j=1

qij = 0; j = 1, 2, . . . , zi (6.12)

where NEdges is the number of edges through which corner i is connected to

other corners through edge(n) within the same pore body. zi is the coordination

number of pore body i, which can be up to 26. Equation (6.12) is applied to

all pore bodies except those on the two flow boundaries where pressures are

specified. Combination of Equations (6.10) and (6.12) for all pores results

in a linear system of equations, with a sparse, symmetric and positive-definite

coefficient matrix, to be solved for pore body pressures [Suchomel et al., 1998a].

The flow velocity in all pore throats can be calculated using Equation (6.10).

Considering the network as a REV, the average pore-water velocity, v, for the

network can be determined as

v =
QL

Vf
(6.13)

where Q is the total discharge through the network (i.e., the sum of fluxes

141



6. Dispersivity under Partially-Saturated Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

through all pore throats at the inlet or outlet boundary of the network), L is

the network length in the flow direction, Vf is total fluid volume, θ is porosity,

and A is cross-sectional area of the network perpendicular to the overall flow

direction.

Knowing the total discharge through the network, we can also calculate the

relative permeability. The relative permeability of the network to water at a

given saturation and capillary pressure is calculated from Darcy’s law

krw =
µwQt

k A∆P/L
(6.14)

where µ is the wetting phase viscosity, k is the intrinsic permeability, and ∆P

is the pressure difference between inflow and outflow reservoirs.

Repetition of this process at consecutively larger imposed capillary pressures

results in a graph of capillary pressure versus wetting saturation and relative

permeability versus wetting saturation.

6.4.2 Simulating solute transport through the network

Commonly, under saturated conditions, one average concentration is assigned

to each pore body or throat [Raoof et al., 2010, Li et al., 2006a, Acharya et al.,

2005a, Sugita et al., 1995a]. This is done assuming that each pore space is a

connected well-mixed domain and that diffusion is fast enough compared to the

fluid flow within individual pores (i.e., gradients in concentration are negligible

within a single pore). This assumption may be reasonable under saturated

conditions, but, under partially saturated conditions the situation is different.

Under partially saturated conditions, in the case of cubic pore body, we have

eight corner units, each comprised of a corner domain together with half of

the three neighboring edges, as shown in Figure (6.3). Thus, we assign eight

different concentrations to a drained pore body, one for each corner unit. In

the case of drained pore throats, we assign different concentrations to each pore

throat edge.

Thus, in our formulation, the unknowns will be either concentrations of sat-

urated pore bodies, ci, and saturated pore throats, cij , or concentrations of

edges of drained pore throats, cij,k, and corner units of drained pore bodies,

cCU,i. We assume that each corner unit is a fully mixed domain. To show the

formulation, we introduce mass balance equations for a system of two drained

pores connected using a drained pore throat, as the most general case. We

assume that flow is from corner unit j towards corner unit i through corners of
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drained pore throat ij. For a given corner unit (with concentration cCU,i and

volume VCU,i), we can write the mass balance equation

VCU,i
d

dt
(cCU,i) =

Ntube
in∑
j=1

Nij
edge∑
k=1

cij,kqij,k +

NCU,i
in,edge∑
n=1

cCU,nqi,n −QCU,icCU,i (6.15)

where the first term on the r.h.s. is due to the mass arriving via N ij
edge edges

of N tube
in throats with flow towards the corner unit. The second term on the

r.h.s. accounts for the mass arriving from NCU,i
in,edge neighboring corner units

(within the same pore body) with flow towards the corner unit. The last term

shows the mass leaving the corner unit. QCU,i is the total water flux leaving

(or entering) the corner unit i.

We note that, for the case of saturated pores, the second term on the right-

hand-side of Equation (6.15) vanishes and the value of Nedge
ij in the first term

will be equal to one, since there is no edge flow present.

The mass balance equation for an edge element of a drained pore throat may

be written (assuming that corner unit j is the upstream node)

Vij,k
d

dt
(cij,k) = |qij,k| cCU,j − |qij,k| cij,k (6.16)

where Vij,k, qij,k, and cij,k are the volume, volumetric flow rate, and concen-

tration of kth edge of the pore throat ij, respectively.

Combination of appropriate forms of Equations (6.15) and (6.16) results in a

linear set of equations to be solved for cij , cij,k, ci, and cCU,i. Since we discretize

pore bodies and pore throats on the basis of their saturation state, the number

of unknowns are different for simulations at different saturation values. For

the case of a fully saturated domain, the number of unknowns is equal to

Ntube +Nnode (Ntube is the number of pore throats and Nnode is the number of

pore bodies). In general, the number of pore throats is larger than the number

of pore bodies in a pore network model. To get a more efficient numerical

scheme, first, applying a fully implicit scheme, we discretized Equation (6.16)

and determined cij,k in terms of cCU,i. This was then substituted into the

discretized form of Equation (6.15). This resulted in a set of equations for

cCU,i. In this way, we considerably reduced the number of unknowns, and thus

the computational time. The details of the method are given in Chapter 8,

Section 8.3.1. For the accuracy of the scheme, the minimum time step was

chosen on the basis of residence times [Suchomel et al., 1998c, Sun, 1996]
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∆t ≤ min {Tij , Tij,k, TCU,i, Ti} (6.17)

where Tα denotes the residence time pertaining to the elements α within the

pore network.

After obtaining the solution for concnetrations, at any given time, BTCs at

a given longitudinal position were found by averaging the concentrations of

pores that possess the same longitudinal coordinate. In calculating BTCs,

the concentrations of pore bodies were weighted by their volumetric flow rate;

resulting in a flux-averaged concentration. That is, the normalized average

concentration, c(x, t), is given by

c(x, t) =

[∑Nx
t

i ci(x, t)Qi∑Nx
t

i Qi

]
1

c0
i = 1, 2, 3, . . . , Nt (6.18)

where c0 is inlet solute concentration, and Nx
t denotes the total number of

pore body elements that are centered at the longitudinal coordinate x. The

longitudinal coordinate could be written as multiples an interval of an `, i.e.

x = 1`, 2`, . . . , L. where ` is the horizontal distance between centers of two

adjacent pore bodies. The breakthrough curve at the outlet is obtained by

plotting c(x = L, t). Figure (6.5) shows an example BTC at the outlet of

the network. We use these results to calculate (macroscopic) dispersivity as

described in the next section.

Figure 6.5: Example of resulting breakthrough curve of average concentration
computed from the network (shown by symbols). The solid line is the solution
of 1D advection-dispersion equation.
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6.5 Results

BTCs obtained by means of our pore-network model were will be compared to

results from macro-scale dispersion equations to determine the relationship be-

tween dispersivity and saturation. We also calculated the relationship between

relative permeability and saturation. We considered two macro scale mod-

els; the Advection-Dispersion Equation (ADE) and Mobile-Immobile transport

equations (MIM).

At each equilibrium saturation step, the imposed capillary pressure and the

average saturation are recorded. Then, a small pressure gradient is imposed

on the water phase to compute the steady-state flow of water. For the flow

field computation, we assume that the saturation and positions of all interfaces

remain unchanged. Water velocities within all pore bodies and pore throat

edges are calculated. The overall water flux is calculated, which is used to

determine the effective permeability of the network to water at that saturation

from Darcy’s law (Equation 6.14).

To start the simulation for solute transport, a constant pulse concentration,

c0, is assigned to the inflow side of the network. As water velocities within

all the pores are known, Equations (6.15) and (6.16) can be solved to obtain

the spread of the solute within the network as a function of time. Thus, the

BTC of the average concentration corresponding to the specific saturation is

obtained. To get the BTCs of average concentration for different saturations,

capillary pressure is then increased to reach the next equilibrium saturation,

and the above procedure is repeated.

6.5.1 Advection-Dispersion Equation (ADE)

The transport of a solute through a porous medium is usually described by the

hydrodynamic dispersion theory [Bear, 1972]. The one-dimensional transport

equation for a conservative solute is:

∂θC

∂t
=

∂

∂z

(
θD

∂C

∂z

)
− ∂qC

∂z
(6.19)

where C is the solute concentration, θ is the water content of the porous

medium, q is the water flux, D is the hydrodynamic longitudinal dispersion co-

efficient, and z is distance. The dispersion coefficient is commonly expressed by

Equation (6.1), assuming n = 1. In our simulations, when BTCs are obtained,

the only parameter, in Equation (6.19), to be determined is the dispersion co-
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efficient, D, since water content and average pore-water velocity are known

from the pore-network mode. The dispersion coefficient (and thus dispersivity)

at a given saturation is determined by optimizing the analytical solution of

the ADE to the computed BTCs of average concentration at the outlet of the

network at that saturation.

Figure (6.6) shows the resulting relationship between dispersivity and satura-

tion (α− Sw curve) for the three networks described in Section 6.2.3.
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Figure 6.6: The relationship between dispersivity (based on the ADE model)
and wetting phase saturation computed from the MDPN model for the three
networks whose pore size distributions are shown in Figure (6.1).

From Figure (6.6), it is clear that there is a strong relation between dispersivity

and saturation. The relation is non-monotonic, with the maximum dispersivity

(αmax) occuring at an intermediate saturation, Scr. This non-monotonic be-

havior has been observed in laboratory experiments [Bunsri et al., 2008, Toride

et al., 2003]. To explore this non-monotonic behavior, we have analyzed various

pore-scale properties of the pore-network model under different saturations.

It is well known that dispersion in porous media is a result of velocity varia-

tion within different pores. Under unsaturated conditions, velocity variations

depend on saturation, which may not be a simple relationship. While, under

saturated conditions the whole cross-section of a pore is available for the flow of

wetting phase (resulting in a high conductance), under unsaturated conditions,

the wetting phase flows only along the pore edges (which have less conduc-

tance to flow) with much lower velocities. This means that the variation of

conductance is much larger under unsaturated conditions, leading to a larger

variations of velocities. We have calculated the coefficient of variation, cv, of
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pore-scale velocities at different saturations. This is a normalized measure of

variability of the velocity distribution. Figure (6.7) shows the coefficient of

variation, cv, as a function of saturation.
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Figure 6.7: Coefficient of variation (cv) as a function of saturation, Sw.

It is evident that the coefficient of variation increases with decrease in wet-

ting phase saturation up to a maximum value, and then decreases with further

decrease in saturation. This relationship is more or less the same as the rela-

tionship between dispersivity and saturation shown in Figure (6.6).

Since the saturation state of pores (i.e., being saturated or drained by the non

wetting phase) is an important factor determining the flow field and velocity dis-

tribution within the phases, one important parameter under partially-saturated

conditions could be the fraction of the percolating saturated pores. We define

this as the fraction of pores which are filled with water and connected to both

inlet and outlet boundaries of the pore network. This fraction is obviously

equal to unity under saturated conditions, since all the pores are saturated

with the wetting phase and connected to inlet and outlet boundaries. With

a decrease in saturation, the fraction of percolating saturated pores will start

to decrease. At some saturation, which we refer to as Sper, there will be no

percolating saturated pores any more, i.e., the fraction of percolated saturated

pores will be zero. We should note that, at Sper some pores are still saturated,

however, they are surrounded by drained pores. We have calculated the frac-

tion of percolating saturated pores as a function of saturation for the three

networks considered here. Results are shown in Figure (6.8). Comparison with

Figure (6.7) reveals that the coefficient of variation of pore-scale velocities for

each network peaks near the corresponding Sper.

At saturations higher than Sper the saturated percolating pore system will cre-
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Figure 6.8: The relation between fraction of percolating saturated pores and
saturation shown for three networks.

ate a “fast” flowing domain, since they are saturated and also connected to

inlet boundary which imposes boundary pressure on these series of pores. The

unsaturated pore system will create a “slow” flowing domain. The residence

time of solute will be much higher in the unsaturated pore system compared

to the saturated pore system, which could cause extra dispersion. It worth

mentioning that, for a given pore network, the value of coefficient of variation

for a fixed saturation is a constant irrespective of applied pressure gradients

(different pore-water velocities). This is because, although the higher pres-

sure gradient increases the velocities within pore throats and also increases the

variance of velocities within different pore throats, the increase in variance is

canceled out with the increase in the average velocity, and the coefficient of

variation remains constant. This is obviously not the case when the satura-

tion changes, since saturation changes will change the distribution of the phase

available to flow.

6.5.2 Mobile-Immobile Model (MIM)

Under unsaturated conditions, non-equilibrium effects may exist due to pref-

erential flow paths. There are experimental studies which can not be properly

described via the ADE model [Beven and Young, 1988]. Under such condi-

tions, modified forms of ADE should be used to take into account the effects of

preferential flow or bypassing in the pore system. Drainage of pores will cause

changes in velocity distributions and magnitudes of pore scale velocities. In

particular, zones of low velocity or practically stagnant zones may be created.
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Although the entire fluid-occupied domain forms a single fluid continuum at the

microscopic level, it is assumed to be occupied by two apparent fluid phases:

mobile and immobile water. Drained pores, as well as saturated pores which

are surrounded by drained pores, may have very small velocities compared to

the average pore-water velocity. Saturated pores with very small sizes may

also have negligible velocities compared to velocities within larger saturated

pores. The fluid occupying these very low conductive pores could practically

be considered as an immobile phase. The water content of these two domains,

θim and θm, sum up to the total water content θim + θm = θw.

It should be noted that mobile and immobile pores may be interconnected in a

complex way, with the solute being present in both of them. Bear and Alexan-

der [2008] note that the fraction of the void space that contains an immobile

wetting liquid is not constant, but is rather a function of the saturation, reach-

ing its maximum when Sw = Sr, with Sr being the residual saturation. How-

ever, Toride et al. [2003] found that the maximum fraction of immobile phase

could appear at an intermediate saturation which is higher than the residual

saturation (i.e., when Sw > Sr). For example, they observed the maximum

fraction of immobile phase at a saturation of Sw = 0.47, which was rather an

intermediate saturation compared to the residual saturation. We will discuss

this issue later, based on our pore-network results.

