
Testing properties of generic functions

Patrik Jansson1, Johan Jeuring2, and students of the Utrecht University
Generic Programming class3

1 CSE, Chalmers University of Technology, Sweden, patrikj@chalmers.se
2 ICS, Utrecht University, the Netherlands, johanj@cs.uu.nl

3 L. Cabenda, G. Engels, J. Kleerekoper, S. Mak, M. Overeem, and K. Visser.

Abstract A datatype-generic function is a family of functions indexed
by (the structure of) a type. Examples include equality tests, maps and
pretty printers. Property based testing tools like QuickCheck and Gast
support the definition of properties and test-data generators, and they
check if a monomorphic property is satisfied by the test cases. Generic
functions satisfy generic properties and this paper discusses specifying
and testing such properties. It shows how generic properties and gener-
ators can be expressed, and explains three bugs we found and corrected
in the Generic Haskell library.

1 Introduction

Software testing aims to find faults in software by comparing its behaviour with
a specification. Testing comes in many flavours: validation testing, integration
testing, system testing, unit testing, etc. We focus on property-based unit testing
for datatype-generic functional programs.

In property-based testing, a specification is expressed in terms of executable
properties. Together with a function a programmer writes one or more properties
that should be satisfied by the function. Such properties can be used both as
documentation (executable specifications) and as part of a test suite for regres-
sion testing. For example, consider the following excerpt from a Haskell module
for manipulating bits.

data Bit = O | I deriving (Show ,Eq)
bits2int :: [Bit] → Int
bits2int bs = bits2int ′ bs (length bs − 1)

where bits2int ′ [] n = 0
bits2int ′ (x : xs) n = bits2int ′ xs (n − 1) + bit2int x ∗ 2ˆn

int2bits :: Int → [Bit]
int2bits n = if n > 0 then int2bits ′ n [] else []

where int2bits ′ 0 bs = bs
int2bits ′ n bs = int2bits ′ (n ‘div ‘ 2) (int2bit (n ‘mod ‘ 2) : bs)

bit2int b = if b O then 0 else 1
int2bit n = if n 0 then O else I

Functions bits2int and int2bits convert a list of bits to an integer and vice versa.
To see if these functions are inverses we could check the following properties:

prop int2bits bits2int :: [Bit] → Bool
prop int2bits bits2int bs = (int2bits . bits2int) bs bs
prop bits2int int2bits :: Int → Bool
prop bits2int int2bits n = (bits2int . int2bits) n n

Checking with a property checker immediately reveals that they don’t hold. A
counterexample to the first property is [O , I , I] (leading zeroes should be ignored
in the first property), and to the second property is −3 (negative numbers are
not properly encoded). Mistakes like these are common in specifications and pro-
grams, and ideas like Design-by-Contract [13] and Test-Driven Development [1]
are now widely used in software development. For monomorphic programs and
properties this is well understood, but for datatype-generic programs the testing
area is largely unexplored.

A datatype-generic function is a family of functions indexed by a type. Ex-
amples of generic functions are equality, map, and pretty printers. A generic
function can be seen as a template algorithm that can be instantiated with (the
structure of) a data type. Similarly, a generic property can be seen as a template
property that can be instantiated with a data type to obtain a simple property.
A generic library is a highly reusable software component, and by stating and
verifying properties for such a library, the effort spent on verification pays off
over and over again.

QuickCheck [2] is one of the most advanced tools for testing properties of
functional programs. It supports the definition of properties and random test-
data generators in Haskell, and checks that a monomorphic property passes
the test cases. Gast [8] is a tool similar to QuickCheck, but for property-based
testing in Clean [15]. Gast comes with generic test-data generators which work
for arbitrary data types. But Gast enumerates data which leads to bad coverage
for infinite datatypes (we expand on this later).

This paper

– discusses specifying and testing properties of generic functions,
– shows how parts of the Generic Haskell [4] library can be specified and tested

using QuickCheck (revealing three bugs), and
– defines generic QuickCheck generators using Generic Haskell. This means we

get the best of both worlds — we combine the strengths of QuickCheck with
generic support inspired by Gast.

The paper is organised as follows. Section 2 briefly introduces and compares
a few property-based testing tools. Section 3 introduces generic programming in
Generic Haskell. Section 4 shows how QuickCheck is used to check properties of
generic functions. Section 5 discusses verification of the Generic Haskell library
and explains the bugs found. Section 6 presents different ways of generating test
cases for arbitrary data types. Section 7 concludes and discusses future work.

2 Property-based testing tools

This section introduces the testing tools QuickCheck, Gast and SmallCheck.

QuickCheck
QuickCheck is an automatic testing tool for Haskell programs. The programmer
provides a specification of the program, in the form of executable properties that
functions should satisfy, and QuickCheck then tests that the properties hold
in a large number of randomly generated cases. Specifications are expressed
in Haskell, using combinators defined in the QuickCheck library. The library
provides combinators to define properties, observe the distribution of test data,
and define test-case generators.

