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Abstract. We present a method for the incorporation of regional image
information in a 3-D graph-theoretic approach for optimal multiple sur-
face segmentation. By transforming the multiple surface segmentation
task into finding a minimum-cost closed set in a vertex-weighted graph,
the optimal set of feasible surfaces with respect to an objective function
can be found. In the past, this family of graph search applications only
used objective functions which incorporated “on-surface” costs. Here,
novel “in-region” costs are incorporated. Our new approach is applied
to the segmentation of seven intraretinal layer surfaces of 24 3-D mac-
ular optical coherence tomography images from 12 subjects. Compared
to an expert-defined independent standard, unsigned border positioning
errors are comparable to the inter-observer variability (7.8 + 5.0 ym and
8.1 + 3.6 um, respectively).

1 Introduction

Even though medical images commonly exist in three or more dimensions, the
ability to efficiently and accurately segment images in 3-D or 4-D remains a
challenging problem. For example, in order to make many 3-D segmentation
approaches practical, optimality of the resulting segmentation is often not guar-
anteed because of the computational demands in searching a large solution
space [1L2].

Nevertheless, Li et al. [3] recently presented a low-polynomial time graph-
based approach for the optimal multi-surface segmentation of 3-D or higher
dimensional data. This was an extension of the approach for the optimal de-
tection of single surfaces presented by Wu and Chen [] to the multiple surface
case. In these approaches [3l[], the surface segmentation problem is transformed
into that of finding a minimum-cost closed set in a constructed vertex-weighted
geometric graph. The edges of the graph are defined so that each closed set in
the graph corresponds to a feasible surface (or set of feasible surfaces). Further-
more, the vertex costs are assigned so that the cost of each closed set directly
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corresponds to the cost of the set of surfaces. The closed set with the minimum
cost (corresponding to the optimal set of surfaces) is then determined by finding
a minimum s-¢ cut in a closely-related graph. Note that even though the surfaces
are ultimately found by finding a minimum-cost s-¢ cut in a constructed graph,
these approaches [3l4] are fundamentally different than the “graph cut” methods
of Boykov et al. (e.g., [A]).

While the edges of the graph are important in determining what it means for a
surface to be feasible, it is the cost function that determines what set of surfaces
is optimal. As originally presented in [3,[4] and used by all of the applications
to date (e.g., [6,[7]), the cost of a set of surfaces is defined as a summation of
cost values associated with voxels on the surfaces (i.e., the cost of a voxel with
respect to a particular surface reflects the unlikeliness that the voxel would be
part of the surface). While such “on-surface” costs can incorporate both image
edge and regional information [7], the incorporation of regional information is
often limited to a region immediately surrounding the voxel for which the cost is
defined (especially in cases of multiple surface detection). In some applications,
better cost functions could likely be defined if “true” regional information could
be incorporated. This involves extending the definition of the cost of a set of
surfaces to also include the summation of in-region cost values in addition to
the on-surface cost values. The in-region cost value for a voxel associated with
a particular region would reflect the unlikeliness of that voxel belonging to the
region. Using the segmentation of the intraretinal layers of optical coherence
tomography (OCT) images as an example application, this paper presents how
true regional information can be incorporated into the 3-D graph search.

2 OCT Imaging Background

With its first introduction in 1991 []], OCT is a relatively new imaging modality.
One of its most common uses is within the ophthalmology community, where the
high-resolution cross-sectional images resulting from OCT scanners are used for
the diagnosis and management of a variety of ocular diseases such as glaucoma,
diabetic macular edema, and optic neuropathy. The macula and region surround-
ing the optic nerve are two locations commonly scanned. For the images used in
this work, a macular scanning protocol was used that involved the acquisition
of six linear radial scans in a spoke pattern centered at the fovea (Fig. Dl(a—c)).
An example image series using this protocol is shown in Fig. [i(d).

Even though intraretinal layers are visible on these macular scans, current
commercial systems (e.g., Stratus OCT-3, Carl Zeiss Meditec, Inc., Dublin, CA,
USA) only segment and provide thickness measurements for the total retina. As
each layer may be affected differently in the presence of ocular disease, an in-
traretinal layer segmentation approach is needed in order to correlate the individ-
ual layer properties with disease state. We have previously reported a method for
the division of the retina into five intralayers (corresponding to six surfaces) using
only on-surface costs in the graph search [7]. However, even though the graph
search theoretically allowed for the simultaneous detection of many surfaces,
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(a) Macular OD (b) Macular OS

Fig. 1. Macular scanning protocol. (a) OD = right eye. (b) OS = left eye. (c) Schematic
view of 3-D image in which each color reflects one 2-D scan. (d) Six example scans in
one macular series.

we found the three interior surfaces in a sequential fashion because of the limi-
tations of incorporating regional information into on-surface costs. The method
reported in this work for incorporating in-region costs allowed us to instead find
four interior surfaces simultaneously. The surfaces we desired to find are shown
in Fig. Bl with Fig.[Z(c) providing an example 3-D view of three of the surfaces.