Using the concept of mobile and immobile water, advective-dispersive transfer

of solute occurs only through the mobile water phase with accompanying ex-

change of solute between the mobile and immobile phases. This is captured by

the following equations

∂θmCm
∂t

=
∂

∂z

(
θmDm

∂Cm
∂z

)
− ∂qCm

∂z
− ωθm (Cm − Cim) (6.20)

∂θimCim
∂t

= ωθm (Cm − Cim) (6.21)

where the subscripts, m, and, im, refer to mobile and immobile water zones,

respectively, and ω [T−1] is the rate coefficient of mass transfer between these

two zones.

Figure (6.9) shows the relationship between the dispersivity of the mobile phase

and the saturation (α− Sw curve) for the three networks.

Similarly to the case of the ADE model, we have fitted BTCs obtained from

our pore network modeling with Equation (6.20) to determine dispersivity as

a function of saturation.
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Figure 6.9: The relation between dispersivity of the MIM model and the
wetting phase saturation (α− Sw) for three networks shown in Figure (6.1)

The dispersivity values obtained using MIM (Figure 6.9) are lower than those

obtained using the ADE model (Figure 6.6). This result has been observed by

others [Toride et al., 2003]. The reason for lower dispersivities using MIM is

that the contribution of mass transfer between mobile and immobile domains

causes extra mixing.

Compared to the ADE model, the MIM model fits the BTCs better under

unsaturated conditions (results not shown). Functionally, the ADE model pro-

vides mean transport characteristics, e.g. average velocity, necessary to predict

solute transport. ADE results will be appropriate provided it is possible to es-

timate effective (or average) values for the transport characteristics. However,

under intermediate saturations, due to the high velocity variations, one single

average velocity (such as the one used in the ADE model) may not sufficiently

describe the mean advective flux within the system. Under such a condition,

the MIM model gives better results, since it divides the pore-scale velocities

into two groups, one with a non-zero average velocity and the other one with

a velocity of zero.

At saturated conditions the velocity field variation is narrower (i.e., with an

smaller value for c.v.), and transport may be described well using the ADE.

6.5.3 Case study

In this section, we use our pore-network model to simulate solute transport

within a real porous medium. We have chosen data reported by Toride et al.

[2003], who studied the hydrodynamic dispersion coefficient under unsaturated
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conditions. In their experiment, they used non-aggregated dune sand to min-

imize the effect of immobile water. Unit-gradient flow experiments (i.e., the

water flux being equal to the unsaturated conductivity) were conducted to

measure solute BTCs under uniform saturations and steady-state flow condi-

tions. Transport parameters for the ADE and MIM models were determined

by fitting analytical solutions to the observed BTCs. They found a maximum

dispersivity, αmax, of 0.97 cm corresponding to Scr = 0.40, whereas for satu-

rated flow dispersivity was equal to 0.1 cm, irrespective of pore-water velocity.

The maximum value of dispersivity was almost ten times greater than it’s value

under saturated conditions. The BTCs for unsaturated flow tended to be less

symmetrical with considerable tailing compared with the BTCs for saturated

flow. The ADE model described the observed data better for saturated than

for unsaturated conditions.

To model the experimental results, first, we have constructed a MDPN model,

based on the information reported by Toride et al. [2003]. They have used a

well-sorted dune sand, which was uniformly packed. The dune sand had an

average particle size of 0.28 mm. The average coordination number for a sand

packing is about 4.5 [Talabi and Blunt, 2010, Talabi et al., 2008].

We have used the same procedure mentioned in earlier sections to generate a

MDPN model to match an average coordination number of 4.5 and calculate

the BTCs under different saturations, and to plot the dispersivity-saturation

relationship (α− Sw curve) shown in Figure (6.10).

Figure 6.10: Comparison between dispersivities calculated using the MDPN
model and results based on experiments [Toride et al., 2003] for various degrees
of saturation.

Considering the complications of flow and solute transport under unsaturated
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conditions, there is a reasonable agreement between the results obtained from

the pore-network model and experiments. The deviation between the two re-

sults could be due to the simple geometries used within the network model,

together with the fact that we did not have detailed information on the pore

size distributions of the sand sample used by Toride et al. [2003]. Consider-

ing the small size of the pore network compared to the experimental sample,

we believe that our network does not capture all heterogeneities present within

the real sample. However, the comparison shows the capability of pore-network

modeling to capture dispersion under unsaturated conditions.

Figure (6.11) compares the fraction of the mobile phase, β = θm�θ , as of a func-

tion of saturation, calculated by the MDPN model with that obtained through

experiment [Toride et al., 2003].

Figure 6.11: Comparison between fraction of the mobile phase calculated
using the MDPN model and the results based on experiments by Toride et al.
[2003].

Under saturated conditions, the number of immobile pores is very small and

the mobile fraction is close to unity. As a result the ADE model adequately

describes the BTC under saturated conditions. Padilla et al. [1999] and Toride

et al. [2003] observed the same for a saturated sand packing (e.g., β > 0.95).

The fraction of (practically) immobile water will increase as saturation de-

creases up to some extent, and then it starts to decrease with further decrease

in saturation. This is also seen in Figure (6.11) in both the pore-scale modeling

and experimental results.

When the porous medium is at higher saturation, some pores (mostly percolat-

ing saturated pores) have higher velocities creating the mobile phase. The rest

of pores (mostly drained pores) with much lower velocities create a relatively
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immobile phase. Under such conditions, the coefficient of variation of the ve-

locity distribution increases, and the resulting BTCs can only be described well

by assuming that a large percentage of the water phase is immobile. Thus, the

value of β will decrease with decrease in saturation.

Under low saturation, there is no strongly dominant flow path. Our results

showed that, this regime starts mostly at saturations close to the percolation

threshold, Sper. Under this regime, there is less variations in velocity (as shown

in Figure 6.7) and as a result the BTCs can be described well by assuming a

smaller immobile fraction.

6.5.4 Relative permeability

Our results show a relation between dispersivity and variation of the pore-scale

velocity field. The relation was explained using cv of the pore-scale velocity field

(Figure 6.7), as well as the fraction of percolating saturated pores (Figure 6.8).

These observations are pore-scale properties; in practice, it is quite a formidable

job to precisely measure variations of pore-scale velocities throughout a pore

space domain. It would be more practical and useful to relate dispersivity

variations to a macro-scale quantity which is easier to measure. Such a quantity,

under unsaturated conditions, could be relative permeability. Figure (6.12)

shows the relative permeability curves for different networks.
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Figure 6.12: Relative permeability-saturation (kr − Sw) curves shown on the
semi-log scale for the three networks. The kr−Sw curve for the network varM is
also shown on the linear scale (corresponding to the secondary axis on the right
side of the figure).
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In Figure (6.12) we can distinguish a trend in each kr−Sw curve. Each kr−Sw
curve is composed of two nearly linear parts (on semi-log scale). We have also

shown one of the kr−Sw curves on linear scale, as a dotted line. The linear scale

plot shows that the slope of kr − Sw is larger at higher saturation. This is due

to the fact that the non-wetting phase first occupies larger pores (which have

the most contribution to the conductivity of the phase), after which there is a

considerable drop in conductivity of the wetting phase. The substantial drop in

conductivity of the wetting phase will continue until the fraction of percolating

saturated pores is very low. After this point, further decrease in saturation will

cause only slight decrease in permeability of the wetting phase, since almost

all larger pores are already drained. Thus, the location of the change in slope

in the kr − Sw curve, in the semi-log scale, can be related to the fraction of

percolating saturated pores. We may use the corresponding saturation as an

approximation for the critical saturation, Scr, at which maximum dispersivity

occurs. Figure (6.12) shows that the saturation at which change in slope of

the kr − Sw curves occur is lower for networks with higher variance, in which

the αmax also occurs at lower saturations. This observation is in agreement

with pore-scale observations such as change in fraction of percolating saturated

pores (Figure 6.8) and coefficient of variations of pore-scale velocities (Figure

6.7).

6.6 Conclusion

Multi-phase and unsaturated transport in porous media is characterized by

means of several macroscopic transport properties including relative perme-

ability, capillary pressure, and dispersivity. These properties have been found

to depend on macro-scale parameters, such as fluid saturation, but also on

pore-space morphology. Indeed, distribution of fluid phase within the pores is

important in determining transport properties.

In contrast to the relation between capillary pressure and saturation (Pc − Sw
curve), which has been investigated in many studies, there are only a few stud-

ies on the relationship between dispersivity and saturation (i.e., α−Sw curve).

Although, the dependency of dispersivity on saturation has been clearly shown

through experimental studies, almost all simulators of solute transport at the

macro scale, under unsaturated conditions, use a constant dispersivity (i.e., do

not include a dependance on saturation). This is mainly due to the unresulved

and complex functionality of dependence of dispersion on saturation.
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In this study, we have used a MDPN model to simulate flow and transport

within the pore space of a porous medium. The capability of MDPN to pro-

duce a distribution of coordination numbers together with various angular pore

cross sections and a more complex formulation of solute transport within the

network has provided a valuable pore-scale flow and transport simulator for

investigating dispersivity under unsaturated conditions.

Our results show that, under unsaturated conditions, the dispersivity coefficient

is strongly depended on saturation. The relation appears to be non-monotonic,

with the maximin dispersivity, αmax, corresponding to a specific saturation,

which we refer to as the critical saturation, Scr. We have investigated an ex-

planation of the α− Sw relation by investigating pore-scale properties such as

the fraction of percolating saturated pores and the coefficient of variation of

pore velocities under different saturations.

In generale, the unsaturated dispersion may be explained by limited mixing

within pores due to the presence of the non-wetting and also change of connec-

tivity between assemblage of pores. The collection of saturated pores perco-

lating through the whole domain will create a relatively fast domain which is

shown on the left side of figure (6.13) using a flow line percolating thought the

domain. On the other hand, corner flows within drained pores together with

trapped saturated pores (shown in the right side of figure 6.13) create a rela-

tively slow flow domain compared to the velocities within percolating saturated

pores.

Figure 6.13: Schematic representation of unsaturated porous medium occu-
pied partially by non-wetting phase. Corner flows together with trapped satu-
rated pores create a relatively slow flow domain compared to the velocities within
percolating saturated pores.
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Moving from fully saturated conditions to unsaturated conditions, velocity vari-

ations will increase due to the presence of drained pores which have smaller

velocities compared to velocities within saturated pores. However, at lower

saturations, when the fraction of percolating saturated pores is very low, the

velocity distributions will start to converge, resulting in a smaller value of dis-

persivity, and a decrease in the fraction of the immobile water.

We have shown that saturation-relative permeability (kr − Sw) curve may be

utilized to get insight into the behavior of α − Sw curve and to approximate

the critical saturation at which the maximum dispersivity, αmax, occurs.

While these computations have been restricted to the transport of tracer so-

lutes, they demonstrate the significant potential of this formulation of pore-

network model for investigating other transport properties such as mass trans-

fer coefficients for reactive/adsorptive solute and colloid transport, through

including limited mixing within the pore bodies.
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CHAPTER 7

ADSORPTION UNDER PARTIALLY-SATURATED

CONDITIONS; PORE-SCALE MODELING AND

PROCESSES

Anyone who attempts to generate random numbers

by deterministic means is, of course, living in atex

state of sin.texttttttttttttttttttttttttttttttttttttttttttttttt

John von Neumann

Abstract

A
dsorptive transport, such as transport of viruses and colloids, is of great im-

portance in studies of porous media. Compared to the number of column-scale

experimental studies, there are very few pore scale modeling studies, especially for

unsaturated porous media. Under unsaturated conditions, principal interactions usu-

ally occur not only at the solid-water (SW) interfaces, but also at air-water (AW)

interfaces. These interactions are greatly influenced by the water content.

In this paper, we study adsorptive transport under unsaturated conditions using a

MDPN model, which allows for a distribution of coordination numbers ranging be-

tween zero and 26. This topological property together with geometrical distributions

are used to mimic the microstructure of real porous media. Transport of adsorptive

solute was calculated by solving local mass balance equations for solute concentra-

tion in all network elements and averaging the concentrations over a large number of

pores. We have employed a fully implicit numerical scheme for transport of adsorp-

tive solute under unsaturated conditions. The numerical scheme is developed based

on the assumption that the porous medium is composed of a network of pore bodies

and pore throats, both having finite volume.
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We have introduced a new formulation of adsorptive solute transport within a pore

network which helps to capture the effect of limited mixing within the pores under

partially-saturated conditions. This formulation allows a very detailed description of

solute transport processes within the pores by accounting for limitations in mixing

within drained pore bodies and pore throats as a result of reduced water content. We

have considered various types of adsorption such as i) two-site kinetic (at SW or AW

interfaces), ii) two-site equilibrium, and iii) one-site kinetic and one-site equilibrium.

Our results show that, even if there is equilibrium adsorption at the SW and AW

interfaces at the pore scale, one may need to apply a nonequilibrium formulation for

the adsorption process at the macro scale. We have found that the kinetic description

of the adsorption process at the macro scale can accurately describe the results of

pore network simulations. Using the kinetic description, we can employ dispersivity

values obtained from tracer simulations. However, using the equilibrium macro-scale

model, we needed to use higher values of the dispersion coefficient, modeled as a

function of adsorption in addition to saturation.

7.1 Introduction

7.1.1 Major colloid transport processes

Understanding colloid transport mechanisms in unsaturated porous media has

always attracted significant attention in management of groundwater contam-

ination, especially in the case of groundwater polluted by contaminants that

could adsorb to colloids. Colloids presence can enhance pollutant mobility [Mc-

Carthy and Zachara, 1989]; field results suggest the importance of colloids in

the transport of low-solubility contaminants [Vilks et al., 1997, Kersting et al.,

1999]. The enhanced mobility, together with the very limited acceptable con-

centration of hazardous solutes (in the range of few parts per billion), mean

that we must pay more attention to modeling and accurate prediction of col-

loid (facilitated) transport processes. Since contaminants migrate and reach

the groundwater through the vadose zone, the transport of adsorbing solute in

the vadose zone becomes an important issue.

Commonly the breakthrough curves (BTCs) for reactive/adsorptive solutes dis-

play earlier appearance, greater spreading, and more tailing compared to the

solution of classical models with equilibrium adsorption. Even under saturated

conditions, adsorption processes may cause non-ideal behavior in the BTCs.