Many properties are simple Boolean functions, implicitly universally quanti-
fied over all arguments:

prop PlusAssoc :: Float → Float → Float → Bool
prop PlusAssoc x y z = (x + y) + z x + (y + z)

To test a property it is passed to the function test :

Main> test prop_PlusAssoc
Falsifiable, after 8 tests:
-4.6
-4.0
3.6

Here QuickCheck finds a simple counterexample illustrating that finite precision
Floats don’t behave like ideal real numbers.

The QuickCheck library also provides conditional properties, where tests not
satisfying the precondition are discarded:

prop SmallPrime :: Integer → Property
prop SmallPrime x = prime x =⇒ x < 88

Main> test prop_SmallPrime
OK, passed 100 successful tests.

Here QuickCheck has generated a few hundred test cases (randomly chosen num-
bers x) out of which 100 were prime and all of those were unfortunately <88. In
this case the brute force solution of asking QuickCheck to generate even more
test cases works, but in general the coverage for the default generators is bad for
“sparse” properties. Fortunately, it is also possible to define custom generators
— here is an example using the infinite list of primes:

primeNumbers :: Gen Integer
primeNumbers = do n ← arbitrary

return (primes !! abs n)
prop SmallPrime2 :: Property
prop SmallPrime2 = forAll primeNumbers (λx → x < 88)

Falsifiable, after 39 successful tests:
97

QuickCheck also supports a simple but powerful way of searching for small
counter examples. When a test case fails, QuickCheck tries to shrink the test
case until a “local minimum” is found. As an example, for the first property of
the bits example in the introduction we get the following result:

Main> test prop_int2bits_bits2int
Falsifiable, after 2 successful tests
(shrunk failing case 3 times):
[O]

Gast
Gast (Generic Automated Software Testing) [8] is a property-based testing tool
which can be seen as a QuickCheck for Clean. Gast is implemented in the non-
strict functional language Clean [15], a close relative to Haskell. From the users
perspective, Gast is very similar to QuickCheck — properties can be defined as
normal Boolean functions and tests can be run by calling the function test :

listsAreShort :: [Int] → Bool
listsAreShort xs = length xs < 5
Start = test listsAreShort

which in this case results in the answer

Passed after 500 tests.

This example is chosen to show that some care needs to be taken in interpreting
the results from testing: Gast enumerates data in a breadth-first manner, only
randomising the order “within each level”. For recursive data types this is prob-
lematic, because of the exponential growth of the search space — as we can see,
the first 500 test cases do not contain a single list with more than four elements.
QuickCheck generates lists up to length around 200 in the same situation.

The enumeration approach used by Gast does have a few advantages: it
avoids generating the same test case more than once and it makes it possible to
actually prove properties over finite domains within the same framework (using
exhaustive testing). Gast does not need to shrink failing test cases because they
are generated and tested in order of increasing size. The Clean implementation
of Gast is fast, but for recursive data types the exponential search space means
that reaching reasonably sized test cases just takes too long.

SmallCheck
While finishing this paper we learnt about Runcimans recent work on Small-
Check — a combinator library for lightweight testing in Haskell closely based
on QuickCheck. SmallCheck tests properties for all values up to some depth,
progressively increasing the depth used. The SmallCheck library shares many of
the strengths and weaknesses of Gast, but has no generic programming support.
Both our generic generators and our methodology for testing generic properties
would be useful in combination with SmallCheck, but that is left as future work.

3 Generic programming in Generic Haskell

In this section we introduce type-indexed functions by means of an example and
we explain how type-indexed functions become generic in Generic Haskell.

Type-indexed functions
A type-indexed function takes an explicit type argument, and can have behaviour
that depends on this type argument. For example, suppose the unit type Unit,
sum type :+:, and product type :*: are defined as follows:

data Unit = U
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b.

We use infix type constructors :+: and :*: and an infix value constructor :*:
to ease the presentation. The type-indexed function eq checks equality of two
values. We define the function eq on booleans, the unit type, sums, and products
as follows in Generic Haskell:

eq{|Bool|} b1 b2 = eqBool b1 b2

eq{|Unit|} U U = True
eq{|α :+: β|} (Inl x1) (Inl x2) = eq{|α|} x1 x2

eq{|α :+: β|} (Inr y1) (Inr y2) = eq{|β|} y1 y2

eq{|α :+: β|} = False
eq{|α :*: β|} (x1 :*: y1) (x2 :*: y2) = eq{|α|} x1 x2 ∧ eq{|β|} y1 y2,

where eqBool is the standard equality function on Booleans. The eq type signa-
ture is eq{|a :: ∗|} :: (eq{|a|}) ⇒ a → a → Bool. The context (eq{|a|}) ⇒ in this
signature says that eq has a dependency [11] on eq . A type-indexed function f
depends on another type-indexed function g if g is used on a type argument (a
dependency variable) α in the definition of f . The occurrences of α and β in the
definition of eq are dependency variables.