3 The Multiple Surface Segmentation Problem

In very general terms, the multiple surface segmentation problem can be thought
of as an optimization problem with the goal being to find the set of surfaces with
the minimum cost — such cost being edge and/or region based — so that the found
surface set is feasible. In this section, we define what is meant by a feasible surface
set and the cost of a set of surfaces.

3.1 Feasible Surface Set

Consider a volumetric image I(z,y, z) of size X X Y x Z. We focus on the case
in which each surface of interest can be defined with a function f(x,y) mapping
(z,y) pairs to z-values; however, note that the graph search can be extended
to work with closed surfaces as well [9]. Associated with each (x,y) pair is a
column of voxels in which only one of the voxels — the voxel at (z,y, f(z,y)) —
intersects the surface. Each column also has a set of neighbors. For example, a
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Fig. 2. Intraretinal surfaces and layers of macular OCT images. (a) One 2-D image.
(b) Seven surfaces (labeled 1-7) and six corresponding intralayers (labeled A through
F). (c) Example 3-D visualization of surface 1, 3, and 5.

typical set of neighbors for the column associated with (z,y) are the columns
associated with (x+1,y), (z—1,y), (x,y+1), and (x,y—1). Other neighborhood
relationships are also possible. One common example is to add a “circularity”
neighbor relationship for images that were unwrapped from a cylindrical coordi-
nate system. An example of this would be if the column associated with (0, yo)
was considered to be a neighbor to the column associated with (X — 1,yp). A
single surface is considered feasible if it satisfies certain smoothness constraints.
In particular, if (z1,y1, 21) and (22, y2, 22) are voxels on the surface from neigh-
boring columns in the z-direction, then |z; — 25| < A,, where A, is a specified
smoothness parameter. A similar constraint exists for neighboring columns in
the y-direction (|21 — 22| < Ay).

For a set of surfaces, additional constraints are added to model the desired
relationships between the surfaces. For example, it may be known that one sur-
face is always above another surface and that the distance between the surfaces
is at least &' voxels, but no more than §* voxels. More specifically, for each
pair of surfaces f;(x,y) and f;(x,y), a constraint may be added to require that
8" < filw,y) — fi(m,y) < &% for all (z,y), where &' and 6“ are specified surface
interaction parameters associated with the pair of surfaces. While in general a
pair of surfaces may be allowed to cross, having crossing surfaces does not make
sense when defining regional costs, and thus we will also assume that 6' and §“
have the same sign.

In summary, a set of surfaces are considered feasible if each individual surface
in the set satisfies the given smoothness constraints for the surface and if each
pair of surfaces satisfies the surface interaction constraints.

3.2 Cost of a Feasible Surface Set

Given a set of n non-intersecting surfaces { fi(x,vy), fo(z,v), ..., fu(x,y)}, the
surfaces naturally divide the volume into n + 1 regions (Fig. [B). Assuming the
surfaces are labeled in “increasing” order, the regions can be labeled Ry, ..., R,
where R; reflects the region that lies between surface ¢ and surface ¢ + 1 (with
region boundary cases Ry and R,, being defined as the region with lower z-values
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Fig. 3. Example schematic cost of two surfaces for the multiple surface segmentation
problem. The two surfaces divide the volume into three regions.

than surface 1 and the region with higher z-values than surface n, respectively).
Each voxel could thus have 2n 4 1 real-valued costs associated with it: n on-
surface costs corresponding to the unlikeliness of belonging to each surface and
n+ 1 in-region costs associated with the unlikeliness of belonging to each region.
Let ceut, (2,9, z) represent the on-surface cost function associated with surface
i and creq, (2,9, 2) represent the in-region cost function associated with region i.