However, under unsaturated conditions, in addition to the adsorption processes,

the non-ideal behavior of the BTCs could be a result of partial occupation of

the pore space by the non-wetting phase.
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Under unsaturated conditions, various mechanisms may account for (non-ideal)

behavior of colloids under different flow and transport conditions. Under low

flow rates, diffusion may act as the rate-limiting process. Most of experimen-

tal studies which support this idea (e.g., Jacobsen et al. [1997], Laegdsmand

et al. [1999], Schelde et al. [2002]) suggest a linear relationship between the

cumulative mass of mobilized colloids and the square root of time. During

transient conditions, such as drainage or imbibitions, colloid scavenging by air-

water interfaces may be a dominant process [Jacobsen et al., 1997, Laegdsmand

et al., 1999, Bradford and Torkzaban, 2008]. At high flow rates, however, hy-

drodynamic shear [O’neill, 1968] may be the dominant process [Kaplan et al.,

1993, Laegdsmand et al., 1999, Weisbrod et al., 2002]. The induced shear force

is opposed by an attractive force due to Derjaguin-Landau-Verwey-Overbeek

(DLVO) interactions [Bradford and Torkzaban, 2008]. Under very low satu-

rations, due to the discontinuity of water films between grains, film-straining

may be the dominant process [Lenhart and Saiers, 2002, DeNovio et al., 2004,

Bradford et al., 2006, Torkzaban et al., 2008], and transport of suspended col-

loids can be retarded due to physical restrictions imposed by thin water films

[Wan and Tokunaga, 1997].

7.1.2 Experimental studies

Experimental studies are a major source of information for adsorptive trans-

port in porous media. They are also instrumental in guiding the development

of mathematical models for colloid transport and deposition. Studies of reac-

tive/adsorptive transport in porous media can be categorized into three groups:

pore-scale studies, column-scale studies of ideal systems (mostly under uniform

saturation and constant pore water velocity), and studies conducted on non-

ideal systems (such as natural vadose zone environments). Laboratory studies

of colloid and colloid-facilitated transport have focused primarily on the in-

terpretation of breakthrough of colloids (e.g, using latex microspheres, clays,

oxides, or microorganisms, with or without other tracers) in sand or glass bead

systems. While many studies have been carried out under saturated flow con-

ditions [Weisbrod et al., 2003, Toran and Palumbo, 1992, Noell et al., 1998,

Elimelech et al., 2000, Bradford and Bettahar, 2005, Bradford et al., 2007],

some have examined unsaturated conditions [Wan and Wilson, 1994b,a, Wan

and Tokunaga, 1997, 1998, Schafer et al., 1998, Thompson et al., 1998, Thomp-

son and Yates, 1999, Jewett et al., 1999, Sim and Chrysikopoulos, 2000, Jin

et al., 2000, Gamerdinger and Kaplan, 2001, Saiers and Lenhart, 2003b,a, Wan
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and Tokunaga, 2002, Simunek et al., 2006, Gargiulo et al., 2007, Torkzaban

et al., 2008].

The most important aspect in unsaturated porous media is the presence of the

air-water interface. Relatively few studies have investigated the role of the air-

water interface in the transport of colloids [Goldenberg et al., 1989, Wan and

Wilson, 1994b,a].

Wan and Wilson [1994a] conducted experiments to study colloid migration

through sand columns at different saturations to examine interactions between

various types of colloids (latex spheres, bacteria, and clay particles) and solid-

water and air-water interfaces. They concluded that the AW interface played a

very significant role in the migration of colloidal particles. The colloidal parti-

cles attached preferentially on the air-water interface by capillary forces, which

are more dominant than other forces (e.g., the gravitational force). Particle

transport was tremendously retarded by the presence of the air-water interface,

acting as a strong adsorption site [Wan and Wilson, 1994a]. Wan and Wilson

[1994b] also observed that the particle sorption increased with increasing ionic

strength of the solution.

Lenhart and Saiers [2002] found that colloid transport in unsaturated porous

media depended principally on the degree of pendular ring discontinuity, pore

water velocity, and the retention capacity of the air-water-solid (aws) common

line. The mechanisms for colloid retention at the aws line were not clear, but

could be related to factors such as pore water motion with the pendular rings,

low laminar flow velocity near the grain surface, and/or retention of colloids or

colloidal aggregates in the thin water films near the aws contact line.

One method to study pore scale adsorptive processes is by direct observation

of colloid transport under unsaturated conditions. In contract to the results

of column experiments which provide BTCs of concentrations, small scale ob-

servations can provide useful information on colloid retention mechanisms at

the pore scale. Sirivithayapakorn and Keller [2003] found that carboxylated

polystyrene latex spheres and the bacteriophage MS2 were attracted to the

AW interface of trapped air bubbles in micromodel pore space. Zevi et al.

[2005] carried out pore-scale visualization studies of colloid transport in unsat-

urated quartz sand. They observed colloid retention at aws common line where

the film thickness approximately equaled colloids diameter. Crist et al. [2004]

used a real-time pore-scale visualization technique to study colloid retention

in a three-dimensional sandy porous medium. They also observed trapping in

the thin film of water at the (aws) line. Observation of colloid retention at the
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aws common line is also consistent with the batch experiments of Thompson

and Yates [1999] and Thompson et al. [1998].

7.1.3 Mathematical models

Mathematical and conceptual models of adsorptive transport were initially de-

veloped for saturated porous media [Van der Lee et al., 1992, Corapcioglu and

Jiang, 1993, Song and Elimelech, 1994, Swanton, 1995, Grindrod and Lee, 1997,

Sun and Walz, 2001, Elimelech et al., 2003] and were later adapted to unsat-

urated media [Darnault et al., 2004, Saiers, 2002, Lenhart and Saiers, 2002,

Corapcioglu and Choi, 1996, Wan and Tokunaga, 1997]. These models usually

assume that the convective dispersive equation is valid; some models also ac-

counted for preferential (or bypass) flow. Colloid deposition was included as

a sink-source term. The sink term for colloid retention, in some models, was

described as the product of two factors: (1) the collision efficiency, which is

the probability of a mobile particle contacting a collector surface, comprising

the effects of interception, sedimentation, and Brownian motion; and (2) the

sticking efficiency, which is the probability that such a collision will result in

attachment [Elimelech and O’Melia, 1990, Yao et al., 1971]. Descriptions of

colloid retention in partially saturated media are complicated by the existence

of the two AW and SW interfaces that can each serve as collector surfaces,

albeit with distinct electrostatic and surface tension properties. The water film

thickness can vary under partial saturation, depending not only on the water

content, but also by the position of the film relative to the pendular rings of wa-

ter between grains. In addition, some studies suggested attachment of colloids

to the aws line.

Kinetic effects in the transport of adsorptive solutes could be due to physical

and/or chemical kinetic processes. The physical kinetic (two-region) models

explain nonideality based on the presence of both mobile regions, where solute

is transported by advection and dispersion, and immobile regions, where only

solute diffusion takes place [van Genuchtan and Wieranga, 1976, van Genuchten

and Cleary, 1979, Rao et al., 1980a,b, Nkedi-Kizza et al., 1982]. Because these

models attribute nonideality to the physical makeup of the soil, nonideal BTCs

would be expected not only for reactive solutes but also for nonreactive solutes.

Among chemical kinetic models, the two-site model, in which the porous medium

is considered to contain two types of sites having different adsorption kinetic

characteristics, is the most common; one site is considered to be in equilibrium,

while the other site is assumed to undergo time-dependent kinetic adsorption
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[Selim et al., 1976, Cameron and Klute, 1977]. Physical and chemical kinetic

models have kinetic terms which contribute to both early breakthrough and

longer tailing in BTCs, comparing to the solution of the Advection-Dispersion

Equation (ADE) with equilibrium adsorption. Both two-region and two-site

kinetic models have four independent parameters which are functions of one

or two of the following parameters: the dispersion coefficient, D, the distri-

bution coefficient, Kd, the equilibrium mobile fraction, f) and the first-order

rate coefficient, ω. Curve fitting has been the most commonly used method to

determine the parameters of these models.

Among other types of models, Choi and Corapcioglu [1997] modeled colloid-

facilitated transport under unsaturated conditions considering four phases: an

aqueous phase; a carrier phase (the colloids); a stationary solid matrix phase;

and the air phase. Colloidal mass transfer between the aqueous and solid

matrix phases and between the aqueous phase and the air-water interface,

and the contaminant mass transfer between aqueous and colloidal phases and

between the aqueous phase and the air-water interface were represented by

kinetic expressions.

Wan and Tokunaga [1997] developed a model based on film-straining in which

transport of suspended colloids can be retarded due to physical restrictions

imposed by thin water films in partially saturated porous media. In their

model, they introduced critical matric potential and a critical saturation, at

which thick film interconnections between pendular rings are broken and film

straining begins to become effective. They observed that the conventional

filtration theory was not sufficient, but, film-straining theory could explain their

results. They found that the magnitude of colloid transport through water films

depended on the ratio of colloid size to film thickness as well as flow velocity.

Additional factors which might influence film straining in more general cases

include distributions in grain size, grain shape and surface roughness, grain

packing and aggregation, and colloid shape.

7.1.4 Objectives

Although there are some studies on pore-network modeling of reactive/adsorptive

solute under saturated conditions [Acharya et al., 2005a, Algive et al., 2007a,

Li et al., 2006a], there are many fewer studies conducted under unsaturated

conditions. In this paper, we present a new pore-scale model to study flow

and transport of adsorptive/reactive solutes under unsaturated conditions. We

calculate the concentration of solutes in each individual pore element using the
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equations of mass balance. Under different saturation states, the flow equations

are first solved and the resulting pore scale velocities are then used to simulate

reactive solute transport.

The main objective of this study is a better understanding of transport of

adsorptive/reactive solutes under unsaturated conditions. Although various

mechanisms, such adsorption to the aws common line or moving AW inter-

faces have been suggested to affect the adsorptive transport, the exact role of

these processes are still unclear. In this study, adsorption over a wide range

of saturations was considered by taking into account adsorption to both AW

and SW interfaces. Regions of the pore space for which a wetting film of wa-

ter coats the surface remain water-wet, as do the corners of the pore space

where water still resides; however, we neglect adsorptive to interfaces associ-

ated with the water films. We have introduced a new formulation of adsorptive

solute transport within a pore network which helps to capture the effect of lim-

ited mixing and adsorption under partially-saturated conditions. In contrast

to former pore-network studies, which assign one (average) pressure and one

(average) concentration to each pore element, we discretize an individual pore

space into separate smaller domains, each with its own flow rate and solute

concentration, in order to increase the accuracy of simulations. Thus, fluid

fluxes along edges of each pore are calculated and taken into account in the

simulation of adsorptive solute transport.

In this paper, after construction of a Multi-Directional Pore-Network (MDPN)

model, quasi-static drainage simulations are performed to determine pore-level

distribution of each fluid phase. Then, steady-state flow is established and

equations of mass balance for adsorptive solutes are solved to calculate trans-

port properties of such a distribution and to obtain BTCs of solute concentra-

tion. Adsorption to both air-water (AW) and solid-water (SW) interfaces is

modeled. These adsorption processes are independent of each other and each

of them can have its own distribution coefficient and adsorbing area.

7.2 Network Generation

7.2.1 Pore size distributions

In the present study, the pore structure is represented using a 3D MDPN

model. Pore-body radii are assigned from a lognormal distribution, with no

spatial correlation, explained in Section 6.2.

Figure (7.1) shows the bore body size distribution used within the MDPN. Pore
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body sizes are taken from uncorrelated truncated lognormal distributions, and

pore throat sizes are correlated to the pore body sizes.
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Figure 7.1: Distributions of pore-body sizes within the pore network model.

7.2.2 Determination of the pore cross section and corner

half angles

A key characteristic of real porous media is the angular form of pores. It has

been demonstrated that having pores with a circular cross section, and thus

single-phase occupancy, causes insufficient connectivity of the wetting phase

and as a result poor representation of experimental data [Zhou et al., 2000a].

In the present work, pore bodies are considered to be cubic in shape. Pore

throats are assigned a variety of cross sectional shapes including circular, rect-

angular, and scalene triangular, as it was explained in Section 6.2.2.

7.2.3 Coordination number distribution in MDPN

One of the main features of the MDPN is that pore throats can be oriented not

only in the three principal directions, but in 13 different directions, allowing a

maximum coordination number of 26, as shown in Figure (2.1). Then, to get a

desired coordination number distribution, we fallow an elimination procedure

to rule out some of the connections. The elimination procedure is such that

a pre-specified mean coordination number can be obtained. A coordination

number of zero means that the pore body is eliminated from the network,

so there is no pore body located at that lattice point. A pore body with a

coordination number of one is also eliminated except if it is located at the

inlet or outlet boundaries (so it belongs to the owing fluid backbone). This

means that no dead-end pores are included in the network. Details of network
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generation can be found in Chapter (2).

In this study, we have chosen to make a MDPN with an average coordination

number of 4.5. This value corresponds to the sand packing [Talabi and Blunt,

2010, Talabi et al., 2008]. The distribution of coordination number is given in

Figure (7.2).
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Figure 7.2: The coordination number distribution of the MDPN model. The
mean coordination number is equal to 4.5.

7.2.4 Pore space discretization

To take into account the effect of limited mixing within the drained pores we

follow our approach which was explained in Section 6.2.4, i.e., under unsatu-

rated conditions, we consider each corner of the pore, occupied by the wetting

space, as a separate element with its own pressure and concentration. In addi-

tion, since we take into account adsorption process, We also calculate separate

adsorbed mass concentration for each of these elements. Thus, for a cubic pore

body, 8 different corner elements exist with 8 different pressure and concentra-

tion of solution and adsorbed mass assigned to them (see Figure 6.3a).

7.3 Unsaturated flow modeling

We wish to simulate drainage in a strongly water wet porous medium, initially

saturated with water. The non-wetting phase is assumed to be air, which can

flow under negligibly small pressure gradients. To simulate drainage in our

network, the displacing air is considered to be injected through an external

reservoir which is connected to every pore-body on the inlet side of the net-

work. The displaced water escapes through the outlet face on the opposite side.
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Impermeable boundary conditions are imposed along the sides parallel to the

main direction of flow.