Generic functions
A type-indexed function such as eq does not only work on the types that appear
as type indices in its definition. To see why eq is in fact generic and works
on arbitrary data types, we give a mapping from data types to structure types
such as units, sums, and products. If there is no specific case for a type in the
definition of a generic function, generic behaviour is derived automatically by
the compiler by exploiting the structural representation.

For example, the definition of the function eq that is generically derived for
lists is equivalent to the following specific definition:

eq{|[α]|} [] [] = True
eq{|[α]|} (x : xs) (y : ys) = eq{|α|} x y ∧ eq{|[α]|} xs ys
eq{|[α]|} = False

To obtain this instance, the compiler needs to know the structural representation
of lists, and how to convert between lists and their structural representation. We
will describe these components in the remainder of this section.

Structure types
The structural representation (or structure type) of types is expressed in terms
of units, sums, products, and base types such as integers, characters, etc. For
example, for the list and tree data types defined by

data [a] = [] | a : [a]
data Tree a b = Tip a | Node (Tree a b) b (Tree a b),

we obtain the following structural representations:

type [a]◦ = Unit :+: a :*: [a]
type Tree◦ a b = a :+: Tree a b :*: b :*: Tree a b,

where we assume that :*: binds stronger than :+: and both type constructors
associate to the right. Note that the representation of a recursive type is not
recursive, and refers to the recursive type itself: the representation of a type in
Generic Haskell only represents the structure of the top level of the type.

Embedding-projection pairs
If a type a can be embedded in, or represented by, another type b, a witness of
this property can be stored as a pair of functions converting back and forth (an
embedding-projection pair):

data EP a b = Ep{from :: a → b, to :: b → a}.

A type T can be embedded in its structure-representation type T◦, witnessed by
a value convT :: EP T T◦. For example we get conv [] = Ep from [] to[]:

from [] :: [a] → [a]◦

from [] [] = Inl U
from [] (x : xs) = Inr (x :*: xs)

to[] :: [a]◦ → [a]
to[] (Inl U) = []
to[] (Inr (x :*: xs)) = x : xs.

The definitions of such embedding-projection pairs are automatically generated
by the Generic Haskell compiler for all data types that appear in a program.

Tying the knot
Using structure-representation types and embedding-projection pairs, a call to a
generic function on a data type T is reduced to a call on type T◦. The inductive
definition of a generic function is used to generate an instance on the structure
type T◦. For example, for equality we obtain a function of type T◦ → T◦ → Bool.
To convert this function back to a function of type T → T → Bool we use the
function bimap [3]. Function bimap is a bi-directional generic variant of the
well-known map function, of the following type:

bimap{|a :: ∗, b :: ∗|} :: (bimap{|a, b|}) ⇒ EP a b.

When using bimap, it is only applied to one type argument which is used both
for a and b. So bimap{|a|} is an embedding-projection pair of type EP a a. The
type index can have higher kind, and the fully generic type for bimap is actually
kind-indexed. For example, the instance of bimap on the type constructor Tree
has the following type:

bimap{|Tree|} :: EP a c → EP b d → EP (Tree a b) (Tree c d)

Kind-indexed types can be defined in GH but are not used in this paper.
To turn a function of type T◦ → T◦ → Bool into a function of type T → T →

Bool, we call bimap{|T → T → Bool|} in which we use convT for the T-values.
Thus we obtain a function of type EP (T◦ → T◦ → Bool) (T → T → Bool). The
from-component of this embedding-projection pair is the function that converts
the implementation of the generic function on structure types back to a function
that works on the original data type values. Hence, if the generic function is
defined for structure types such as Unit, :+:, and :*:, we do not need cases for
specific data types such as List or Tree anymore. For primitive types such as Int,
Float, IO or →, no structure type is available. Therefore, for a generic function
to work on these types, specific cases are necessary.

Generic abstractions, local redefinitions, and default cases
Generic Haskell supports a number of extensions that simplify defining and using
generic functions. First, using a generic abstraction, we can define a generic
function in terms of another generic function instead of by induction on the
structure types. For example, we can test pointwise equality of functions by
means of the following generic function:

feq{|b :: ∗|} :: (eq{|b|}) ⇒ (a → b) → (a → b) → a → Bool
feq{|b|} f g = λx → eq{|b|} (f x) (g x)

which is a generic abstraction that is defined in terms of, and depends on, the
generic equality function. Note that each generic abstraction (including feq)
works for types of of fixed kind. This is in contrast to generic functions defined
by induction on the type structure which work for types of arbitrary kinds.