Then, the cost C{f, (x,y), fo(2,y),....fn (x,y)} @Ssociated with the set of surfaces can
be defined as

C{fl(w7y)7f2(xay)a"'afn(wﬁ‘/)} = Z Cfl(w’y) + Z CRI ’ (1)
i=1 =0
where
Cfb (z,y) = Z Csurf, (-73’ Y, Z) 5 (2)
{(z,y,z)lz:fi(z,y)}
and

Cgr, = Z Creg, (%, Y, 2) - (3)

(z,y,2)ER;

Note that Cy, () reflects the cost associated with voxels on surface i and Ck,
reflects the cost associated with voxels belonging to region .

Thus, the multisurface segmentation problem becomes to find the surface
set {f1(z,y), f2(z,y), ..., fu(x,y)} that minimizes Equation (Il) such that each
surface individually satisfies the smoothness constraints and each pair of surfaces
satisfies the given surface interaction constraints.
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4 Transforming the Multiple Surface Segmentation
Problem into the Minimum-Cost Closed Set Problem

As was described in [3], a directed graph G = (V, E) can be defined such that
each feasible surface set corresponds to a closed set in the graph. A closed set
is subset Vg of the vertices V' such that no edges leave the closed set. The
cost of a closed set is the summation of the costs of all the vertices. Because
of the direct correspondence between the vertices in the graph and voxels in
the image, it is easiest to visualize the graph vertices as being organized as n
volumes of vertices, one for each surface to be found. First, edges are added to
each volume of vertices such that each closed set within this volume corresponds
to a surface satisfying the given surface smoothness constraints. Essentially, the
corresponding closed set includes all the vertices corresponding to the surface
voxels plus all the “lower” vertices. This is done by adding two types of edges:
intracolumn edges and intercolumn edges. The intracolumn edges ensure that all
vertices below a given vertex (within one column) are also included in the closed
set. The intercolumn edges ensure that the smoothness constraints are satisfied.
Next, intersurface edges are added between the volumes of vertices to enforce
the surface interaction constraints. This makes each non-empty closed set in the
entire graph correspond to a feasible set of surfaces.

As an example, we will consider the added edges for one vertex associated
with a voxel towards the center of the image (i.e., a vertex not involved in
boundary conditions). It will be associated with two intracolumn directed edges:
one directed towards the vertex below it in the column and one from the vertex
above it. Two intercolumn edges will also exist for each neighboring column
in the z-direction (y-direction): one directed to the vertex in the neighboring
column that has a z-value that is A, (A,) smaller and one from the vertex in
the neighboring column that has a z-value that is A, (4A,) greater. Finally, for
each corresponding column in the volume associated with a surface interaction
constraint, two intersurface edges are associated with the vertex: one to the
vertex in the corresponding column with a z-value that is 6* smaller and one
from the vertex in the corresponding column with a z-value that is 6! smaller.
Slightly different edges must be used in the “boundary cases” in which any of
those vertices do not exist [3].

The cost of each vertex in the graph is set such that the cost of each closed
set corresponds to the cost (within a constant) of the set of surfaces. The weight
w;(z,y,z) of each vertex (i = 1,2,...,n) can be defined as the summation of
a term related to the on-surface costs (Won—sut, (¢, 9, 2)) and a term related to
the in-region costs (Win—reg, (2, ¥, 2)):

w’i($7y’ Z) = Won-—surf, (xa Y, Z) + Win—reg, ($7ya Z) . (4)

For on-surfaces costs, the basic idea is to assign the cost of each vertex the
on-surface cost of the corresponding voxel minus the on-surface cost of the voxel
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Used with surface 2

Used with surface 1

Fig. 4. Schematic showing how the assignment of in-region costs to vertices produces
the desired overall cost

below it [41[3]:

Csurf; (I,y, Z) if 2=0

Won—surf; (1’7 Y, Z) = { (5)

Courf, (T, Y, 2) — Csurt; (T, y,2 — 1) otherwise '

For in-region costs, the cost of each vertex is assigned the in-region cost of
the region below the surface associated with the vertex minus the in-region cost
of the region above the surface associated with the vertex:

Win—reg; (r,y,2) = Cregi_l(ma Y,2) — Creg, (r,y,2) . (6)

Because the use of in-region costs is new and perhaps less intuitive, Fig. @ il-
lustrates why such a transformation works. The cost of the closed set C(Ves,)
associated with surface 7 using the in-region costs becomes

C(Ves,) = > Creg,  (y,2) — Yo g (@yz) . (7)
(z,y,2)ERoU-- U Ri—1 (z,y,2)ERoUJ--URi—-1

Recognizing that many of costs associated with each individual region cancel
when added together and the fact that Z(z,y,z)eRoU~~~URn Creg, (T,Y,2) is a
constant K, the cost for the closed set associated with the entire set of surfaces
C(Veg) reduces to

C(VCS) =—-K+ Z Z Creg;, (x,y,z) ) (8)

i=0 (2,y,2)€R;

which, within a constant, is equivalent to the desired in-region component of the
cost of the set of surfaces.