We follow the procedure explained in Section 6.3 to perform drainage and

applying a steady state flow fluid, under a different saturations, to calculate

the total volumetric flow though the network and the relative permeability.

7.4 Simulating adsorptive transport within the

network

In order to take limited mixing, due to existence of the non-wetting phase, into

account, we subdivided a drained pore body into corner units. In the case of a

cubic pore body, we have eight corner units, each comprised of a corner domain

together with half of the three neighboring edges (Figure 6.3a).

In our formulation, the unknowns will be either concentrations of saturated

pore bodies, ci, and saturated pore throats, cij , or concentrations of edges of

drained pore throats, cij,k, and corner units of drained pore bodies, cCU,i. The

adsorbed mass concentration will be either adsorbed mass concentrations of

saturated pore bodies, ssw
i

, and saturated pore throats, ssw
ij

, or adsorbed mass

concentrations at SW and AW interfaces of drained pore throats, ssw
ij

, and,

saw
CU,i

, respectively, or corner units of drained pore bodies, ssw
CU,i

, and, saw
CU,i

,

respectively.

To describe the formulation, we introduce mass balance equations for a system

of two drained pores connected by a drained angular pore throat, as the most

general case, shown in Figure (6.3a). We assume that the flow is from corner

unit j towards corner unit i through corners of drained pore throat ij. For a

given corner unit (with concentration cCU,i and volume VCU,i), we can write

the mass balance equation

VCU,i
d

dt
(cCU,i) =

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k +

NCU,i
in,edge∑
n=1

qi,ncn −QCU,icCU,i (7.1)

−VCU,i ddt
(
ssw
CU,i

)
− VCU,i ddt

(
saw
CU,i

)
where the first term on the r.h.s. is due to the mass arriving via N ij

edge edges of

N tube
in throats with flow towards the corner unit. The second term on the r.h.s.

accounts for the mass arriving from NCU,i
in,edge neighboring corner units (within
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the same pore body) with flow towards the corner unit. The third term shows

the mass leaving the corner unit. QCU,i is the total water flux leaving (or

entering) the corner unit i. The last two terms account for the mass adsorbed

onto the solid walls of the corner unit and on the AW interface within the

corner unit, respectively. sswCU,i [ML−3] and sawCU,i are the mass adsorbed to

SW and AW interfaces per unit volume of the corner unit.

We should note that, in the case of saturated pores, the second term on the

right-hand-side of Equation (7.1) vanishes, and the value of N ij
edge in the first

term will be equal to one, since there is no edge flow present.

To close the system, we need extra equations for sswCU,i and sawCU,i. Here, we

assume local equilibrium adsorption at both SW and AW interfaces:

ssw
CU,i

= kswd,ia
sw
CU,icCU,i (7.2)

saw
CU,i

= kawd,i a
aw
CU,icCU,i

where kswd,i and kawd,i [L] are pore scale adsorption distribution coefficients at SW

and AW interfaces, respectively. The specific surface area, aαwCU,i, is defines as:

aαwCU,i =
AαwCU,i
VCU,i

where α = s, a (7.3)

sAαwCU,i is the total area of the appropriate αw interface within corner unit i.

The mass balance equation for an edge element of a drained pore throat may

be written as (assuming that corner unit j is the upstream node)

Vij,k
dcij,k
dt

= |qij,k| cCU,j − |qij,k| cij,k − Vij,k
d

dt

(
ssw
ij,k

)
− Vij,k

d

dt

(
saw
ij,k

)
(7.4)

where Vij,k, qij,k, and cij,k are the volume, volumetric flow rate, and concen-

tration of kth edge of pore throat ij, respectively. sswij,k ML−3 and sawij,k are the

adsorption at SW and AW interfaces, respectively.

Within the pore throats we also assume equilibrium adsorption, and we will

have:

ssw
ij,k

= kswd,ij,ka
sw
ij,kcij,k (7.5)

saw
ij,k

= kawd,ij,ka
aw
ij,kcij,k
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where, kswd,ij,k and kawd,ij,k [L] are pore scale adsorption distribution coefficients at

SW and AW interfaces, respectively. The specific surface area, aαwij,k, is defines

as

aαwij,k =
Aαwij,k
Vij,k

where α = s, a (7.6)

and Aαwij,k is the total area of the appropriate αw interface within the kth edge

of pore throats ij.

Combining Equations (7.1) through (7.5) results in a linear set of equations to

be solved for cij,k and cCU,i. Since we discretize pore bodies and pore throats

on the basis of their saturation state (i.e., depending on that a pore is saturated

or drained by the non-wetting phase), the number of unknowns are different for

different simulations. In the case of a fully saturated domain, the number of

unknowns is equal to Ntube +Nnode (Ntube is the total number of pore throats

and Nnode is the total number of pore bodies). In general, the number of pore

throats is larger than the number of pore bodies in pore network models. In

order to increase numerical efficiency, first, applying a fully implicit scheme,

we discretized Equation (7.5) and determined cij,k in terms of cCU,i. This

was then substituted into the discretized form of Equation (7.1), resulting in

a set of equations for cCU,i. This method considerably reduced the number of

unknowns, and thus the computational times. The details of the method are

given in Chapter 8, Section 8.3.2. For the accuracy of the scheme, the minimum

time step was chosen on the basis of residence times [Suchomel et al., 1998a,

Sun, 1996]

∆t ≤ min {Tij , Tij,k, TCU,i, Ti} (7.7)

where T denotes the residence time pertaining to different elements within the

pore network.

After obtaining the solution at any given time, BTCs at a given longitudinal

position were found by averaging the concentrations of pore bodies that possess

the same longitudinal coordinate. In calculating BTCs, the concentrations of

pore bodies were weighted by their volumetric flow rate, resulting in a flux-

averaged concentration. That is, the normalized average concentration, c(x, t),

given by

c(x, t) =

[∑Nx
t

i ci(x, t)Qi∑Nx
t

i Qi

]
1

c0
i = 1, 2, 3, . . . , Nt (7.8)

where c0 is inlet solute concentration, and Nx
t denotes the total number of
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pore body elements that are located at the longitudinal coordinate x. The

longitudinal coordinate can be written as multiples of lattice size `, i.e. x =

1`, 2`, . . . , L. where ` is the horizontal distance between centers of two adjacent

pore bodies. The breakthrough curve at the outlet is obtained by plotting

c(x = L, t).

7.5 Macro-scale formulations of solute transport

At the macro scale we consider two models: Advection-Dispersion Equation

(ADE) with adsorption, and a two-site kinetic model. Indeed, the nonequi-

librium transport model could be in terms of alternative physical or chemical

nonequilibrium models.

For the ADE model, the dispersion coefficient, D, and retardation factor, R,

are the only parameters to be estimated since average flow velocity is ob-

tained directly from the corresponding pore network model simulations. For

the nonequilibrium model, in addition to the dispersion coefficient, D, and the

retardation factor, R, the coefficient of partitioning between the equilibrium

and nonequilibrium sites, f , and the mass transfer coefficient, ω, for transfer

between the mobile and immobile zones need to be determined.

7.5.1 Advection-Dispersion Equation (ADE)

The transport of a adsorptive solute through a porous medium may be de-

scribed by the hydrodynamic dispersion theory [Bear, 1972]. The one-dimensional

transport equation for a adsorptive solute is:

R
∂θC

∂t
=

∂

∂z

(
θD

∂C

∂z

)
− ∂qC

∂z
(7.9)

where C is the solute concentration, θ is the water content of the porous

medium, q is the water flux, D is the hydrodynamic longitudinal dispersion

coefficient, R is the retardation factor, and z is the distance. Dispersion co-

efficient (and thus dispersivity) at a given saturation could be determined by

fitting the analytical solution of ADE to the BTCs of average concentration at

the outlet of the network at that saturation.
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7.5.2 Nonequilibrium model

The non-equilibrium formulation has been used to model both chemical [Selim

et al., 1976] and physical non-equilibrium [van Genuchtan and Wieranga, 1976].

Either formulation reduces to the same dimensionless form in the case of linear

adsorption under steady state flow [Nkedi-Kizza et al., 1984, van Genuchten

and Wagenet, 1989].

The nonequilibrium formulation can be used for both chemical and physical

nonequilibrium models. Even though they are based on different concepts,

they have the same dimensionless form for the case of linear adsorption and

steady-state water flow.

Physical nonequilibrium is often modeled by using a two-region (dual-porosity)

type formulation. The medium contains two distinct mobile (flowing) and im-

mobile (stagnant) regions [Coats and Smith, 1964, van Genuchtan and Wieranga,

1976]. Chemical nonequilibrium models consider adsorption on some of the ad-

sorption sites to be instantaneous, while adsorption on the remaining sites is

governed by first-order kinetics [Selim et al., 1976, Cameron and Klute, 1977].

The two-site nonequilibrium model makes a distinction between type-l (equi-

librium) and type-2 (first-order kinetic) adsorption sites [van Genuchten and

Wagenet, 1989]. For steady-state flow in a homogeneous soil, transport of a

linearly adsorbed solute is given by [Toride et al., 1995](
1 +

fρbKD

θ

)
∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
− ωρb

θ
((1− f)KDc− sk) (7.10)

∂sk
∂t

= ω ((1− f)KDc− sk) (7.11)

where ω [T−1] is a first-order kinetic rate coefficient, f is the fraction of adsorp-

tion sites that are always at equilibrium, and the subscript k refers to kinetic

adsorption sites. Equations (7.10) and (7.11) use the customary first-order rate

expression for describing kinetic adsorption on type-2 sites. The two-site ad-

sorption model reduces to the one-site fully kinetic adsorption model if f = 0

(only type-2 sites are present).

7.6 Results

In this section, we optimize the solution of continuum-scale equations to the

computed BTCs obtained from pore-network model to determine macro-scale
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adsorption parameters. In addition, we determine the relationships between

relative permeability and saturation (kr − Sw curve) and between dispersivity

and saturation (the α− Sw curve).

Figure (7.3) shows the relative permeability-saturation relation for our pore

network model.
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Figure 7.3: Relative permeability-saturation relation (kr−Sw curve) from the
pore network. The pore radii distribution is shown in Figure (7.1)

.

After obtaining the BTC from the network, we used the (one-dimensional)

CXTFIT code, version 2.1 [Toride et al., 1995], to estimate the transport pa-

rameters under steady state flow conditions. The inverse problem is solved

by minimizing an objective function, which consists of the sum of the squared

differences between observed (obtained from pore network model) and fitted

concentrations. The objective function is minimized using a nonlinear least-

squares inversion method according to Marquardt [1963].

Equations (7.2) and (7.5) show that the concentration of adsorbed mass de-

pends on interface specific surface areas, which are, in turn, functions of satura-

tion. Figure (7.4) shows the total interfacial areas as a function of the average

saturation of the pore network.

As shown in Figure (7.4), the SW interfacial area decrease during drainage

(interfaces associated with the water films are neglected). This is due to the

invasion of pores by the non wetting phase. Initially, under saturated conditions

(Sw = 1), there is no AW interface present. Thus, the area of AW interface

starts at zero, and increases with the decrease in saturation.

In our pore-network simulations, in addition to simulating adsorptive transport
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Figure 7.4: The solid-water, SW, and air-water, AW, total interfacial area
as a function of average saturation, Sw. The areas are normalized to the total
area under saturated conditions (which only belongs to the solid-water surfaces).
Interfaces associated with the water films are neglected.

at fixed saturation values, we have also simulated the dispersion of a conser-

vative (non adsorptive) solute under the same conditions. Doing so, for each

saturation, we will have two dispersion coefficients, one for the tracer solute

and the other one for the adsorptive solute. The ratio of dispersivity of adsorb-

ing solute to the dispersivity of a conservative solute, as a function of the pore

scale distribution coefficient is shown in Figure (7.5), obtained using the ADE

model. The dispersivity of the adsorptive solute increases with the increase in

pore-scale distribution coefficient (figure 7.5).

In fact, under partially-saturated conditions, dispersivity is not constant and its

value is a function of saturation [Raoof and Hassanizadeh, 2011b]. Figure (7.6)

shows the resulting relationship between dispersivity and saturation (α − Sw
curve). A detailed discussion of this issue was given in Chapter 6

From Figure (7.6), it is clear that there is a relation between dispersivity and

saturation. The relation is non-monotonic, with the maximum dispersivity

(αmax) occurring at an intermediate saturation, which we refer to it as the

critical saturation (Scr).

Figure (7.7) shows the BTC from pore network-model together with the BTC

obtained from analytical solution of the ADE model. It shows that although

increase in dispersivity for adsorptive transport would result in a better fit,

however there is still discrepancy between BTCs. This means that the choice of

the ADE model with equilibrium adsorption term is probably not appropriate.

In addition to the adsorptive dispersivity, the solution of the ADE would pro-
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Figure 7.5: The relationship between ratio of adsorptive solute dispersivity
(αads) to tracer solute dispersivity (αtracer) obtained from ADE model, and pore
scale distribution coefficient, kd. The results are shown for a pore network model
with water saturation of 0.53.
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Figure 7.6: The relationship between solute dispersivity, α, and saturation,
Sw.

vides a macro-scale distribution coefficient. For saturated conditions, we found

(in Chapter 4) a linear relationship between pore scale and macro scale distri-

bution coefficients, with the average specific surface area as the proportionality

constant [Raoof and Hassanizadeh, 2010a]. Under unsaturated conditions, the

value of the average specific surface areas for SW and AW interfaces will change

with saturation (Figure 7.4). Knowing average specific surface area for each

saturation, we can calculate a value for the macro-scale distribution coefficient.

Figure (7.8) shows the calculated and fitted values of macro-scale distribution
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Figure 7.7: The resulting BTC from the network together with the BTC
obtained using the ADE model. Dispersion coefficient values obtained from the
fit to the computed BTCs.

coefficient as a function of saturation for a network with micro-scale distribu-

tion coefficient equal to 1.0.

Figure 7.8: Calculated and fitted values of macro-scale distribution coefficient,
KD, as a function of saturation.

Figure (7.8) shows an increase in the macro-scale distribution coefficient, KD,

with decrease in saturation, (for a constant micro-scale distribution coefficient

equal to 1.0) resulting from the increase in average specific surface area with

decrease in saturation. There is better agreement between the calculated and

fitted KD values at higher saturations.