Generic functions may have dependencies. We can use local redefinition to
redefine the dependencies of generic functions. For example, if we want equality
on lists of characters to be case insensitive, we can write

equalCaseInsensitive :: Char → Char → Bool
equalCaseInsensitive x y = toUpper x toUpper y
let eq{|α|} = equalCaseInsensitive
in eq{|[α]|} "Generic Programming" "GENERIC programming"

Another way in which we may obtain this behaviour is via a so-called default
case, which allows us to extend an existing generic function by adding new cases
or overriding existing ones.

cieq{|a :: ∗|} :: (cieq{|a|}) ⇒ a → a → Bool
cieq extends eq -- default for cieq is eq
cieq{|Char|} x y = toUpper x toUpper y

Many more examples of these extensions, and a discussion about the merits and
disadvantages of these constructs can be found in Löh’s thesis [10].

4 QuickCheck for generic functions

This section explains how we use QuickCheck for testing properties of generic
functions. The biggest challenge here is to formulate generic properties. We start
this section with a number of generic properties, and then discuss how we can
use QuickCheck to test them.

Minimal and maximal values
Haskell’s prelude contains a class Bounded defined by

class Bounded a where minBound ,maxBound :: a

The methods minBound and maxBound should satisfy

prop minBound x = compare minBound x 6 GT
prop maxBound x = compare maxBound x 6 LT

that is, minBound is smaller than or equal to any other value, and maxBound is
larger than or equal to any other value. The method compare ::a → a → Ordering,
in the class Ord (used for totally ordered data types) allows a single comparison
to determine the precise ordering of two elements:

data Ordering = LT | EQ | GT

Haskell allows to derive the bounds automatically for some user-defined data
types (enumeration types and single-constructor data types whose constituent
types are in Bounded). Generic Haskell’s library contains definitions of the
generic values gminBound and gmaxBound for all algebraic types (not only for
those types for which Haskell supports deriving). To formulate generalisations of
the properties above, we also need the generic compare function gcompare from
Generic Haskell’s library. The desired properties now read as follows:

prop gminBound{|t :: ∗|} :: (gcompare{|t|}, gminBound{|t|}) ⇒ t → Bool
prop gminBound{|t|} x = gcompare{|t|} (gminBound{|t|}) x 6 GT
prop gmaxBound{|t :: ∗|} :: (gcompare{|t|}, gmaxBound{|t|}) ⇒ t → Bool
prop gmaxBound{|t|} x = gcompare{|t|} (gmaxBound{|t|}) x 6 LT

Note that the properties are formulated as generic abstractions, thus restricting
t to types of kind ∗. Later we will see an example of using local redefinition as
a work-around.

Properties of gmap
The generic equivalent gmap of the well-known map function applies zero or more
functions (depending on the kind of its data-type argument) to the appropriate
elements in a value of the data type.

gmap{|a :: ∗, b :: ∗|} :: (gmap{|a, b|}) ⇒ a → b

Function gmap is defined as the deep identity function, and local redefinition
can be used to obtain map-like behaviour. For tree :: Tree Int Char we can write

let gmap{|α|} = toEnum
gmap{|β|} = fromEnum

in gmap{|Tree α β|} tree

to convert the integers to characters, and the characters to integers.
Properties of gmap can be derived from properties of map. Function map on

lists is a part of a functor, and satisfies the functor laws: it preserves the identity,
and distributes over composition:

map id id
map (f . g) map f .map g

Here () is pointwise equality of functions on lists, implemented by feq{|[α]|},
see Section 3. Generalised versions of these properties should hold for the generic
map function gmap. We take the composition law as an example.

For a type constructor c :: ∗ → ∗ we have two function arguments (the f and
g in the above property), and for a type constructor d :: ∗ → ∗ → ∗ we have four
function arguments (two functions per type argument):

prop gmap comp1{|c|} f g = gmap{|c|} (f . g) (gmap{|c|} f . gmap{|c|} g)
prop gmap comp2{|d|} f g h j = gmap{|d|} (f . g) (h . j)

(gmap{|d|} f h . gmap{|d|} g j)

Hinze [3] shows how to generalise this property to types of arbitrary kinds. The
resulting, fully generic property is kind-indexed, but cannot be expressed in GH.

Testing generic properties
As the examples of generic properties for gmap show, a generic property may
involve kinds, type constructors, polymorphic types, higher-order functions, and
plain values. To test a property, we have to supply values for each of the above
components. QuickCheck can generate values of monomorphic types and func-
tions, but generating type constructors, let alone kinds, is out of reach. This
implies, amongst others, that we have to instantiate the properties on fixed
monomorphic types

Happily, generating type constructors and kinds is not necessary. To prove a
generic property, it suffices to prove instances of the property on the structure
types [3]. Similarly, to test the validity of a generic property, it suffices to test the

validity of a property on the structure types. To test the validity of a property on
all structure types, we would have to write a separate instance of the property
for each structure type. Take the property prop gminBound as an example. The
simplest structure type is Unit. For this case, the following expression would be
tested:

gcompare{|Unit|} (gminBound{|Unit|}) U 6 GT

By definition of gminBound and gcompare, this test, and the equivalent tests
for Int and Char trivially pass. For the sum type case QuickCheck would need to
test something like

prop gminBound Sum cmpa cmpb mba mbb x =
(∀a . cmpa mba a 6 GT) =⇒
(∀b . cmpb mbb b 6 GT) =⇒
(gminBound Sum cmpa cmpb mba mbb x 6 GT)

Since gminBound depends on gcompare and on itself, prop gminBound Sum
takes five arguments. The last argument is a value of type a :+: b, and the other
arguments are instances of gcompare and gminBound on the types a and b,
respectively.