5 Application to OCT Intraretinal Layer Segmentation

5.1 Overall Segmentation Approach

To increase the signal to noise ratio on the macular OCT images, up to six
raw macular series were first aligned and registered together using the methods
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(b)

Fig. 5. Base graph showing neighborhood relationship. The edges indicate neighbor-
hood connectivity of one column of z-values at a (r,0) pair to another. For each edge
shown, smoothness constraints existed between the corresponding columns. (a) Base
graph using cylindrical coordinates. (b) Base graph using unwrapped coordinate system
(as was stored in the computer).

described in [7]. This left one composite 3-D image for each eye. As a pre-
processing step, a speckle-reducing anisotropic diffusion method was applied [10].
Boundaries 1, 6, and 7 were simultaneously found first using the graph search
with only on-surface costs. The remaining boundaries were then simultaneously
found using only in-region costs.

5.2 Surface Set Feasibility for Macular OCT Images

The acquisition setup of the macular scans (Fig. [[l) made it natural to use a
discrete cylindrical coordinate system when working with each 3-D image (the
z-axis coincided with the intersection of the six 2-D composite scans). The co-
ordinates of each voxel could thus be described with the triple (r, 8, z), where r
reflected the distance of the voxel from the z-axis, 6 reflected the angular location
of the voxel (12 values in 30 degree increments), and z reflected the row of the
voxel in the corresponding 2-D image. Note that with this coordinate system,
voxels in the left half of each 2-D image had a different 6 value than those in the
right half (for example, for the vertical 2-D scan shown in red in Fig. [l voxels
in the right half of the image had a 6 value of 90 while those in the left half had
a 0 value of 270). Each surface could be defined with a function f(r, ), map-
ping (r,0) pairs to z-values. The base graph in Fig. [l schematically shows the
neighborhood relationship for the columns and the corresponding smoothness
constraints.

In addition, surface interaction constraints were added between each pair of
surfaces f;(r,0) and f;+1(r,0). Because of the different nature of the surfaces near
the fovea (layers often become much thinner), the surface interaction constraints
towards the center of the image (r values less than 15) were correspondingly
defined to allow for smaller distances between surfaces.
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5.3 Surface Set Costs for Macular OCT Images

The on-surface cost functions for surfaces 1, 6, and 7 were the same as those
used in our prior work [7] (each involved the combination of an edge term and
a localized region-based term) and thus we will focus on the use of in-region
cost terms for the simultaneous detection of the remaining four interior surfaces
(surfaces 2, 3, 4, and 5).

Motivated by the observation that the intensity of each of the five interior
regions could be described as being dark, medium, or bright (region A was bright,
region B was medium, region C was dark, region D was medium, region E was
dark), the in-region cost values were set based on fuzzy membership functions.
Based on Gaussians, each membership function mapped a normalized image
intensity value to a value between 0 and 1, with higher values reflecting a greater
likelihood of belonging to the particular intensity group. The corresponding cost
value was then defined as 1 minus the membership value. Fig.[Glshows an example
plot of these membership functions and their corresponding cost values. More
specifically, the dark membership function, darkyem(z), was defined as

1 for x < Ad
darkmem(m) = {e—(x—Ad)2/202 for = > Ad ) (9)

the medium membership function, medem (), was defined as

e~ (@=(em=Am)?/20* o1 00 < e~ Am

medmen () = 4 1 for ¢y — Am <z < ey +Am ,  (10)
e—(@—(em+Am)?/20®  for o5 ¢ 1 Am

and the bright membership function, bright, .. (z), was defined as

e~ (@=(1=40)/20% {0 0 o — Ap

) (11)
1 forx>1—Ab

Note that the precise membership functions used could be described by the
five parameters Ad, Am, and Ab, ¢,,,, and o. To allow for varying membership
functions for each image, Ad, ¢,,, and Ab were estimated from the image data
by computing the mean intensity value of regions that were assumed to have a
dark, medium, or bright intensity. The assumed dark region was taken as 50—
70 pm above surface 7, the assumed medium region was taken as a 40-60 pm
below surface 1 (not including the middle voxels closest to the fovea), and the
assumed bright region was taken as 0-24 pm below surface 7. These estimates
could be taken because surfaces 1, 6, and 7 had already been determined.