We also use a non-equilibrium formulation for describing the macro-scale be-

havior of the adsorptive solute. We use the same BTCs computed from the
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network model and optimize the solution of non-equilibrium model to these

BTCs. Our results (Figure 7.9) show that the chemical non-equilibrium model

accurately fits the BTCs obtained from the pore network model, resulting in a

better fit compared to that obtained via the ADE model. Figure (7.9) shows

an example of fitting the analytical solution of the nonequilibrium model to the

BTC obtained from the pore network. In this case, we estimated the disper-

sion coefficient independently using the BTC of a conservative (non adsorptive)

solute. This value for the dispersion coefficient was then used for adsorptive

solute (under the same saturation) and only the adsorptive parameters were

estimated.
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Figure 7.9: The resulting BTC from the network together with the fitted
BTC using the Nonequilibrium model. The BTC belong to a pore network with
a pore scale adsorption distribution coefficient of 1.0 and saturation of 0.53.

Compared with the ADE model, the non-equilibrium model provides a more

appropriate model for the tailing behavior of the BTCs under different satura-

tions.

7.7 Conclusion

Multi-phase and (partially-) saturated reactive/adsorptive transport in porous

media is characterized by means of several macroscopic transport properties

including: relative permeability; capillary pressure; unsaturated dispersivity;

and upscaled reactive/adsorptive transport parameters. These properties have

been found to depend on macro-scale parameters such as average saturation

but also on pore-scale properties. Indeed, the state of fluid distribution within
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the pores is important in determining the transport properties.

In this study, we have used a MDPN model to simulate fluid flow and trans-

port of adsorptive solute within the pore space of a porous medium. We have

considered adsorption at the solid-water (SW) interfaces as well as air-water

(AW) interfaces to obtain BTCs of average concentration obtained from the

pore network. Our results showed that, even if there is equilibrium adsorption

at the solid-water and air-water interfaces at the pore scale, one may need to

use a non-equilibrium description of adsorptive process at the macro scale. The

equilibrium description of adsorption at the macro scale produced by an ADE

model could not appropriately fit the computed BTCs. Applying the equilib-

rium macro scale model required higher values of dispersivity which, in addition

to saturation, will depend on the value of pore scale adsorption coefficient.

On the other hand, we found that the kinetic description of adsorptive process

at the macro scale could accurately model the resulting BTCs obtained from

the pore network simulations. Using the kinetic description, we could use the

same dispersivity values which were obtained from tracer simulations. We

have applied pore-scale distribution coefficient to each pore element of the

network and, utilizing the BTCs of average concentrations, calculated macro

scale distribution coefficient, under different saturations. Decrease in saturation

causes increase in average specific surface area which in turn results in an

increase of macro-scale distribution coefficient.
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CHAPTER 8

EFFICIENT FULLY IMPLICIT SCHEME FOR

MODELING OF ADSORPTIVE TRANSPORT;

(PARTIALLY-) SATURATED CONDITIONS

Bad times have a scientific value. These are

occasions a good learner would not miss.text

Ralph Waldo Emerson

Abstract

P
ore network modeling has been widely used to study variety of flow and trans-

port processes in porous media. To do so, equations of mass balance should be

discretize to be used within network elements. Different formulations of solute trans-

port within the pore-network model have been introduces in the literature for the

case of saturated conditions. However, there are much less studies under partially

saturated conditions. Under partially saturated conditions the system contains three

phases: air, water, and solid. The principal interactions usually occur at the solid-

water(SW) interfaces and air-water(AW) interfaces, thus greatly influenced by water

content. In this chapter, we introduce a fully implicit numerical scheme for transport

of adsorptive solute under (partially-) saturated conditions, undergoing both/either

equilibrium and/or kinetic types of adsorption. We have considered absorption to

the SW as well as AW interfaces. The numerical scheme is developed based on

the assumption that porous media is composed of a network of pore bodies and pore

throats, both with finite volumes. While under saturated conditions we have assigned

one concentrations to a pore body or pore throat, under unsaturated conditions we

assign separate concentrations to each edge of a drained pore body or pore throat.

Through applying an efficient numerical algorithm, we have reduced the size of sys-

tem of linear equations by a factor of at least three, which significantly decreases the
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computational times. For the case of partially saturated, the formulations are writ-

ten for the most general case, in which solute mass transport occurs through edges of

drained pore throats and edges of drained pore bodies. Under drainage, each corner,

k, of a drained pore throat is a separate domain. In the same manner, each corner, n,

of a drained pore body is also a separate domain for which solute concentration and

adsorbed mass concentrations are calculated. We covered different types of adsorp-

tion to air-water (AW) interfaces as well as solid-water (SW) interfaces. Adsorption

could be: equilibrium type at both AW and SW interfaces; kinetic adsorption at both

AW and SW interfaces; and kinetic adsorption at one of either SW or AW interfaces

and equilibrium at the other one.

8.1 Introduction

Two well known approaches to describe solute transport are: deterministic

[Bear, 1972], and probabilistic or statistical approaches [Sahimi et al., 1986, Da-

gan, 1988, Sorbie and Clifford, 1991, Damion et al., 2000]. Applying equations

of mass balance for each network element is an example of the first, whereas

the particle tracking approach serves as an example of the second approach.

Both methods are capable of simulating advective and diffusive processes. In

particle tracing, one can upscale 3D Brownian motion of particles subjected to a

velocity field within the network elements, representing both local diffusion and

advection. Such a statistical approach originated from the Einstein’s disper-

sion theory and the theory of Brownian motion [Chandrasekhar, 1943]. In this

approach, random walkers that represent the tracer particles are allowed to de-

scribe Brownian and advective displacement within the chosen porous medium

[Saffman, 1959, Sahimi et al., 1986, Sorbie and Clifford, 1991]. By tracking the

paths of these particles the Spatial Positions Distribution (SPD) for particles

is found from which the dispersion tensor is derived [Chandrasekhar, 1943].

Alternatively, First-arrival Times Distribution (FTD) at the outlet face of the

soil-column (or network) is used to derive DL [Sahimi et al., 1986, Sorbie and

Clifford, 1991].

To track the particles within the pore spaces we need to use velocity profiles

within the pore throats and apply jump conditions at the intersections of the

pore throats (i.e., pore bodies) [Acharya et al., 2007b].

Acharya et al. [2007b] applied particle tracking to obtain the macroscopic lon-

gitudinal dispersion coefficient. Through comparison with experimental obser-

vations, they found appropriate jump conditions at the intersections and con-
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cluded that a parabolic velocity profile in pore throats must be implemented

to get a good agreement for a wide range of Peclet number.

In applying equations of mass balance to simulate solute transport, usually pore

scale mixing is assumed within each network element. Different definitions of

network element have been used in literature. The choice commonly depends

on the process under consideration as well as computational load. Acharya

et al. [2005a] modeled porous medium with a network of pore-units, as the

network element. Each pore unit comprised of pore bodies and bonds of finite

volume. Such a pore-unit was assumed to be a mixing cell with steady state flow

condition [Sun, 1996, Suchomel et al., 1998b, Acharya et al., 2005a]. By solving

the mixing cell model for each pore unit and averaging the concentrations for

a large number of pore units as a function of time and space, the dispersivity

was calculated.

Li et al. [2006b] considered pore bodies as network elements to simulate reactive

transport within porous media. They have simulated reactive transport by

applying the mass balance equation which accounted for advection, diffusion

between adjacent pores, and reaction in each pore. Considering the network

domain as a REV, the reaction rates from network models were compared to

rates from continuum scale models, that use uniform concentrations, to examine

the scaling behavior of reaction kinetics.

Commonly the similarity between numerical and physical dispersion is used to

represent dispersion in porous media. The numerically generated dispersion

is a function of time step. Such a dispersion could be analyzed by fitting

the numerical solution to the Taylor’s expansion [Sun, 1996, Suchomel et al.,

1998b].

To solve the transport equation within pore network, Suchomel et al. [1998b]

used a finite-difference approximation to the one-dimensional transport prob-

lem in each pore. They discretized the space within each individual pore throat

to calculate mass transfer within a given pore. They have used upwind explicit

finite-difference method to discretize the advection term. This scheme is nu-

merically diffusive. They have used such a numerical diffusion to represent

physical diffusion. Through comparison with Taylor expansion, they have cal-

culated numerical dispersion due to scheme approximations.

In this chapter we use a deterministic approach by applying equations of mass

balance to each network element to simulate reactive/adsorptive transport un-

der (partially-) saturated conditions. Under saturated conditions we use pore

bodies and pore throats, both with finite volumes, as network elements. How-
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ever, under partially-saturated conditions, the choice of network elements is

different. Upon drained of a pore body, the non-wetting phase occupies the

bulk space of the pore. We consider each corner of the pore body as a separate

network element (i.e., with its own pressure and concentration). Thus, for a

cubic pore body, 8 different corner elements exist. Fluid flow and solute mass

fluxes between these elements occurs through the 12 edges of the pore body (see

Figure 6.3(a)). In the same manner, after invasion of the pore throat by the

non-wetting, each edge of the pore throat will be a separate network element

(i.e., with separate flow rate and concentration assigned to it). For example a

pore throat with triangular cross section, upon drainage will break into three

network elements, one for each edge flow.

We applied a fully implicit numerical scheme for transport of adsorptive so-

lute under (partially-) saturated conditions, undergoing both/either equilib-

rium and/or kinetic types of adsorption. Although defining edges of drained

pores as separate network elements will increase accuracy of modeling, it will

make the computational process heavier, since each network element will be an

unknown variable during the simulation. Under such a conditions, applying an

efficient numerical algorithm becomes very important. We have developed, and

did modeling using efficient numerical algorithms which, though substitution

of unknown variables, reduced the size of system of linear equations by a factor

of at least three. This significantly decreased the computational times.

In this chapter we first present numerical scheme for kinetic adsorption under

saturated conditions and then we proceed with transport of non-adsorptive

solutes well as adsorptive solutes under partially saturated conditions.
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Table 8.1: Nomenclature

Abbr. Description Dimension

N tube
in number of pore throats flowing into the corner unit

i
—

N ij
edge number of edges within angular pore throat ij

(e.g., for triangular cross section, N ij
edge = 3)

—

NCU,i
in,edge number of pore body edges (within the same pore

body) flowing into corner unit i
—

∆t discretized time step [T]
cij concentration of saturated pore throat ij [ML−3]
cij,k concentration of kth edge of drained angular pore

throat ij
[ML−3]

Vij volume of saturated pore throat ij [L3]
Vij,k volume of kth edge of drained angular pore throat

ij
[L3]

qij volumetric flow of saturated pore throat ij [L−3T−1]
qij,k volumetric flow of kth edge of drained angular pore

throat ij
[L−3T−1]

sij adsorbed mass concentration of saturated pore
throat ij

[ML−3]

sswij,k adsorbed mass concentration at SW interface in
kth edge of pore throat ij

[ML−3]

sawij,k adsorbed mass concentration at AW interface in
kth edge of pore throat ij

[ML−3]

Ksw
D,ij upscaled distribution coefficient of SW interface in

pore throat ij
[-]

Kaw
D,ij upscaled distribution coefficient of AW interface in

pore throat ij
[-]

kswd,ij,k pore-scale distribution coefficient of SW interface
in pore throat ij

[L]

kawd,ij,k pore-scale distribution coefficient of AW interface
in pore throat ij

[L]

aswij,k specific surface area of SW interface in kth edge of
pore throat ij

[L−1]

aawij,k specific surface area of AW interface in kth edge of
pore throat ij

[L−1]
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Abbr. Description Dimension
cCU,i concentration of saturated pore body i [ML−3]
cCU,i concentration of corner unit i within a drained pore

body
[ML−3]

Vi volume of (saturated) pore body i [L3]
VCU,i volume of corner unit i within a drained pore body [L3]
qi,n volumetric flow from corner unit n to corner unit i

within the same (drained) pore body
[L3T−1]

Qi total (outflow or inflow) volumetric flow for (satu-
rated) pore body i

[L3T−1]

QCU,i total (outflow or inflow) volumetric flow for corner
unit i within a drained pore body

[L3T−1]

sswCU,i adsorbed mass concentration at SW interface in cor-
ner unit i

[ML−3]

sawCU,i adsorbed mass concentration at AW interface in
corner unit i

[ML−3]

Kaw
D,i upscaled distribution coefficient of AW interface in

corner unit i
[-]

kswd,i pore-scale distribution coefficient of SW interface in
corner unit i

[L]

kawd,i pore-scale distribution coefficient of AW interface in
corner unit i

[L]

aswi specific surface area of SW interface in corner unit
i

[L−1]

aawi specific surface area of AW interface in corner unit
i

[L−1]

8.2 Numerical scheme; saturated conditions

8.2.1 Adsorption; saturated conditions

To write mass balance equations for each element of the network we assume

flow directions from pore body j into pore body i, through pore throat ij.

An example of interconnected pore bodies and pore throats is shown in Figure

(4.3) where pore body j is the upstream node.