In general, implications P =⇒ Q may be hard to test in QuickCheck. In
particular when the condition P is often False, Q is only tested for a few of the
generated test cases. For many of the properties this turns out to be a problem —
for example, for most properties of equality the condition requires independently
generated values to be equal. For prop gminBound Sum the problem is even
worse, because the left-hand side of the implication includes a local universal
quantification which is not implementable with QuickCheck properties. We can
solve this problem by supplying generators: instead of testing λx → P x =⇒ Q x
we test forAll genP (λx → Q x). In general it is hard or impossible to convert
a property to a generator, but to obtain testable properties we need at least a
good approximation of genP .

To avoid some of the problems with implications and local quantification,
we define a data type which combines the structure types in a single data type,
and use that data type for testing generic functions. The following data type
combines the most important structure types, and is easily extended with more
cases for basic structure types. (In the code we have also used an infix constructor
for STProd .)

data StructureTypes a = STUnit
| STInt Int
| STChar Char
| STProd (StructureTypes a) (StructureTypes a)
| STLabel{anA :: a}

The data type StructureTypes contains cases for units, integers, characters, prod-
ucts, and labels. The cases for sums and constructors are implicit, but appear

since there is a choice between constructors in the data type, and there are con-
structor names in the data type. The type is parameterised to make it possible
to test gmap — in all other tests we instantiate the type parameter (to Int).

To test the validity of the property prop gminBound with this approach we
use the QuickCheck function test on the data type StructureTypes Int:

test (prop gminBound{|StructureTypes Int|})
QuickCheck generates test cases from the data type StructureTypes Int if we
provide a generator (an element of Gen (StructureTypes Int)). We have used an
instance of the generic generator arb3 (defined later in Section 6).

5 Properties of the Generic Haskell Library

The Generic Haskell library consists of a number of basic generic functions that
are used often in generic programs. Many functions of the Generic Haskell library
are generic versions of Haskell’s prelude [14] functions. This includes functions
that implement the methods that are derivable in Haskell, and generalisations of
list functions such as map, sum, prod , and , etc. Another source of inspiration for
the Generic Haskell library is PolyLib [7], the library of PolyP, which contains
many basic generic functions and some properties.

Since generic functions from the library will often be used as basic building
blocks in generic-programming applications, it is important that they are cor-
rect. Therefore, the generic functions in the Generic Haskell library are natural
candidates for applying our approach to testing generic functions.

The Generic Haskell library consists of twelve modules, of which we will con-
sider the following six: Eq, Compare, Enum, Bounds, and ReadShow, corresponding
to the derivable Haskell classes Eq , Ord , Enum, Bounded , Read , and Show , and
the module Map, which implements the generic map function gmap. We will in-
troduce the generic functions used in this section briefly, often referring to their
non-generic Haskell equivalents. More information about the functions in the
Generic Haskell library can be found in the user’s guide [12].

Properties of gread and gshow
Functions gread and gshow implement the derivable read and show functions
from Haskell. Just as in Haskell, they are defined in terms of helper functions
gshowsPrec and greadsPrec. Reading a value after showing it should be the
identity. Showing after reading need not be the identity: parsing may fail or
the original value might contain concrete syntax (spaces, newlines) that is not
generated by the show function (like the leading zeros in the bits example from
the introduction). We have tested the following property:

prop gread gshow{|t :: ∗|} :: (eq{|t|}, greadsPrec{|t|}, gshowsPrec{|t|}) ⇒
t → Bool

prop gread gshow{|t|} = feq{|t|} (gread{|t|} . gshow{|t|}) id

where feq is pointwise equality of functions, see Section 3.

It turned out that gread could not cope with named fields in data types.
The StructureTypes a data type contains the constructor STLabel{anA ::a}. The
anA field triggered a runtime error (pattern match failure) in gread . QuickCheck
does not trap exceptions, so when a property fails, QuickCheck fails instead of
just counting this as a failed test case. Fortunately, the Haskell compiler ghc
includes (unsafe) functions to catch exceptions in pure code, so by wrapping the
property in an exception handler returning False for all exceptions, we have used
QuickCheck to find the bug.

Main> test (protect prop_gread_gshow_STInt)
Falsifiable, after 3 successful tests
(shrunk failing case 3 times):
STLabel {anA =-2}
The problem was actually not in gread , but in gshow . There was no space charac-
ter after the equality sign, so when a negative integer was shown, the two char-
acters "=-" were later parsed by gread as one token. A one-character change
to the source code fixed this problem, but revealed another bug, this time in
gread . Function gread did not allow parentheses around STLabel{anA = 2},
while gshow (and the derived show in Haskell) printed parentheses. After this
second fix, all tests passed. (Adding infix constructors to StructureTypes a we
revealed yet another bug, but constructor fixity problems was already noted in
the Generic Haskell release notes so we already knew that.)