6 Experimental Methods for OCT Intraretinal
Segmentation

The intraretinal layer segmentation algorithm was applied to fast macular scans
from 12 subjects with unilateral chronic anterior ischemic optic neuropathy. Note
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Fig. 6. Example dark, medium, and bright membership functions and corresponding
cost values

that the unilateral nature of the disease meant that we had data for 24 eyes, 12
of which were affected by optic neuropathy, 12 of which were not. In almost all
cases (21/24 eyes), six repeated series (6 x 6 = 36 raw scans) were used to create
the 3-D composite image for each eye. (Each of the remaining three eyes used
fewer than six repeated series to create the 3-D composite image.) The resulting
24 3-D composite images were each comprised of 6 composite 2-D scans (144
total composite 2-D scans) of size 128 x 1024 pixels. The physical width and
height of the 2-D raw scans (and thus also the composite scans) was 6 mm x
2 mm, resulting in a pixel size of approximately 50 pm (horizontally) x 2 pm
(vertically).

One raw scan from each eye was independently traced by two human ex-
perts with the average of the two tracings being used as the reference standard.
The experts did not attempt to trace borders that were not considered visible.
The algorithmic result on the corresponding composite 2-D scan was converted
into the coordinate system of the raw scan (inversely transforming the align-
ment /registration) and the mean and the maximum unsigned border positioning
errors for each border were computed (the middle 30 pixels were not included to
exclude the fovea). The unsigned border positioning errors were also computed
using one observer as a reference standard for the other. For each border, a
paired t-test was used to test for significant differences in the computed mean
border positioning errors (p-values < 0.05 were considered significant).

7 OCT Intraretinal Segmentation Results

The computed unsigned and maximal border position errors are summarized
in Table [[l Except for the unsigned border positioning errors for surface 2 and
surface 4 (which both were significantly greater, p < 0.001 and p = 0.04, respec-
tively), the computed mean errors for all the surfaces were significantly lower or
not significantly different from that between the human observers (p < 0.001 for
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Table 1. Summary of unsigned border positioning errors’ for 24 scans

Algorithm vs. Avg. Observer Observer 1 vs. Observer 2

Border Mean Maximum Mean Maximum
1 4.0+ 1.2 169 + 9.0 59 + 1.3 164 + 5.0
2" 11.2 +£ 5.2 37.1 £ 11.9 58 + 1.2 215+ 8.6
3" 10.0 + 4.7 29.0 £ 9.3 8.4 + 3.3 26.0 + 11.8
4" 104 + 5.1 314 +14.3 77+ 2.1 22.7+ 6.6

5 9.1 + 6.5 27.1 + 13.2 9.4+ 44 28.5 + 12.5

6 3.5+ 20 131+ 7.5 7.8 +2.38 193+ 5.6

7 7.8 £ 25 225 + 7.2 11.5 + 4.6 24.8 + 5.8

T Mean + SD in um. For each boundary, differences were not computed
for the middle 30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which boundary was deter-
mined to not be visible by at least one expert.

(b)

Fig. 7. Example result shown on a 2-D scan from one of the 3-D images

surface 1; p = 0.11 for surface 3; p = 0.80 for surface 5; p < 0.001 for surface 6;
p = 0.004 for surface 7). The overall mean (all borders combined) unsigned
border positioning error for the algorithm was 7.8 + 5.0 um with an overall
maximum unsigned border positioning error of 24.7 + 12.9 pm. This was com-
parable to the overall mean and maximum border positioning errors computed
between the observers which were 8.1 + 3.6 pm and 22.8 £ 9.2 pm, respectively,
and compared well with the true 9-10 pm resolution of the OCT imaging system
reported in the literature [II]. An example result is shown in Fig. [l

8 Discussion and Conclusion

We have presented how in-region cost terms may be added to the optimal 3-D
graph search approach and demonstrated its applicability to the intraretinal
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layer segmentation of macular OCT images. In fact, we chose to only use in-
region cost terms for the interior surfaces to help to show how surfaces may be
found using only in-region cost terms. With the resulting segmentation errors
being similar to that found between two observers, our results were very good
overall. Nevertheless, we anticipate that incorporating both on-surface and in-
region cost terms will help to provide a better segmentation than that from using
either type of cost alone.
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