Mass balance for an adsorbing solute within a saturated pore throat may be

written as

Vij
dcij
dt

= |qij | cj − |qij | cij − Vijkatt,ijcij + Vijkdet,ijsij (8.1)
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discretization of Equation (8.1) in fully implicit scheme gives

Vij

(
cij

t+∆t − cijt
)

∆t
=qij

(
cj
t+∆t − cijt+∆t

)
−Vijαij

(
Kd,ijcij

t+∆t − sijt+∆t
)

(8.2)

the kinetic adsorption within a pore throat we be written as

dsij
dt

= katt,ijcij − kdet,ijsij (8.3)

discretization of Equation (8.3) gives(
sij

t+∆t − sijt
)

∆t
= αij

(
Kd,ijcij

t+∆t − sijt+∆t
)

(8.4)

solving for sij
t+∆t we will have

sij
t+∆t =

αij∆tKd,ij

(1 + αij∆t)
cij

t+∆t +
1

(1 + αij∆t)
sij

t (8.5)

substituting Equation (8.5) into Equation (8.2) gives:

cij
t+∆t =

1

B
cij

t +
∆tαij

B (1 + αij∆t)
Sij

t
+

1

B

qij∆t

Vij
cj
t+∆t (8.6)

where

B = 1 +
qij∆t

Vij
+ ∆tαijKd,ij −

∆t2α2
ijKd,ij

(1 + αij∆t)

mass balance for a saturated pore throat may be written as

Vi
dci
dt

=

Nin∑
j=1

qijcij −Qici (8.7)

discretization of Equation (8.7) using a fully implicit scheme results in

Vi
ct+∆t
i − cti

∆t
=

Nin∑
j=1

qijc
t+∆t
ij

−Qict+∆t
i (8.8)
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this equation can be rearranged to get

(
1 +

∆tQi
Vi i

)
ct+∆t
i − ∆t

Vi

Nin∑
j=1

qijc
t+∆t
ij = cti (8.9)

we use Equation (8.6) to substitute for ct+∆t
ij in Equation (8.9), and collect

unknown term on the l.h.s. and known terms on r.h.s. to get

Ect+∆t
i − I

Nin∑
j=1

Fct+∆t
j = cti + I

Nin∑
j=1

(
Gctij +Hsij

t
)

(8.10)

where:

E(Nnode) =1 +
∆tQi
Vi

; I(Nnode) =
∆t

Vi
; F(Ntube) =

1

B

q2
ij

∆t

Vij

G(Ntube) =
qij
B

; H(Ntube) =
qij∆tαij

B (1 + ∆tαij)

Note that, through substitution, we end up with Equation (8.10) in which

the number of unknowns is Nnode, concentration in pore bodies (i.e., ct+∆t
i

and ct+∆t
j ). In this way we could decrease the size of coefficient matrix by

about 3 times since we don’t need to solve simultaneously for concentration

of solute and adsorbed concentration in pore throats in Equation (8.10) (the

number of pore throats is much more than the number of pore bodies in the

network). After each time step the concentration of pore throats and adsorbed

concentrations can be calculated using Equations (8.6) and (8.5), respectively.

8.3 Numerical scheme; partially saturated con-

ditions

For the case of partially saturated conditions, we write formulations for the

most general case, in which solute mass transport occurs through edges of

drained pore throats and edges of drained pore bodies. We divide the volume

of a drained pore body into element which we call as “corner unit”. Each corner

unit comprised of a corner domain together with half of the three neighboring

edges connected to it within the same pore body, as shown in Figure (6.3).

Therefore, in the case of cubic pore body, we will have eight corner units.

Thus, we assign eight different concentrations to a drained pore body, one
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for each corner unit. In the case of drained pore throats, we assign different

concentrations to each pore throat edge. For example, we assign three different

concentrations to each edge of a drained pore throat with triangular cross

section.

Throughout this section we assume flow from corner unit j to corner unit i (i.e.,

corner unit j is the upstream node) through an edge of drained pore throat

ij. We start the formulation for the case of a non-adsorptive solute and then

proceed with adsorptive solutes.

8.3.1 Non-adsorptive solute

Mass balance equation for edge of a drained pore throat may be written as

Vij,k
d

dt
(cij,k) = |qij,k| cCU,j − |qij,k| cij,k (8.11)

we apply a fully implicit scheme to Equations (8.11), to get

Vij,k
ct+∆t
ij,k

− ctij,k
∆t

= |qij,k| ct+∆t
CU,j − |qij,k| c

t+∆t
ij,k (8.12)

From this point forward, for the sake of simplicity in our notation, we drop the

t+ ∆t superscript, and we only keep superscript of terms with time t, such as

ctij,k.

the equation for cij,k will be:

cij,k =
1

Bij,k

(
∆tqij,n
Vij,k

cCU,j + ctij,k

)
(8.13)

where the constant coefficient, Bij,k, is defined as

Bij,k = 1 +
∆tqij,k
Vij,k

(8.14)

The mass balance equation for corner units i, within a drained pore body, may

be written as

VCU,i
d

dt
(cCU,i) =

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k +

NCU,i
in,edge∑
n=1

qi,ncCU,n −QCU,icCU,i (8.15)

for a drained triangular pore throat N ij
edge = 3, and for a drained cubic pore

body NCU,i
in,edge = 3. discretization of Equation (8.15) in a fully implicit scheme
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results in

VCU,i
cCU,i − ctCU,i

∆t
=

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k +

NCU,i
in,edge∑
n=1

qi,ncCU,n −QCU,icCU,i

(8.16)

solving for cCU,i, we will have

cCU,i =
1

BCU,i

∆t

VCU,i

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k+
1

BCU,i

∆t

VCU,i

NCU,i
in,edge∑
n=1

qi,ncCU,n+
1

BCU,i
ctCU,i

(8.17)

where, the constant coefficient, BCU,i, is defined as

BCU,i = 1 +
∆tQCU,i
VCU,i

The subscript i in the BCU,i implies that BCU,i is defined for each corner unit,

i.

substituting Equation (8.13) into Equation (8.17) results in

cCU,i =
1

BCU,i

∆t

VCU,i

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,k
Bij,k

[
∆tqij,k
Vij,k

cj + ctij,k

]

+
1

BCU,i

∆t

VCU,i

NCU,i
in,edge∑
n=1

qi,ncCU,n +
1

BCU,i
ctCU,i (8.18)

rearranging Equation (8.18) and collecting all the unknown concnerations (at

time t + ∆t) on the l.h.s. and all the terms at time t on the r.h.s., we will

have the final form of system of equations to be solved for the concentrations

of corner units (i.e., cCU,i and cCU,j):

BCU,iVCU,i
∆t

cCU,i −
Ntube

in∑
j=1

Nij
edge∑
k=1

qij,k

[
1

Bij,k

∆tqij,k
Vij,k

cj

]
−
NCU,i

in,edge∑
n=1

qi,ncCU,n =

Ntube
in∑
j=1

Nedge
ij∑
k=1

qij,k

[
1

Bij,k
ctij,k

]
+
VCU,i

∆t
ctCU,i (8.19)

having concentration of the pore units calculated, using Equation (8.13), we

can calculate concentrations within pore throat edges (cij,k). Note that, doing
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this substitution, we will end up with Equation (8.19) in which the unknowns

are only of corner units. In this way we could decrease the size of coefficient

matrix considerably since we don’t need to solve for concentrations in the pore

throat edges at the same time.

8.3.2 Two sites equilibrium adsorption

In this section we consider equilibrium adsorption at both SW and AW in-

terfaces. We assume flow from corner unit j to corner unit i. Mass balance

equation with equilibrium adsorption, within a pore throat, may be written as

Vij,k
d

dt
(cij,k) = |qij,k| cj − |qij,k| cij,k − Vij,kKsw

D,ij

d

dt
(cij,k)

− Vij,kKaw
D,ij

d

dt
(cij,k) (8.20)

Ksw
D,ij and Kaw

D,ij [-] are upscaled adsorption distribution coefficients at the

solid-water (SW) and air-water (AW) interfaces within tube ij, where

Kαw
D,ij,k = kαwd,ij,ka

αw
ij,k; where α = s, a (8.21)

where aαwij,k is the specific surface area. Rearranging and applying a fully implicit

scheme to Equation (8.20), we get

Vij,k
(
1 +Ksw

D,ij +Kaw
D,ij

) ct+∆t
ij,k

− ctij,k
∆t

= |qij,k| ct+∆t
j − |qij,k| ct+∆t

ij,k (8.22)

From this point forward, for the sake of simplicity in our notation, we drop the

t+ ∆t superscript, and we only keep superscript of terms with time t (such as

in ctij,k).

the equation for cij,k (i.e., ct+∆t
ij,k ) will be

cij,k =
1

Bij,k

 ∆tqij,n

Vij,k

(
1 +Ksw

D,ij +Kaw
D,ij

)cCU,j + ctij,k

 (8.23)

where the constant coefficient, Bij,k, is defined as

Bij,k = 1 +
∆tqij,k

Vij,k

(
1 +Ksw

D,ij +Kaw
D,ij

)
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mass balance equation for a corner unit i with equilibrium adsorption may be

written as

VCU,i
d
dt (cCU,i) =

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k +
NCU,i

in,edge∑
n=1

qi,ncCU,n −QCU,icCU,i−

VCU,iK
sw
D,i

dcCU,i
dt

− VCU,iKaw
D,i

dcCU,i
dt

(8.24)

whereN tube
in is the number of pore throats flowing into the corner unit i; N ij

edge is

the number of edges within the angular pore throat (for example, for a tube with

triangular cross section, N ij
edge = 3), each with the volumetric flow rate of qij,k.

NCU,i
in,edge is the number of pore body edges, within the same pore body, flowing

into corner unit i, each with the volumetric flow rate of qi,n (for example, the

maximum value of NCU,i
in,edge for the case of a cubic pore body is equal to three).

Ksw
D,i and Kaw

D,i [-] are upscaled adsorption distribution coefficients at the solid-

water (SW) and air-water (AW) interfaces within corner unit i, respectively,

where

Kαw
D,i = kαwd,i a

αw
i ; where α = s, a (8.25)

where aαwi is the specific surface area within corner unit i. discretization of

Equation (8.24) in fully implicit scheme, and rearranging, gives

VCU,i
(
1 +Ksw

D,i +Kaw
D,i

) cCU,i−ctCU,i

∆t =
Ntube

in∑
j=1

Nedge
ij∑
k=1

qij,kcij,k+

NCU,i
in∑
n=1

qi,ncCU,n −QCU,icCU,i (8.26)

solving for cCU,i, we will have

cCU,i =
1

BCU,i

∆t

VCU,i

(
1 +Ksw

D,i +Kaw
D,i

) Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k+

1

BCU,i

∆t

VCU,i

(
1 +Ksw

D,i +Kaw
D,i

) NCU,i
in,edge∑
n=1

qi,ncCU,n +
1

BCU,i
ctCU,i (8.27)
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where, the constant coefficient, BCU,i, is defined as

BCU,i = 1 +
∆tQCU,i

VCU,i

(
1 +Ksw

D,i +Kaw
D,i

)
the subscript i in the BCU,i implies that BCU,i is defined for each corner unit,

i.

through Equation (8.23) we can relate cij,k to ctij,k and cCU,j ; substituting

Equation (8.23) into Equation (8.27) we will have

cCU,i =

1
BCU,i

∆t

VCU,i(1+Ksw
D,i+K

aw
D,i)

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,k
Bij,k

[
∆tqij,k

Vij,k(1+Ksw
D,ij+Kaw

D,ij)
cCU,j + ctij,k

]
+

1

BCU,i

∆t

VCU,i

(
1 +Ksw

D,i +Kaw
D,i

) NCU,i
in,edge∑
n=1

qi,ncCU,n +
1

BCU,i
ctCU,i (8.28)

rearranging Equation (8.28) and collecting all the unknown concentrations (i.e.,

at time t+∆t) on the l.h.s. and all (known) terms at time t on the r.h.s., we will

have the final form of system of equations to be solved for the concentrations

within corner units (cCU,i and cCU,j)

BCU,iVCU,i
(
1 +Ksw

D,i +Kaw
D,i

)
∆t

cCU,i

−
Ntube

in∑
j=1

Nij
edge∑
k=1

 qij,k
Bij,k

∆tqij,k

Vij,k

(
1 +Ksw

D,ij +Kaw
D,ij

)cj
− NCU,i

in,edge∑
n=1

qi,ncCU,n

=

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,k

[
1

Bij,k
ctij,k

]
+
VCU,i

(
1 +Ksw

D,i +Kaw
D,i

)
∆t

ctCU,i (8.29)

having concentration of the pore units calculated, we can calculate concentra-

tions within pore throats edges (cij,k), using Equation (8.23).
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8.3.3 Two sites kinetic adsorption

For a pore throat with two sites kinetic, the mass balance equation may be

written as

Vij,k
d

dt
(cij,k) = |qij,k| cCU,j − |qij,k| cij,k − Vij,kαswij

(
Ksw
D,ijcij,k − s

sw
ij,k

)
− Vij,kαawij

(
Kaw
D,ijcij,k − sawij,k

)
(8.30)

From this point, we drop the superscript of t+∆t, and only we show superscript

for time t, such as ctij,k. kinetic adsorption for corner kth of a drained pore body

may be written as

dsβij,k
dt

= αβij

(
Kβ
D,ijcij,k − s

β
ij,k

)
; β = sw, aw (8.31)

solving for concentration of adsorbed mass

sβij,k =
αβijK

β
D,ij∆t

1 + αβij∆t
cij,k +

1

1 + αβij∆t
sβ,tij,k; β = sw, aw (8.32)

we substitute the Equation (8.32) into pore throat mass balance Equation (8.30)

to get

Vij,k

(
cij,k − ctij,k

)
∆t

= qij,k

(
c
j
− cij,k

)
−

Vij,kα
sw
ij

(
Ksw
D,ijcij,k −

αswij K
sw
D,ij∆t

1 + αswij ∆t
cij,k −

1

1 + αswij ∆t
ssw,tij,k

)

− Vij,kαawij

(
Kaw
D,ijcij,k −

αawij K
aw
D,ij∆t

1 + αawij ∆t
cij,k −

1

1 + αawij ∆t
saw,tij,k

)
(8.33)

solving for cij,k and rearranging gives

cij,k =
1

Bij,k

[
qij,k∆t

Vij,k
c
j

+
∆tαswij

1 + αswij ∆t
ssw,tij,k +

∆tαawij
1 + αawij ∆t

saw,tij,k + ct
ij,k

]
(8.34)

where

Bij,k = 1 +
qij,k∆t

Vij,n
+ ∆tαswij K

sw
D,ij −

αsw
2

ij Ksw
D,ij∆t

2

1 + αswij ∆t
+ ∆tαawij K

aw
D,ij −

αaw
2

ij Kaw
D,ij∆t

2

1 + αawij ∆t
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The mass balance equation for adsorptive transport within a corner unit of a

drained pore body, with two sites kinetic, may be written as

VCU,i
d

dt
(ci) =

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,kcij,k +

NCU,i
in,edge∑
n=1

qCU,i,ncCU,n −QCU,icCU,i −

VCU,iα
sw
CU,i

(
Ksw
D,icCU,i

− sswCU,i
)
− VCU,iαawCU,i

(
Kaw
D,icCU,i − sawCU,i

)
(8.35)