Properties of gmap
Function gmap preserves the identity:

prop gmap id{|t|} :: (eq{|t|}, gmap{|t, t|}) ⇒ t → Bool
prop gmap id{|t|} = feq{|t|} (gmap{|t|}) id

To test this function, we instantiate it on the type StructureTypes a.

prop gmap id ST :: (Eq a) ⇒ StructureTypes a → Bool
prop gmap id ST = let eq{|a|} = ()

gmap{|a|} = id
in prop gmap id{|StructureTypes a|}

Function gmap distributes over composition. We formulate the distributivity
property by means of three copies of gmap, of which we only define gmap1 here.

gmap1{|a :: ∗, b :: ∗|} :: (gmap1{|a, b|}) ⇒ a → b
gmap1 extends gmap
prop gmap comp{|a :: ∗, b :: ∗, c :: ∗|} ::

(eq{|c|}, gmap1{|b, c|}, gmap2{|a, b|}, gmap3{|a, c|}) ⇒ a → Bool
prop gmap comp{|t|} = feq{|t|} (gmap1{|t|} . gmap2{|t|}) (gmap3{|t|})

To instantiate this property on the data type StructureTypes a, we locally redefine
the gmap copies.

prop gmap comp ST op f g =
let eq{|a|} = op

gmap1{|a|} = f ; gmap2{|a|} = g ; gmap3{|a|} = f . g
in prop gmap comp{|StructureTypes a|}

We have also tested gmap on the structure types (:+:), (:*:), etc.

Properties of enum
Function enum exhaustively enumerates all possible instances of a particular
data type.

enum{|t :: ∗|} :: (enum{|t|}) ⇒ [t]

For example, enum{|Int|} yields the list of all possible (machine-) integers. A
property that should hold for this function is the following:

prop enum{|t|} :: t → Bool
prop enum{|t|} value = value ∈ enum{|t |}

This property says that any value of type t should be in the enumeration of
that type. Interestingly, checking this property is not really an option — at
least for most real-life data types. Recursive data types often have infinitely
many values, so using QuickCheck to test whether or not a value appears in the
enumeration may take infinitely long. When testing the property instantiated
with the StructureTypes Int data type QuickCheck just looped, and at first we
thought this was just to be expected. But a more careful examination revealed
that the property looped already for the first test case, which should have been
small enough to be found early in the enumeration list. It turned out to be
a subtle bug in the definition of the generic enum function. The enumeration
used a version of Cantor diagonalisation which was “non-productive” in the
case of infinite lists. By replacing just the diagonalisation function, the generic
enum implementation worked as expected. Still, the property remains effectively
untestable — already some trees built from just seven constructors are more than
10000 elements down the list.

The problem is just another instance of the problem Gast has with coverage
for recursive data types (remember that Gast also uses (randomised) enumera-
tion): While every element is somewhere in the enumeration list, and will even-
tually be generated by Gast, only small elements are reachable (will be tested
by Gast) within reasonable time. Testing the enumeration property with Gast
(instead of QuickCheck) is possible but not very useful — it is not very sur-
prising that values (test cases) generated from an enumeration list actually are
elements of a very similar enumeration list.

Another property of enum relates enum to the generic function empty that
returns the ‘least’ value of a type. For example, for the List type empty would
return the empty list.

prop enum empty{|t|} :: Bool
prop enum empty{|t|} = empty{|t|} ∈ enum{|t|}

As the type signature reveals, this is more a unit test than a QuickCheck prop-
erty. No random value is generated, so QuickCheck tests the same thing in each
test. It would be more interesting to range over different types for t, but this
does not fit the (current, non-generic) QuickCheck framework.

Properties of gcompare
Function gcompare generalises the derivable compare function from Haskell. We
have tested what corresponds to reflexivity, anti-symmetry and transitivity for
gcompare. Transitivity can be expressed as a QuickCheck property by:

prop gcompare trans{|t :: ∗|} :: (gcompare{|t|}) ⇒ t → t → t → Property
prop gcompare trans{|t|} x y z = gcompare{|t|} x y gcompare{|t|} y z =⇒

gcompare{|t|} x y gcompare{|t|} x z

This captures transitivity for (<), () and (>) when gcompare{|t|} x y has values
LT , EQ and GT . We use the QuickCheck conditional operator =⇒ to rule out
non-interesting test cases. Reflexivity and anti-symmetry are implemented in a
similar fashion.