The kinetic adsorption for a corner unit may be written as

dsβCU,i
dt

= αβCU,i

(
Kβ
D,icCU,i − s

β
CU,i

)
; β = sw, aw (8.36)

solving for concentration of adsorbed mass

sβCU,i =
αβCU,iK

β
D,i∆t

1 + αβCU,i∆t
cCU,i +

1

1 + αβCU,i∆t
sβ,tCU,i; β = sw, aw (8.37)

substituting for sawCU,i and sswCU,i in Equation (8.35), and solving for cCU,i

BiVCU,i
∆t

cCU,i −
Ntube

in∑
j=1

Nij
edge∑
k=1

qij,kcij,k −
NCU,i

in,edge∑
n=1

qCU,i,ncCU,n =

VCU,i

(
αswCU,i

1 + αswCU,i∆t
ssw,tCU,i +

αawCU,i
1 + αawCU,i∆t

saw,tCU,i

)
+
VCU,i

∆t
ctCU,i (8.38)

where

Bi = 1+
∆tQCU,i
VCU,i

+∆tαswCU,iK
sw
D,i−

αsw
2

CU,iK
sw
D,i∆t

2

1 + αswCU,i∆t
+∆tαawCU,iK

aw
D,i−

αaw
2

CU,iK
aw
D,i∆t

2

1 + αawCU,i∆t

substituting for cij, k in Equation (8.38) and rearranging to have all the un-

knowns on the l.h.s and knows on the r.h.s, the final form of system of equations
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to be solved for the concentrations within corner units is

BCU,iVCU,i
∆t

cCU,i −
Ntube

in∑
j=1

Nij
edge∑
k=1

q2
ij,k

∆t

Bij,kVij,k
c
CU,j
−
NCU,i

in,edge∑
n=1

qCU,i,ncCU,n =

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,k
1

Bij,k

(
∆tαswij

1 + αswij ∆t
ssw,tij,k +

∆tαawij
1 + αawij ∆t

saw,tij,k + ctij,k

)
+

VCU,i

(
αswCU,i

1 + αswCU,i∆t
ssw,tCU,i +

αawCU,i
1 + αawCU,i∆t

saw,tCU,i

)
+
VCU,i

∆t
ctCU,i (8.39)

having concentration of the pore units calculated, we can calculate concentra-

tions within pore throat edges (cij,k), using Equation (8.34). Equation (8.32)

can be used to calculate the adsorbed mass concentrations, sswij,k and sawij,k, in

pore throat edges, and Equation (8.37) can be used to calculate the adsorbed

mass concentrations, sswCU,i and sawCU,i, in corner units.

8.3.4 One site equilibrium and one site kinetic adsorption

The following formulation is for a drained pore, in which the adsorption is

kinetic at either SW or AW interface, and is equilibrium at the other interface.

The mass balance equation for kth edge of a drained pore throat may be written

as

Vij,k
d

dt
(cij,k) = |qij,k| cCU,j − |qij,k| cij,k − Vij,kα

β
ij,k

(
Kβ
D,ij,kcij,k − s

β
ij,k

)
−

Vij,kK
α
D,ij,k

d

dt
(cij,k) (8.40)

where Kβ
D,ij , β = sw or aw shows the interface at which kinetic adsorption

occurs, and Kα
D,ij , α = sw or aw is the distribution coefficient for the interface

with equilibrium adsorption. The mass balance equation for adsorbed mass

due to kinetic adsorption is similar to Equation (8.31). Substitution for sβij,k
in mass balance equation for the pore throat, and solving for cij,k, we get

cij,k =
1

Bij,k

 qij,k∆t

Vij,k

(
1 +KD,ij

)cj +
∆tαβij(

1 +KD,ij

)(
1 + αβij∆t

)sβ,tij,k + ctij,k


(8.41)
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where Bij is defined as

Bij = 1 +
qij,k∆t

Vij,k

(
1 +KD,ij

) +
∆tαβijK

β
D,ij(

1 +KD,ij

) +
∆t2αβ

2

ij K
β2

D,ij(
1 +KD,ij

)(
1 + αβij∆t

)
The mass balance equation for a corner unit within a drained pore body, with

one site kinetic and one site equilibrium, may be written as

Vi
d

dt
(cCU,i) =

Ntube
in∑
j=1

Nedge
ij∑
k=1

qij,kcij,k +

NCU,i
in,edge∑
n=1

qi,ncCU,n −QCU,icCU,i

− VCU,iαβCU,i
(
Kβ
D,icCU,i − s

β
CU,i

)
− VCU,iKα

D,i

d

dt
(cCU,i) (8.42)

The mass balance equation for adsorbed mass due to kinetic adsorption, sβCU,i,

is similar to Equation (8.36). Substitution for sβCU,i in mass balance equation

for the pore throat, and solving for cCU,i results in

cCU,i =

− ∆tQCU,i

VCU,i

(
1 +KD,i

)cCU,i +
∆t

VCU,i

(
1 +KD,i

) Ntube
in∑
j=1

Nedge
ij∑
k=1

qij,kcij,k

+
∆t

VCU,i

(
1 +KD,i

) NCU,i
in,edge∑
n=1

qi,ncCU,n (8.43)

−
∆tαβCU,i(
1 +KD,i

) (Kβ
D,icCU,i −

αβCU,iK
β
D,i∆t

1 + αswCU,i∆t
cCU,i −

1

1 + αswCU,i∆t
ssw,tCU,i

)
+ ctCU,i

where Bi is defined as

Bi = 1 +
∆tQi

Vi

(
1 +KD,i

) +
∆tαβi K

β
D,i(

1 +KD,i

) − αβ
2

i ∆t2Kβ
D,i(

1 + αβi ∆t
)(

1 +KD,i

)
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substituting for cij,k (Equation 8.41) in Equation (8.43), we get

VCU,i
(
1 +KD,i

)
Bi

∆t
cCU,i =

Ntube
in∑
j=1

Nedge
in∑
k=1

qij,k
1

Bij,k

 qij,k∆t

Vij,k

(
1 +KD,ij

)cCU,j +
∆tαβij(

1 +KD,ij

)(
1 + αβij∆t

)sβ,tij,k + ctij,k


+

NCU,i
in,edge∑
n=1

qi,ncCU,n −
VCU,iα

β
CU,i(

1 + αswCU,i∆t
)ssw,tCU,i +

VCU,i
(
1 +KD,i

)
∆t

ctCU,i (8.44)

Rearranging Equation (8.44) and collecting unknowns on the l.h.s. and know

terms on the r.h.s, we obtain the final form of system of equations to be solved

for the concentrations within corner units

VCUi
(
1 +KD,i

)
Bi

∆t
cCU,i −

Ntube
in∑
j=1

Nij
edge∑
k=1

q2
ij,k

∆t

Bij,kVij,k

(
1 +KD,ij

)cCU,j
−
NCU,i

in,edge∑
n=1

qi,ncCU,n = −
VCU,iα

β
CU,i(

1 + αswCU,i∆t
)ssw,tCU,i +

VCU,i
(
1 +KD,i

)
∆t

ctCU,i

Ntube
in∑
j=1

Nij
edge∑
k=1

qij,k
Bij,k

 ∆tαβij(
1 +KD,ij

)(
1 + αβij∆t

)sβ,tij,k + ctij,k

 (8.45)

having concentration of the pore units calculated, we can calculate concentra-

tions within pore throat edges (cij,k), using Equation (8.41).
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CHAPTER 9

SUMMARY AND CONCLUSIONS

If I have seen further than others, it is by

standing upon the shoulders of giants.text

Isaac Newton

T
he focus of this research was to identify and describe the physical/chemical

processes that govern the transport of both passive and reactive/adsorptive

solutes in porous media by using pore network modeling. We consider transport

of reactive/adsorptive solutes under both saturated and partiality saturated

conditions. While under saturated conditions the interfaces are only those of

solid-water interfaces, under saturated conditions in addition to solid-water in-

terfaces there will be mass transfer though air-water interfaces as well.

We developed an extensive FORTRAN 90 modular package whose capabilities

include the generation of random structure networks, simulation of drainage

process, the discretization of pore spaces on the basis of saturation state of

each pore, and solving flow and reactive transport under both saturated and

unsaturated conditions, using several complex algorithms. The governing equa-

tions are solved applying a fully implicit numerical scheme; however, efficient

substitution methods have been applied to make the algorithm more computa-

tionally effective and appropriate for parallel computations.

Through this study we have tried to address some fundamental issues regarding

flow and transport of (reactive/adsorptive) solute in porous media. Specific is-

sues addressed in the work could be categorized into three parts: I) generation

of a Multi-Directional Pore Network (MDPN); II) upscaling under saturated

conditions; and III) upscaling under partially-saturated conditions.
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Part I: Generation of a Multi-Directional Pore Network (MDPN)

Chapter 2 presented a method to construct a Multi-Directional Pore Net-

work (MDPN) model. In to this technique, the continuum pore space domain

is discretized into a network of pore bodied and pore throats. The multi-

directional capability of the MDPN allows a distribution of coordination num-

ber ranging between zero and 26, with pore throats orientated in 13 different

directions, rather than the only 3 directions commonly applied in pore network

studies. The results of Chapter 2 indicate that the MDPN model can provide

a better way to reconstruct a porous medium. Construction of the MDPN is

optimized using a Genetic Algorithm (GA) method and the morphological char-

acteristics of such a networks are compared with those of physically based real

sandstone and granular samples through utilizing information on their coordi-

nation number distributions. Good agreement was found between simulation

results and observation data on coordination number distribution, number of

pore bodies and pore throats, and average coordination number. Throughout

this thesis, MDPN has been used as the network model to simulate fluid flow

and transport of solutes. We have shown the capability of MDPN in produc-

ing a more accurate velocity field, which is essential in determining upscaled

parameters such as (relative) permeability or (unsaturated) dispersions coeffi-

cients.

Part II: Upscaling under saturated conditions

Part II (Chapters 3 and 4) of the dissertation deals with pore-scale modeling

and upscaling of adsorptive transport under saturated conditions.

Chapter 3 deals with the upscaling of adsorptive solute transport from the

micro scale to the effective pore scale. Here, we assumed micro scale equilib-

rium adsorption, which means that concentration of adsorbed solute at a point

on the grain surface is algebraically related to the concentration in solution

next to the grain surface. We utilized two approaches; theoretical averaging

and numerical upscaling. In the averaging approach, equilibrium adsorption

was assumed at the pore-scale and solute transport equations are averaged

over REV. This leads to explicit expressions for macro-scale adsorption rate

constants as a function of micro-scale parameters such as pore scale Peclet

number and the pore scale distribution coefficient. Our results indicate that,

due to concentration gradients developed within the pore space, equilibrium

adsorption may not hold at larger scales where average concentrations are ap-

plied. A major result of Chapter 3 is that we developed relationships between
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pore-scale adsorption coefficient and corresponding upscaled attachment and

detachment adsorption parameters. The upscaled adsorption parameters are

found to be only weak functions of velocity; they strongly depend on geometry

of the pore and diffusion coefficient in the solution as well as the pore-scale dis-

tribution coefficient. Results of two approaches (i.e., theoretical averaging and

numerical upscaling) agree very well. The upscaling relations from this chapter

are appropriate to be used within models in which subpore scale concentration

gradients are neglected.

Chapter 4 continues the upscaling process, going from effective pore scale

to the core scale where Darcy-scale flow and transport parameters are applied.

This is done by utilizing the upscaling relations developed in Chapter 3 and

applying them to the MDPN model developed in Chapter 2. This enabled us to

scale up from a simplified but reasonable representation of microscopic physics

to the scale of interest in practical applications. This procedure has resulted

in relationships for core scale adsorption parameters in terms of micro-scale

parameters. We found relations between core-scale adsorption parameters and

local-scale transport coefficients, including molecular diffusion coefficient, spe-

cific surface area, and average pore-throat size. Results of Chapter 4 show that,

even if there is equilibrium adsorption at the pore wall (i.e., grain surface), one

may need to employ a kinetic description at the larger scales. In contrast to

some other studies that reported dependency of reaction parameters on flow

rate, we found that that these upscaled kinetic parameters are only a weak

function of velocity.

Part III: Upscaling under partially-saturated conditions

Part III (Chapters 5 through 7) deal with pore-scale modeling of adsorptive

transport under partially saturated conditions.

Chapter 5 presents a new formulation for pore-network modeling of two-

phase flow. Pore-network models of two-phase flow in porous media are widely

used to investigate constitutive relationships between saturation and relative

permeability as well as capillary pressure. Results of many studies show dis-

crepancy between calculated relative permeability and corresponding measured

values. An important feature of almost all pore-network models is that the re-

sistance to flow is assumed to come from pore throats only; i.e., the resistance

of pore bodies to the flow is considered to be negligible compare to the resis-

tance of pore throats. We have shown that the resistance to the flow within

filaments of fluids in drained pore bodies is comparable to the resistance to the
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flow within (drained) pore throats. In this chapter, we present a new formu-

lation for pore-network modeling of two-phase flow, which explicitly accounts

for the resistant to the flow within the drained pore bodies and calculates dif-

ferent fluxes within drained pore bodies. The results of Chapter 5 shows the

significance of this effect under primary drainage conditions, by applying our

formulation into a MDPN model. Resulting saturation-relative permeability re-

lationships, with taking account the resistance due to the drained pore bodies,

show a better agreement with experimentally measured values. The difference

obtained using our method could be considerable especially at higher satura-

tions when larger pore bodies are getting invaded by the non-wetting phase.

We have also examined the concept of equivalent pore conductance and com-

pared the results with our method. The comparison shows that making the

correction terms for conductances of pore throats as a function of saturation

can improve the results, however, using the concept of equivalent pore conduc-

tance, we do not solve for fluid flow within pore bodies. In this way, we do

not get information on fluxes within pore bodies. This information is needed

for an accurate simulation of solute transport, where because of the presence

of non-wetting phase, there is limited mixing within the pore bodies.

Chapter 6 intended to study dispersion coefficient under partially saturated

conditions using a new formulation. It is known that in unsaturated porous

media, the dispersion coefficient depends on the Darcy velocity as well as sat-

uration. The dependency of dispersion on velocity is fairly studied, however,

there is not much known about its dependence on saturation and the underly-

ing process. The purpose of this chapter is to investigate how the longitudinal

dispersivity varies with saturation. In our formulation, both pore bodies and

pore throats have volumes and we assign separate concentrations to each of

them. Further, since pore geometry and corner flows greatly influence trans-

port properties, efforts are made to include different angular cross sectional

shapes for the pore throats. This includes circular, rectangular, and all kind

of irregular triangular cross sections, which are important especially under

unsaturated/two-phase flow and reactive transport. We have introduced a new

formulation of solute transport within pore network which helps to capture the

effect of limited mixing under partially-saturated conditions. In this formula-

tion we refine the discretization on the basis of saturation state of pores. We

assign separate concentration for different corners of a given drained pore body

and also we assign different concentrations for different edges of a drained

angular pore throat. This formulation allows a very detailed description of
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pore-scale solute transport processes by accounting for limitations in mixing

as a result of reduced water content. The numerically computed dispersivities

could successfully explain the results obtained through experimental studies,

and shows the underplaying pore scale processes contributing to dispersion un-

der unsaturated conditions. Results of Chapter 6 show that, under partially

saturated conditions, dispersivity coefficient is strongly depended on satura-

tion. The relation could be non-monotonic, with the maximum dispersivity

(αmax) corresponding to a specific saturation, which we refer to it as the crit-

ical saturation (Scr). We could explain the α − Sw relation by investigating

pore-scale properties such as fraction of percolating saturated pores and coef-

ficient of variation of pore velocities under different saturations. These pore

scale observations could clearly explain the relation between solute dispersiv-

ity and saturation under partially saturated conditions. We have shown that

saturation-relative permeability (kr − Sw) curve may be utilized to get insight

into the behavior of α − Sw curve and to approximate the critical saturation

at which the maximum dispersivity (αmax) occurs.

Chapter 7 is specified to transport of adsorptive solute under partially

saturated conditions. Under partially saturated conditions, the system con-

tains three phases: air, water, and solid. The principal interactions usually

occur at the solid-water interfaces (SW) and air-water interfaces (AW), thus

greatly influenced by water content. All of the modeling capabilities which

were implemented through last chapters are also included in this chapter. In

addition, we have formulated various types of adsorption such as i) two site

(SW and AW interfaces) kinetic, ii) two site equilibrium, and iii) one site (SW

or AW interfaces) kinetic and one site equilibrium. For the macro scale rep-

resentation of equilibrium adsorptive transport, we have chosen two models:

Advection-Dispersion Equation (ADE) with equilibrium adsorption term and

Mobile-Immobile Model (MIM) which models the non-equilibrium transport.

Comparing the results from analytical solutions of these two macro-scale mod-

els with the results obtained from pore network model show that the Mobile-

Immobile Model (MIM) provides a better fit to the results of the pore network

modeling. Applying equilibrium macro-scale model (ADE), we need to apply

higher values of dispersivity which in addition to saturation will depend on

the value of pore scale adsorption coefficient. However, using MIM we could

use the dispersion coefficients which were independently determined through

tracer simulations to simulate adsorptive transport. The results of this chapter

show that, even if there is equilibrium adsorption at the solid-water (SW) and
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air-water (AW) interfaces at the pore scale, one may need to use a so called

non-equilibrium description of adsorptive process at the macro scale.
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A. Search algorithm in Multi-Directional Pore

Network (MDPN) model

In order to find the isolated clusters, we need to employ tracking.We have em-

ployed an algorithm based on the frequency of bonds. In order to illustrate the

procedure, considering the network of Figure (2.2), we randomly eliminated

some bonds by changing the states of them from open to block in the connec-

tion matrix of Figure (2.2). Figure (A.1) shows the network configuration after

this random elimination.

Figure A.1: A network of size: Ni = 3, Nj = 3, Nk = 3 after random
elimination. Site numbers are shown for some nodes; system of num-
bering is the same as in Fig. 1. Nbond = 42, Nsite = 26.

The connection matrix is a sparse matrix. Hence, we convert it in to compact

form. This results in a matrix of the size 3Nbond (Nbond =number of bonds).

Table A.1 shows the corresponding compact matrix for upper triangle part of

connection matrix belonging to Figure (A.1). In the compact form shown in

Table A.1, the first row (ROW in Table A.1) contains the row index of original

sparse matrix, the second row (COL) contains the column index, and the third

row (Entry) contains the corresponding nonzero direction numbers. Since this

is compact form of connection matrix, it means that site numbers in ROW are

connected in the forward direction to site numbers in COL. For example, first

column of Table A.1 indicates that site number 1 is connected in the forward

direction to site number 10 along lattice direction number 1.
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Table A.1: Compact form of connection matrix for example of Figure (A.1).

ROW 1 2 3 3 4 4 4 5 5 5 6 6 6 7 7 8 9 9 10 11 11
COL 10 10 12 11 13 11 14 10 12 18 15 17 14 16 14 13 14 17 19 14 19
Entry 1 11 1 11 1 8 10 6 8 9 1 7 11 1 8 6 6 11 1 3 11
ROW 11 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 17 17 17 17 18
COL 13 24 20 14 14 16 20 26 17 21 22 16 18 23 17 17 18 22 24 25 26
Entry 13 4 11 13 2 3 8 9 3 8 11 13 3 11 13 2 2 6 8 11 11

Table A.2: Frequency and cumulative matrix of the forward connections.

Site no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 1 1 2 3 3 3 2 1 2 1 3 3 4 4
Cumulative 1 2 4 7 10 13 15 16 18 19 22 25 29 33
Site no. 15 16 17 18 19 20 21 22 23 24 25 26 27
Frequency 3 1 4 1 0 0 0 0 0 0 0 0 0
Cumulative 36 37 41 42 42 42 42 42 42 42 42 42 42

As we can see, the site numbers in the first row(ROW) of Table are sorted

in increasing order. The number of times a site number appears in ROW of

Table A.1 corresponds to the number of forward connections of that site. This

information in taken up in a frequency table (see second row of Table A.2)

together with its cumulative number of bonds (see third row of Table A.2).

Table A.2 along with second row of Table A.1 can be used to determine to

which sites a given site, N, is connected based on the following formula:

Forward sites

for site N = COL(cumulative(N)− frequency(N) + 1 : cumulative(N))

For example, for site number 12 (N = 12) we will have:

Forward sites

for site 12 = COL(cumulative(12)− frequency(12) + 1 : cumulative(12))

= COL(25− 3 + 1 : 25) = COL(23 : 25) = [24, 20, 14]

Hence, the sites to which site number 12 is connected forward are located in

position 23 − 25 in the COL of Table A.1 which are sites number 24, 20, and

14.

To find the backward connections, we need to replace ROW and COL of Table

A.1 with each other (since in the connection matrix backward connections are
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transpose of forward connections) and then sort the matrix in this new ROW

and next calculate the frequency vector in the same manner as before. For

example, for site 12, we will find that backward sites for site 12 are sites 3

and 5. Hence, site number 12 is connected overall to sites number 24, 20, 14,

3, and 5. In the next step, we can apply this formula again for each of these

sites to find their connections and repeat this tracking. These sites together

are one group. At the end, if there is at least one site from right boundary in

this group, it means the sites belonging to this group are not isolated clusters;

on the other hand, they are isolated clusters and we should delete the whole

group from connection matrix.

It is worth mentioning that after construction of frequency vectors (for forward

and backward directions) no longer we need ROW in Table A.1. Also we do

not need to record entry because if we know the connection of two sites then

we can calculate the direction number according to formulas in Table (2.1) to

see which of the formulas in Table (2.1) can produce this connection.
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B. Connections in a Multi-Directional Pore Net-

work (MDPN) model

As it was mentioned in section 2.2, in a MDPN model a maximum of 26 pore

throats may be connected to a pore body. As shown in Figure B.1, for a cubic

pore body, three kinds of connections can be distinguished: (a) 8 connections

to the corners (we refer to them as corner pore throats), (b) 12 connections to

the edges (edge pore throats), and (c) 6 connections to the faces of the pore

body (face pore throats). All these three types of connections are shown in

Figure B.1d.

Figure B.1: Different types of connections that pore throats can be
connected to a pore body; which are: (a) 8 connections to the corners,
(b) 12 connections to the edges, and (c) 8 connections to the faces of
pore body. The combination of all types of connections is also shown
(d).

Of course, many of these connection will be eliminated in order to obtain a

desired coordination number distribution [Raoof and Hassanizadeh, 2009].

When a pore body is invaded by the non-wetting phase, we assign 8 different

pressures to its 8 corner elements. So, in order to be able to calculate the
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flow of wetting phase in the pore network, we should decide which corners of

neighboring pore bodies are connected by the pore throats. In the case of corner

pore throat, as shown in Figure B.1a, this is straightforward as it connects the

corners of pore bodies. In the case of edge or face pore throats, shown in figures

B.1b and B.1c, respectively, we assume that they connect corners of neighboring

pore bodies to each other. The question is which corners do they connect. We

have done this though a random processes. For example, in Figure B.2, face

pore throat number 1 connects the faces of pore bodies A and B. Through a

random process, we assign the A-end of pore throat 1 to be connected to one

of the corners a, b, c, or d. the same will be done for the B-end of the pore

throat 1. As a result, pore throat number 1 will be assumed to be connecting

one corner of pore body A to one corner of pore body B. A similar process is

applied to pore throat number 2 in Figure B.2, which is an edge pore throat;

one end will be assigned to corner b or d, and the other end will be assigned to

corner f or e. At the end of this process, all pore throats are assigned to the

corners of pore bodies.

Figure B.2: An example of connections of pore throats (designated
by numbers) to pore bodies (designated by capital letters). Pore
body corners are shown using small letters. To keep the Figure less
crowded, only three pore throats are shown.
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C. Averaging of pore-scale transport equation

To upscale Equation (3.1), we need to integrate it over V f . To do so, we need

averaging theorems which relate the average of a derivative to the derivative of

the average. These are called averaging theorems:

Special Averaging Theorem:

1

V

∫
V f

∇ ·
(
civ
)
dV = ∇ ·

 1

V

∫
V f

civdV

+
1

V

∫
Afs

civ.ndA

= ∇ ·
(
civ
)

+
1

V

∫
Afs

civ · ndV (C.1)

Time Averaging Theorem:

1

V

∫
V f

∂ci

∂t
dV =

∂

∂t

 1

V

∫
V f

cidV

− 1

V

∫
Afs

ciw · ndA

=
∂ci

∂t
− 1

V

∫
Afs

ciw · ndA (C.2)

where w is the velocity of the solid-fluid interface. If the porous medium is

rigid, then w will be identically zero.

integrating Equation (3.1) over V f and dividing by V to obtain

1

V

∫
V f

[
∂ci

∂t
+∇ ·

(
civ
)]
dV +

1

V

∫
V f

∇ · jidV =
1

V

∫
Af

r̂idV (C.3)

application of the averaging theorems to the integrals on the l.h.s. and employ-

ment of the averaging definitions yields

∂nci

∂t
+∇ ·

(
civ
)

+∇.
(
nj

i
)

= nri − 1

V

∫
Afs

[
ci (v − w) + ji

]
· ndA (C.4)

the total pore-scale advective flux civ may be broken into two parts: a macro-

scale advective flux nciv and a macro-scale dispersive flux nciṽ where ṽ denotes

the deviation of flow velocity at a pore-scale point within a pore from the
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average velocity:

ṽ = v − v (C.5)

The term nciṽ represents the mixing of the solute within an REV as a result

of pore-scale velocity fluctuations within the pores. Together with the diffusive

flux nj
i
, it is known as macro-scale hydrodynamic dispersion and is denoted

by J i

J i = nciṽ + nj
i

(C.6)

substituting Equation (C.6) into Equation (C.4), the final form of averaged

mass transport equation is obtained

∂nci

∂t
+∇ ·

(
nciv

)
+∇ ·

(
nJ

i
)

= nri − 1

V

∫
Afs

[
ci (v − w) + ji

]
· ndA (C.7)
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text

Samenvatting

Transportverschijnselen zijn met behulp van porienetwerk modellen op fun-

damentele wijze te bestuderen, omdat de fysische processen die plaatsvinden

op de porieschaal eenduidig kunnen worden verwerkt. Hierdoor kunnen we

dergelijke modellen gebruiken om consistente opschalingsrelaties te ontwikke-

len en een potentiele brug te slaan tussen de anders vaak moeilijk verenigbare

procesbeschrijvingen op de porie- en macroscopische schaal.

In dit proefschrift hebben we een MultiDirectioneel PorieNetwerk (MDPN)

model ontwikkeld. In principe bestaat een porienetwerk uit bolvormige lichamen,

porielichamen genoemd, die met elkaar verbonden zijn door een of meerdere

connecties, porienekken. MDPN onderscheidt zich van andere porienetwerken

door een grotere variatie in mogelijke porienek connecties en -orintaties, waar-

door poreuze media realistischer benaderd worden.

Stroming en transport door (on)verzadigde poreuze media worden in MDPN

gesimuleerd door de massabalansvergelijking op te lossen op het niveau van

individuele porielichamen en -nekken; elementen waarvoor deze processen goed

gedefinieerd zijn. Locale concentraties opgeloste stoffen worden verkregen door

stofoverdracht en adsorptie/reactie aan het poriewandoppervlak, en op de faseg-

rensvlakken, te modelleren. Macroscopische eigenschappen, zoals permeabiliteit,

dispersie en gemiddelde concentraties, worden bepaald door deze locale waardes

te middelen over het gehele porienetwerk of over specifieke secties door het

domein.

We hebben opgeschaalde parameters, zoals permeabiliteit, de spreidingscoef-

ficient en adsorptie, bepaald voor verzadigde poreuze media. Er is gekeken

naar de relatie tussen capillaire druk en saturatie, de relatieve permeabiliteit,

dispersie en adsorptie in onverzadigde systemen. De verkregen resultaten zijn,

waar mogelijk, vergeleken met experimentele waarnemingen en macroschaal

modellen, om zo de toereikendheid en limitaties van opschalingsvergelijkingen

te onderzoeken.
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