Another property relates function gcompare with the generic equality func-
tion eq . Function gcompare returns EQ iff function eq returns True.

prop gcompare eq{|t :: ∗|} :: (gcompare{|t|}, eq{|t|}) ⇒ t → t → Bool
prop gcompare eq{|t|} x y = (gcompare{|t|} x y EQ) eq{|t|} x y

This concludes the section on properties for generic functions in the Generic
Haskell library. Formulating and testing these properties has been useful: we
have discovered three bugs in the library.

6 Generic generators

Normally, QuickCheck requires a user to write a test-case generator for a user-
defined data type on which QuickCheck is used. Generic programming allows
us to automatically generate test cases for any given data type. This makes
testing properties of (generic) functions easier. This section shows the imple-
mentation of generic generators in Generic Haskell. We could have chosen any
of the approaches to generic programming to implement generic generators. The
expressivity and type safety of Generic Haskell, and the recently added generic
views feature, are the most important reasons why we use Generic Haskell. A de-
tailed comparison of the different approaches to generic programming in Haskell
can be found elsewhere [5].

Porting the Gast generator to Generic Haskell
For Clean a generic approach to generating test cases is already available: Gast
(Generic Automated Software Testing) [8]. We have translated their implemen-
tation of pseudo random data generation [9] into Generic Haskell.

generate{|g :: ∗|} :: Int → StdGen → [g]

To make this a generator we can use the same technique as in the primeNumbers
example — let gast be the (often infinite) list from generate and pick the value
at a random index n. We just have to be careful not to index outside the list in
case it turns out to be finite.

Thus we obtain a QuickCheck generator, written in Generic Haskell, which
works for all Haskell data types. But, unfortunately, it has the same weakness
for recursive types as the Gast generator in that it takes very long before any
reasonably sized elements are generated. Worse, where Gast can use the system-
atic generation of test data for exhaustive checking for finite types, QuickCheck
cannot guarantee to generate all elements (incompleteness). Still, it is convenient
to have a fully generic generator around, and it can be modified with default
cases and local redefinitions to customise its behaviour for selected constructors
or types.

Non-terminating generators
Instead of first enumerating and then selecting it should be possible to define
a generic generator directly. As a first try we can define the following generic
generator:

arb1{|a :: ∗|} :: (arb1{|a|}) ⇒ Gen a
arb1{|Unit|} = return U
arb1{|Int|} = arbitrary
arb1{|Char|} = arbitrary
arb1{|α :+: β|} = arb Sum (arb1{|α|}) (arb1{|β|})
arb1{|α :*: β|} = liftM2 (:*:) (arb1{|α|}) (arb1{|β|})

arb Sum :: Gen a → Gen b → Gen (a :+: b)
arb Sum ga gb = oneof [liftM Inl ga, liftM Inr gb]

This generator is very simple, works for all data types and does generate reason-
ably sized values, but it has at least two drawbacks: a skewed distribution and
possible non-termination.

The first problem is because Generic Haskell encodes multiple-constructor
data types with nested binary sums, which means that arb1 will give a very
skewed distribution of the constructors. If pi denotes the probability of con-
structor Ci we get pi = 1/2i for i ∈ {1..n− 1}. Here a balanced encoding would
help and the next Generic Haskell release will support this as described in the
Generic Views [6] paper. It is possible to work around this problem already in
the current version of Generic Haskell by first analysing the data type, but we
have not done so.

The second problem is more subtle, but it was noted already in the first
QuickCheck paper (for a specific Tree data type). For recursive data types that
branch into more than one subtree, it is fairly easy to accidentally define a
generator that often fails to terminate (or, actually, terminates but with an
infinite tree as the result). The problem is that if a branching constructor is
often generated, the final tree is only finite if all the subtrees are finite and after

a few branches the number of subtrees is high. The skewed distribution offers
some degree of protection against these infinite trees, but this Bin data type is
an example of the problem:

data Bin = B1 Bin Bin | B2 Bin Bin | L.

Here the probability to generate L is 1/4 and the probability for a finite tree is
only 1/3.

A terminating generic generator
The solution to the termination problem is to use sized generators — we use a
parameter n to limit the size of the generated trees. For a generic function it is
not obvious to define what “size” should measure, but one simple choice is the
number of constructors in the tree. Using a sized generator, we generate trees of
size at most n. The first few cases in the definition are simple generalisations of
arb1 :

arb2{|a :: ∗|} :: (arb2{|a|}, empty{|a|}) ⇒ Int → Gen a
arb2{|Unit|} n = return U
arb2{|Int|} n = arbitrary
arb2{|Char|} n = arbitrary
arb2{|α :+: β|} n = arb Sum (arb2{|α|} n) (arb2{|β|} n)

Our size measure tells us that we should reduce the size when passing through a
constructor and distribute the size over the two subtrees in the product. In the
product case it is tempting to just use

arb2{|α :*: β|} n = liftM2 (:*:) (arb2{|α|} (n / 2)) (arb2{|β|} (n / 2))

but that would tend to generate almost balanced trees. Instead we divide the
size randomly over the two subtree:

arb2{|Con c α|} n = liftM Con (arb2{|α|} (n − 1))
arb2{|α :*: β|} n
| n > 1 = do m ← choose (1,n − 1)

x ← arb2{|α|} m
y ← arb2{|β|} (n −m)
return (x :*: y)

| n 6 1 = return (empty{|α|} :*: empty{|β|})

This generator works for all data types, it always terminates and generates finite
trees (if there are any). It still has the skewed constructor distribution and it
has a similar problem with a skewed size distribution for nested products. Both
these problems can be avoided with a balanced view or with an analysis of the
data type. Initial experiments are promising, but messy, so we leave that for
future work.

Better distribution for regular data types
A problem with all the “fully generic” generators is that they cannot treat the
recursive case differently from other cases. As an example, the arb2 generator
for a normal list will distribute the size parameter evenly between the element
and the tail. This makes long lists very unusual and the sizes of the elements
will decrease exponentially along the list. For lists we can include a special case
in the definition, but similar problems occur also for other data types. Generic
Haskell has been extended with some Generic Views [6], and using the Fix view
it is possible to detect the recursive case, at least for regular data types.

Using the latest version of Generic Haskell (1.61) we have implemented yet
another (sized) generic generator:

arb3{|a :: ∗|} :: Int → Gen a

This generator produces finite elements and has an even distribution of con-
structor probabilities and subtree sizes. The limitation is that it only works for
regular data types (no mutual recursion and recursive occurrences must have
the same parameters). The code depends on the generic function

children{|a :: ∗ viewed Fix|} :: a → [a]

which is the classical example of what could be done in PolyP but cannot be
done in the “old” Generic Haskell implementation.

7 Conclusions and future work

We have shown how we can formulate and test properties of generic functions, we
have used QuickCheck to test the Generic Haskell libraries and we have defined
a few generic QuickCheck generators.

Since an inductive proof of a property of a generic function only requires cases
for the structure types used to represent data types, it suffices to test properties
of generic functions on these structure types. We go one step further and collect
the structure types into one representative type, StructureTypes a, which we use
to instantiate the generic functions before testing them.

We have implemented a number of properties for generic functions in the
Generic Haskell library. Formulating and testing these properties has revealed
three bugs in the library. We have not yet completed the description of the
properties of the functions in the library, so we expect (but do not hope) to find
more bugs.

The generic QuickCheck test-case generators produce test data with a much
better spread than the Gast generator. We have explored several variants with
different random distributions and we have identified the Generic Views exten-
sion of GH as an important step towards better generic generators.

While implementing the different tests using QuickCheck we encountered a
few problems, in particular with exception handling and a better control of the
size of generated test cases. It turned out that the latest version of QuickCheck
(obtained from CVS) solves most of these problems.

Future work consists of finishing formulating properties for the functions in
the Generic Haskell library, further fine-tuning the generic QuickCheck test-data
generators and adding tests of (non-)strictness. Another idea we would like to
investigate is to generate random types as well as random values, and use these
randomly generated types for testing, instead of the StructureTypes a type. It
would also be natural to add generic support to SmallCheck.

Acknowledgements. A. Rodriguez, N.A. Danielsson and anonymous referees com-
mented on previous versions of this paper.

References

1. K. Beck. Test-Driven Development by Example. Addison Wesley, 2003.
2. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of

Haskell programs. In ICFP’00, pages 268–279. ACM Press, 2000.
3. R. Hinze. Generic Programs and Proofs. Bonn University, 2000. Habilitation.
4. R. Hinze and J. Jeuring. Generic Haskell: practice and theory. In R. Backhouse

and J. Gibbons, editors, Generic Programming, volume 2793 of LNCS, pages 1–56.
Springer-Verlag, 2003.

5. R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic programming
in Haskell. Technical Report UU-CS-2006-022, ICS, Utrecht University, 2006. To
appear in Datatype-Generic Programming, LNCS, Springer, 2007.

6. S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic views on data types.
In T. Uustalu, editor, MPC’06, volume 4014 of LNCS. Springer-Verlag, 2006.

7. P. Jansson and J. Jeuring. PolyLib – a polytypic function library. In Workshop
on Generic Programming, Marstrand, June 1998.

8. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto-
mated software testing. In IFL’02, pages 84–100, 2002.

9. P. Koopman and R. Plasmeijer. Generic generation of elements of types. In
TFP’05, pages 167–179. Tallinn, 2005.

10. A. Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.
11. A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell. In O. Shivers,

editor, ICFP’03, pages 141–152. ACM Press, August 2003.
12. A. Löh, J. Jeuring, and A. Rodriguez (editors) et al. The Generic Haskell user’s

guide, Version 1.60 - Diamond release. Technical Report UU-CS-2006-049, ICS,
Utrecht University, 2006.

13. R. Mitchelland and J. McKim. Design by Contract: by example. Addison-Wesley,
2002.

14. S. Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003.

15. R. Plasmeijer and M. van Eekelen. Clean Language Report version 2.1, 2005.

